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Abstract

Recently, using a numerical surface cooling approach, we have shown that highly energetic

discrete breathers (DBs) can form in the stiffest parts of nonlinear network models of large

protein structures. In the present study, using an analytical approach, we extend our previous

results to low-energy discrete breathers as well as to smaller proteins. We confirm and further

scrutinize the striking site selectiveness of energy localization in the presence of spatial

disorder. In particular, we find that, as a sheer consequence of disorder, a non-zero energy gap

for exciting a DB at a given site either exists or not. Remarkably, in the former case, the gaps

arise as a result of the impossibility of exciting small-amplitude modes in the first place. In

contrast, in the latter case, a small subset of linear edge modes acts as accumulation points,

whereby DBs can be continued to arbitrary small energies, while unavoidably approaching one

of such normal modes. In particular, the case of the edge mode seems peculiar, its dispersion

relation being simple and little system dependent. Concerning the structure–dynamics

relationship, we find that the regions of protein structures where DBs form easily (zero or

small gaps) are unfailingly the most highly connected ones, also characterized by weak local

clustering. Remarkably, a systematic analysis on a large database of enzyme structures reveals

that amino-acid residues involved in catalysis tend to be located in such regions. This finding

reinforces the idea that localized modes of nonlinear origin may play an important biological

role, e.g., by providing a ready channel for energy storage and/or contributing to lower energy

barriers of chemical reactions.

1. Introduction

Proteins are molecular machines whose functional motions

are strongly related to, if not encoded within, their three-

dimensional structure [1–3]. As a matter of fact, useful

information on their functional motions can be obtained

from the mere knowledge of their equilibrium structure, as

solved for example through x-ray crystallography or NMR

spectroscopy, even at the level of the harmonic approximation

of the system potential energy [4–6]. Remarkably, this

structure–dynamics–function relationship can be captured

even when substantial amounts of structural details are

missing. In particular, elastic network models (ENMs) of

proteins [7–10] have been used for describing quantitatively

amino-acid fluctuations at room temperature [7], often in very

good agreement with isotropic [8], as well as with anisotropic

measurements [11, 12]. They have also allowed us to show

that a few low-frequency normal modes can often provide

fair insight into the large amplitude motions of proteins upon

ligand binding [13–15], demonstrating the robust character

of these collective motions [16–18]. Taken together, such

results highlight the important role of the peculiar equilibrium

scaffolds of proteins [10, 13, 19], at the same time providing

a rationale for the coarse graining of amino-acid assemblies.

Recently, the interest for problems potentially involving

nonlinear effects in bio-molecules, such as localization and

storage of energy, has increased in the community at the

interface between physics and biology [20–26]. A hot

case concerns enzymatic catalysis and, more specifically, the

following question: how does an enzyme store and use the

energy released at substrate binding or when a chemical bond

is broken? It is noteworthy that this energy may be deployed

on much longer time scales (microseconds to milliseconds)

than those characteristic of the energetic process, and at very
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distant places with respect to the catalytic site of the enzyme

[27], so that it is highly unlikely that a normal-mode-assisted

mechanism may prove enough for explaining the phenomenon.

Indeed, protein dynamics has been long known to be

highly anharmonic [28, 29], a property which is certainly

important in order to understand energy storage and transfer

as a consequence of ligand binding, chemical reaction, etc

[30, 31]. Among nonlinear effects, the possibility that

localized vibrational modes of nonlinear origin may play a

role in biological processes has recently been put forward

by many authors [21], based on engrossing experimental

studies reporting numerous subtleties of protein dynamics,

notably through infra-red spectroscopy [31–34]. For example,

the excitation of localized vibrations in α-helices has been

proposed to be a way for enzymes to store energy during

catalysis [20, 35]. Within this framework, energy transfer

across helices would occur predominantly by hoppings of

localized vibrations along the chain resulting from nonlinear

coupling of spatially overlapping localized modes in resonance

[36, 37].

Nonlinear excitations proposed to play an active role in

protein functional dynamics include topological excitations

such as solitons [38, 39] as well as discrete breathers (DBs)

[40, 41]. The latter are nonlinear modes that emerge in

many contexts as a result of both nonlinearity and spatial

discreteness [42]. Their existence and stability properties are

well understood in systems with translational invariance at

zero temperature [43], and are also intensively investigated

for nonlinear dynamical systems in the presence of a thermal

environment [44–47]. However, not much is known regarding

the subtle effects arising from the interplay of spatial disorder

and anharmonicity [48–50], either in general or in the context

of the functional dynamics of biological macro-molecules.

In a recent paper [51], we have introduced the nonlinear

network model (NNM), with the aim of studying the simplest

model that would take into account both the topology of protein

structures and the anharmonicity of interparticle potentials.

Building upon the many successes of ENMs [10], in the NNM

framework, a protein is mapped onto a coarse-grained network

of oscillators, whose equilibrium positions reflect the spatial

arrangement of amino acids in the protein fold. It is noteworthy

that, in the linear regime, at low temperature for instance, the

dynamical behaviour of NNMs and that of ENMs are identical.

However, in the nonlinear regime, the behaviour of NNMs

becomes much more complex. For instance, by applying

the technique of surface cooling, we have demonstrated that

discrete breathers form spontaneously at a small subset of

specific sites in a given structure, invariably in the stiffest

regions. Remarkably, an interpretation of this finding can be

proposed in terms of enzyme functional dynamics since, by

studying stiffness patterns across a large data set of enzymes,

we have shown that catalytic residues tend to sit in the most

rigid portions of their structure. It is thus tempting to speculate

that enzymes may take advantage of the well-known ability of

discrete breathers to harvest and retain for long periods of times

amounts of energy much larger than what is normally available

at a given site at a given temperature, in order to achieve their

function, which requires crossing energy barriers.

As it often happens, the preliminary findings reported

in [51] have raised numerous questions. In particular, they

have revealed several striking features of DBs in NNMs

of proteins which deserve further detailed analysis, like the

subtle, ubiquitous spatial modulation of their properties, such

as their dispersion relation, connection with the edge normal

modes, degree of localization and presence of an energy

gap in the excitation spectrum. On the other hand, the

numerical simulations analysed in [51] allowed us to study

highly energetic DBs only, as a consequence of the lack of

a simple and clear-cut criterium for recognizing low-energy

ones. Moreover, the protein surface cooling procedure allowed

us to observe DBs in large proteins only, like citrate synthase,

a 2 × 371 amino-acids dimeric enzyme (PDB code 1ixe),

probably as a consequence of a too large surface–volume ratio

of the smaller proteins considered, like HIV-1 protease, a 2 ×
99 amino-acids dimeric enzyme (PDB code 1a30).

