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Abstract-A discrete choice model is presented that explicitly recognizes differences in the error 
structure associated with a single “oddball” alternative within the choice set that has properties 
not common to the other alternatives. The model purportedly resolves questions related to the use 
of alternative-specific variables in transportation choice models to capture the effects of attributes 
unique to a single travel alternative, such as “schedule frequency” in the case of modal choice 
between personal auto and public transit. The model, which shares the general error structure of 
multinomial logit, is shown to be a modification of a multinomial logit subchoice by terms 
involving the exponential integral. The model is shown to yield different results from those 
produced by an equivalent multinomial logit specification. Comparisons to multinomial probit 
and nested logit formulations are also made. 

1. INTRODUCTION 

Models of individual choice behavior in transportation are almost universally specified in 
terms of a common set of abstract attributes that define the utility or value that each 
available alternative holds in the particular choice situation. In random utility formula- 
tions, the specification typically further entails the assumption that the utilities of the 
respective alternatives are comprised of a deterministic component and an unobserved, 
random component that is independently, identically distributed (IID). For cases in 
which the choice alternatives are of such a similar nature that they indeed may be specified 
and distinguished by gradations among a common set of attributes (e.g., different brands 
of toothpaste) the IID assumption is warranted, because the random term presumedly is 
the resultant of unbiased errors in measurement on a common scale. (It is recognized that 
another common interpretation of the random term is rooted in “differences in personal 
tastes;” this interpretatoin is not adopted here.) However, it is often the case in transpor- 
tation applications that one or more of the alternatives in the choice set differ significantly 
from the others relative to the attributes that define their intrinsic worth. Examples 
include: modal choice between personal auto and public transit, the latter having sched- 
ule, route and fare payments that have meaning for the former at most only in the 
abstract; route choice between freeways/expressways and surface streets for which the 
number of traffic signals and turning maneuvers are likely determinants of choice; modal 
choice among bus, auto, and commuter rail, the last alternative often involving an ancil- 
lary access mode not common to the former two. In applications such as these, the 
approach typically has been to include a set of alternative-specific variables or constants, 
in cases where particular attributes have little or no meaning for the other alternatives, or 
to specify the model as a multidimensional choice (e.g., nested logit), in cases for which 
one or more of the alternatives involves a subordinate choice. Each of these approaches 
poses problems for the validity of the IID assumption. 

In formulations involving assignment of alternative-specific variables or constants, it 
is reasonable to expect that the measurement of such terms contributes to the random 
utility component of the respective alternative. However, no such measurement error (or 
unobserved contribution) can accrue to the utility of alternatives for which the attribute 
is not present; the value rather is not only totally deterministic but also identically zero. 

Formulations that rely on nested choice structures generally must employ restrictive 
assumptions regarding the distributional properties of the error terms associated with the 
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respective dimensions of the choice situation. In nested logit, for example, it must be 
assumed that subsets of the error terms associated with the various choice dimensions are 
sufficiently small so as to be ignored compared to the error terms of dimensions higher in 
the nesting structure (cf., Ben Akiva & Lerman, 1979). 

An alternative approach is to formulate the choice situation as a multinomial probit 
(MNP) model in which the deviation from the IID assumption noted above can be 
captured with the specification of the variance-covariance structure of the error terms. 
To the extent that the assumption of Gumbel-distributed error terms is merely a mathe- 
matical convenience, in approximation to a “true” MNP structure, this approach ade- 
quately addresses the theoretical consistency concerns raised; albeit with the introduction 
of well-known (but increasingly less intimidating) additional complexities in estimation 
and interpretation associated with MNP formulations. To the extent that the assumption 
of Gumbel-distributed error terms is rooted in the speculation that it is the extrema of the 
unobserved components that are likely to affect a stable choice situation, MNP can be 
viewed as an approximation to a “true” MNL structure. 

