
1300 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 6, JUNE 2006

Discrete Chaos—I: Theory
Ljupco Kocarev, Fellow, IEEE, Janusz Szczepanski, José M. Amigó, and Igor Tomovski

Abstract—We propose a definition of the discrete Lyapunov
exponent for an arbitrary permutation of a finite lattice. For
discrete-time dynamical systems, it measures the local (between
neighboring points) average spreading of the system. We justify
our definition by proving that, for large classes of chaotic maps,
the corresponding discrete Lyapunov exponent approaches the
largest Lyapunov exponent of a chaotic map when ,
where is the cardinality of the discrete phase space. In analogy
with continuous systems, we say the system has discrete chaos if
its discrete Lyapunov exponent tends to a positive number, when

. We present several examples to illustrate the concepts
being introduced.

Index Terms—Chaos, discrete chaos, Lyapunov components.

I. INTRODUCTION

THE WORD “chaos” was introduced in mathematics in the
1970s [1] to encapsulate the bizarre dynamics of some con-

tinuous maps on one-dimensional (1-D) intervals. What came
afterwards is well known, as it is also well known that a sig-
nificant part of it could not have been achieved without the aid
of computers. Indeed, most of the research activity in the field
of dynamical systems at that time was supported—and often
inspired—by computer calculations due to the mind-boggling
complexity of the phenomena under scrutiny. Thus, bifurcation
diagrams, basins of attraction, Julia sets, or fractal attractors
were displayed numerically, as many other hallmarks of chaos
and complex dynamics. Certainly, the researchers were aware
from the beginning of the impossibility of their pursuit: no com-
puter can show, for instance, that an orbit is aperiodic since all
orbits on a computer (or a finite-state machine for this matter)
are eventually periodic. Aperiodicity is just one among several
key properties (like sensitivity to initial conditions or density of
periodic points) of chaotic motion, which belong in the realm
of continuous phase space. In other words, there is no chaos in
a discrete phase space—at least in a strict sense. Since, chaos
is a particular characteristic of motion in continuous spaces,
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strictly speaking, continuous value chaotic signals may be used
to transmit information only as a modulation technique. Other
functional blocks of a digital communication system, such as
compression, coding, and/or encryption, describe transforma-
tions (or mappings) from finite sets to (in general different) fi-
nite sets.

What makes chaotic systems so attractive both for theoreti-
cians and practitioners is their random-like behavior—in spite
of being deterministic. As a way of illustration, let us mention
that, already in 1949, Shannon [2] proposed this kind of transfor-
mations to construct secure cryptosystems. It is thus no surprise
that, when chaos theory flourished in the 1980s and 1990s, sev-
eral cryptosystems were proposed based on the discretization of
chaotic maps, e.g., the generalized baker’s map, cat map, stan-
dard map, and many others. Viewing how the resulting permuta-
tions mix the pixels of digital pictures [3], one cannot but admit
that their “confusion” and “diffusion” properties are seemingly
unsurpassed—in spite of being periodic. The examples could
be multiplied with the same message: there must be some sense
in which discrete maps may be also called chaotic. One can
imagine that the pioneers of random number generation by arith-
metic methods faced a similar, uneasy situation. Just as, thanks
to their insight, we can talk now of pseudorandomness in a def-
inite sense or of some sequences as being more random than
others, it should be also meaningful to talk of would-be chaos or
of some discrete maps as being more chaotic (and hence better
for, say, cryptographic applications) than others.

Let us remind the readers at this point that the convenience
of extending the idea of chaos to discrete-space systems rose
also in quantum systems, since their phase spaces are effec-
tively discretized by Heisenberg’s uncertainty principle and the
indistinguishability of identical particles. Not surprisingly, the
quantum physicists coined the term pseudochaos for the sort
of irregular phenomena they were interested in. The concept
of pseudochaos has been introduced in attempts to interpret
quantum chaos, and to understand its mechanism and physical
meaning [4]–[6]. Pseudochaos occurs in classical mechanics as
well. Digital computer is a very specific classical “dynamical
system”: It is an “overquantized” system [6], meaning that
any quantity is discrete, while in quantum mechanics only
the product of two conjugated variables are so. Owing to the
discreteness, any dynamical trajectory in computer becomes
eventually periodic, the effect being well known in the theory
and practice of pseudorandom number generators. Since pseu-
dochaos holds thus connotations of quantum phenomenology,
we propose the more neutral term discrete chaos in the context
of discrete mathematics.

