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Figure 1: Examples of discrete conformal maps produced with our method. Next to each 3D texture image is a visualization of the planar
region over which the surface is parameterized. The (cut) Camel demonstrates a constrained complex boundary shape; the Max Planck pa-
rameterization (also with cuts) shows a straightline bounded parameter region suitable for good texture packing; the face mask demonstrates
natural boundary conditions; and the lion head mapping to a disk.

Abstract

We introduce a novel method for the construction of discrete con-
formal mappings from (regions of) embedded meshes to the plane.
Our approach is based on circle patterns, i.e., arrangements of
circles—one for each face—with prescribed intersection angles.
Given these angles the circle radii follow as the unique minimizer
of a convex energy. The method has two principal advantages
over earlier approaches based on discrete harmonic mappings: (1)
it supports very flexible boundary conditions ranging from natural
boundaries to control of the boundary shape via prescribed curva-
tures; (2) the solution is based on a convex energy as a function
of logarithmic radius variables with simple explicit expressions for
gradients and Hessians, greatly facilitating robust and efficient nu-
merical treatment. We demonstrate the versatility and performance
of our algorithm with a variety of examples.

CR Categories: G.1.0 [Numerical Analysis]: General—
Numerical Algorithms; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Curve,surface, solid and object
representations; Geometric algorithms, languages, and systems.

Keywords: Conformal parameterizations; discrete differential
geometry; circle patterns; discrete analytic functions; meshing; tex-
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1 Introduction

Surfaces are often represented as collections of samples with con-
nectivity, typically in the form of a simplicial mesh. It is natural

and convenient to use the implied piecewise linear mesh as the
basis for formulating a variety of computational algorithms, such
as parameterization problems or the solution of partial differential
equations for purposes of simulation. In this paper we argue that
when it comes to computing conformal structures, e.g., conformal
parameterizations of surfaces, circles can be a far better basis upon
which to formulate the underlying relationships and consequent al-
gorithms (see Figure 2). In particular we advocate the formulation
of the discrete conformal mapping1 problem in terms of circles and
the angles with which they intersect, so called circle patterns.

The idea of using circles to capture a discrete notion of confor-
mality goes back to a conjecture of Thurston’s [1985] who posited
that one may approximate the Riemann mapping2 from a given re-
gion in the plane to the unit disk through a sequence of increasingly
fine, regular (hexagonal) circle packings. This conjecture was later
proven correct by Rodin and Sullivan [1987]. Circle packings as-
sign a circle to each vertex, with pairwise tangency for each edge
in the mesh. A numerical algorithm for the construction of such
mappings, based on iterative adjustment of circle radii, was pro-
posed by Thurston [1980] and improved and realized by Collins
and Stephenson [2003]. Unfortunately, circle packings yield map-
pings which depend only on the combinatorics of the original mesh,
while we are seeking methods which depend on the geometry of the
mesh. One possible avenue to remedy this shortcoming is to use
patterns of non-intersecting circles [Bowers and Hurdal 2003]. Un-
fortunately there exists little theory concerning these patterns and

1In this article we use the term “discrete conformal map” for maps be-

tween meshes that are close to angle preserving.
2The Riemann Mapping Theorem asserts that there exists a unique (up to

Möbius transformations of the unit disk to itself) conformal map from any

region in the plane (open, connected and simply connected, not the whole

plane) onto the unit disk.
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in empirical practice solutions cannot always be found.

In contrast, circle patterns, which associate a circle with each face
in the original mesh provide an opportunity to incorporate the in-
trinsic geometry of the original mesh: each edge is assigned an
angle θ ∈ (0,π) which corresponds to the intersection angle of the
two incident face circles. A recent theorem of Bobenko and Spring-
born [2004] characterizes such circle patterns as the unique mini-
mizer of a convex energy expressed in terms of logarithmic radius
variables (and the given edge angles). Simple, explicit expressions
for the energy, its gradient, and Hessian are available and greatly
facilitate an efficient implementation.

Figure 2: Typically a triangle mesh is understood as the piecewise
linear interpolation of given vertex coordinates induced by the con-
nectivity of the mesh (left). Alternatively we may also think of the
vertices as the unique loci where incident triangle circumcircles in-
tersect (middle;right). The latter point of view is more appropriate
for formulating relationships of conformal geometry.

