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Abstract

Background Discrete choice experiments (DCEs) are

increasingly used in health economics to address a wide

range of health policy-related concerns.

Objective Broadly adopting the methodology of an ear-

lier systematic review of health-related DCEs, which

covered the period 2001–2008, we report whether earlier

trends continued during 2009–2012.

Methods This paper systematically reviews health-related

DCEs published between 2009 and 2012, using the same

database as the earlier published review (PubMed) to

obtain citations, and the same range of search terms.

Results A total of 179 health-related DCEs for

2009–2012 met the inclusion criteria for the review. We

found a continuing trend towards conducting DCEs

across a broader range of countries. However, the trend

towards including fewer attributes was reversed, whilst

the trend towards interview-based DCEs reversed because

of increased computer administration. The trend towards

using more flexible econometric models, including mixed

logit and latent class, has also continued. Reporting of

monetary values has fallen compared with earlier periods,

but the proportion of studies estimating trade-offs

between health outcomes and experience factors, or val-

uing outcomes in terms of utility scores, has increased,

although use of odds ratios and probabilities has

declined. The reassuring trend towards the use of more

flexible and appropriate DCE designs and econometric

methods has been reinforced by the increased use of

qualitative methods to inform DCE processes and results.

However, qualitative research methods are being used

less often to inform attribute selection, which may make

DCEs more susceptible to omitted variable bias if the

decision framework is not known prior to the research

project.

Conclusions The use of DCEs in healthcare continues to

grow dramatically, as does the scope of applications across

an expanding range of countries. There is increasing evi-

dence that more sophisticated approaches to DCE design

and analytical techniques are improving the quality of final

outputs. That said, recent evidence that the use of quali-

tative methods to inform attribute selection has declined is

of concern.
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Key Points for Decision Makers

There has been an ongoing increase in the

publication of health-related discrete choice

experiments (DCEs), which can inform policy

making: during 1990–2000 there were 34 health-

related DCEs meeting reviewer inclusion criteria

(approximately 3 per year); for 2001–2008, the

figure was 114 health-related DCEs (approximately

14 per year); whilst for 2009–2012, 179 health-

related DCEs met our inclusion criteria

(approximately 45 per year).

For 2009–2012, we found a continuing trend towards

conducting DCEs across a broader range of

countries. Consequently, DCE results can influence

decisions in a wider range of geographical settings.

There is evidence of improvement in DCE design

and analysis. For example, an increasing proportion

of DCEs take interactions as well as main effects into

consideration as part of their designs. Also, the

econometric models used to analyze DCE data

increasingly cater for preference heterogeneity using

either mixed logit, latent class models, or

hierarchical Bayesian models.

1 Introduction

Discrete choice experiments (DCEs) are increasingly used

in health economics to address a wide range of health

policy-related concerns. The approach draws its micro-

economic foundations from the characteristics theory of

demand [1] and random utility theory (RUT) [2]. The

characteristics theory of demand assumes that goods, ser-

vices, or types of healthcare provision can be valued in

terms of their constituent characteristics (otherwise known

as attributes). DCEs involve respondents making a number

of stated preference choices in response to DCE questions.

According to RUT, respondents are assumed to act in a

utility maximizing manner and make choices contingent

upon the levels of attributes in DCE scenarios. Therefore,

choice data obtained from respondents’ stated preferences

can be analyzed using econometric methods compatible

with RUT. If the specified attributes are significantly

related to respondent choices, findings from data analysis

should confer information relating to how the average

respondent’s utility (or willingness to pay) is affected by

changes in the levels of attributes. RUT assumes that

respondent utility can be decomposed into a systematic

component, which is a function of attributes and their

levels, and a random component, which is an error term in

the regression equation related to unmeasured preference

variation. Published DCEs in healthcare are usually com-

patible with RUT [3–5], in the sense that they adopt a

methodology consistent with RUT.

Although reviews and commentaries have been pub-

lished of healthcare-related DCEs for specific clinical

contexts or health-related concerns [6–8], and conjoint

analyses more broadly [9], the most comprehensive

reviews of the healthcare DCE literature cover the periods

1990–2000 [4] and 2001–2008 [3]. This paper updates

those earlier systematic reviews to cover the period

2009–2012, and considers how key aspects of the design

and application of DCEs have changed across the three

periods.

2 Literature Review

2.1 Methods

This review builds upon the earlier systematic reviews [3,

4]. It focuses on the 2009–2012 literature, and was derived

from the literature in the sense that it replicates the meth-

odology of the most recent review [3]. Although further

checklists or commentaries on best practice [10–16] have

been developed in recent years, these did not require fun-

damental changes to the approach to reviewing the DCE

literature. Moreover, some of these checklists or commen-

taries [12–14] had already informed the development of the

criteria deployed in the 2001–2008 review, whilst others

served to confirm that our review encompassed appropriate

criteria [11, 15, 16]. However, we did feel that the range of

information extracted in relation to preference heterogene-

ity models such as mixed logit could be improved upon, and

so we also gathered additional information on the distribu-

tional assumptions deployed when mixed logit was applied,

and the number of Halton draws that were specified for

replications. Searches were restricted to the PubMed search

engine, replicating the approach of the most recent review

[3], and used the same search terms, including ‘conjoint’,

‘conjoint analysis’, ‘conjoint measurement’, ‘conjoint

studies’, ‘conjoint choice experiment’, ‘part-worth utilities’,

‘functional measurement’, ‘paired comparisons’, ‘pairwise

choices’, ‘discrete choice experiment’, ‘dce’, ‘discrete

choice mode(l)ling’, ‘discrete choice conjoint experiment’,

and ‘stated preference’. Initial searches were conducted in

September 2011, and then updated in March 2012 and

August 2013 to ensure that all 2011 and 2012 papers were

included. Moreover, for the period 2009–2012, we also

allowed for the inclusion criteria to include a small number

of best–worst scaling (BWS) DCEs/technical theoretical
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papers, as long as they generated health-related DCE results

alongside BWS results. We included case 3 type BWS

studies [17, 18] in the main review because, unlike case 1

and 2 BWS studies, these involve a comparison between

two or more profiles [17]. This is despite the fact that case 3

BWS studies do differ from mainstream DCEs, because

respondents choose the least attractive profile in addition to

the most attractive one [17].