A set is chaotic if its asymptotic measure (natural measure)
has a positive Lyapunov exponent. If the largest Lyapunov
exponent is positive, a volume element is expanded in some
direction at exponential rate and neighboring trajectories are
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diverging. This property is called sensitive dependence on
initial conditions. Therefore, among many indicators of chaotic
motion, positivity of the largest Lyapunov exponent is perhaps
the most significant, both in theory [7] and applications [8].
The exponential divergence of two trajectories evolving under
identical equations of motion from slightly different initial
conditions is a fingerprint of chaos. For ergodic systems, the
exponential rate of growth converges to the Lyapunov exponent,
independently of the particular trajectory chosen (for almost
all initial conditions). A useful generalization of Lyapunov
exponents are finite-time Lyapunov exponents [7] calculated
over a finite time interval along a given trajectory. In this paper
we try to come to grips with the concept of discrete chaos
by proposing a first tool to measure it, namely, the discrete
Lyapunov exponent.

Previous Work—Despite of the fact that chaotic-like systems
with finite phase space have been used in digital communi-
cation systems, for examples as chaotic digital encoders [9],
chaotic turbo codes [10], pseudochaotic time hopping for ultra
wind band impulse radio [11], and chaos-based cryptography
[12]–[14], the question “what is chaos in finite phase space sys-
tems?” has still been unanswered. There are several references
to the problem of chaos-like properties in finite phase space sys-
tems, although none of them define discrete chaos. Masuda and
Aihara [15] considered a discrete version of the skew-tent map,
which exploits important chaotic properties such as the sensi-
tive dependence on initial conditions and the exponential infor-
mation decay. They discussed the difference between the dis-
cretized map and the original map, explaining the ergodic-like
and chaotic-like properties of the discretized map. In [14], the
authors explored the feasibility of designing cryptographically
secure substitutions via approximation of mixing maps by pe-
riodic transformations. The periodic approximation of mixing
maps are dynamical systems with finite phase-space. The ex-
pectation behind this approach is, of course, that the nice diffu-
sion properties of such maps will be inherited by their approx-
imations, at least if the convergence rate is appropriate and the
associated partitions are sufficiently fine.

Our Work—In this paper, we propose a definition of dis-
crete Lyapunov exponent. As its continuous counterpart, the dis-
crete Lyapunov exponent measures local (between neighboring
points) average spreading of the discrete-time discrete-space dy-
namical system considered. Let be a cardinality of the dis-
crete phase-space. We justify our definition by showing that, for
large classes of chaotic maps, the corresponding discrete Lya-
punov exponent approaches the largest Lyapunov exponent of
a chaotic map when . We further propose a plausible
definition of discrete chaos using similar tools as for (classical)
chaos. Since the notion pseudochaos has already been reserved
for the statistical behavior of the dynamical system with discrete
energy and/or frequency spectrum, we suggest the term discrete
chaos to describe chaos-like properties in finite phase-space sys-
tems. More precisely, we define discrete chaos in terms of dis-
crete Lyapunov exponent in a similar way as for continuous
systems: the system is said to be discretely chaotic if its dis-
crete Lyapunov exponent approaches a positive number, when

. Preliminary short version of this work has appeared
in [16].

The paper is organized as follows. Section II introduces the
discrete Lyapunov exponent for maps on 1-D and higher dimen-
sional regular lattices, although for simplicity we consider in the
second case only two-dimensional (2-D) lattices. In Section III,
we establish the connection explained before between the dis-
crete Lyapunov exponent of a permutation on elements and
the Lyapunov exponent of a related continuous map: The former
converges to the latter when . The speed of this conver-
gence is studied numerically in Section IV with the tent, logistic,
Henon, and coupled logistic maps. Section V contains the basic
concepts of our new approach to discrete chaos, not least the
very definition of discrete chaos. All these sections have been
supplied with plenty of examples to illustrate the concepts being
introduced. In Section VI we close our paper with conclusions.