Contributions We describe a robust and efficient numerical
procedure for the construction of discrete conformal mappings. In
the first stage of the algorithm, we compute edge labels that are
close to the circumcircle intersection angles in the original mesh
and may serve as circumcircle intersection angles of a planar De-
launay mesh. This requires solving a quadratic programming prob-
lem. In the second stage, we use the theory of Bobenko and Spring-
born [2004] to construct the planar Delaunay mesh with the given
intersection angles from the first stage. Here we have to minimize a
convex function subject to no constraints. The variables are the log-
arithmic circumcircle radii. We modify the energy of Bobenko and
Springborn (without compromising the underlying theory) to pro-
vide a simple and uniform treatment of boundary conditions (see
Figure 3). With these we can provide both natural boundaries and
detailed control over the boundary shape (see Figure 1). The para-
meter mappings are always locally injective. They may fail to be
globally injective due to self-overlap of the boundary of the parame-
ter domain. However, this can be avoided since we can prescribe the
boundary curvature κ: if for any sequence of consecutive boundary
vertices the sum of κs is larger or equal −π , then there can be no
overlap and the method is guaranteed to produce a global embed-
ding. The resulting flat triangulations are of high quality as they are
always triangulations of a (not necessarily convex) planar domain
with all interior edges satisfying the local Delaunay criterion.

Figure 3: A simple mesh (left) mapped to the plane using circle
patterns. Boundary shape is controlled through appropriate curva-
ture conditions. Examples: disk boundary; natural boundary; and
rectangular boundary (left to right).

1.1 Related Work

Most approaches to the construction of conformal mappings for
meshes have relied on discretizations of continuous formulations.
First order finite difference approximations of the Cauchy-Riemann
equations were used by Levy et al. [2002]. The same equations, the
so-called “cotan formula” [Pinkall and Polthier 1993], also result
when considering a discrete variational Ansatz based on mesh in-
variants [Desbrun et al. 2002] or when deriving discrete holomor-
phy [Mercat 2001] from first principles using Discrete Exterior Cal-
culus (DEC) methods [Hirani 2003]. Such approaches, for exam-
ple, have been used to compute discrete approximations of Riemann
structures for general meshes by Gu and co-workers (see [Gu and
Yau 2003] and the references therein).

A great advantage of these methods is that they require only the
solution of simple linear systems. However, due to negative cotan
weights solutions may lack local injectivity. More troublesome is
the lack of flexible boundary conditions: Dirichlet conditions intro-
duce non-conformal distortion (see Figure 4), while natural bound-
aries provide essentially no control over the boundary.

Figure 4: Harmonic parameterization (left) of a region (middle) to
the disk with Dirichlet boundary conditions (vertices are mapped
to a k-gon with matching secant edge lengths) compared to our
approach which sets appropriate angle conditions at the boundary
(right).

A completely different Ansatz to the construction of conformal
maps is based on circle packing. Continuous conformal mappings
can be characterized as mapping infinitesimal circles to infinites-
imal circles. Circle packings replace infinitesimal circles with fi-
nite circles. In the limit of refinement the continuous confor-
mal maps are recovered [Rodin and Sullivan 1987]. Collins and
Stephenson [2003] have implemented these ideas in their software
CirclePack. The disadvantage of using circle packings (with
tangent circles) is that they depend only on the combinatorics of
the original mesh. In particular, if one starts with a planar mesh and
parameterizes it, the result is not the original mesh. This is in con-
trast to our approach. Given a triangulation of a region in the plane
satisfying the empty circumcircle property, one simply assigns the
observed intersection angles of circumcircles (at the boundary one
adds infinite circles, i.e., straight lines) to each edge and our varia-
tional approach will return the identity map as a conformal map of
the region to itself.

An extension of Stephenson’s original circle packing scheme that
takes the geometry of the original mesh into account is based on
patterns of non-intersecting circles, so called inversive distance cir-
cle packings [Bowers and Hurdal 2003]. (Non-intersecting circles
have imaginary “intersection angles.”) However, virtually nothing
is known regarding the existence and uniqueness of inversive dis-
tance packings.