At the request of one of the peer reviewers, we also

reviewed health-related adaptive conjoint analysis (ACA)

and adaptive choice-based conjoint (ACBC) studies, and

any menu-based conjoint analyses that had been published

between 1990 and 2012. Such analyses had been excluded

from the previous reviews [3, 4].

3 Search Results

Following the PubMed searches using the aforementioned

search terms, we sourced 12 ACA/ACBC analyses for the

period 2009–2012 [19–30]; 14 ACA/ACBC analyses for the

period 2001–2008 [31–44], and no analyses of these types

for the period 1990–2000. However, we reviewed these

separately and deposited the data in an electronic supple-

ment (see the Electronic Supplementary Material) because

these analyses adopt a fundamentally different approach to

valuing attributes to mainstream DCE analyses, and we

wanted to ensure that data in the main body of the paper

were in step with inclusion criteria adopted for the previous

reviews [3, 4], which had excluded such analyses.

Overall, 179 analyses were identified as meeting the

inclusion criteria for the main review, i.e. health-related

DCEs or case 3 BWS analyses published in the English

language. Each paper was read carefully and key data

extracted systematically in the sense of evaluating them

against a checklist of pre-established criteria, which largely

corresponded to those used in the most recent of the pre-

vious reviews [3]. The data are summarized in the fol-

lowing Sects. 3.1–7.2. In Table 1, we provide further

information relating to the definitions and other details of

analyses in each of the categories.

Category A covers 25 separate analyses in 24 papers

[45–67]; Category B includes 13 analyses in 13 papers

[68–80]; Category C encompasses 81 analyses in 81 papers

[81–162]; Category D relates to four analyses in four

papers [163–166]; Category E covers 11 different analyses

in eight papers [167–174]; Category F encompasses 24

analyses in 23 papers [47, 71, 72, 82, 86, 107, 119, 161,

175–189]; Category G includes 24 analyses in 23 papers

[53, 62, 70, 72, 103, 122, 133, 139, 141, 143, 145, 190–

201]; and Category H relates to ‘other’ analyses, and there

are 21 ‘other’ analyses in 21 papers [63, 90, 103, 137, 145,

158, 159, 197, 202–214]. In Sects. 3.1–7.2, key findings are

summarized in graphs. In the following text, we highlight

changes that are of a reasonable magnitude and may be

regarded as of significance.

3.1 Number of Discrete Choice Experiment (DCE)

Analyses per Year

Figure 1 summarizes the average number of DCEs pub-

lished per year across the three review periods. The

2001–2008 review [3] noted that the number of published

applications of DCEs in healthcare rose from a mean of 3

per year (1990–2000) to a mean of 14 per year

(2001–2008). Our review for 2009–2012 showed that the

average number of analyses rose again to 45 per year

(2009–2012), a marked increase, and peaked at 74 in 2012.

3.2 DCE Studies Country of Origin

Figure 2 indicates the proportion of analyses emanating

from different countries during the three time periods. The

2001–2008 review noted that the UK remained the main

source of DCEs in healthcare. However, UK dominance

has been eroded considerably since then (see Fig. 2). The

proportion of analyses emanating from the UK has con-

tinued to fall, from 59 % in 1990–2000 to 48 % in

2001–2008, and to 22 % during 2009–2012. Moreover, the

proportion of analyses emanating from Australia (AUS)

has fallen from 18 % in 1990–2000 to 11 % in 2001–2008,

and to 7 % in 2009–2012.

Comparing 2001–2008 with 2009–2012, an increased

proportion of analyses now originate in the USA, Canada

(CAN), Denmark (DNK), the Netherlands (NLD), and

Germany (DEU). There was also an increase in analyses

coming from ‘other’ countries (11 % in 2001–2008 com-

pared with 25 % in 2009–2012), reflecting an increasing

trend towards applying DCEs across a range of high-,

middle-, and low-income countries1.

3.3 The Number of Attributes Included in DCE Studies

Figure 3 provides information on the number of attributes

included in DCE analyses across the three time periods.

The most noteworthy change includes the fact that the

proportion of analyses with four or five attributes rose from

29 % in 1990–2000 to 44 % in 2001–2008, but fell back to

32 % in 2009–2012. There was also an increase in the

number of DCEs with between seven and nine attributes:

12 % in 1990–2000, 13 % in 2001–2008, increasing to

22 % in 2009–2012.

1 Lower income countries in 2008–2012 included Kenya, South
Africa, Thailand, China, Ghana, Vietnam, Ethiopia, Peru, Ukraine,
India, Cuba, Nepal, Turkey, and Burkina Faso.
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The proportion of analyses with more than ten attributes

fell from 12 % in 1990–2000 to 2 % in 2001–2008, and

remained at that level in 2009–2012.

3.4 Domains of DCE Attributes

Figure 4 provides information on the proportion of DCEs

encompassing different domains. The main noteworthy

changes include the fact that the proportion of analyses

with a domain related to time fluctuated; it was 74 % in

1990–2000, in 2001–2008 it fell to 51 %, before rising

again to 65 % in 2009–2012.

