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Abstract

The discrete/continuous choice approach is often used to analyze the demand for

public utility services under block rate pricing, which is a nonlinear price system. Al-

though a consumer’s budget set is convex under increasing block rate pricing, a con-

sumer’s budget set is nonconvex under decreasing block rate pricing as is the case with

the gas supply in Japan and the United Kingdom. The nonlinearity problem, which has

not been examined in previous studies, arises under nonconvex budget sets in which the

indirect utility function corresponding to the demand function becomes highly nonlin-

ear. To address this problem, this article proposes a feasible, efficient method of demand

on the nonconvex budget set and implements a case study using household-level data on

Japanese residential gas consumption. The advantages of our method are as follows:

(i) the construction of an efficient Markov chain Monte Carlo algorithm with an effi-

cient blanket based on the Hermite-Hadamard integral inequality and the power-mean
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inequality, (ii) the explicit consideration of the (highly nonlinear) separability condition,

which often makes numerical likelihood maximization difficult, and (iii) the introduc-

tion of normal disturbance into the discrete/continuous choice model.

Key words: Residential gas demand, Nonconvex budget set, Discrete/Continuous choice

approach, Bayesian analysis, Hermite-Hadamard integral inequality.

JEL classification: C11, C24, D12.

1 Introduction

The discrete/continuous choice approach is often used to analyze the demand for public util-

ity services under block rate pricing (e.g., Hausman, Kinnucan, and McFaddden (1979);

Hewitt and Hanemann (1995)), which is a nonlinear price system.1 There are two types of

block rate pricing: increasing and decreasing block rate pricing. Under increasing block

rate pricing, the unit prices increase with the quantity consumed, whereas they decline under

decreasing block rate pricing. For example, residential water is often supplied under increas-

ing block rate pricing in Japan. On the other hand, residential gas is widely supplied under

decreasing block rate pricing in Japan and the United Kingdom. Other services, such as the

mobile phone service (the personal handy-phone system) in Japan and some of the residen-

tial electricity services in the United States, also employ this price system. This type of price

schedule is likely to be employed partly because the production cost is decreasing in scale

and partly because this system is considered to encourage a larger amount of consumption.

Chapter 7 of Train (1991) provides a brief microeconomic analysis of block rate pricing.

Under increasing block rate pricing, a consumer’s budget set is convex. However, under

decreasing block rate pricing, as with the gas supply in Japan and the United Kingdom, the

consumer’s budget set is nonconvex (see Figure 1(b) on page 6). Nonconvex budget sets

1This approach has also been used to examine a wide range of topics including housing (Lee and Trost
(1978)), transportation (de Jong (1990); West (2004)), and labor supply (Burtless and Hausman (1978); Burtless
and Moffitt (1985)).
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also arise when a good is supplied with a fixed cost. For example, de Jong (1990) analyzed

the joint choice of car ownership and mileage. Because there is a fixed cost associated with

owing a car, the consumer’s budget set becomes nonconvex.

We face the following problem under the nonconvex budget set, though we do not under

the convex budget set, that the consumer’s utility maximization problem derives its corre-

sponding demand function involving the comparison of indirect utilities (see, e.g., Moffitt

(1986)). The demand function and the indirect utility are related to each other via Roy’s

identity. Because of this identity, even if we assume a simple form of the demand function,

its corresponding indirect utility function becomes highly nonlinear.

To avoid this nonlinearity, Blomquist and Newey (2002) proposed the use of a nonpara-

metric approach. They analyzed the effect of tax reform in Sweden on working hours for

married or cohabiting men from 20 to 60 years of age and estimated the labor supply func-

tion as a nonparametric function of the entire budget set. Though their approach is free of

the nonlinearity caused by Roy’s identity and of model misspecifications and distributional

errors, it ignores foundational aspects of the theory like Roy’s identity. Thus, this article con-

siders a parametric model of demand on the nonconvex budget set to appropriately address

Roy’s identity.