II. DISCRETE LYAPUNOV EXPONENT

A. Preliminaries

Among many indicators of chaotic motion, positivity of the
largest Lyapunov exponent is perhaps the most significant. The
exponential divergence of two trajectories evolving under iden-
tical equations of motion from slightly different initial condi-
tions is a fingerprint of chaos. Therefore, for computing the
largest Lyapunov exponent of a chaotic map, one considers two
trajectories evolving from “slightly” different initial conditions

and , and puts . More precisely, let ,
be a piecewise smooth map, be a Borel probability

-invariant measure, and be a -typical point. Then, the
quantity

is said to be the Lyapunov exponent of .
Let us now consider a permutation

. Clearly, all trajectories of are periodic. We
say that are neighboring points of . We further assume
that , so that the “end” points 0 and

have only one neighbor. Let ,
, , and . Clearly, the

set contains all neighbors of the point . Let be an arbitrary
element of the set , ; we write .
We argue in the next sections that the quantity

plays the role of the Lyapunov exponent of . The quantity
preserves many of the properties of the Lyapunov exponents;
in addition, if is an appropriate discretization of a chaotic
map (see below), then, for all , .
However, we stress that the the property that two conjugate maps
of intervals have same Lyapunov exponents, does not hold for
discrete systems.

What are the main differences between the quantities and
? When extending (generalizing) the definition of Lyapunov

exponent to discrete systems, one faces several obstacles.
Lyapunov exponent measures the exponential divergence of
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two trajectories evolving under equations of motion from
slightly different initial conditions. For continuous systems, the
limit is well defined, while for discrete systems the
term “slightly different initial conditions of the point ” means

, and therefore, it is not uniquely defined. There exists a
simple way to resolve this problem: when the set has more
than one element, we pick up the neighboring point of the
point according to some rule. The main results of this paper
are not affected by , however the value of depends on ,
so the rule should be stated clearly.

B. One-Dimensional Maps

Let us consider a map

(1)

We assume that the map is 1:1 and onto (bijection). Clearly,
all trajectories of are periodic; let be a periodic orbit of
with period . Since is a bijection, it follows that

and . We say that are
neighboring points of . We further assume that

, so that the “end” points 0 and have only one
neighbor.

Let , , , and
. Clearly, the set contains all neighbors of

the point . Let . If the set has more than one element,
we adopt the following rule: The neighbor of is . We
define the discrete Lyapunov exponent of the permutation as

(2)
where is the Euclidean distance (in ) between two in-
tegers and , . In (2), all terms measure
the divergence of two trajectories evolving in one iteration from
two “slightly” different initial conditions: an initial point and
its neighbor . Note that in the last term the neighbor of

is the point . Thus, the discrete Lyapunov expo-
nent measures the average spreading of the map .

Remark 1: Note that we assume that the phase space of our
dynamical system is a subset of the real numbers. The other
possibility that the phase space is a subset of the unit circle is
not treated in this paper.

Remark 2: One can also define the discrete Lyapunov ex-
ponent with randomly choosing in (2), from two neighboring
points and , the neighbor of . There exist
such discrete Lyapunov exponents. In a typical case, all discrete
Lyapunov exponents are close to each other. We stress that all
the results of this paper (theorems 1 through 4) hold for all
discrete Lyapunov exponents.

Let be a peri-
odic orbit with period . In other words, let

and . We define the discrete Lyapunov ex-
ponent of the map for the periodic orbit as

(3)

Observe that the discrete Lyapunov exponent of the map can
also be rewritten as a weighted sum of the discrete Lyapunov
exponents of all periodic orbits

(4)

Clearly, . The map with null discrete
Lyapunov exponent is for each

. The set of all different maps can be divided into equivalent
classes, each class having same discrete Lyapunov exponent.

We now present four examples. In all these examples, we con-
sider permutations of the set .

Example 1: The maps defined as

if
if
if
if
if

have, for each , the same discrete Lyapunov
exponent: .

Example 2: Let and let be an even number.
Consider the map defined as

for ,
for

where . Since , it
follows that .

Example 3: Let . We define as

if
if

The discrete Lyapunov exponent of this map is equal to

We adopt the following definition of perfect nonlinearity
(note that our definition is weaker than the usual one): has
a perfect nonlinearity if the differences ,

take all possible values .
This example shows the existence of maps with perfect non-
linearity; the discrete Lyapunov exponent of all such maps is
equal to .