The proportion of DCEs including a measure of risk rose

in the most recent period from 35 % in 1990–2000 and

31 % in 2001–2008, to 57 % in 2009–2012.

The proportion of analyses with a healthcare (HC)

domain also fluctuated: 82 % in 1990–2000, falling to

69 % during 2001–2008, and increasing to 72 % in

2009–2012. At the same time, the proportion of analyses

with attributes relating to ‘other’ domains, not encom-

passed by existing categories, increased from 9 % in

1990–2000 to 15 % in 2001–2008, and 47 % in

2009–2012. Additional categories in Fig. 4 include a

monetary domain (Money) and a health status domain

(HS).

3.5 The Number of Questions Posed by DCEs

Figure 5 provides information on the number of choice

tasks posed by DCEs. The main noteworthy trends are as

follows. The proportion of DCE analyses posing eight or

fewer choices (\9) was 38 % in 1990–2000, 39 % in

2001–2008, but fell back to 22 % in 2009–2012. In con-

trast, the proportion of analyses with 9–16 choices was

53 % in 1990–2000, falling to 38 % during 2001–2008,

and rising to 62 % during 2009–2012. The proportion of

analyses with more than 16 choices ([16) rose initially and

then stabilized (6 % in 1990–2000, 18 % in 2001–2008,

and 15 % in 2009–2012).

Fig. 3 Number of attributes

Fig. 4 Attribute domains. HC healthcare, HS health status

Fig. 1 Average number of DCE studies/year. DCE discrete choice
experiment

Fig. 2 Country of origin. AUS Australia, CAN Canada, DEU

Germany, DNK Denmark, NLD the Netherlands
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3.6 DCE Survey Administration

Figure 6 provides information on the different modes of

administering DCEs. Since 1990, there has been a trend

away from self-completed pen/paper questionnaires. The

proportion of analyses using self-completed questionnaires

(Survey) was 79 % in 1990–2000, falling to 67 % in

2001–2008, and then further to 48 % in 2009–2012. The

proportion of interviewer-administered DCEs (Interview)

was 9 % in 1990–2000, rising to 19 % in 2001–2008, and

was 17 % in 2009–2012.

Overall, there has been a trend towards DCEs involving

computerized administration (Computer), sometimes

involving internet surveys, over the last 20 years. There

have been improvements in computer technology, com-

bined with the increased use of computers by the wider

population. This has made accessing DCE respondent

samples using computers easier. Moreover, the ease with

which DCE samples can be accessed using computers and

the internet partly explains the trend towards increased use

of DCEs since 1990. During 1990–2000, 9 % of analyses

involved computerized administration; the figure was 11 %

in 2001–2008 and then rose sharply to 40 % during

2009–2012. As depicted in Fig. 6, a small proportion of

analyses failed to report (Not reported) the form of survey

administration in each period.

4 DCE Experimental Design and Choice Set

Construction

A good discussion of some of the relevant issues relating to

DCE design is contained in the review by de Bekker-Grob

et al. [3], so in the interests of brevity, we refer the reader

to that paper and to another key citation [11].

4.1 Design Plan

Figure 7 depicts information on the different types of

design plans. The most noteworthy trends are as follows.

The proportion of analyses involving full factorial (Full

fact.) DCE designs fell from 12 % in 1990–2000 to 0 % in

2001–2008, and then rose again to 6 % during 2009–2012.

In the period 1990–2000, 74 % of analyses adopted a

fractional factorial design (Fractional fact.), a proportion

that rose to 100 % in 2001–2008, but then decreased to

88 % in 2009–2012. Overall, 15 % of analyses did not

clearly report their design type (Not reported) in

1990–2000, a proportion that fell to 0 % in 2001–2008, but

then rose again to 7 % during 2009–2012.

Overall in 1990–2000, 74 % of DCE analyses involved

a ‘main effects’ design (Main Eff.), and this proportion

rose to 89 % during 2001–2008, but then fell back to 54 %

in 2009–2012. Therefore, as with the baseline and

2001–2008 reviews, ‘main effects’ designs remain the

dominant type of design in published DCE studies. In

1990–2000, 6 % of analyses catered for interaction effects

alongside main effects (Main & Int. Eff.); the proportion

was 5 % in 2001–2008, and increased to 13 % in

2009–2012. In some cases, a design plan was not appli-

cable, whilst in others, it was not reported.

Fig. 6 Survey administration

Fig. 7 Design plan. Eff. effects, fact. factorial, Int. interaction
Fig. 5 Number of choice tasks

888 M. D. Clark et al.



4.2 Use of Software Packages to Design DCEs

Figure 8 summarizes information on the use of different

software packages for the design of the DCEs. The most

noteworthy trends are that the use of a software package

to design DCEs remained steady throughout the years

(Fig. 9).

Figure 8 shows there seems to have been a general trend

away from using SPEED over the period as new software

has become available. In 1990–2000, 38 % of analyses

used SPEED; this proportion fell to 19 % in 2001–2008,

and to 4 % in 2009–2012.

The SAS package (which can provide D-efficient

designs) has become increasingly popular. Recorded use

rose from 0 % in 1990–2000 to 12 % in 2001–2008, and

21 % in 2009–2012. Use of SPSS did not change that

much. The use of Sawtooth software fluctuated; 6 % of

analyses used this software in 1990–2000, 4 % used it in

2001–2008, and 13 % used it in 2009–2012. The use of

‘other’ software was also low (6 % in 1990–2000, 0 % in

2001–2008, and 7 % in 2009–20122), and only a small

proportion of analyses in each period failed to provide

information on type of software (No details).