The methodology employed in most of the previous literature (e.g., Burtless and Haus-

man (1978); Hausman (1980); Burtless and Moffitt (1985)) has used the so-called discrete/continuous

choice approach to derive the parametric models and analyze the effect of block rate pricing

involving a two-block decreasing block rate pricing using the maximum likelihood method.2

However, two-block rate pricing is too simple for use in the analysis of real data such as

Japanese residential gas data, where the number of blocks is much greater than two. (Indeed,

the number of blocks is three to six depending on the gas company.) If the block structure was

2Recently, Szabó (2009) proposed the maximum likelihood estimation method for general block rate pricing
where the linear demand function is assumed. Szabó (2009) imposed a condition that the direct utility function
is quasiconcave. This condition aims to guarantee that the underlying preference relation be strictly convex.
However, as stated in Hurwicz and Uzawa (1971), two more conditions (the nonnegative demand condition
and the separability condition) are required for the underlying preference relation to be strictly convex. These
additional conditions often make it difficult to numerically maximize the likelihood function.
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simplified to mimic two-block rate pricing, the estimates of the demand function as used for

policy-making would be biased. Thus, we consider general multiple-block decreasing block

rate pricing as a type II Tobit model subject to many nonlinear constraints (see Chapter 10

of Amemiya (1985) for the Tobit classification) and propose a Bayesian estimation method

using a Markov chain Monte Carlo (MCMC) simulator with an efficient blanket.

Because the resulting statistical model includes many nonlinear constraints on model pa-

rameters (the comparison of indirect utilities and the separability condition, which will be

explained in the next paragraph), the support of the full conditional distribution for elastic-

ity parameters becomes analytically intractable. One possible solution to this problem is

rejection sampling. However, using a simple envelope function (or a simple blanket) for

the support is extremely inefficient because the acceptance rate of the proposed samples is

extremely low (see Section 3.3). Thus, this article develops an efficient blanket using two

properties of convex functions: the Hermite-Hadamard integral inequality and the power-

mean inequality.

Our approach also has another particular advantage. The previous studies employing

maximum likelihood estimation do not to explicitly consider the separability condition,

though this condition is necessary for the demand model under block rate pricing with more

than two blocks.3 In contrast, under multiple-block decreasing block rate pricing, our statisti-

cal model includes the separability condition, which is highly nonlinear, to properly estimate

the model parameters. Because of this condition, it is often difficult to numerically maximize

the likelihood, and we need to pursue the Bayesian approach, using the MCMC simulator to

estimate the model parameters.

Finally, we would like to note that our proposed method has an advantage over the other

type of discrete/continuous choice analysis used in the context of the multinomial choice

model, as in Dubin and McFadden (1984). The resulting statistical model is the same as

that for demand on the nonconvex budget set. Dubin and McFadden (1984) analyzed the

3Miyawaki, Omori, and Hibiki (2010) dealt with this issue in the context of increasing block rate pricing.
Under increasing block rate pricing, this condition is a set of linear constraints on elasticity parameters.
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joint choice of electric appliances and electricity demand using this approach and estimated

the model parameters based on a combination of the maximum likelihood and the condi-

tional expectation correction method. Their statistical model is simplified by introducing

the logit error into the choice of electric appliance portfolios. However, such a specification

implies the independence of irrelevant alternatives. The subsequent literature addresses this

problem in two ways: by using the nested logit model (e.g., Goldberg (1998)) or by lin-

earizing the nonlinear indirect utilities (e.g., Bernard, Bolduc, and Bélanger (1996)). Carpio,

Wohlgenant, and Safley (2008) used a different method and applied it to the estimation of

the demand for pick-your-own versus preharvested strawberries with normal error. However,

their statistical model is a binary choice model: thus, they do not consider the separability

condition. Thus, this article is the first study to propose a multinomial choice model based

on the discrete/continuous choice approach with normal disturbance.

Therefore, in presenting a parametric model for demand on the nonconvex budget set,

this article proposes the use of Bayesian analysis to make the following contributions: (i)

the construction of an efficient MCMC algorithm with an efficient blanket based on the

Hermite-Hadamard integral inequality and the power-mean inequality: (ii) the explicit con-

sideration of the (highly nonlinear) separability condition, which often makes numerical

likelihood maximization difficult: and (iii) the introduction of normal disturbance into the

discrete/continuous choice model.