Remark 3: As , the discrete Lyapunov exponent of
the permutation may approach zero, a finite positive number,
or infinity. For example, it is easy to see that

and .
Example 4: Let be an even number. We define

as

if
if
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The discrete Lyapunov exponent of this map is equal to

(5)

Remark 4: Let be a family of permutations (parameter-
ized by ) of the set . Then, the set of all
families (of permutations) can be divided into three subsets ,

, and for which the corresponding discrete Lyapunov
exponents tend to zero when , approach a finite number
when , and tend to infinity when , respec-
tively. Although it is quite intriguing to analyze these sets, espe-
cially the properties of and , this is beyond the scope
of the paper and will be treated separately.

Remark 5: Let be a chaotic map, . Let
be a family of permutations of the set

induced by the map as described in the next section. We prove
in Section III that in this case , where is
the Lyapunov exponent of . Clearly, . Let
be a set of all families of permutations induced by chaotic maps.
Then, obviously .

C. Higher Dimensional Maps

We now consider the case of higher dimensional maps. For
notational simplicity, we will consider only 2-D maps. Let
be the set of all neighboring points of . If has more
than one point, we adopt the following rule: If ,
then we say is the neighbor of . If
and , we say is the neighbor
of ; and if and , we say

is the neighbor of ; Consider the set

, endowed with the metric , such that
for all and is a neighbor of (0,0), and

for all and is a neighbor
of . Let be a permutation.

We define the discrete Lyapunov exponent of order for the
permutation as follows:

(6)

where is the composition of with itself times,
, and is the identity permutation. Equivalently, the

last formula can be rewritten as

Remark 6: Since there exists such that is
the identity permutation, it follows that . Therefore,
we assume is always finite, .

Remark 7: If is the Euclidean distance (in ),
and , , then

. In the special case of 1-D lattice

endowed with the Euclidean metric and , the above
definition reduces to (2).

Remark 8: For a given permutation, it may happen that: 1) all
discrete Lyapunov exponents of order , , are “different”
for all ; but also 2) there exists such that for some ,
the discrete Lyapunov exponents are
“close” to each other.

Remark 9: Equation (6) defines the discrete Lyapunov expo-
nent of order for a permutation. In a similar way as in (3), one
can define the discrete Lyapunov exponent of order of a per-
mutation for a periodic orbit.

We now consider an analytical example. Consider the 2-D
lattice with
prime, endowed with the metric

for , (the continuous counterpart of
is equivalent to Euclidean metric on ). Furthermore, assume
that is lexicographically ordered left-to-right bottom-to-top:

, where if and
if .

Define the -permutation

whose continuous counterpart is a skew vertical translation on
the 2-D torus. Note that is the identity so that we only need
to consider the iterates with .

In Case 1 we have ,
and thus

if
if

It follows that, for



1304 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 53, NO. 6, JUNE 2006

If, else, (Case 2) and thus ,
, then

, and

if
if

It follows that

if

if

III. PROPERTIES OF DISCRETE LYAPUNOV EXPONENT

A. One-Dimensional Maps

In this section, we prove several properties of the discrete
Lyapunov exponent for the permutations of 1-D sets. The first
theorem states that for ergodic permutations (for permutations
on lattices, ergodicity is equivalent to transitivity or cyclicity:
the orbit of any point visits all the state space), the discrete
Lyapunov exponent computed as the space average is equal
to the discrete Lyapunov exponent computed as time average
(along the trajectory). The second theorem proves what permu-
tation has the largest discrete Lyapunov exponent. Finally, the
third theorem, which is our main result in this section, justifies
the use of the term “discrete Lyapunov exponent.” The proof of
the next theorem is obvious.

Theorem 1: If the permutation is cyclic, then the discrete
Lyapunov exponent computed as the space average, (2), is equal
to the discreteLyapunov exponent computedas time average, (3).

The map , see Example 4, has the largest discrete
Lyapunov exponent among all permutations of the set

. The proof of following theorem will
be given elsewhere.

Theorem 2: For any permutation of the set
we have .

Let us now consider a map

(7)

where is 1:1 and are integers, , and if
. Then, we define discrete Lyapunov exponent as

(8)

where, by definition, . We stress that in (8),
is the Euclidean distance (in ) of the points and , that is

. Note that (8) reduces to (2) if for
.