The first variational principle for circle packings was presented in
a seminal paper by Colin de Verdière [1991]. The variables are
the circle radii. However, a closed formula is presented only for
the derivative of the energy, not for the energy itself. Since then,
different variational principles for circle packings [Brägger 1992]
as well as circle patterns [Rivin 1994], [Leibon 2002] were dis-
covered. In these, the variables are the angles of a triangulation,
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subject to numerous linear constraints (one per edge and one per
face for Rivin’s energy. Leibon’s energy deals with patterns in the
hyperbolic plane.) In this paper, we use the most general functional
which was given by Bobenko and Springborn [2004]. In their setup,
the variables are logarithmic circle radii. Most importantly, they are
not subject to any constraints.

Most closely related to our approach is the work of Sheffer and
de Sturler [2000]. They flatten a given mesh by formulating a con-
strained quadratic minimization problem which seeks to find angles
at the corners of triangles which are close to desired angles in a
weighted L2 norm. The constraints capture the angle sum condi-
tions at all faces (sum of angles = π) and vertices (sum of angles
= 2π) as well as a non-linear condition on the product of sines of
angles. The resulting minimization problem has local minima and
does not have a unique solution. The resulting mappings are of ex-
cellent quality but only natural boundary conditions are provided.
Their approach is similar in spirit to ours as we also optimize an-
gles. We discuss the similarities and differences of both schemes in
Section 2.3.

2 Circle Patterns and Discrete Conformal
Maps

For computational problems in Euclidean geometry the use of tri-
angles as a basic primitive is convenient and natural, since trian-
gles are the basic invariant “building blocks” of Euclidean geom-
etry. When one is interested in conformal geometry the picture
changes. The basic invariants of conformal geometry are circles
and the angles they make with one another. In the case of trian-
gle meshes these differing points of view are naturally compati-
ble. For example, the vertices in a triangle mesh are the unique
loci where the circumcircles of the incident triangles intersect (see
Figure 2). Similarly the empty circumcircle property, which cor-
responds to non-negative intersection angles between circumcircles
incident on an edge, is a defining feature of Delaunay triangula-
tions. While we may use triangles for tasks such as interpolation
and rendering, conformal relationships between vertices are better
captured through expressions involving the circumcircles they de-
fine and the angles these circles make with one another. A benefit
of this different point of view is that much mathematical machinery
from conformal geometry carries over to the discrete computational
setting. For example, existence and uniqueness properties of con-
formal maps are reflected in the existence and uniqueness properties
of circle patterns.

We begin this section by defining circle patterns in the plane and
describe their characterization as minimizers of a variational en-
ergy. The latter forms the basis for our approach. While we only
deal with triangle meshes here, the theory extends to polyhedral
meshes and also to circle patterns with cone singularities [Bobenko
and Springborn 2004].

2.1 Circle Patterns

Consider a Delaunay triangulation T = (V,E,T ) of finitely many
points P = {pi} in the plane. Here V = {vi}, E = {ei j}, and
T = {ti jk} denote the sets of vertices, edges, and triangles respec-
tively with pi the point position of vertex vi. From this Delaunay
triangulation, we may read off the following edge weights

∀ei j ∈ E : θe =

{

π −αk
i j −α l

i j for interior edges

π −αk
i j for boundary edges

, (1)

where αk
i j (and α l

i j) are the angle(s) opposite ei j in the adjacent tri-

angle(s) ti jk (and t jil). The θ -weight of an interior edge is the (exte-
rior) intersection angle of the circumcircles of the incident triangles
(see Figure 5). The θ -weight of a boundary edge is the intersection

ei j

v j

vi

vk

vl

αk
i j

α l
i j

θe

ci jk

c jil

θe

Figure 5: Notation: The angles αk
i j and α l

i j opposite a given edge

ei j and incident on a particular vertex vk respectively vl . The edge
angle θe denotes the exterior intersection angle of the incident cir-
cumcircles or equivalently the angle between the two radii at vi (or
v j).

angle of the circumcircle of the incident triangle with the straight
line containing the boundary edge. (View this line as a circle with
infinite radius.)