It is the purpose of this paper to present a first analytical

study of discrete breathers in NNMs of proteins in order to

study low-energy DBs and to show that such DBs also exist

in smaller proteins. Moreover, this is an opportunity to start

answering, en passant, a fair number of interesting questions

raised by our previous findings. The paper is organized as

follows. In section 2, we discuss the main features of NNMs

of proteins. In section 2.1, we show how it is possible,

in the case of such models, to obtain approximate breather

solutions for the equations of motion, based on a simple

argument invoking a separation of timescales. In particular,

we discuss how we solved the crucial problem of determining

a suitable initial guess, a problem common to the majority of

analytical methods for finding DB orbits, which is here further

non-trivially faceted by the presence of spatial disorder. The

localized solutions that we obtain, the spatial modulation of

their basic properties and their connection with the static and

dynamical features of the protein folds are analysed in depth in

section 3. Finally, in section 4 we summarize our results and

discuss the relevance of our findings in the context of enzyme

function, while, in section 5, work still under way is rapidly

evoked.

2. Nonlinear network models of proteins

In this section, we describe the nonlinear network model. Like

in elastic network models, a given protein is modelled as an

ensemble of N fictitious particles occupying the equilibrium

positions of α-carbons, as found in the experimental structure.

All particles have the same mass3, which we set equal to

the average amino-acid mass M = 120 Da, and each particle

interacts with its neighbours, as specified by a cutoff distance

Rc. More precisely, residues i and j interact if |Ri−Rj | � Rc,

where Ri denotes the position vector of the ith residue in the

equilibrium structure.

Let ui = ri − Ri denote the displacement vector of the

ith residue, ri being its instantaneous position. In the central

3 As our fictitious particles occupy the equilibrium positions of amino acids,

i.e. are located on the corresponding α-carbons, we will use the words particles

and (amino-acid) residues interchangeably.
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force approximation, the inter-particle potential energies may

be expanded in power series as follows:

U(ui, uj ) =
4

∑

p=2

kp

p
(rij − Rij )

p + O(u5)

=
4

∑

p=2

kp

p
(|uij + Rij | − Rij )

p + O(u5), (1)

where uij = ui − uj and rij = |rij | = |ri − rj |, Rij =
|Rij | = |Ri − Rj | are the inter-particle instantaneous and

equilibrium distances, respectively. The total potential energy

can then be written as

U({u}) =
∑

i

ǫi, (2)

where we have introduced the site energies ǫi :

ǫi =
1

2

∑

j �=i

cijU(ui, uj ) (3)

specified through the contact matrix

cij =
{

θ(Rc − Rij ) i �= j

0 i = j
, (4)

θ(x) denoting the Heaviside step function. Setting k3 = k4 =
0 in equation (1) amounts to building a network of Hookean

springs joining pairs of atoms separated by a distance smaller

than Rc, that is, an ENM [7, 8, 10]. Here, we wish to study

the simplest model capturing the combined effects of spatial

disorder and nonlinearity. Hence, we restrict ourselves to

symmetric potentials, by setting k3 = 0. This choice allows

us to get rid of distinct nonlinear features associated with

asymmetric terms of the potentials, such as kinks and more

complicated dc components of the localized modes [42], that

are likely to interact with topological disorder in peculiar ways

and, as such, deserve special attention in their own right.

The equations of motion for the mth residue then read

üm = ω2
0

∑

j �=m

cmj

×
[

(|ujm + Rjm| − Rjm) + β(|ujm + Rjm| − Rjm)3

|ujm + Rjm|

]

× (ujm + Rjm), (5)

where we have introduced the natural frequency ω0 =
√

k2/M

and the parameter β = k4/k2.

We now want to look for solutions of the equations of

motion in the form of localized, time-periodic modes with

the angular frequency lying above the linear spectrum4, i.e.

the spectrum of the Hessian matrix of the potential energy,

as given by equation (2). A sufficiently general ansatz has

the form of a periodic sinusoidal oscillation modulated by a

function of time that varies slowly on the timescale defined by

the inverse frequency ω−1,

um(t) = Aξm(t) cos ωt. (6)

4 We observe that, in principle, the connectivity matrix c may be such that

a sufficiently extended zone of forbidden frequencies in the linear spectrum

might exist, in which case localized solutions with their frequency located in

such a gap might be possible.

We assume that the envelope functions ξm(t) are bounded and

such that max ξm(t) ≃ O(1), so that the amplitude A sets the

physical scale for the oscillation amplitude.

In order for a physically sensible solution with its largest

displacement at a given site k to exist, we must require

A ≪ minj Rjk , that is, the maximum vibration amplitude

of the mode must be much smaller than the shortest bond

between the kth particle and its neighbours5. Therefore, we

can substitute the ansatz (6) into equation (5) and expand each

addendum in the sum over j in series of A/Rjm. After some

lengthy but straightforward algebra, we get
(

ω

ω0

)2

AξmCω +

(

2ω

ω2
0

)

Aξ̇mSω −
Aξ̈m

ω2
0

Cω

= −
∑

j �=m

cmj

{

Rjm

[

(R̂jm · �ξjm)ǫjmCω

+

(

�ξ 2
jm

2
−

3(R̂jm · �ξjm)2

2

)

ǫ2
jmC2

ω

+

(

5(R̂jm · �ξjm)3

2
−

3�ξ 2
jm(R̂jm · �ξjm)

2

+ βR2
jm(R̂jm · �ξjm)3

)

ǫ3
jmC3

ω

]

+ Rjm�ξjm

[

(R̂jm · �ξjm)ǫ2
jmC2

ω

+

(

�ξ 2
jm

2
−

3(R̂jm · �ξjm)2

2

)

ǫ3
jmC3

ω

]}

+ O(ǫ4), (7)

where Cω = cos ωt, Sω = sin ωt, ǫjm = A/Rjm are

the expansion parameters, �ξjm = ξj − ξm, the relative

displacement patterns, and where we have introduced the unit

distance vectors R̂jm = Rjm/Rjm.

Since we are assuming that the envelope functions are

slowly varying during one breather oscillation, we can multiply

equation (7) by cos ωt and average over one period 2π/ω. By

the same token, we neglect the second time derivatives of

the envelope functions. By doing this, we finally obtain a

nonlinear algebraic system of 3N equations whose 3N + 1

unknowns are the time-averaged envelope patterns and the

breather frequency:
(

ω

ω0

)2

ξm = −
∑

j �=m

cmj

{

R̂jm(R̂jm · �ξjm) +
3A2

8R2
jm

×
[

R̂jm

((

5 + 2βR2
jm

)

(R̂jm · �ξjm)3

− 3�ξ 2
jm(R̂jm · �ξjm)

)

+ �ξjm

(

�ξ 2
jm − 3(R̂jm · �ξjm)2

)]

}

. (8)

We note that the system of equation (8) is only apparently

underdetermined. In fact, one can normalize the displacement

pattern ξ by taking any of its 3N components as the

reference unit length. In practice, we shall keep the DB

5 To be more quantitative, the Lindemann criterium [52] for avoiding (local)

melting in classical systems prescribes A < Amelt ≃ 0.17 minj Rjk .
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amplitude |ξm| = AB fixed for a guess mode centred

at site m, which means solving for the 3N variables

{ξ1, ξ2, . . . , ϕm, ϑm, . . . , ξN , ωB}, where ϕm and ϑm are the

azimuthal and polar angles, respectively, of the vector ξm and

where ωB is the DB frequency.