Let , , be a “typical” tra-
jectory of length of a 1-D chaotic map ,

such that for all and . We define
and order to obtain . Therefore, we con-

sider a set of points, , such that
for some . Define , where

denote the floor of and is chosen such that for all
and . The map induces a permutation

as when .
Theorem 3: Let be a “typical” trajectory of

a 1-D chaotic map with Lyapunov expo-
nent . Consider only the first points of this trajectory,

. Let be the permutation of the set
induced by the map as described

above. Then
Proof: Define the map as follows. Let . Note

. We define

It follows that . Therefore,
. Let be the closest point to ; we write .

Clearly and . Denote
. It is easy to see that as , and

. Moreover, when , approaches as well as
.

Now we have

B. Higher Dimensional Maps

We now consider the case of higher dimensional maps. For
notational simplicity we will again consider only 2-D maps. In
this section, we generalize the Theorem 3 for 2-D permutations.
We note that the Theorem 1 holds also for 2-D permutations, in
contrast to 2-D chaotic maps.

Let , , be a “typical”
trajectory of length of a 2-D chaotic map ,
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such that for all and . We de-
fine . For simplicity only we assume now that
the chaotic attractor is located in . Therefore, for all ,

. Define , where is chosen such
that for all and . Thus, we obtain the set

where , and , are integers. We reorder
the set to obtain the set

such that for all ,
and for all

. This reordering defines a permutation
. Let and . Then, the

map induces the permutation on the set as
when . Note that for a typical trajectory, the
permutation has a single periodic trajectory with period .

We first give the definition of a chaotic attractor. A closed
invariant set is called chaotic attractor if: 1) for almost (with
respect to Lebesgue measure) every point in the neighborhood
of its forward orbit is dense on an unstable manifold; and
2) there exists a Sinai–Ruelle–Bowen (SRB) measure which is
smooth along the unstable manifold.

Theorem 4: Assume that is a chaotic attractor of a 2-D
map . Assume further that is an SRB invariant
measure supported on , and let be the largest Lya-
punov exponent for this measure. Let be a “typ-
ical” trajectory on . Consider only the first points of this
trajectory . Let

be the permutation induced by the map as
described above. Then there is a sequence such that

Proof: It is well known that for randomly chosen initial
vector , the maximal Lyapunov exponent of the trajectory

is given by

This means that for a given and for randomly chosen ,
there exists such that

(9)

for . On the other hand, we have, by definition of Frechet
derivative, that for a given and for sufficiently small ,

Consequently

(10)

We write

and

Next, we have

(11)

and by the Mean Value Theorem

(12)

where is between and .
Thus, by (10), (11), and (12) for a given large enough and

sufficiently small randomly chosen , we have

Now, since for large is close to , , and
taking into account (10), we can assume that , so we
have

(13)

From (9) and (13), we have

(14)

Moreover, for a given we can choose sufficiently small, such
that the above estimation holds for all .

Let , , be a trajectory
on . Define where the element of trajec-
tory is the nearest point to . Observe that we have

. Assumptions that is a
chaotic attractor and is a SRB measure imply that for almost
(with respect to Lebesgue measure) every initial point in the
basin of attraction of , the points , when are dense
on the unstable manifold (as computer experiment indicates).
We write and . Due to mixing, taking
large we can assume that the vectors have random
directions and arbitrarily small lengths. For all , we consider

Now, assuming is large enough and taking as a value
of for which (14) is satisfied, we have
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for all . Therefore

Since can be chosen arbitrary, we have

(15)
Define the map as follows. Let . Note

since . We define:

Since it follows that .
Therefore, . Let be the closest point to ; we
write . Clearly and

. Denote . It is easy to see that as
, and . Moreover, when ,

approaches as well as .
Now we have

The last equality follows from (15) and the fact when
and the directions are random for large .

Remark 10: The above theorem holds for arbitrary dimen-
sional maps.

IV. EXAMPLES

In this section, we present several examples. The example
with the tent map can be found in [16].