4.3 Use of Design Catalogues, Websites, and Expert

Advice to Design DCE Questionnaires

Figure 9 depicts information on the use of software, design

catalogues, websites, and experts to inform DCE design

and whether this was not reported. Figure 9 shows that

there have not been any particularly large changes in the

use of these over the three periods.

4.4 Methods Used to Create Choice Sets

Figure 10 depicts information on the use of different

methods to create choice sets. The most noteworthy trends

are as follows. In 1990–2000, 9 % of analyses reported

designs that involved orthogonal arrays with single pro-

files, i.e. binary choices (Single profiles); the proportion

was 11 % in 2001–2008, but fell to 1 % in 2009–2012. Use

of orthogonal arrays with random pairing (RP) was more

common, but has fallen over time; in 1990–2000 it was

applied in 53 % of analyses, falling to 17 % in 2001–2008

and 10 % in 2009–2012.

Analyses involving orthogonal arrays with pairing with

a constant comparator constituted approximately one in

five designs in earlier periods, 18 % in 1990–2000 and

20 % in 2001–2008, before falling to 3 % in 2009–2012. In

1990–2000, none of the analyses involved orthogonal

arrays with a foldover design, but this proportion rose to

10 % in 2001–2008 and 17 % in 2009–2012. Very few

analyses in each period used a foldover design with random

pairing (Foldover RP), or pragmatically chosen designs.

Similarly, there has been a general trend towards D-effi-

cient designs (D-efficiency), rising from 0 % in 1990–2000

to 12 % of studies in 2001–2008, and 30 % of studies in

2009–2012. The proportion of analyses that did not clearly

report (Not reported) the methods used to create choice sets

2 ‘Other’ packages used included Gauss for two analyses; nGene (a
Bayesian efficient design) for four analyses; and the statistical design
procedure Gosset for one analysis; a D-efficient design advocated by
Rose and Bliemer for one analysis; STATA for one design; a design
described as ‘‘an experimental design algorithm optimizing orthog-
onality, attribute balance, and efficiency’’ for one design; and Street
and Burgess Software for one design.

Fig. 9 Design source

Fig. 8 Software packages

Discrete Choice Experiments in Health Economics 889



rose from 9 % in 1990–2000 to 28 % in 2001–2008 and

stabilized at 26 % in 2009–2012, whilst in one period

(2009–2012), 11 % of analyses used ‘other’ methods to

create choice sets.

5 Estimation Procedures

As there is a good explanation of RUT, alternative DCE

econometric models, and the appropriateness of different

models for different DCE applications in the earlier review

paper, we refer readers to Sects. 5.1–5.3 of that paper in the

interests of brevity [3]. Figure 11 depicts information on the

different estimation methods. The most noteworthy trends

are described in the sections below. In Fig. 11 details of the

econometric estimation methods used are depicted.

5.1 Use of Probit, Random Effects Probit, Logit,

and Random Effects Logit

As previously reported, early DCE studies, i.e. those pub-

lished in 1990–2000, seemed to focus upon applying either

binary choice or ‘forced choice’ DCEs [4]. So, for exam-

ple, in 1990–2000, 18 % of analyses used probit; this

proportion fell to 7 % in 2001–2008, and fell further to 2 %

in 2009–2012. Similarly, in 1990–2000, 53 % of analyses

used random effects probit (RE probit), falling to 41 % in

2001–2008, and then further to 10 % in 2009–2012. The

proportion of logit analyses was 3 % in 1990–2000, rising

to 11 % in 2001–2008, and was 10 % in 2009–2012, and

relatively few analyses used random effects logit (RE

Logit) in each time period.

5.2 Use of Multinomial Logit

The overall decline in the use of logit, probit and random

effects probit reported above has been offset by an

increased use of multinomial logit (MNL) analyses, which

are sometimes otherwise known as conditional logit anal-

yses. These analyses have the advantage that they can cater

for more than two response options, and they can also

allow respondents to ‘opt-out’ from making a decision.

Sometimes such models may also be associated with better

‘goodness of fit’ than some other econometric models.

During 1990–2000, 18 % of studies used MNL, 22 % used

it during 2001–2008, rising to 44 % during 2009–2012.

5.3 Use of Nested Logit

During the period 2001–2008, a small shift towards use of

nested logit (NL), a technique that relaxes the indepen-

dence of irrelevant alternatives (IIA), was observed [3]. It

was applied in 4 % of studies during 2001–2008, up from

0 % in 1990–2000. For the period 2009–2012, the pro-

portion remained low at 2 % of studies.

a

b

Fig. 11 a Estimation procedures. b Distributional assumptions.
Distrib. distributions, LCM latent class model, MNL multinomial
logit,MXL/RPL mixed logit/random parameters logit, NL nested logit,
RE random effects

Fig. 10 Methods to create choice sets. RP random pairing
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5.4 Models Applicable When There is Preference

Heterogeneity

During 1990–2000, only 3 % of studies used mixed logit/

random parameters logit (MXL/RPL); by 2001–2008, 5 %

of analyses used MXL/RPL. During the period 2009–2012,

there was a clear trend towards increased use of MXL/RPL,

and 21 % of analyses utilized the technique. All the anal-

yses involving MXL/RPL found evidence of preference

heterogeneity. Ideally, when MXL/RPL analyses are sub-

mitted for publication, details of the number of replications

(sometimes described as ‘Halton draws’) should be pro-

vided, as results can be sensitive to the number of repli-

cations. This occurred in 0 % of MXL/RPL analyses in

1990–2000, 67 % in 2001–2008, and 47 % in 2009–2012.