Equation (8) constitutes a generalization to arbitrary

topology of well-known equations for approximate breather

solutions in periodic lattices, which have been shown to

produce accurate results in that context [53]. We note that,

in analogy to lattice systems, we would have obtained the

same set of equations by applying the so-called rotating-

wave approximation (RWA), which amounts to truncating the

expansion of cos3 ωt to the first harmonic [42]. However, RWA

does not set restrictions on the time variation of the envelope

functions. Hence, we prefer to follow the time-averaging

approach since it reflects more correctly the physical situation.

For vanishing amplitude A, we recover the eigenvalue problem

of the elastic network—in the limit A → 0, equation (8) gives

the normal modes (NM) and the linear spectrum of the system.

In expanded notation, the corresponding eigenproblem reads
(

ω

ω0

)2

ξα
m = −

∑

β=x,y,z

∑

j �=m

K
αβ

mj ξ
β

j , (9)

where Greek apices indicate spatial directions. The matrix K

is the Hessian of the potential energy:

K
αβ

mj = cmj R̂
α
mj R̂

β

mj − δjm

∑

k �=m

cmkR̂
α
mkR̂

β

mk, (10)

δjm being the Kronecker symbol.

2.1. Solving the equations: the initial guess problem

We now wish to devise a general procedure for determining

nonlinear localized solutions of equation (8). We note that,

at variance with periodic media, sites in a spatially disordered

network are not equivalent. Indeed, the connectivity, i.e. the

number of neighbours, as specified by the cutoff distance

Rc, varies from site to site and so do the directions of the

outgoing bonds, so that each position has a unique local

neighbourhood. Consequently, it is natural to expect that

the existence of localized solutions and their properties will

be subject to unknown positional constraints. In fact, the

breathers obtained with the cooling procedure turned out to

be site-selective, revealing that only a small fraction of the

available sites would support a breather spontaneously self-

exciting out of the energy drainage process at the surface.

In particular, DBs single out special regions of the structure,

namely those that are among both the most connected and

the most buried ones. Moreover, we also found a high

degree of site dependence in frequency–energy dispersion

relations, suggesting that distinctive low-energy properties,

such as the occurrence and the nature of an energy threshold

for localization, might also be spatially modulated.

In line with the above observations, we assume that

equation (8) will converge to a breather solution centred at

a given site m provided (i) the site m admits a breather solution

at all the given point in parameter space (the parameters of

the model being Rc, β and either the DB frequency or its

amplitude6) and (ii) the initial guess is close enough to a

nonlinear periodic solution. Let us stress that we are explicitly

assuming that, as a consequence of the non-equivalence of the

sites, due to topological disorder, DB families are also indexed

by the site at which they are localized. Such an assumption is

strongly supported by our previous numerical results, since

all DBs obtained proved to be highly localized ones, in

fact more localized than any of the harmonic modes [51].

In practice, condition (i) should be regarded as a criterium

for convergence within a specified tolerance for the sum of

residuals. Importantly, such a criterium must be restricted

to a homogeneous, site-independent protocol for identifying

the initial guess. In other words, a protocol able to identify

magnitudes and direction cosines at each site for the guess

displacement field automatically, without arbitrariness, e.g. as

what concerns the number of displaced particles, the directions

of displacements, etc.

An analysis of the mode patterns obtained in [51] from

a principal component analysis of the system trajectories in

the quasi-stationary state revealed that such DBs typically

concentrate the largest part of their energy on a single residue,

leaving only a fraction of the order 1/N on each of its N

neighbours. Furthermore, a closer inspection allowed us to

show that the displacement vector of the central residue and

those of its neighbours seem to be oriented so as to maximize

the associated distortion of the network. All other residues

being virtually at rest for a typical DB eigenvector, this also

corresponds to maximizing the system potential energy (2).

The above observations suggest the following protocol for

computing the initial guess to be fed to system (8).

Suppose we wish to solve equation (8) for a DB of given

amplitude AB at site m. The 3N unknowns are then 3N − 1

time-averaged displacement coordinates and the frequency ω.

Alternatively, we could as well fix the frequency and solve for

the pattern and the amplitude. We start with the network in its

equilibrium configuration. The first step consists in drawing

at random the azimuthal and polar angles of the displacement

vector ξm, with the constraint |ξm| = AB, so as to uniformly

sample the ensemble of all vectors centred at site m with a

fixed modulus AB. Typically, looping a number O(103) of

times, we get a satisfactory convergence of the maximum strain

direction at site m with a relative error of 1–2%. We then repeat

the same operation sequentially at all the N (m) neighbouring

sites, in an ascending order with respect to the bond distances

Rjm(j = 1, 2, . . . ,N (m)), with the only difference that

the magnitude of the displacements is also varied. Following

the numerical results of [51], we take as an initial guess for the

magnitudes |ξj | = AB/(N (m) + 1) for all N (m) neighbours.

The calculation proceeds site by site in such a way that, when

optimizing the displacement at site j , the shells closer to the

central residue are kept fixed in the previously determined

optimal configurations. We coin this procedure the sequential-

maximum-strain (SMS) method.

An illustration of how the SMS protocol performs is

given in figure 2, where we show a scatter plot of the site

6 By that, we shall always mean the maximum of the displacement field

A|ξm|, m = 1, 2, . . . , N , where {ξm} is the calculated time-average DB

displacement pattern.
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Figure 1. Structure of dimeric citrate synthase (PDB code 1IXE).
Only α-carbons are shown, as spheres in a color scale corresponding
to the crystallographic B-factors, from smaller (blue) to larger
(yellow) fluctuations.