Assume that the Delaunay triangulation is unique (points are in gen-
eral position). Then

∀ei j ∈ E : 0 < θe < π. (2)

(Otherwise, some θe may be 0.) For an interior vertex vi, the sum
of edge weights on the incident edges is 2π:

∀vi ∈Vint : ∑
e∋vi

θe = 2π, (3)

while for a boundary vertex vi, the defect

∀vi ∈Vbdy : κi = 2π − ∑
e∋vi

θe (4)

is the curvature angle of the polygonal boundary at that vertex (see
Figure 6). Since the Delaunay triangulation triangulates the con-

θ θ

θ θ

κ
∞∞

Figure 6: The θ angle sum at the boundary contains the discrete
curvature term κ .

vex hull of the sites, 0 ≤ κi < π . However, we want to consider a
slightly more general setup: Instead of a Delaunay triangulation,
we may start with a flat PL-surface that is topologically a disk and
that is triangulated in such a way that the edge weights θ satisfy the
local Delaunay condition (Equation 2). That is, we allow “Delau-
nay triangulations” of non-convex regions with polygonal bound-
ary. Hence, κi may be negative, and we speak of circle patterns
instead of Delaunay triangulations.

Now the idea is to reconstruct a circle pattern from its abstract tri-
angulation and the intersection angles.
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Circle Pattern Problem Given an abstract triangulation T of
a topological disk and a function θ ∈ R

E on the edge set E that
satisfies Equation 2 and the angle sum condition for interior vertices
(Equation 3), find a circle pattern that is combinatorially equivalent
to T and has the given edge weights θ .

The circle pattern problem has a solution (unique up to scale) if and
only if a coherent angle system exists [Rivin 1994; Bobenko and
Springborn 2004]. A coherent angle system is an assignment of

angles α̂k
i j for all triangles such that

(i) they are all positive

α̂k
i j > 0,

(ii) they sum to π in each triangle

∀ti jk ∈ T : α̂k
i j + α̂ i

jk + α̂
j

ki
= π,

(iii) they satisfy Equations 1 (with α̂ instead of α) for the given
θ -weights.

The solvability question for a circle pattern problem is therefore
reduced to a linear feasibility problem with 3|T | variables, 3|T | in-
equality constraints and |T |+ |E| equality constraints.

Conditions (i) and (ii) imply that all α̂k
i j < π . Condition (iii) implies

that the α̂k
i j sum to 2π around interior vertices and to π − κi for

boundary vertices (with κi defined by Equation 4). This may give
the false impression that finding a coherent angle system is equiv-
alent to solving the circle pattern problem—in the sense that one

could construct triangles with angles α̂k
i j and lay them out. This is

not so. The angles determine the triangles only up to scale. In gen-
eral it is not possible to determine the size of each triangle in such
a way that they all fit together. This observation is also what lead
Sheffer and de Sturler [2000] to add their non-linear constraints on
the product of sines of triangle angles.

Conditions (i), (ii) and (iii) combined imply that a necessary condi-
tion for the solvability of a circle pattern problem is that

∑
vi∈Vbdy

κi = 2π, (5)

with κi defined by Equation 4.

Local Geometry of an Edge To elucidate the role of terms
which make up the variational energy characterizing the solution to
the circle pattern problem we consider the local geometry around a
given edge (see Figure 7). The basic building blocks of the parame-
terization are the kites formed by the endpoints of an edge (vi, v j)
and the incident face circumcircle centers ci jk and c jil for triangles
ti jk and t jil respectively (at the boundary t jil is missing). Since all
relations are scale invariant it is convenient to introduce the loga-
rithmic radius variables ρt = logrt for t ∈ T . With these definitions

the angle ϕk
e induced at ci jk by ei j follows as

ϕk
e =

{

fe(x) = atan2(sinθe,e
x − cosθe) e ∈ Eint

π −θe e ∈ Ebdy
(6)

where x = ρi jk −ρ jil (see Figure 7). The condition that every face
in the parameterization should be flat constrains the ρt as functions
of the θe through the system of non-linear equations

∀t ∈ T : 0 = 2π −∑
e∈t

2ϕt
e, (7)

i.e., summing around all edges incident on a face the resulting total
angle must be 2π .

ci jk

ri jk

vi

v j

ϕk
e

θe

r jil

ϕ l
e

c jil

Figure 7: Geometry around an edge (left). The kite formed by the
edge endpoints and the incident face circumcircle centers (ci jk, c jil)

allows us to determine ϕk
e as a function of the given θe and unknown

radii ri jk and r jil (see Equation 6).