Unlike latent class models (LCM), MXL/RPL analyses

make distributional assumptions for random parameters

(Fig. 11b). Not all MXL/RPL analyses indicate what these

are. Indeed, in 1990–2000, 100 % of analyses failed to

indicate them. In 2001–2008, 17 % failed to provide this

information, and in 2009–2012, 47 % failed to provide this

information. When such information was provided, analy-

ses usually indicated they had assumed normal distribu-

tions for random parameters: 0 % in 1990–2000, 83 % in

2001–2008, and 53 % in 2009–2012. However, in 17 % of

cases in 2001–2008, and 8 % in 2009–2012, models

assuming logarithmic distributions for random parameters

were also reported alongside results from models assuming

normal distributions for random parameters. Also, one

study [115] used a mixed logit hierarchical Bayesian model

(MLHB), an extension of mixed logit modeling. Another

analysis used what it described as a Bayesian-like approach

similar to mixed logit [80]. Sometimes hierarchical

Bayesian analysis has also been used without mixed logit

[48, 70, 114, 204]. A small proportion of analyses did not

report the estimation procedure used.

During the early period (1990–2000), no study used

LCM. During the period 2001–2008, one study (1 %) used

LCM, and the study also found evidence of preference

heterogeneity [216]. During 2009–2012, five analyses

(3 %) [57, 61, 129, 168, 204] used LCM, and they all

identified evidence of preference heterogeneity.

A few analyses used ‘other’ estimation procedures. In

1990–2000, this was the case for 3 % of analyses; the

proportion was 4 % of analyses in 2001–2008 and 17 % of

analyses in 2009–20123.

6 Validity

6.1 Validity Checks

The proportions of studies that used different validity tests

are depicted in Fig. 12.

The most noteworthy trends are as follows. Tests of

external validity (External) are particularly valuable

because stated preferences from DCEs can then be com-

pared with revealed preferences. However, there is often

little scope to conduct tests of external validity (particularly

if DCEs are applied in the context of state funded health-

care provision). This may explain why none of the analyses

contained a test for external validity during 1990–2000.

The proportion rose to 1/114 analyses (1 %) in 2001–2008

as there was a study [217] that compared doctors’ pre-

scribing decisions in relation to prescriptions for alcohol-

ism with the preferences they expressed in a DCE. For the

most recent period (2009–2011), only one [144] analysis

(\1 %) contained a test of external validity.

3 ‘Other’ methods used in 2009–2012 included weighted probit [68];
OLS with a hetero-robust covariance matrix estimator [192]; a
method described as ‘‘modelling including interaction effects’’ [45];
Cox’s proportional hazards model with time-dependent covariate
[105]; weighted least squares regression to estimate utility weights
[105]; multivariate ordered probit to estimate conjoint utility param-
eters [76]; mixed logit with hierarchical Bayesian modeling and
ordered probit [115]; generalized estimated equations [109, 125];
random parameter logit estimated using a hierarchical Bayesian
algorithim [208]; conditional logit and parameter weighting functions
[160]; a series of multivariate regressions [50, 65]; a method
described as Bayesian-like for preference weights [80]; OLS [87];
hierarchical Bayesian analysis [48, 70, 114, 205, 212]; multinomial
exploded logit [177]; Firth’s unbiased estimator [193]; combined
conditional logit and ranked logit model [127]; multivariate multi-
level logistic regression [46]; generalized multinomial logit [119];
mixed effect logistic regression [184], error components mixed logit
analysis [63]; a combination of Bayes theorem, Monte Carlo Markov
chain procedure and the Metropolis Hastings algorithm [182]; and
logistic and probit regression using cluster-robust standard error (SE),
random effects and GEE and multinomial logistic and probit
regressions with cluster-robust SE and random effects multinomial
logistic model and probit model with cluster-robust SE treating the
choices from two stages as two correlated binary outcomes [94].Fig. 12 Validity checks. Exp. expansion
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Most analyses included tests for internal theoretical

validity (Theoretic). Overall, 65 % of analyses in

1990–2000 included these tests, with the proportion falling

to 56 % in 2001–2008, and it was 60 % in 2009–2012.

Such tests involve an assessment of whether coefficients

appear to move in line with prior expectations, and studies

generally reported that this was the case.

Tests for non-satiation were less frequently reported. For

the period 1990–2000, 44 % of analyses contained such a

test; the proportion was 49 % in 2001–2008, before falling

to 21 % in 2009–2012. The decline in the use of such tests

probably reflects concerns that they tend to be passed, so

that they are a relatively weak test of validity. Also, in an

influential paper [218], it has been argued that preferences

that may appear to be ‘irrational’ may in reality be com-

patible with some form of rationality. Therefore, to delete

such responses may be inappropriate, so the decline in the

use of such tests may reflect good practice.

If tests of transitivity could readily be applied using

DCEs, the information yielded might be more useful.

However, they cannot always be readily applied, which is

presumably why over the period 1990–2000 only 9 % of

analyses contained a transitivity test; in 2001–2008, 4 % of

analyses contained such a test, and during 2009–2012, 1 %

of analyses contained a transitivity test. During 1990–2000,

none of the analyses contained a test relating to Sen’s

expansion and contraction properties (Sen’s exp. & con-

traction); the proportion was 2 % of analyses during

2001–2008, and 1 % of analyses during 2009–2012. Use of

a test for internal compensatory decision making (Com-

pensatory) [3] was much more frequent. In 1990–2000,

35 % of analyses involved such a test; the value for

2001–2008 was 32 % of analyses, but in 2009–2012, this

declined to 14 % of analyses.