 

 

Figure 2. Discrete breathers at site THR 208 A of citrate synthase.
A comparison of the site energies of the analytic breather solution
and of the SMS pattern with a numerical DB obtained through the
cooling process with amplitude AB = 0.929 Å; see [51]. The dashed
line is the plane bisector. The inset displays the site energies of all
32 neighbours of the central residue. Parameters of the NNM are
Rc = 10 Å, β = 1 Å−2.

potential energies of a numerical solution from [51] versus

the corresponding SMS guess vector as well as the analytic

solution for the case of the site associated with Threonine

208, in monomer A of citrate synthase (see figure 1). Note

the wide separation of energies (logarithmic scale) between

the central site and the neighbouring sites, as a consequence

of the localized character of highly energetic DBs. As a

further quantitative confirmation that SMS-based analytical

breathers reproduce well those obtained during our previous

cooling simulations, we note that the frequency of the analytic

solution (equation (8)), also shown in figure 2, is ωB =
115.3 cm−1, as compared to that determined by the numerics,

namely ωB = 114 ± 1 cm−1. However, despite the excellent

predictive power of the SMS-fed protocol, the lowest site

energies of the numeric solution tend to be smaller with

respect to the analytic solution. Since the breather is

exponentially localized, these correspond to sites located far

from the DB centre, which are likely to be close to, if not

on, the protein surface. Although the effect is a small-

amplitude one, it seems to be an interesting consequence of

the surface cooling protocol itself, whereby breathers would

Table 1. Statistics of DB self-localization in dimeric Citrate
Synthase, as found in our previous cooling simulations; see [51].
The probability of appearance p is the fraction of localization events
out of a pool of 500 cases. Note that the slight asymmetry of citrate
synthase has significant effects on the statistics of events in the two
monomers.

Monomer A Monomer B

Rank Residue p (%) Residue p (%)

1 THR 208 20.4 THR 192 17.8
2 ALA 209 11.1 ALA 196 12.5
3 ALA 196 4.5 THR 208 9.1
4 ALA 212 2.5 ALA 209 5.3

appear further squeezed into the interior of the structure so

as to minimize its amplitude in the surface regions where the

protein is in contact with the zero-temperature bath.

3. Results: analytical discrete breather solutions in
NNMs of proteins

In the previous section we have discussed the general features

of NNMs of proteins, along with a strategy for obtaining

approximate analytic solutions. Since we are interested in

computing localized modes whose properties are expected to

be site dependent, we have devised a homogenous protocol

for obtaining a well-defined guess for a DB at a given site. To

be more explicit, the SMS method clarifies ambiguous points

related to computing an initial guess for the DB pattern such as

the number of displaced residues, the magnitude and directions

of their initial displacements and so forth, the algorithm

automatically taking care of these choices in compliance with

a general requirement. Furthermore, we have shown that the

pattern computed through the SMS procedure is remarkably

close to the numerical DB obtained by surface cooling. In

this section, we shall discuss the properties of the localized

vibrations calculated from equation (8), starting from SMS

guesses.

3.1. Insight from the cooling simulations: high-energy DBs

We have seen that SMS guesses approximate well the patterns

of the self-localizing DBs obtained by surface cooling in [51].

It turns out that the analytical solutions that we compute

starting from an SMS guess preserve, and even improve, such

agreement throughout the whole energy range spanned by

the numerical solutions. This point is illustrated in the case

of citrate synthase in figure 3. The dispersion relations for

the four DBs with the largest probabilities of occurrence in

monomer A, as observed in cooling simulations (see table 1),

are extremely well reproduced by our analytical approach.

The spatial patterns are well reproduced too. They can be

measured through the locality index

L =
∑

iα ξ 4
iα

[
∑

iα ξ 2
iα

]2
, (11)

where ξiα is the α(x, y, z) coordinate of the ith atom in the

given displacement field ξ. So, our theoretical calculations

5



Phys. Biol. 5 (2008) 026001 F Piazza and Y-H Sanejouand

 

  

       

Figure 3. Comparison between analytical and numerical DBs, as obtained in cooling experiments with citrate synthase. Upper panels:
numerical (circles) and analytical (solid lines) dispersion relations for DBs self-localizing on monomer A (left) and site energies versus
distance from the central site (right) for the DB at THR 208 A with amplitude AB = 0.929 Å. The inset shows the same energies versus
average distance, now expressed in terms of the number of links from the central site. The y-axis units are the same as in the main plot.
Lower panels: locality measures as defined in equation (11) for DBs localized at THR 208 A (left) and THR 192 B (right). Note that in the
left panel, for example, the theory is only about 2% off the numerical results. Parameters of the NNM are Rc = 10 Å, β = 1 Å−2.

confirm the strong site-to-site variability of the DB dispersion

relation, already spotlighted in [51].

As a further instructive comparison between the analytical

solutions computed from SMS guesses and those obtained

through cooling simulations, figure 3 also shows how site

energies vary as a function of the distance from the central

site of the DB (upper right panel). In particular, it shows

that local energies decrease exponentially for sites farther and

farther away from the central site, as expected for a discrete

breather. However, a closer inspection of the curves reveals

that site energies, at least those in the first coordination shells,

are sub-organized in plateaus. In other words, there are

relatively ample (about 5 Å) intervals of distances from the

central site where sites share more or less the same local

energies. This behaviour suggests that it is the number of

links (bonds) between two sites rather than their distance that

matters. Indeed, a plot of site energies as a function of their

separation from the central site, expressed in units of links, i.e.

the distance in the sense of graph theory, confirms the validity

of this conjecture (see the inset of figure 3). Here, the graph is

the one defined by the connectivity matrix cij and the distance

between two nodes (the sites) is the smallest number of links

that have to be followed in order to go from one node to the

other. As a matter of fact, by measuring distances in such

units, the exponential decay of site energies is recovered.

The numerical breathers analysed in [51] correspond to

simulation runs (the majority) where a single object gathered

nearly all the system energy. Moreover, as a criterium for

selecting mere DBs, we explicitly required that the energy

collected be larger than the initial energy per particle in the

thermalized state. In other words, we selected and studied

high-energy DBs only. Hence, the comparison illustrated

in figure 3 shows that the SMS scheme is surely a good

procedure for computing guess modes for analytical DBs of

relatively high energy. As shown hereafter, the situation gets

more complex when we turn to the low-energy portions of the

dispersion relation.

3.2. Low-energy breathers: does an energy gap exist?

In the context of regular lattices, interesting predictions have

been formulated as to the presence of an energy gap in the

excitation spectrum of discrete breathers, i.e. a finite energy

threshold that has to be overcome in order to create a DB.

It has been shown that, depending on the spatial dimension

and type of nonlinearity in the inter-particle potentials, a finite

threshold may, or may not, exist (for systems of an infinite

size) [54, 55]. As shown hereafter, in the context of spatially

disordered systems, such a question has to be formulated not

only in terms of the existence of a gap, but also in terms of its

nature.

In general, for Hamiltonian systems, discrete breathers

occur in one-parameter families, indexed e.g. by their energy

EB, their frequency ωB or alternatively their amplitude AB (in

6
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the language of ansatz (6)). In practice, in the presence of hard-

type nonlinearities, when the DB frequency is lowered towards

the linear band edge frequency ωE, the breather amplitude may

or may not approach zero.