The basic idea of the variational energy formulation of Bobenko
and Springborn now is to give an energy S(ρ) for which the face
flatness Equations 7 are equivalent to the vanishing of the energy
gradient, ∇ρ S = 0.

Variational Characterization of Circle Patterns To arrive
at the desired energy Bobenko and Springborn used the fact that

Fe(x) =
∫ x

−∞
fe(ξ )dξ = ImLi2(e

x+iθe),

where

Li2(x) = −
∫ x

0

log(1−ξ )

ξ
dξ

|x|≤1

=
∞

∑
k=1

xk

k2

denotes the dilogarithm function. The imaginary part of the dilog-
arithm function of a complex argument can be expressed in terms
of a 2π-periodic real function (Clausen’s integral) that can be com-
puted efficiently with high accuracy. Using ρk and ρl as shorthand
for ρi jk (respectively ρ jil) the energy is

S(ρ) = ∑
e∈Eint

(

ImLi2(e
ρk−ρl+iθe)+ ImLi2(e

ρl−ρk+iθe)

− (π −θe)(ρk +ρl)
)

− ∑
e∈Ebdy

2(π −θe)ρk +2π ∑
t∈T

ρt .

(8)

The gradient of this energy with respect to ρk is

∂S

∂ρk

= 2π − ∑
{e∈k}∩Eint

2 fe(ρk −ρl)− ∑
{e∈k}∩Ebdy

2(π −θe), (9)

giving us the desired equivalence of ∇ρ S = 0 and Equation 7. The
Hessian of the energy is

dρT (HessS)dρ = ∑
e∈Eint

sinθe

cosh(dρk −dρl)− cosθe
(dρk −dρl)

2.

(10)
In particular from this expression we can see that the energy is con-
vex except along the scaling “direction,” i.e., the Hessian has a null
space spanned the constant vector dρ = (1,1,1, . . .) and is other-
wise positive. (This immediately implies the uniqueness of solu-
tions of the circle pattern problem up to scale.)

2.2 Algorithm

There are three basic stages to the algorithm: (1) setting the θ an-
gles; (2) minimizing the energy; and (3) generating the layout. We
discuss these in turn.
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2.3 Edge Angles

As a first step of the algorithm, θe angles need to be assigned to
all edges of the mesh. These must satisfy the bounds constraints
(Equation 2), sum conditions (Equation 3) at interior vertices, and,
in the case of prescribed boundary curvatures, the boundary curva-
ture conditions (Equations 4 and 5). Last but not least, a coherent
angle system must exist for them. Of course, the θ angles should
also reflect the conformal structure of the original mesh as well as

possible. Let αk
i j denote the angles in the original mesh. Ideally,

one would like to assign θe = π −αk
i j −α l

i j , where αk
i j and α l

i j are

the angles opposite an interior edge e (and θe = π−αk
i j for a bound-

ary edge.) Then the intersection angles in the circle pattern would
be the same as the intersection angles of the circumcircles in the
mesh. This is too much to ask, though, because the conditions on
θe will be violated (after all the original mesh is not flat).

Our aim is to find angles α̂k
i j close to αk

i j that can serve as a coherent

angle system for the θ -angles that we read off in the usual way. To
this end, we minimize the objective function

Q(α̂) = ∑ |α̂k
i j −αk

i j|
2

subject to the following constraints:

• positivity: ∀α̂k
i j : α̂k

i j > 0,

• local Delaunay condition: ∀ei j ∈ Eint : α̂k
i j + α̂ l

i j < π ,

• triangle sum condition: ∀ti jk ∈ T : α̂k
i j + α̂ i

jk + α̂
j

ki
= π ,

• vertex sum condition: ∀vk ∈Vint : ∑ti jk∋vk
α̂k

i j = 2π .