This article presents a Gumbel-based model form that is not bound by the restrictive 
assumptions noted. The formulation shares the general error structure that underlies 
multinomial logit analysis, whereas explicitly addressing the additional complexity of the 
error arising from a single “oddball” alternative in the choice set that possesses character- 
istics not common to the other choice alternatives. 

2. MODEL FORMULATION 

Consider a set of alternatives 

A = {1,2, . . . , n} 

with a common set of attributes 

Let 

x = {&X2, . . . , XJ 

define the levels of these attributes for any particular alternative, k. 
Suppose further that one alternative, say the “rth”, has additional attributes, {Z, } , 

with corresponding levels 

zr = {Zrl,ZrZ, . . . , z,} 

unique to that alternative; and not definable for the other alternatives in A. (Consider- 
ation is restricted to a single oddball alternative because of the general intractability of 
the additional multiple integration required with successive numbers of oddballs. For 
example, introduction of a second oddball would require integration of functions of an 
exponential integral. ) 

Let the utility associated with the common set of attributes be denoted by 

u, = v, + fk, VkEA (1) 

where 

v, = Deterministic component 

= f(Xk) 

ek = Random component 



Let the utility associated with 

where 

v, = 
= 

lJ, = 

Then, under the standard 
choice are given by 

assumptions of random utility theory, the probabilities of 

P(k]A) = PROB( U, > Up,vP~A,O # k,r; U, > U,+ up), VkEA, 

k#r (3a) 
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the unique attributes of alternative r be denoted by 

Q = V; + Y, 

Deterministic component 

f(z,) 

Random component 

P(rjA) = 1 - c P (klA) (3b) 
Vkvl 
k#r 

Let fk( - ), Fk( * ) denote the density and distribution functions, respectively, for the 
ek; j,( - ), F,( * ) the corresponding functions associated with Y,. Then, Equation (3a) can 
be rewritten as: 

m 0 

P(klA) = s s fk(t )+fi( S)F,( vk - vr - v; + t - r) 

-co -m 

* n Fp(Vk - V, + [)dtdl, VkeA, k # r 
HER 
ffk 

(4) 

Assume that the random disturbances are all Gumbel distributed with the same scale 
factor. (It is noted that this latter condition on the scale factor is the usual assumption in 
logit analysis for the e’s. Extension to the v, term is justified only as a mathematical 
convenience; closed-form solution to Equation (4) apparently exists only for this case. 
This restriction limits applicability of the model to situations in which there is justification 
for assuming that the variances of the common and alternative-specific error terms are 
approximately equal.). Then, with no loss in generality, assume a scale parameter of 
unity. It is conventional in logit formulations to also assume a common value of zero for 
the location (mode) parameters of the Gumbel distributions because its actual value can 
be taken up by a constant term in the specification of the Vs. In the current formulation, 
however, this assumption is not made, in order to preserve the proper relationship be- 
tween the respective contributions of U and 0 to the overall utility of alternative r. The 
random disturbances are then specified as follows: the et’s being Gumbel distributed with 
parameters (vr, 1); v, Gumbel distributed with parameters (;i,, 1). 

Then, on substitution of these properties, and after some manipulations, Equation 
(4) can be integrated to the result (Bierens de Haan, 1867): 

P(klA) = 
e’ v,+v,j 

c e’ v,+?,) 
[ 1 - c$, e”SZ( +,)I, vk E A, k # r (5) 

VPEA 
ffr 

where 

4, = 
e ( v,+ 4+r,+i,1 

c e’ v,+?,) 

Vful 
Ifk 

and where 
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EZ(tJ,) = s c dy 

m, y 

is the exponential integral, for which tabulated values are well known. 
Recognizing that the first factor in Equation (5), i.e., 

t#Jk = PMNL(klA - r, k # r) = 
e’ v,+?,) 

c e’ v,+n,) 

VkA 
F#k 

is simply the multinomial logit (MNL) choice probability for alternative k given a choice 
set that excludes alternative r, the choice probability for alternative k may be written as 

P(klA) = hfNL(klA - r, k # r)[l - &e@‘SZ(&)], VkcA, k f r (6a) 

and, from Equation (3b) 

P( $4 1 = 9, e”-W 4 1 (6b) 

It is easily verified that the model specified by Equations (6) exhibits the Indepen- 
dence from Irrelevant Alternatives (IIA) property only among the subset of alternatives 
included in R; changes in the choice probability of the oddball alternative impacts the 
choice probabilities of all other alternatives proportionately. 