In an ordered medium, if DBs of arbitrary small

amplitudes exist at all, they can only appear in the limit

ωB → ωE, as a direct consequence of the constraint of

non-resonance with any of the linear modes, ωE being the

edge frequency. In this case, a detuning exponent z can

be introduced [54] and standard perturbation theory used to

determine both the exponent and the coefficient in the relation

|ωB − ωE| = cAz
B
. (12)

In general, it is possible to speculate that if DBs of arbitrary

low amplitude exist in a discrete system, then they emerge

from linear edge modes by means of a tangent bifurcation

[55]. Moreover, this hypothesis can be used to calculate

explicitly the energy at which such a bifurcation occurs. For

example, in the case of periodic lattices, it has been shown

that the bifurcation energy either vanishes or is asymptotically

finite in the limit of a large system size, depending on the

spatial dimension and on the nature of the potentials [54, 55].

Hence the conclusion that breather excitation spectra may,

or may not, display a finite energy gap, depending on the

nature of the studied system. It is important to stress that

in an ordered system the bifurcation of the nonlinear edge

mode marks a symmetry breaking, the emerging DB mode

being exponentially localized, while the edge linear mode has

an extended pattern. The question is, then, how this picture

changes when spatial disorder enters the game.

In the context of weakly coupled chains of oscillators

with on-site disordered potentials, it has been shown that low-

amplitude breathers exist, approaching linear eigenvectors for

vanishing amplitudes. Remarkably, the latter patterns are

localized due to disorder and, therefore, there is no symmetry

breaking and the DBs approach the linear modes continuously.

Moreover, there are DBs originating not only from the edge

mode, but also from modes at frequencies below the band edge

[56, 57]. These DBs have been coined intra-band breathers

and their frequencies have been shown to be dense within

the gaps separating the frequencies of two consecutive linear

modes. Under the general hypothesis that such features do

not depend on the type of disorder, as long as (at least) the

edge modes are localized, we may conjecture that a similar

picture would be observed in the presence of spatial disorder.

In topologically disordered systems, such as protein structures,

sites are not equivalent and edge modes are intrinsically

localized, different modes having their largest displacement in

different regions of the structure. Hence, we may expect that

different families of DBs may exist, localized at different sites

and approaching different edge normal modes for vanishing

amplitudes. In particular, we may expect that both the DB

frequency and the corresponding pattern smoothly approach

asymptotically the values of the corresponding linear modes

with no symmetry breaking at all. In any case, such DBs would

not show an energy gap in their spectrum. However, linear

modes are characterized by a variable degree of localization,

only a small fraction of them being strongly localized. In the
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case of citrate synthase, for example, equation (11) predicts a

localization parameter greater than the average value plus two

standard deviations for a mere 4% of the modes. Therefore,

also in accordance with [56, 57], we can guess that the sites

on which localized normal modes are centred will host zero-

gap DBs, continuously approaching the corresponding linear

patterns as their amplitude is reduced towards zero, but will it

be the case for a generic site?

In order to answer the above questions and test our

conjectures, we shall proceed as follows. First, we look for

localized solutions centred at a given site and parametrized by

the amplitude in the sense of ansatz (6)7. We fix AB = A0 at the

site of choice and use the SMS pattern of amplitude A0 as an

initial guess. Then, we progressively decrease the value of AB

in small steps. If the sum of residuals of the optimal solution

found for equation (8) is lower than a specified small tolerance

(close to machine precision), we record a DB solution and

calculate its physical properties. Then such a solution is used

as a guess for calculating the DB for the following value of AB.

If the chosen amplitudes are sufficiently closely spaced, this

algorithm enables us to follow a given DB family centred at

the site of choice [55]. Besides the DB (potential) energy EB

and frequency ωB, we also calculate the localization parameter,

as defined in equation (11).

The results of the above-described calculations performed

for all sites of a small dimeric enzyme (HIV-1 protease) are

shown in figure 4. The plot shows the dispersion relation

for all DBs found, that is, all points in the parameter space

where a solution of system (8) could be found (to machine

precision). The figure shows that intra-band breathers can exist

7 In principle, in order to solve equation (8) for a guess centred at a given

site, we could either fix the parameter A and solve for the DB pattern {ξ}
and frequency ωB, or fix the latter quantity and determine the pattern and

amplitude parameter. For exploratory purposes, fixing A appears the more

natural choice also in view of the SMS strategy for computing the initial guess,

whereby an SMS pattern is found at a given value of A. However, we have

also checked that the same zeros of equation (8) would be found for identical

choices of parameters through the alternative strategy.
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within the framework of protein NNMs, i.e. localized modes

of nonlinear origin with frequencies lying within the gaps of

the linear spectrum. More precisely, we see that a limited

number of linear frequencies act as accumulation points for

the frequencies of DBs, which approach asymptotically the

corresponding normal mode in the limit of zero amplitude.

The inset of figure 4 provides a clear-cut illustration of this

phenomenon, in the case of the DB approaching the edge

mode. In real space, the DB pattern also continuously

approaches the NM pattern. We repeated similar calculations

for different proteins, obtaining analogous results. The

rationale behind such observations can be resumed in the

following two conjectures.

Conjecture 3.1. Let us consider the site the most involved

in a given normal mode, i.e. the one whose displacement is

the largest in the NM pattern (hereafter simply the NM site).

If a discrete breather centred at a given site m can be found

at arbitrary small values of its amplitude AB, its pattern will

asymptotically tend to ξ[m], that is, the normal mode for which

site m is the NM site. Correspondingly, its frequency will also

approach the corresponding linear frequency ω[m] in the limit

AB → 0. If the linear frequency ω[m] lies below the edge, the

breather surely exists in the frequency interval [ω[m], ω[m+1]],

and may or may not exist for frequencies above ω[m+1].

As a matter of fact, there are sites that are NM sites of

more than one normal mode. In this case, starting from one of

such NM sites, we find that DBs asymptotically approach the

normal mode with the highest frequency.

The above conjecture provides a solid interpretative

framework for what we shall call zero-gap breathers, i.e. DBs

that may be excited at arbitrary small energies. The opposite

inference, however, is not always true, which means that not

all DBs centred at a given NM site approach the corresponding

normal mode in the low-amplitude limit. There may simply

be NO low-amplitude limit at a given site. In that case, at a

given value of the amplitude, the DB solution shifts from the

selected site (that is, the site we started from at amplitude A0)

to another site. Note that, in general, the destination site need

not necessarily be one of the neighbours of the original site. In

the following, we will refer to phenomena of the like as jumps.

This brings us to formulate our second conjecture.