6.2 Use of Qualitative Methods to Enhance DCE

Processes and Results

Information on the use of qualitative methods to enhance

DCE processes and results is depicted in Fig. 13. In

1990–2000, 18 % of analyses used qualitative methods to

inform attribute selection (Attrib. selection), rising to 69 %

of analyses in 2001–2008, before declining to 51 % of

analyses in 2009–2012. This is potentially a worrying trend

because if the selection of attributes is not properly

grounded in qualitative research, then inappropriate attri-

butes may be specified and appropriate attributes may be

omitted (triggering omitted variable bias). It would be of

little concern, however, if the recent reduction in the use of

qualitative methods to inform attribute selection was trig-

gered by the wider use of DCEs in contexts in which the

decision framework is already known (for example, if

DCEs are conducted alongside clinical trials).

In contrast, the use of qualitative methods to inform

attribute level selection (Level selection) increased; the

proportion was 18 % of analyses in 1990–2000, increasing

to 33 % in 2001–2008, before increasing again to 40 % in

2009–2012. The use of a pre-testing questionnaire (Pre-

testing) fluctuated over time; it was applied in 47 % of

analyses in 1990–2000, just 32 % of analyses in

2001–2008, but was applied in 41 % of analyses in

2009–2012. The use of debriefing choices (Debriefing) to

help strengthen understanding increased from 0 % of

analyses in 1990–2000 to 4 % of analyses in 2001–2008,

and 8 % of analyses during 2009–2012.

7 Areas of Application and Outcome Measures

7.1 Areas of Application

As indicated by de Bekker-Grob et al. [3], although DCEs

had originally been introduced into health economics pri-

marily in order to value patient experience [219], there was

clear evidence that the application of DCEs had broadened

considerably by 2000–2008 [3]. Moreover, this trend

continued into 2009–2012. Figure 14 summarizes the rel-

evant data (for the definitions of categories A, B, C, D, E,

F, G, and H, refer to Table 1).

The main noteworthy trends are as follows. In

1990–2000, 35 % of analyses had a main study objective

that involved valuing experience factors (Category A). The

proportion was the same in 2001–2008, as 35 % of anal-

yses had the same main study objective. However, during

2009–2012, this proportion fell to 12 % of analyses. In

contrast, the proportion of DCEs exploring trade-offs

between health outcomes and experience factors has risen

steadily (Category C). In 1990–2000, 41 % of analyses had

this as a primary objective; during 2001–2008, the

Fig. 13 Use of qualitative methods. Attrib. attribute.
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proportion was 33 % of analyses, increasing further to

44 % of analyses in 2009–2012. This reflects a shift from

examining patient experience factors (Category A) in iso-

lation (down from 35 % in 2001–2008 to 12 % in

2009–2012) towards estimating trade-offs between health

outcomes and experience factors (Category C), which

increased from 33 % of analyses in 2001–2008 to 41 % in

2009–2012. The latter category (Category C) also includes

the estimation of trade-offs for non-patient groups, whereas

the former (Category A) is specific to patient respondents.

In 1990–2000, no analysis included a main objective of

estimating utility weights within a quality-adjusted life-

year (QALY) framework (Category D). During

2001–2008, 2 % of analyses had this as the main objective.

These two analyses used DCEs as an alternative to standard

gamble (SG) and time trade-off (TTO) to estimate utility

weights within a QALY framework [220, 221]. More

recently, there has been some further work in this area. In

2009–2012, 2 % of analyses had this as their main objec-

tive, reflecting some interest in this research agenda. One

of these analyses [165] looked at deriving distributional

weights for QALYs using DCEs; another [164] used DCEs

to quantify EQ-5D health states, whilst another [163]

explored whether a DCE that resembles TTO exercises is

able to estimate consistent values on the health utility scale

for the EQ-5D. A further analysis compared case 3 BWS

DCE analysis with WTP analysis [166].

A small proportion of DCEs have had a primary

objective of evaluating job choices, human resource policy

(Category E), or developing priority setting frameworks

(Category F), and values for these categories did not

exhibit much change (see Fig. 14).

During 1990–2000, 3 % of analyses had the main

objective of establishing health professionals’ preferences

(Category G); this rose to 15 % in 2001–2008, before

falling slightly to 12 % in 2009–2012. In 1990–2000, 0/34

analyses (0 %) had an ‘other’ (Category H) main objective;

this rose to 4 % of analyses in 2001–2008, before rising

again to 10 % of analyses in 2009–20124.

7.2 Outcome Measures

Information on trends relating to ‘main outputs’ is depicted

in Fig. 15. In the past, DCEs often expressed outputs in

terms of a primary outcome measure of ‘per WTP unit’ or

‘per time unit’. In 1990–2000, 29 % of analyses used the

‘per WTP unit’ (WTP) outcome measure, increasing to

39 % of analyses in 2001–2008; however, in 2009–2012,

the proportion was only 31 % of analyses. The use of ‘per

unit of time’ (Time) as an outcome measure has also

declined markedly over the period. During 1990–2000,

29 % of analyses used this outcome measure; in

2001–2008, the proportion was 20 % of analyses, and it

declined further to 3 % of analyses in 2009–2012.

The proportion of DCEs using ‘per risk unit’ (Risk) as a

primary outcome is low, and this has fluctuated little over

the period (see Fig. 15). Only a minority of analyses use

monetary welfare measures (Money) as the primary out-

come measure, and this proportion has fallen in propor-

tionate terms over time. During 1990–2000, 15 % of

analyses involved a money welfare measure; during

2001–2008, the proportion was 12 % of analyses; and

during 2009–2012, the proportion was 2 % of analyses.