Under the usual assumption that the deterministic components of utility are linear in 
parameters, i.e., 

&=fi*X;, vkEA (7a) 

C =pz; (7b) 

where /3 and B are vectors of unspecified utility weights and T is used to denote transpose, 
the individual choice elasticities of the oddball model are given as: 

P( rlA ) 
1 - P(rJA) 

, vkEA, 

k#r 

+r$,) -A 
P(rlA) 1 

where 

Xj = 
1 

@j Xrj, for components Xrj 

pj Z,, for components Zrj 

and the cross elasticities by 

@a) 

(8b) 

’ 

(9a) 

Ey = -flj X, PMNL(PlA - r, 0 # r) 

k # P, k, P 2: r 

E,” = P( rlA 1 - 1 
- P(rlA) 1 

, keA,k#r 
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Ei” = -Pjx,P,,,(PJA - f, P f r) (1 + 9,) - d, 
P(rlA) I 

P E/l, e f r (SC) 

where Ey is defined as the individual choice probability elasticity of alternative k with 
respect to attributej of alternative t’. 

3. LOGICAL CONSISTENCY AND ASYMPTOTIC VALUES 

Although the general behavior of the choice probabilities specified by Equations (6) 
is not immediately apparent from its structure, certain specific properties are easily de- 
rived regarding consistency and asymptotic behavior. 

First, because (Kreyszig, 1968) 

lim EZ(+) = 5 
4-m 

(loa) 

and (Collins, 1968) 

lim EZ( C#J ) = - y - Iti+, 
6-0 

(lob) 

where y is the Euler’s constant, it is easily verified that Equations (6) satisfy the logical 
consistency conditions 

0 I P(klA) I 1, c P(klA) = 1, vk~A 
VksA 

Moreover, from Equation (lOa), 

lim P(kJA) = 0 
Y,-co 

(lla) 

and from Equation (lob), 

lim P(k(A) = P,,.,NL(klA - r, k + r) vk E A, k + r 
V,--o¶ 

lim P(rlA) = 0. 
?,-+-LW 

(lib) 

4. COMPARISON TO MNL 

It is of interest to compare the choice probabilities specified by Equations (6) to 
those obtained using an equivalent MNL formulation, 

where 

P.MvL(~IA 1 = 

-, 
rlr = 9, 

,rvk+?,+ak;( y+i;j1 

c 
e’“l+?c’ + ,(v,+y++;)’ 

vkeA 

VkA 
I#? 

+ 6, 

(12) 

6 k, = Kronecker delta = 
0, k # r 
l,k=r 

in which the alternative-specific attributes are merely incorporated in the deterministic 
component of the utility of alternative r, and the random disturbance assumed to be 
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Gumbel distributed with an identical scale factor of unity. Then, from Equations (6) and 

(12)* 

P(klA) 
&,w( klA ) 

= (1 + +,)[l - &e”SZ($,)], Vk e A, k # r (1W 

P(rIA) 
h.drlA 1 

= (1 + d,)e’W4,) (13b) 

It is easily verified that the following asymptotic relationships hold: 

~;:%a P,w( P(klA klA 1 = 1 1, vkEA,k#r 

P(rlA 1 
v,tT- PMNL(rlA) 

= 00, lim P(rlA) 1 
v,-- pMNL(rlA ) = 

(14a) 

(lab) 

These asymptotic results are consistent with the behavioral assumptions that, as the 
expected utility of the oddball alternative becomes either vanishingly small or infinitely 
large compared to the utilities of the other alternatives, the choice probabilities of both 
models approach the appropriate limiting values; although both model formulations yield 
a zero choice probability for alternative r as v; + - 00, the MNL model approaches that 
limiting value more quickly than does the oddball formulation. 