Conjecture 3.2. Let us suppose that a value of the amplitude at

a given site m has been reached where a jump has occurred at

another site n, i.e. the largest amplitude in the DB patterns has

shifted from site m to n. If, after the whole structure has been

scrutinized, low-amplitude breathers are never recovered at

site m as the destination site of jumps observed from other sites

during the whole analysis (covering all sites in the protein), the

DBs centred at site m feature an energy gap in the spectrum,

i.e. they exist but for energies higher than a finite threshold. In

this case, an energy gap exists as a direct consequence of the

impossibility of exciting small-amplitude breathers in the first

place.

Note that, in the case of zero-gap breathers, the possibility

still exists that an energy gap may open up at higher energies.

In these cases, however, despite being centred at the same site,

a change of symmetry occurs in the patterns of the DBs lying

above and below the gap. In this case, we shall speak of two

different families of breathers.

The above considerations are illustrated in figure 5, for the

case of the HIV-1 protease dimer. The upper panels refer to

the breather at the NM site of the edge normal mode. No jump

is observed, and the DB approaches continuously the edge

normal mode with a detuning exponent z = 2 8. At variance

with other properties of DBs in NNMs, we find that all DBs

that exist up to arbitrary small amplitudes are characterized by

the same detuning exponent z = 2. Thus, the value of z seems

to be determined by the choice of the force field and not by the

topology of the structure. On the other hand, the normalized

scalar product p between the DB and the linear mode pattern

approaches unity asymptotically when EB → 0 following a

power law, such that 1 − p ∝ E2
B

(see the upper right panel).

Note that this DB is able to harvest a substantial amount of

energy even at relatively small amplitudes, thus providing

an easily accessible nonlinear energy storage channel. For

example, typical energies involved in ATP hydrolysis, the most

common fuelling mechanism for molecular machineries, are

of the order of 10 kcal mol−1. A DB at site ILE 85A would

raise a similar amount of energy at a mere 0.2 Å of amplitude.

The lower plots in figure 5 show a case where jumps are

observed. Starting at large amplitudes with an SMS guess

centred at site ASN 83B, a DB solution can be followed until

an amplitude A = 0.669 Å. Beyond that point, no DB solution

is found, until the amplitude reaches the value A = 0.462 Å.

At that point a DB solution is recovered, centred at the same

site. However, the lower right panel shows that a change in

symmetry has occurred, as revealed by taking the normalized

projection onto the third mode from the edge as reference.

Overall, there is a 4 kcal mol−1 wide interval where no DB

seems to exist. Lowering the amplitude further, a new jump

is observed at A = 0.261 Å. At this stage, the DB jumps to

a neighbouring site (ILE 85B, which is about 7 Å away) and

from this point it approaches asymptotically the corresponding

normal mode (i.e. the one for which ILE 85B is the NM site).

Therefore, we conclude that the DB centred at ASN 83B has

a second energy gap (which marks the lower bound of its

dispersion relation) of 19.03 kcal mol−1, as explicitly reported

in the lower left graph. As is clear from the lower right panel in

figure 5, the solutions that we find in the frequency range below

ω2 are intra-band breathers. Starting from the SMS guess for

ASN 83B at high energies, we are able to continue the solution

until a frequency slightly above the band edge. Decreasing the

amplitude further beyond this point, we no longer find any DB

solution, until the intra-band DB centred at site ILE 85B is

recovered, just below the second linear mode. This solution

can then be further continued to asymptotically approach the

third mode.

3.3. Zero-gap intra-band breathers: crossing harmonic levels

In general, zero-gap DBs approach a given normal mode in

the low-energy limit, their frequency tending asymptotically

8 At small energies, EB ∝ ω − ωE ∝ Az
B.

8



Phys. Biol. 5 (2008) 026001 F Piazza and Y-H Sanejouand

Figure 5. Examples of DB properties, in the case of HIV-1 protease (PDB 1A30). Left panels: plots of DB energy versus amplitude. Right
panels: (complementary) projection of the DB pattern on the corresponding asymptotic normal mode as a function of the DB energy (first
mode, upper plot) and of the frequency detuning from the mode (third mode, lower plot). The dashed line in the upper left plot is a power
law with the detuning exponent z = 2. This in the upper right graph is a power law such that 1 − p ∝ E2

B
. The lower graphs portrait a case

where a jump occurs, from the original site ASN 83B (filled circles) to the new site ILE 85B (empty circles). In the right graph, the dotted
line is a power law such that 1 − p ∝ (ω − ω3)

2, while the two vertical lines mark the edge mode and the second mode of frequency ω2.
Parameters of the NNM are Rc = 10 Å, β = 1 Å−2.

to the corresponding eigenfrequency. However, we found

that the behaviour of such solutions may vary to a substantial

extent from mode to mode, that is, from site to site. The

only exception is the case of DBs tending to the edge normal

mode, which show a great regularity. In fact, we find

that the same behaviour illustrated in figure 5 is reproduced

for all DBs approaching the highest frequency mode in all

analysed structures. In view of their robustness, that is,

the reproducibility of their characteristics across different

structures, such breathers may well happen to play a special

role in NNMs of proteins. Concerning DBs originating

from modes lying below the edge, we find a much more

faceted situation. A deep and thorough understanding of the

regularities, if any, displayed by such DBs in relation with their

spatial environment and with the edge normal mode patterns

and frequencies, surely an instructive study, extends beyond

the purpose of the present communication. Here, we limit

ourselves to two other demonstrative examples, found when

studying the case of dimeric citrate synthase.

If the target normal mode corresponds to a frequency

below the edge, the DB encounters a number of harmonic

levels as its energy decreases. In such cases, the DB can

be lost at one, several, or even at all such crossings, as we

proceed from large amplitudes and a solution correspondingly

recovered in the frequency interval between one mode and

the adjacent one. As a matter of fact, we speak of intra-band

DBs, as these are solutions that exist only within inter-mode

gaps. Rigorously, a DB cannot exist at the exact frequency

of a normal mode. Hence, adjacent NMs may be thought as

boundaries separating different DB families. However, it has

been shown in another context that breather frequencies are

dense within successive harmonic levels, which thus act as

accumulation points [56, 57].

In general, discontinuities seem to occur in the majority

of cases as we continue a DB solution through the harmonic

spectrum. One such example is reported in the upper graphs

of figure 6. Here, the DB eventually approaches the eighth

highest frequency mode and the crossings with the seven

harmonic levels above can be simply guessed by looking at

the dispersion relation. In fact, an inspection of the projection

of the DB on the corresponding normal mode pattern allows

one to spotlight the crossings, and suggests that these are

accompanied by changes in the symmetry of the solution.