If we want natural boundary conditions (see for example the face in
Figure 1 and the lion and Max Planck examples in Figures 9, 11),
we add the constraint

• natural boundary condition: ∀vk ∈Vbdy : ∑ti jk∋vk
α̂k

i j < 2π.

If we want to prescribe the boundary curvature κ at boundary ver-
tices (see the constrained boundary for the camel and the straight-
line layout for Max Planck in Figure 1), we add the constraint

• prescribed boundary curvature:

∀vk ∈Vbdy : ∑ti jk∋vk
α̂k

i j = π −κk.

We solve this quadratic minimization problem with linear inequal-

ity constraints (on the α̂k
i j) with the software [Mosek 2005]. Since

both the bounds constraints and the objective are convex and the ad-
ditional constraints linear we have experienced no difficulty finding
solutions efficiently even for large meshes (see Section 3).

Then we set θe = π − α̂k
i j − α̂ l

i j on interior edges and θe = π − α̂k
i j

on boundary edges and proceed to the next stage of energy mini-
mization.

It is theoretically possible that the constraints are not feasible. In the
cases of natural boundary conditions and mapping to the disk this
is due to the (counterintuitive) fact that there exist triangulations of
the topological sphere that cannot be realized as convex polyhedra
with vertices on the unit sphere; see, e.g., Grünbaum [2003]. These
triangulations are rather special and we do not expect to encounter
them in practice. In any case, it can be shown that 4 to 1 refinement
applied once leads to a legal triangulation. In the case of prescribed
boundary curvature, it may happen that the constraints become in-
feasible. We have not encountered any problems, but we have also
not put any effort into exploring just how far one can go. (Our most
complex example along these lines is the texture boundary for the

Camel with numerous prescribed curvatures all around the bound-
ary.)

2.3.1 Mapping to the Disk

To map a mesh to the unit disk, we first pick a vertex at the bound-
ary of the mesh and remove it together with all adjacent faces (see
Figure 8). Now we map the resulting mesh to a convex polygon

Figure 8: Mapping a mesh to the disk. (1) Remove a boundary ver-
tex together with all adjacent faces (dark pink). (2) Map the mesh
to a convex polygon where all the original boundary edges lie on
a straight line (top). The removed vertex (which should be imag-
ined at infinity) and its incident triangles are shown schematically
(dark pink). (3) Invert in a circle and reinsert the missing vertex to
complete the mesh (bottom right). In this inversion we get to pick a
vertex which will map to the center of the disk. In our example this
vertex is the marked vertex between the ears of the cat.

in the plane with prescribed boundary curvature. At boundary ver-
tices that were not adjacent to any of the removed faces, we fix the
curvature to be 0. At the others, we bound the curvature to be pos-
itive. These conditions ensure that the original mesh boundary will
be mapped to a straight line (Figure 8, top). Now we reflect in a
circle whose center lies on the other side of that line. This maps
the boundary line to a boundary circle. Finally we reinsert the re-
moved vertex at the center of the reflection circle (it lies on the
boundary circle) and complete the mesh (Figure 8, bottom right).
Note that the circle reflection maps the other edges of the polygon
to the circumcircles of the reinserted triangles. If we want to have a
particular interior vertex at the center of the circular map, this can
be achieved by an appropriate choice of reflection circle (or equiv-
alently by a Möbius transformation).

In the polygonal mesh (Figure 8, top), the dynamic range of the
edge lengths is typically large. This was initially a cause for con-
cern, but it turned out to be harmless. We give a rough argument
why this should be so. Suppose the mesh has n vertices. Then the

number of boundary edges will be roughly n
1
2 . Suppose that in the

final circular map the boundary vertices are evenly spaced on the
boundary circle. After inversion on a circle that sends one of these
vertices to infinity, one finds that the largest (finite) edge on the
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boundary line is proportional to n
1
2 while the smallest edge is pro-

portional to n−
1
2 . Hence the ratio is n. If n = 106 we would expect

to loose about 6 out of 16 double precision digits. Figure 11 shows
an example of a larger mesh mapped to the disk. We experienced
no numerical difficulties in this procedure.