A. Logistic Map

We now consider the logistic map and
consider its trajectory of length . We define

and order to obtain . Let ,
where denote the floor of and is chosen such that

for all and . Therefore, we consider a set of
points, . On this set the logistic

map induces the permutation , such that if
. In general may not be close to , which

means that does not reflect the original dynamics of
the logistic map. Let correspond to , where ,

. By the same argument, does not reflect the orig-
inal dynamics of the logistic map, and therefore we compute the
discrete Lyapunov exponent using the following expression:

(16)

For , instead of (16), one should compute the discrete
Lyapunov exponent as

(17)

while for , as

(18)

Let
be a trajectory of the lo-

gistic map of length . Reordering this set, we have

The logistic map induces the permutation

with , , , ,
, , and we define

. Note that corresponds to . Therefore, we com-
pute the discrete Lyapunov exponent using (17) as ,
which is close to the Lyapunov exponent of the logistic map

. For , we compute the discrete Lyapunov
exponent for three different values of , , ,
and and obtain (averaged over 100 trajectories) 0.628,
0.658, and 0.664, respectively.

The values of the discrete Lyapunov exponent, computed
using one of the expressions (16)–(18), are
for , for , for

, for , and
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TABLE I
DISCRETE LYAPUNOV EXPONENT � OF THE HENON MAP FOR DIFFERENT

VALUES OF s. THE PARAMETERS OF THE MAP ARE a = 1:4 AND b = 0:3. THE

LARGEST LYAPUNOV EXPONENT FOR THE HENON MAP IS � = 0:4169

for . For each , the discrete Lyapunov exponent for
1000 different trajectories is calculated and the average value is
presented.

B. Henon Map

Consider the Henon map given with
. For , the Henon map

has a chaotic attractor, for which the largest Lyapunov expo-
nent is . The Henon map induces a permutation of
the set as described in the Section III-B.
Discrete Lyapunov exponents for different values of are
shown in Table I. It can be seen that for , the values of

are close to each other and to the actual value .
Table II shows and for different values of and

.

C. Coupled Logistic Maps

We now consider a system of coupled logistic maps

which exhibits hyperchaos for and .
Discrete Lyapunov exponents for different values of
are: , , ,

, , ,
, , ,

, ,
, , and .

Again, as in the case of the Henon map, we see that for
, the values of are close to each other and the

average value is equal to 0.373 305, which is close to the
actual value .

V. DISCRETE CHAOS

In this section we consider the question: when is a finite
phase-space dynamical system discretely chaotic?

Definition 1: Let be a family of permutations (parame-
terized by ) of the sets . We say that is
a discretely-chaotic family of permutations if is
a finite positive number, that is .

Remark 11: Sometimes, the concept of discretely chaotic
map is applied to a single map rather than to a family.
In most applications though, is obtained via phase space
discretization and truncation of the orbits of a continuous map
and, therefore, it does belong to a family of maps (generated
by ) by construction. Otherwise, if e.g., is a permutation
on , the comparison of to the corre-
sponding can be used to gauge the “distance” from
to —the permutation on the same set having the largest
discrete Lyapunov exponent.

The set of all permutations of the set can
be divided into three classes: the class of all permutations for
which ; the class of all permutations for which

; and the class of all permutations for
which . Examples of such permutations are
given in the Section II-B. Since the discrete Lyapunov expo-
nent for the maps , see Example 1, tends to zero, when
goes to infinity, the maps are not discretely-chaotic, although
for each finite their discrete Lyapunov exponent is a positive
number. We stress again that since is a permutation of the set

, its discrete Lyapunov exponent is always a
nonnegative number, that is .

Let now consider the case when
is an arbitrary map (not necessarily 1:1 and/or

onto). In this case, the map may have eventually periodic orbits.
We say that the fixed point is an eventually fixed point for if
there exists such that .

Definition 2: We say that is a stable fixed point for the map
if and is an eventually fixed point for at least one

of its neighbor points . In other words, when
and/or . In a similar way, one can define stable
periodic orbits.

Example 5: Let be the
map defined as , , , ,

, , , , , and
. This map has one period-5 orbit

, a fixed point 5 5, and four points, 3,4,6, and 7, for
which the fixed point 5 is an eventually fixed point: ,
4 5, 6 5, and . 5 is stable fixed point.
The discrete Lyapunov exponent of the period-5 orbit is equal
to .

Remark 12: If is a permutation of the set ,
the discrete Lyapunov exponent is a nonnegative number, that
is . However, for a map

which is not 1:1 and/or onto, the discrete
Lyapunov exponent may take the value . For example,
the discrete Lyapunov exponent of the fixed point 5 in the
above example is equal to . In order to avoid this value,
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TABLE II
DISCRETE LYAPUNOV EXPONENT � AND THE DIFFERENCE j� � � j FOR THE HENON MAP FOR DIFFERENT VALUES OF s AND M .