Thus, we may speculate that such intra-band DBs belong to

different families, each of them existing only within the gap

between two given frequencies. Remarkably, however, this is

not the only behaviour of breathers as they encounter linear

frequencies. In fact, some DBs do not seem to be perturbed

at all by crossing one or more linear modes. For example, the

dispersion relation reported in the lower left graph of figure 6

shows no discontinuities as the DB crosses the first (edge)

and second highest modes, as it approaches the third highest

mode. The projection of the DB mode on its asymptotic pattern

confirms that the breather is able to travel across two harmonic

9
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Figure 6. Energy (left) and normalized projection on the corresponding asymptotic normal mode (right) versus frequency detuning for DBs
at sites GLY 255 A (upper panels) and ALA 196 B (lower panels) of citrate synthase, approaching the eight and third highest normal modes,
respectively. The solid lines in the left panels are the result of the first-order Lindstedt–Poincarè perturbation theory. The vertical lines mark
the highest normal modes.

levels virtually undisturbed, with no appreciable perturbation

of its pattern.

The observation of an instability when a DB crosses a

normal mode close to the band edge can be rationalized by

examining the spatial overlap between the two patterns. Since

both modes are exponentially localized, if the NM is localized

far from the DB core, an instability will not be detectable

numerically within machine precision. Conversely, if the DB

is centred in a region where the edge mode is also confined, our

algorithm will signal the instability. In this sense, our results

point to the existence of spatial selection rules that govern the

range of existence/stability of a DB located at a given site.

It should be stressed that a more rigorous analysis based on

numerical continuation algorithms such as the one employed

in [56, 57] would allow a closer inspection of the bifurcations

arising at the unstable level crossings, through e.g. a Floquet

analysis of the DB stability. Work in this direction in the

framework of NNMs of proteins is currently under way.

Finally, we wish to draw attention to another interesting

feature displayed by our DB solutions that was also reported

in [56], namely the presence of tongues in the dispersion

relations of some DBs (see figure 7). These solutions display a

distinctive turning at a specific point in the energy–frequency

plane, marking a finite energy gap. Such tongues signal the

occurrence in the vicinity of the turning point of a change of

symmetry in the DB pattern, accompanied by a jump of the DB

centre to a neighbouring site. In analogy to what was reported

in the case of the systems analysed in [56], we conjecture

that such jumps also mark a change in the stability of DBs
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through the appearance of a tangential bifurcation. However,

our approximate method does not allow us to perform an

accurate linear stability analysis of our solutions, and hence we

shall defer further statements on that matter to our subsequent

studies. We wish to stress, however, that the possibility of

following the (putatively) unstable branches is here afforded

by our choice to fix the amplitude at a given site and solve for

the DB pattern along with its frequency. Had we followed one
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Lower panels. Distribution of connectivities (left) and clustering coefficients (right) of amino-acid residues involved in enzymatic activity,
compared to amino acids of same chemical type, randomly chosen within the same set of enzyme structures.

such breather by fixing its frequency, we would have lost the

solution at the turning point.

4. Discussion

The complete analysis of HIV-1 protease reveals that 75.6% of

sites are characterized by a non-zero energy gap, while 14.7%

have a vanishing gap and 9.7% of the sites do not support

any DB at all, in the sense that large amplitude solutions are

found to shift to other sites. Of course, we speak here of the

lowest energy gap among all possible holes that a single DB

dispersion relation may display (see again the case of ASN

83B in figure 5), that is, the particular non-zero value of the

DB energy below which no solution centred at the studied site

is ever recovered. An analysis of a selection (10%) of sites in

citrate synthase yields similar figures: 80% of non-zero gap

DBs, 17% of zero-gap DBs and 3% of sites that do not seem

to allow for any DB at all. It should be again stressed that the

presence of sites that do not allow for DBs might be regarded

as a consequence of the upper bound chosen for the amplitude,

namely A0 = 1.5 Å. It is likely that DBs could be recovered,

at some of these sites, using larger values for the amplitude.

However, the energy gap of such DBs is expected to be quite

large, well over values that are expected to be sustainable for

chemically bound molecules (i.e. 100–200 kcal mol−1). In

this sense, the presence in a given structure of regions where

DBs are not found has to be regarded as a direct consequence

of the requirement of chemical meaningfulness.

Since DBs with a finite energy gap seem to be the

largest majority, we may ask what is the variability of energy

gaps at all such sites, for a given structure, and investigate

the relationship between gap magnitudes and the structural

properties of local neighbourhoods. In general, gaps turn

out to cover a rather wide energy range, between ∼40 and

∼200 kcal mol−1. The lower bound is consistent with the

lowest energy DBs that we were able to excite by surface

cooling [51]. On the other end, as shown in the upper plots

of figure 8, the largest gaps found are clearly associated with

regions that are both poorly connected and surrounded by

a highly connected neighbourhood. The latter fact can be

quantified for a given site i by the fraction of its neighbours

that are also interacting, namely its clustering coefficient,

C3(i) =
2

N (i)[N (i) − 1]

∑

j>k

cijcjkcki, (13)

where N (i) is the number of neighbours of the ith residue

(that is, its connectivity) and cij is the (ij) element of the

connectivity matrix. On the other side, the most easily

excitable DBs are those centred at highly connected sites with

poorly connected neighbourhoods. It should be noted that the

two above-illustrated correlations are not entirely independent,

as there is a general average tendency for highly connected

sites to be surrounded by less connected neighbours. However,

as illustrated in figure 8, this fact provides a non-trivial reading

frame for the gap–structure relationship.

Intuitively, a non-zero gap for DB formation may arise,

as the amplitude is lowered, as a consequence of the interplay
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between two competing mechanisms. First, obviously, the

DB energy has to decrease when its amplitude is decreasing.

However, as its energy drops, the DB becomes less localized.

Consequently, the connectivities of the most distant regions

from the DB centre become crucial, as it may happen that the

integral over highly connected regions of many exponentially

small terms results in a finite energy value, even for vanishingly

small DB amplitudes9. Incidentally, this is the mechanism by

which the spatial dimension enters the game in determining the

presence of a finite threshold in a periodic medium [55], since

in such cases the spatial dimension determines the degree of

connectivity of each site. In the present case, we have seen that

a zero energy gap marks DB solutions that exist for arbitrary

small amplitudes, their energy also approaching zero as the

amplitude vanishes. However, the above argument can still be

employed in order to rationalize the variability of energy gaps

associated with different structural properties of the DB centre

location. Small gaps single out highly connected regions,

whose neighbourhood tends to be less tightly connected. By

virtue of this correlation (also clearly illustrated by the plot of

the energy gaps versus clustering coefficients; see figure 8),

it is clear that the balance between the two above-mentioned

mechanisms is different for DBs centred at different sites. In

particular, if the site is a highly connected one, the DB will

harvest less energy in its tail, as compared to a DB localized in

a poorly connected region, thus less effectively compensating

the drop caused at its centre by the reduction in amplitude.