Discussion Angle optimization is also at the heart of the work
of Sheffer and de Sturler [2000], who formulate their flattening
problem as one which minimizes the (weighted) least squares de-

viation of the measured αk
i j (scaled to satisfy the angle sum con-

dition around a vertex) from the realizable α̂k
i j with flatness sum

conditions for each triangle and each vertex. Unfortunately, when

using the α̂k
i j to determine the final shape of the triangles in the

flat mesh, one must additionally include non-linear conditions on

the quotients of sines of α̂k
i j around each vertex (due to the law of

sines). This additional non-linear condition makes the minimiza-
tion problem numerically much harder since it becomes non-convex
(for recent significant progress in the numerical treatment see [Shef-
fer et al. 2004]). Due to the lack of convexity, it cannot be expected
that there is only one local minimum.

Our method works in two stages. First we change the angles of
the triangles, but only so much that we can read off valid θ -angles.
The deviation from the ideal angles is measured with a quadratic
objective just as in the work of Sheffer and de Sturler. The criti-
cal observation is that the sum of two α-angles across an edge is a
conformal invariant (because it measures the angle of intersection
between the circumcircles), while the α-angles themselves are not.
In other words, the best one can hope for in a discrete conformal
mapping is conservation of θ -angles, not α-angles. Formulating
the problem in terms of given θ -angles then leads to a simple con-
vex, and thus unique, minimization problem: the final circle pattern
in the plane is completely determined by the θ -angles.

An alternative approach for the construction of mappings to the disk
in the context of discrete harmonic mappings (cotan formula) was
proposed by Jin and co-workers [2004]. They “welded” a mesh
with its double at the boundary to create a sphere topology and
then proceeded to map to the sphere. Enforcing symmetry in this
mapping turns the original boundary into an equator. They had to
effectively double the degrees of freedom while in our approach the
number of degrees of freedom is (essentially) constant. As they ob-
served, being able to map to a canonical region such as a disk one
can effectively map from any region to any other through compo-
sition of one map to the disk with the inverse of another map to
the disk (though the meshes in general do not match up and some
interpolation in the disk is required).

2.4 Energy Minimization

With a given valid assignment of θe for all edges the energy min-
imization is straight forward (using Equations 8, 9, and 10). We
have relied on a black box energy minimizer [Mosek 2005] with
excellent results (see Section 3).

2.5 Layout Generation

Once all radii have been determined the length of each edge follows
easily from a local computation

|ei j| = 2rk sinϕk
e = 2rl sinϕ l

e

-   1.5

-   1

-   1.25

Figure 9: Comparison of two different mappings of the cut Max
Planck model: natural boundaries and a straightline boundary. Er-
ror plots indicate the quasiconformal distortion between original
and mapped triangles.

(see Figure 7). We begin the layout with some interior edge, starting
it at the origin and orienting it along the positive x-axis and push it
onto an empty stack. When popping an edge off the stack we lay
out any vertices not yet laid out in the incident triangles (at most
two). This results in at most four edges being finished (second end
point fixed); such edges are pushed onto the stack. The process
repeats until the stack is empty. There may be concern that such a
procedure might lead to cumulating error as one proceeds. We have
found consistently that we achieve accuracies on the order of 10−8

with double precision data (for example for the Camel, Max Planck,
and Lion datasets). Should accuracy of the layout become an issue
we recommend the procedure given in [Sheffer et al. 2004], which
solves for all vertex positions simultaneously with a simple (least
squares induced) linear system.

3 Results

Figure 1 demonstrates different boundary shapes that can be ob-
tained by our method. The Max Planck head is parameterized by
a simple polygonal region. This was achieved by prescribing the
boundary curvature of the parameter domain. It was set to zero at
all boundary vertices, except for eight designated corner vertices,
where it was set to ±π/2. The parameterized camel shows that
more complicated boundary shapes can also be achieved by pre-
scribing the boundary curvature. Here the parameter domain is es-
sentially a polygonal region with rounded corners. Both the Max

Figure 10: Our method is robust to varying sampling rates. Here
a symmetric (left/right) geometry sampled at different rates. The
parameterization (with natural boundary) maintains the symmetry
of the geometry.
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Planck mesh and the camel mesh were cut before parameteriza-
tion. We do nothing to ensure continuity across the cut and, unsur-
prisingly, there is none. The face was parameterized with natural
boundary conditions and the lion head was mapped to a disk. The
following table shows timings for the angle optimization and en-
ergy minimization. The layout times are negligible (∼0.5s). The
timings were measured on a 3.6GHz Pentium IV Xeon.