THE PARAMETERS OF THE MAP ARE a = 1:4 AND b = 0:3

if we define , then the discrete Lyapunov exponent
of the map is always a nonnegative number. For maps

which
are not 1:1 and/or onto, the discrete Lyapunov exponents may
take any real value (positive, zero, and negative). For example,
for the map defined as

, , , , and , its
discrete Lyapunov exponent is equal to .

Let . We define
to be the neighboring set

of (if or , then the neighboring points
are 1 and , respectively). We say the set is an invariant
set of the map (or an -invariant set), if .

Definition 3: We say is an attractor of the map , if is an
invariant set of and there exists such that .

Let be a set invariant under the action of the map
such that the map restricted to the set is a bijection. Let
us write for the map restricted to the set .

Definition 4: We say that a family of maps is discretely
chaotic on the sets , if is a finite positive
number.

Definition 5: Let be a family of maps. We say that the
-invariant sets define discretely chaotic attractors for the

maps if the set is an attractor of for each and
is a finite positive number.

Let

and

where denotes the identity, be the set of all bijections dif-
ferent from the identity. It is clear that for all , the dis-
crete Lyapunov exponent of (defined with (2)) is always a
positive number. This also reflects the fact that all periodic or-
bits of are unstable (we say that the orbit is unstable if it
is not stable). The existence of the horseshoe is a fingerprint of
chaos in continuous-space systems. In discrete-space systems,
however, the existence of a set, on which is 1:1 and onto,
and for which all periodic orbits are unstable, is a fingerprint of
discrete chaos.

VI. CONCLUSION

We have suggested an answer to the question “What is chaos
in finite phase-space dynamical systems?” by proposing defi-

nitions of discrete Lyapunov exponent and discrete chaos. The
main results of our paper can be summarized as follows.

• We propose a generalization of the largest Lyapunov expo-
nent for permutations defined on (arbitrary) finite lattices.
As its continuous counterpart, the discrete Lyapunov ex-
ponent measures the local (between neighboring points)
average spreading of the discrete-time discrete-space dy-
namical system considered.

• We show, in the special case when the permutation is
an approximation of a chaotic map, that the discrete
Lyapunov exponent and its continuous counterpart are
close to each other. More precisely, let be the car-
dinality of the discrete phase-space. We prove that, for
large classes of chaotic maps, the corresponding discrete
Lyapunov exponent approaches the largest Lyapunov
exponent of a chaotic map when .

• We propose a definition of discrete chaos using similar
tools as for (classical) chaos. We define discrete chaos in
terms of the discrete-space Lyapunov exponent in a sim-
ilar way as for continuous-space systems: the system (con-
sisting of a map on a set of elements) is said to be
discretely chaotic if its discrete Lyapunov exponent ap-
proaches a positive number when .

Discrete chaos plays an important role in numerical computa-
tion, cryptography, digital electronics and communications and,
potentially, whenever a complex continuous phenomenon is im-
plemented on a finite-state machine. In a forthcoming paper,
“Discrete chaos part II: Applications,” we will report on some of
them, especially those related to cryptography and secure com-
munications. Rather than insisting here on the relevance of any
of the aforementioned applications, we will just give a flavor of
one we are currently exploring. In most modern block ciphers
including both the former and current standards for commercial
encryption data encryption standard (DES) and advanced en-
cryption standard (AES), the confusion-diffusion strategy pro-
posed by Shannon is implemented, roughly speaking, by means
of bit permutations with strong nonlinearity (S-boxes) on sub-
blocks of the input block and permutations with fast spreading
factor on whole blocks, respectively. This being the case, the se-
curity of all these ciphers relies ultimately on such permutations
delivering the right mixing and propagation properties. Here is
where discrete chaos comes in: it provides tools like Lyapunov



KOCAREV et al.: DISCRETE CHAOS—I: THEORY 1309

exponent and others being developed to quantify the said prop-
erties. The design and certification of special-purpose permuta-
tions is just an example of possible and interesting applications
of discrete chaos to cryptography. Others include the design of
cryptographic algorithms, hash functions and the like—a new
and exciting research area.
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