Overall, this may yield a small energy gap. Conversely, a DB

located in a loosely connected region will be more effective in

counterbalancing the same reduction in energy by appealing

to the contribution of its more connected tail regions, hence a

higher energy gap.

The above argument provides a qualitative interpretation

for the variability displayed by the energy gaps. Interestingly,

when the structural properties of a large set of enzyme

structures are investigated, such a rationalization also yields

a coherent, as well as intriguing, biological picture. Indeed,

the cooling simulations reported in [51] very clearly showed

that DBs tend to form spontaneously in the stiffest regions of

a given enzyme, as identified using a simple indicator of local

rigidity. Remarkably, catalytic sites, that is, the vital spots

for the initiation of an enzymatic activity, are also often found

in such regions [58, 51]. As an extension of such results, the

lower panels in figure 8 report the distribution of connectivities

and clustering coefficients for known catalytic sites in a set of

833 enzymes from the 2.1.11 version of the catalytic site atlas

[59]. As a comparison, we calculated the same distributions

for a random selection of residues of the same chemical type

from the same data set of structures. Manifestly, catalytic

sites tend to be highly connected and, accordingly, also show

a marked tendency to have less inter-connected environments.

In this sense, these conclusions fit within the picture drawn

in [51], as there is an obvious positive correlation between

the degree of connectivity and stiffness; the more connected a

region, clearly the less easily deformable.

9 Of course, this argument is rigorous only in the limit of an infinite system

size. However, it can still be employed to rank putative energy gaps in different

situations depending on the corresponding connectivity patterns in the DB tail

regions.

From the biological point of view, this observation

suggests a straightforward interpretation for the association

of small gaps with highly connected sub-domains. Indeed,

discrete breathers are more easily excitable in those regions

where enzymes perform their activity. Thus, the latter may

use DBs in order to lock down for relatively long periods

of time the energy released by ongoing chemical reactions,

such as ATP hydrolysis. While it is customary to appeal

to energy storage mechanisms of chemical origin, we here

provide evidences that an additional mechanical channel,

based on localized vibrations of nonlinear origin, may exist.

It is indeed tempting to imagine that the energy stored in a

discrete breather could then be used to lower the barrier of

a chemical reaction involved in a catalytic process. Because

such a mechanism would drastically increase the efficiency of

the enzyme10, it is likely that, if it is possible to implement it

in an actual protein structure and to make it work in a cellular

environment, evolution has found the way to do it. En passant,

this may provide an answer to another, long-standing question,

namely: why are most enzymes so big, their active site often

occupying a single, tiny region of the whole structure? Our

results suggest that this might be so in order for them to have

highly connected parts where DBs can easily form and store

high amounts of energy for relatively long times, far enough

away from the solvent and its dissipative effects.

5. Conclusion and outlook

Using an analytical approach, we have corroborated our

previous numerical results—confirming, in particular, that the

properties of discrete breathers in nonlinear network models

of proteins are site dependent. Moreover, we have shown that

DBs of arbitrary low amplitude cannot be excited anywhere in

the structure. For a few sites, namely those associated with the

largest displacements in the edge normal modes, the DB energy

goes to zero as its amplitude approaches zero. However, for

the majority of sites a lower bound exists for the allowed DB

amplitudes. This, in turn, implies that the majority of sites

host DBs that exist but for energies higher than a certain site-

dependent gap. Remarkably, we have shown that non-zero

gaps invariably arise as a consequence of the impossibility of

exciting low-amplitude breathers in the first place.

While the profound origin of this puzzling

phenomenology is still unclear, it is instructive to recall

that similar phenomena arise in one-dimensional systems in

the presence of cubic plus quartic nonlinearities, essentially

from the requirement of strict convexness of the interaction

potentials [61, 62]. In our case, despite the fact that the

interaction potential between residues has the same functional

form for all pairs, the equations of motion for a given residue

in interaction with its neighbours contain quadratic, but

also cubic nonlinearities, with coefficients that depend on

the topology and on the spatial arrangement of its set of

neighbours. Thus, it is tempting to speculate that spatial

10 Note that DB excitation over an energy gap would be a thermally activated

process in the presence of a thermal environment [60], and hence even a small

reduction factor in the threshold would magnify exponentially the excitation

rate.
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disorder and nonlinearity might team together, so as to

produce a hierarchy of energy gaps in the DB dispersion

relations. Further work in this direction is currently under

way.

Although interesting per se, that is, within the context

of complex nonlinear networks, our results may also prove

to have a profound biological significance. Indeed, we have

shown that DBs can form more easily (small energy gaps)

in parts of the structure where connectivities are high and

clustering coefficients low. Reciprocally, we have shown

that catalytic residues tend to be highly connected and have

low clustering coefficients. However, in order to establish a

link between these two facts on firmer grounds, it remains

necessary to show that, like elastic network models, nonlinear

network models of proteins are able to capture, at the coarse-

grained level, such key dynamical features of actual protein

structures. Work is in progress along these lines.

Glossary

Discrete breathers. Spatially localized, time-periodic

solutions of the equations of motion arising in many spatially

extended discrete nonlinear systems. The frequency of the

internal vibrational degree(s) of freedom lies outside the

linear spectrum (within gaps, if any) so that it does not

resonate with higher harmonics of the linear modes. More

loosely, the same denomination is employed to indicate

generic long-lived, localized vibrations with nonlinear

frequencies, as arising for example in periodic media from

modulational instability of linear edge modes or from surface

cooling. Despite strong similarities, the question as to what is

rigorously the link between the latter modes of vibrations

(often also dubbed chaotic breathers) and known exact

solutions of the equations of motion remains open.

Surface cooling. Numerical method allowing for

spontaneous localization of energy in the form of chaotic

breathers in finite nonlinear discrete dynamical systems with

free ends. Importantly, the method does not require any

preliminary assumptions on the nature of the asymptotic

localized modes. In practice, the system is first thermalized

and then cooled down by adding a friction term in the

equations of motion of the particles sitting at the boundaries.

In the case of proteins, friction is put on solvent-accessible

amino-acid residues. Provided the initial energy density is

above a given threshold (that may well be zero), the system

evolves towards a quasi-stationary state where all the residual

energy of the system is stored within a handful of sites and

exponentially localized far from the boundaries.

Enzyme catalysis. Enzymes are able to catalyze specific

chemical reactions, that is, to speed up these reactions by,

typically, a factor of 109. To do so, chemical reactants bind in

a pocket of the structure, the enzyme active site, where

dedicated amino-acid residues, the so-called essential

residues, are used so as to lower the energy barriers involved

in the chemical reaction.
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