Comparative values of the choice probabilities over the range of 4, are displayed in 
Fig. 1 and Fig. 2. These results indicate that the conventional MNL model consistently 
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Fig. 1. Ratio of choice probabilities for non-oddball alternatives. 
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Fig. 2. Ratio of choice probabilities for oddball alternatives. 

over predicts the oddball formulation choice probabilities of the nonoddball alternatives, 
reaching an extrema of P(kIA)/P,,,(klA) = 0.80 at a value of 4f = 0.86, determined 
by the solution to 

P(rlA) = 
(1 + 4:)2 - 2 

(1 + 4f)2 + 1 
(15) 

The results generally support empirical results reported by Horowitz (1982) for the speci- 
fication error caused by random utility components with unequal variances. 

As an example of the implications of this disparity between the two model forms, 
consider the case in which the shared attributes of each of the n alternatives offer an 
identical deterministic component of utility, say V, to the individual. Suppose further 
that the “unique” attributes of the oddball alternative r offer a proportional component, 
say CXV, where CY is the corresponding proportionality constant. Under such conditions, 
the question arises as to how comparable might estimations of the two model forms be. 
Some information in this regard is provided by Fig. 3, in which the ratios of the estimates 
of the proportionality constants (a! MhrL and CX, for the MNL and oddball formulations, 
respectively) required to yield equivalent choice probabilities for the two model forms are 
plotted as a function of CY for various numbers of choice alternatives, n. These results 
indicate that the respective estimates of utility weights associated with attributes compris- 
ing 2, generally can be expected to coincide as these unique attributes dominate the choice 
situation. Alternatively, in situations (for this case of constant utilities) in which the 
utility of the unique attributes of the oddball alternative r is comparable in magnitude to 
that of the common attributes, there is a significant discrepancy between the expected 
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Fig. 3. Ratio of estimated utility proportionality constant. 

contribution of the unique attributes to choice as determined by the respective model 
forms; this discrepancy is exaggerated as the deterministic component of the utility of the 
attributes comprising 2, approaches zero, where it is impossible to achieve equivalent 
choice-probabilities, owing to the added skewness of the error term associated with or,. 

5. COMPARISON TO NESTED LOGIT AND MULTINOMIAL PROBIT 

Complications introduced by complexities in the assumed distributional properties 
of the error terms in discrete choice modeling are, of course, not new. Typically, such 
complications have been addressed either through generalizations to multinomial logit 
(e.g., nested logit) or through alternative (and less restrictive) specification of the error 
terms (e.g., multinomial probit). In that regard, the error structure addressed by the 
oddball model shares features associated both with nested logit and with multinomial 
probit. 

In the case of nested logit, the multiple error terms in the utility specification arising 
from shared random components are sequentially treated by defining a nesting structure 
that takes advantage of the property that the maximum of a series of Gumbel-distributed 
variables is itself Gumbel-distributed, leading to the well-known “logsum” term. In both 
the nested logit and the oddball cases the complication introduced is in the form of an 
additive error term in the utility specification. However, the genesis of the additive error 
term is completely different; in nested logit it results from shared random components, 
while in the oddball case it results from unique random components. This difference has 
a profound impact on any simplification afforded by the nested approach. 

The logical nested structure for the oddball case is a two-level model with the oddball 
alternative (r) in the upper nest and all other alternatives (vk E A, k # r) in the lower 
nest. Then the “upper-nest” choice probabilities are given as: 

P(kJA, k # r) = Pr MAX U, 2 U, 
VkeA 
kfr 

= Pr MAX vk + tk 2 v, + v, + E, + ( V, 

VkeA 
ktr 

=Pr(V*+e*z V,+ Vr+t,+v,) 

(16) 

where P is the logsum term and E* is Gumbel distributed. Since the distribution function 
G(y) for E, + v, is given by: 
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cc 

G(y) = ~-[r+~-Y/~l~y, 
s 
0 
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(17) 

Equation (16) integrates to the same result as Equation (5). The nested formulation, 
while affording no simplification of the error structure associated with the oddball case, 
nonetheless provides an alternative derivation of the governing choice probabilities devel- 
oped earlier. 