Model Faces Angles Energy

Max Planck 37.9K 26s 9s
Camel 77.7K 56s 17s
Face 12.6K 7s 2s
Lion Head 39.6K 28s 8s

We claim that our discrete conformal maps are close to angle pre-
serving. A measure for the conformality of a map is the quasicon-
formal distortion: the ratio of the larger to the smaller eigen value of
the Jacobian matrix. It is at least 1 and equal to 1 everywhere only
for conformal maps. Figures 9 and 11 show the quasiconformal
distortion of our discrete conformal maps for different meshes and
different boundary conditions. For the Max Planck head with nat-
ural boundary conditions, the average and maximal values are 1.02
and 1.35. With the polygonal boundary conditions the maximum
distortion goes up to 4.06, but the high distortion is concentrated at
the boundary and spreads very little inwards. Even the example of
the highly convoluted lion head (Figure 11) shows very low confor-
mal distortion in most places with a few hot spots of high distortion.
Because the natural boundary shape is already fairly round, the dif-
ference between natural boundary conditions and disk boundary is
not so pronounced.

Figure 10 shows the results of an experiment to see how sensitive
our method is to abruptly differing sampling rates. The geometry
of the head is symmetric while the sampling rate doubles at the
right/left symmetry line. Examining the flattened mesh (using nat-
ural boundary conditions) we observe that the left/right symmetry
is preserved (see also the resulting texture mapping on the original
surface).

-   1.5

-   1

-   1.25

Figure 11: Comparison of two different mappings of the Lion data
set: natural boundaries and disk boundary. Error plots indicate the
quasiconformal distortion between original and mapped triangles.

4 Conclusion

We have presented a new method to parameterize surface meshes.
It is based on the mathematical theory of circle patterns and pro-
duces discrete conformal maps. The shape of the boundary may
be determined by natural boundary conditions or by prescribing the
curvature of the boundary. This affords a high degree of control
over the boundary shape ranging from disks and simple polygonal
outlines to more complex boundary arrangements. The examples
show that our method is efficient, provides good parameterizations
even for large and complex meshes, and that the result is insensitive
to the way the surface is triangulated.

Our algorithm works in three stages: first, we solve a quadratic
programming problem to obtain intersection angles. These are the
input for the second stage that consists in the minimization of a
convex energy. The output of this stage (the radii of the circumcir-
cles) and the intersection angles determine the shape of all triangles
which are then laid out. In every stage, the solution is unique and
depends continuously on the input.

At the moment, we use general purpose solvers in the first two
stages, and a very simple layout algorithm in the third. Efficiency
could be improved by customizing and tuning the minimizers, and
by switching to hierarchical methods [Sheffer et al. 2004]. Their so-
phisticated layout scheme—it minimizes the global layout error—
can also be used without change as the third stage in our algorithm.

When we parameterize a mesh with prescribed boundary curvature,
we have to set the curvature at each boundary vertex. At present, we
do this manually. A user friendlier graphical interface is desirable.
Since it is most likely that the performance of our method can be
improved further, it is not unreasonable to envision an interactive
interface that lets the user manipulate the parameter domain while
the parameterization is incrementally recomputed.

The most exciting avenue for future work concerns the use of varia-
tional methods for the construction of discrete conformal mappings
to the sphere and for surfaces of higher genus. Energy functionals
for circle patterns on the sphere as well as hyperbolic space ex-
ist and can be used in a manner similar to our approach presented
here. There are both additional difficulties (the sphere functional
is not convex) and opportunities: the hyperbolic circle pattern case
does not require a surface with higher genus to be cut open first.
Instead one can solve the energy minimization directly and only af-
ter the solution has been found (through a layout in the hyperbolic
plane) pick a suitable fundamental domain.
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