4 In 2009–2012, one study explored how changing the number of
responses elicited from respondents might affect estimates of WTP
[204]; another looked at parents’ preferences for management of
attention-deficit hyperactivity disorder [206]; one study looked at
general public preferences for long-term care [137]; another two
studies looked at preferences for human papillomavirus vaccine, one
case looking a societal preferences [207] and the other [63] looking at
mothers’ preferences; another study looked at the valuation of
diagnostic testing for idiopathic developmental disability by the
general population [208]; another looked at various stakeholder
groups’ preferences for coagulation factor concentrates to treat
hemophilia [145]; one study looked at general public preferences for
tele-endocopy services [158]; another compared Dutch and German
preferences for health insurance amongst their populations [214]; one
paper looked at public and decision maker preferences for pharma-
ceutical subsidy decisions [215]; one study explored how individuals
perceive various coronary heart disease factors [203], whilst another
described the relative importance of major adverse cardiac and
cerebrovascular events to be used when analyzing trials [212]. Two
other DCEs were performed on the area of quality improvement; one
investigated how to best disseminate evidence-based practices to
addiction service providers and administrators [205], while the other
was used to investigate which indicators had the greatest impact on
the decisions of health service inspectors concerning the assessment
of quality of mental health care [211]. Other applications included a
study on preferences of health workers in Burkina Faso for health-
insurance payment mechanisms [209]; a study on how respondents
valued mortality risk attributable to climate change reductions [210];
and a study on the preferences for reducing contaminated sites to
reduce the risk for cancer [213].

Fig. 14 Areas of application. For the definitions of categories A, B,
C, D, E, F, G, and H, refer to Table 1
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The use of utility scores (Utility) as the primary out-

come measure is more common, and this has fluctuated

over time. In 1990–2000, 24 % of analyses had utility

scores as the primary outcome measure. The proportion

was 18 % of analyses during 2001–2008, decreasing to

8 % of analyses during 2009–2012.

There is also evidence that the use of odds ratios (Odds)

has fluctuated. In 1990–2000, only 3 % of analyses used

odds ratios as the primary outcome measure. By

2001–2008, the proportion of had more than tripled to

11 % of analyses; the proportion was 8 % in 2009–2012.

Likewise, the use of probability scores (Prob) increased

from 3 % of analyses in 1990–2000 to 13 % of analyses in

2001–2008, before declining to 8 % of analyses during

2009–2012.

Finally, Fig. 15 presents information on ‘other’ outcome

measures used. For the periods 1990–2000 and 2001–2008,

the earlier review authors did not use an ‘other’ category

for the main outcome measure used. However, for this

review, we categorized a substantive number of analyses,

49 % of analyses, in the ‘other’ category. This was mainly

because in 2009–2012 there was a trend to use importance

scores or relative importance of attributes (25 % of anal-

yses) or preference weights (6 % of analyses).

8 Review of Adaptive Conjoint Analysis/Adaptive

Choice Based Conjoint Studies

Having summarized the ACA/ACBC studies in an elec-

tronic supplement (because they use a fundamentally dif-

ferent approach to DCEs), we concluded that it was

difficult to discern major trends in relation to these analyses

across study periods. This is because our PubMed search

unearthed a total of only 26 analyses in 26 papers to review

for the entire review period, 1990–2012. Nonetheless, for

the interesting trends that have been discerned, the details

have been provided in Appendix A of the Electronic

Supplementary Material.

Our searches (Table AI; see the Electronic Supple-

mentary Material for all appendix tables) unearthed no

studies of this type for the period 1990–2000, 14 analyses

for the period 2001–2008, and 12 analyses for the period

2009–2012. In contrast to the DCE literature, most of these

analyses seemed to emanate from the USA, and the surveys

were more likely to be computer administered. The anal-

yses also tended to be designed using Sawtooth software

(Table AII), and no analyses indicated the use of an

alternative software package. Published analyses did not

indicate whether they ever used the main estimation

methods used for DCEs (Table AIII), and all of them either

fell into the ‘other’ or ‘not reported’ categories. Moreover,

validity checks were rarely incorporated into ACA/ACBC

analyses (Table AIV).

9 Discussion

The number of published health-related DCEs has

increased dramatically over the last 2 decades. There has

also been a shift away from UK dominance of health-

related DCEs, with a widening range of countries produc-

ing DCE studies.

The 2001–2008 review [3] noted a wide range of policy

applications for DCEs; this continued during 2009–2012.

In 2001–2008, the valuation of patient experience contin-

ued ‘‘to be the focus of the majority of studies’’ [3]. In

contrast, this declined as the main focus during 2009–2012.

Nevertheless, in 2009–2012, most DCEs continued to

include attributes relating to patient experiences, but

increasingly in order to examine trade-offs between health

outcomes and experience factors. Also health outcomes

and experience factors for respondents groups other than

patients are encompassed by this category (e.g., Category C

analyses).

The 2001–2008 review [3] reported that ‘‘willingness to

pay continued to be a commonly used output from DCEs’’

over that period. However, the present review found evi-

dence that the proportion of DCE studies using either a ‘per

WTP unit’ or a ‘monetary welfare measure’ as their pri-

mary outcome has fallen. This could in part be attributable

to concerns that have been raised in relation to the use of

DCEs to elicit WTP. These include whether estimated

WTP obtained via DCEs may be sensitive to the range

specified for the monetary attribute or the presence or

absence of payment per se [222], or the presence or

absence of a non-zero cost, rather than the level of cost

indicated by the monetary attribute [223]. Other evidence

suggests that the way attributes are ‘framed’ in a DCE

questionnaire may impact upon estimated WTP [113].

Fig. 15 Outcome measures. Prob probability, WTP willingness to
pay
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Furthermore, the hypothetical nature of DCEs can hinder

correct estimates of WTP because respondents will not be

bound by the choices they make [143].