An alternative to the assumption of Gumbel-distributed error terms is that of normal 
deviates, leading to a multinomial probit formulation. Unlike the case presented by 
Gumbel-distributed error terms, an assumption of normally-distributed error terms intro- 
duces no fundamental obstacles in applying multinomial probit to the oddball case, 
because the sum of normal deviates is itself normal. In the trinomial case, for example, 
the probit formulation analogous to the assumptions leading to Equation (5) involves 
specifying the covariance matrix as: 

Comparative values of the choice probabilities for the oddball alternative relative to the 
corresponding multinomial probit choice probabilities for this example are shown in Fig. 
4, both for the oddball formulation presented here as well as for an equivalent multinom- 
ial logit formulation. Both models are seen to converge to the multinomial probit model 
for large 4, but to deviate significantly (and in opposite directions) from that model for 
small 4,. 

6. SPECIFICATION AND ESTIMATION 

In the development of the oddball model, it is presumed a priori that certain charac- 
teristics associated with the oddball alternative both are determinants to the choice as 
well as being unique to the oddball alternative. Although in many instances the latter 
presumption is evident (e.g., the time required for recharging an electric vehicle alterna- 
tive), in other instances alternative specifications of a particular characteristic may cloud 
such conviction (e.g., the specification of the “unique” feature that public transit typically 
involves sharing a vehicle with a number of strangers while personal auto does not, as the 
number of persons in the vehicle-a characteristic definable for both alternatives). An 
indication of whether or not specific attributes are more appropriately modeled as being 

01 : 
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Fig. 4. Ratio of MNL and oddball model choice probabilities for oddball alternative to MNP choice probability. 
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unique to a particular oddball alternative than as being included among a common set of 
attributes can be obtained by either the Cox test of separate families of hypotheses or 
from comparisons of the likelihood ratio index, as proposed by Horowitz ( 1983), because 
such alternative specifications involve comparisons of non-nested models; i.e., neither 
model form can be obtained from the other through manipulation of model coefficients. 
This same approach can be used to evaluate the appropriateness of the oddball formula- 
tion against alternative model structures, such as multinomial probit and logit formula- 
tions. Tests of whether or not to include such unique characteristics at all in the model 
fall under the general category of nested model comparisons, which can be conducted 
using likelihood ratio and Lagrangian multiplier tests, as also described by Horowitz 
(1982). 

Estimation of the oddball model can be achieved via standard maximum likelihood 
procedures, as in the multinomial logit case. Subscripting by n, terms associated with the 
nth observation in a set of N total observations, the appropriate first order conditions for 
the usual linear-in-parameters specification, are easily verified to be given by: 

j= l,...q (18) 

=o,j= l,...s 

where 

Qkn = 

1 if observation n chose alternative k 

0 otherwise. 

Investigation of the associated second-order conditions is beyond the scope of the current 
research. 

7. CONCLUSIONS 

A discrete choice model has been developed for application to choice situations in 
which one of the alternatives in the choice set has features that are not properly defined 
for or associated with the other alternatives. Such situations arise commonly in travel 
demand modeling, particularly in choices between public transit and auto. Whereas more 
complex than multinomial logit, the new model nonetheless is compactly defined in terms 
of known functions, as are its standard ancillary properties. The model is shown to yield 
results that, for a range of comparative utility values, are significantly different from 
those that would be expected from MNL. The model is also restricted to applications in 
which the variance of the error terms associated with the unique features of the oddball 
alternative are of the same order of magnitude as the common attributes. 
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