Another issue arises because when estimating marginal

willingness to pay (MWTP), it is commonly assumed that

marginal utility of money is constant and the cost function

is therefore continuous and linear. However, there is reason

to believe that the cost gradient may not be continuous and

linear [115]. Therefore, if WTP is calculated there is a need

to proceed with econometric analysis that assumes more

complex indirect utility functions [123, 124], for example,

using interaction terms between attributes [224], or using

non-linear attribute transformations, such as the squaring of

attributes [225], or taking natural logarithms [226].

In addition to using methods that can be used to identify

unobserved preference heterogeneity, which we discussed

in detail in Sect. 5.4, the issue of segmenting DCE data to

examine the preferences of defined subgroups is sometimes

important. One early analysis [227] segmented the DCE

data according to the severity of symptoms associated with

osteoarthritis, and the importance of a joint ache attribute

was seen to increase in respondents with more severe

symptoms. Other analyses relating to establishing priority

criteria for allocating cadaveric kidney transplants [71, 72]

have provided evidence of statistically significant differ-

ences in preferences between different stakeholder groups.

A major finding to emerge from this research was that

whilst non-ethnic minority patients would prefer to allocate

kidney transplants to recipients with a good tissue match,

ethnic minorities (who would be disadvantaged by use of

such priority criteria) would not. Another interesting ana-

lysis relating to segmentation used segmentation because

‘‘health organizations need to understand whether the same

health treatments, prevention programs, services, and pro-

ducts should be applied to everyone in the relevant popu-

lation or whether different treatments need to be provided

to each of several segments that are relatively homoge-

neous internally but heterogeneous among segments’’

[228]. Segmenting the data to facilitate subgroup analysis

is particularly appropriate if policy-relevant differences in

preferences between defined subgroups might be

applicable.

The use of simulation may be important, when DCEs are

applied, because simulation may enable you to do some-

thing useful with DCE data. For example, in a DCE

relating to junior doctors’ preferences for specialty choice,

it was found that increasing general practitioners (GPs)

wages by $AUS50,000, or increasing opportunities for

procedural or academic work, can increase the number of

junior doctors choosing general practice by between 8 and

13 % [174]. Another example of how useful simulation of

DCE data can be is an analysis that was designed to predict

the place of out-of-hours care. Using DCE data to predict

market shares, it was predicted that a new GP cooperative

could capture about a third of the market, ahead of the

emergency department, the second most preferred service

[183].

In Sect. 5.2, we pointed out that econometric methods

are increasingly being used which can facilitate allowing

respondents to ‘opt-out’ from registering a preference. An

example of why this might be important is apparent from

an analysis relating to colorectal cancer screening [110].

This is because when screening for colorectal cancer, it

was important to give people an ‘opt-out’ response in order

to ensure that the choices respondents faced were realistic.

Similarly, when evaluating two hypothetical smoking

cessation mechanisms, it was important to provide

respondents with an ‘opt-out’ option [128].

This review for 2009–2012 found an increasing trend

towards presenting respondents with more DCE choice

scenarios. Some evidence suggests [203] that later DCE

responses might be more thought through, so this may be a

welcome development. However, the optimal number of

choices presented should ideally be established through

piloting, because it is likely to be a function of the com-

plexity of choices presented. There has also been an

interest in developing approaches to cater for the inclusion

of increased numbers of attributes within DCE designs

[161, 198]. Another development has been a shift away

from self-administered pen/pencil-response DCE ques-

tionnaires towards either interviewer-administered or, more

particularly, computer-administered questionnaires and the

use of internet panels.

The trend towards the increased use of D-efficient DCE

designs noted by de Bekker-Grob et al. [3] has continued.

Although there has been an increase in the proportion of

analyses catering for interactions, main effects designs

remain dominant. Trends away from the use of probit and

random effects probit towards greater use of MNL reflect

the increased use of DCEs incorporating more than two

choices, or two choices plus an opt-out. Recent interest in

the use of models catering for preference heterogeneity is

welcome because when mixed logit or LCM is applied, it

invariably identifies preference heterogeneity, which

otherwise would have been overlooked. That said, one

limitation of the mixed logit approach is that it requires the

imposition of assumptions about the distribution of the

random coefficients. If the distributional assumptions are

not valid, then this can undermine the validity of findings

about preference heterogeneity. LCM has the advantage

over mixed logit that it does not involve the imposition of

such distributional assumptions, but can have the disad-

vantage that it may be more time consuming to implement.

There appears to have been a decline in the use of most

validity tests during 2009–2012, including tests of non-

satiation, transitivity, Sen’s expansion and contraction
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properties, and tests of compensatory decision making. We

might have anticipated a decline in the use of such validity

checks, because the usefulness of the results they yield has

increasingly been called into question [144, 218, 229].

Reassuringly, however, during 2009–2012, there has been

an improvement in the proportion of analyses using qual-

itative methods to enhance DCE processes and results, in

some respects, including the use of qualitative methods to

inform level selection; use of pilot pre-testing question-

naires; and the use of qualitative methods to strengthen

understanding of responses (including debriefing choices).

A remaining cause for concern, however, is that the use of

qualitative methods to inform attribute selection has

declined since 2001–2008. This could lead to increased

likelihood of omitted variable bias affecting DCE results.

The main limitation of this study was that, like the

published review for 2001–2008 [3], we only used PubMed

to source literature. However, as that review noted [3],

when additional searches are conducted on other databases,

it does not markedly affect review findings. So in the

interests of ensuring comparability with data from that

earlier review, we also restricted our searches to the Pub-

Med database.

10 Conclusions

The use of DCEs in healthcare continues to grow dramat-

ically, as does the scope of applications across an

expanding range of countries. There is increasing evidence

that more sophisticated approaches to DCE design and

analytical techniques are improving the quality of final

outputs. That said, recent evidence that the use of quali-

tative methods to inform attribute selection has declined is

of concern.
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