Using the proposed method, we analyze the residential gas demand function and evaluate

the effect of price schedule changes. We do not consider the substitution between residential

gas and electricity because our main interest is the demand function on the nonconvex budget

set. This article is organized as follows. Section 2 describes the demand function based on

the discrete/continuous choice approach, introduces two stochastic terms, and derives the

corresponding likelihood function with the separability condition. Section 3 discusses the

Bayesian approach and its MCMC algorithm with an efficient blanket. We also evaluate the

adequacy of the proposed blankets. Section 4 estimates the Japanese residential gas demand
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Figure 1: A three-block decreasing block rate pricing.

function and evaluates the effect of price schedule changes. Section 5 concludes the study.

2 Demand function under decreasing block rate pricing

2.1 Discrete/Continuous choice approach

Decreasing block rate pricing is characterized by four nonnegative variables: the number

of blocks (K), the unit prices (Pk+1 < Pk for k = 1, . . . ,K − 1), the upper limits (Ȳk for k =

1, . . . ,K − 1), and the fixed service fee as the fixed cost (FC). Figure 1(a) illustrates an

example of three-block decreasing block rate pricing. The residential gas services in Japan

and the United Kingdom are often provided under such a price schedule (see also Section 4

for the case of Japan).

The demand function under decreasing block rate pricing is derived using the so-called

discrete/continuous choice approach (see, e.g., Moffitt (1986)). This approach is a two-step

procedure used to solve the utility maximization problem under block rate pricing.

Suppose there are two goods: a good under decreasing block rate pricing and the nu-

meraire good. The demand for the former is denoted by Y . Let Qk = I − FC −∑k−1
j=1(P j −

P j+1)Ȳ j (k = 1, . . . ,K) be the virtual income for the k-th block, where I is the total income

(see Figure 1(b)). We note that Qk+1 < Qk for k = 1, . . . ,K−1. Then, under decreasing block
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rate pricing, the discrete/continuous choice approach is described as follows.

Step 1. For k = 1, . . . ,K, maximize the utility under the uniform price system, where a

consumer faces the single unit price Pk and its corresponding virtual income Qk.

As the solution and maximum, we obtain Yk and Vk (k = 1, . . . ,K), respectively.

Step 2. Find the block k such that Vk =max j V j. Then, Yk is the optimal demand.

In Step 1, both the price and the virtual income are given as constants. Because Vk is the

maximized utility conditional on block choice, it is called the conditional indirect utility. By

following the above two steps, we obtain the demand function under decreasing block rate

pricing:

Y = Yk, Vk =max
j

V j. (1)

Roy’s identity connects Yk and Vk. This article first assumes both PK and QK to be

positive. Then, Pk > 0 and Qk > 0 for all k. Next, we assume Yk to be linear in logarithm,

that is,

lnYk = β1 ln Pk +β2 ln Qk. (2)

The log-linear function is popular in the analysis of demand under block rate pricing, because

β1 and β2 can be directly interpreted as price and (virtual) income elasticity, respectively,

conditional on block choice (see, e.g., Hewitt and Hanemann (1995); Olmstead, Hanemann,

and Stavins (2007)). Furthermore, when we impose the conditions stated in Hurwicz and

Uzawa (1971), the underlying preference relation satisfies strict convexity. After specifying

the conditional demand function, Roy’s identity implies

Vk = −
P1+β1

k

1+β1
+

Q1−β2
k

1−β2
, (3)

where β1 , −1 and β2 , 1, as derived in Burtless and Hausman (1978). Plugging equations
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(2) and (3) into equation (1), we have the demand function under decreasing block rate

pricing based on the discrete/continuous choice approach.4

We note that this theoretical framework does not exclude cases in which multiple blocks

are simultaneously optimal. Such a case is excluded by introducing a continuous random

disturbance into the consumer’s heterogeneity in preferences. Subsection 2.3 describes its

specification.

Remark 1. Hanemann (1984) proposed two other demand functions that are less popular in

the literature: the linear expenditure system (LES) model and the price independent general-

ized log-linear (PIGLOG) model.

2.2 Compensating variation

Because the demand function includes the (conditional) indirect utility, we can evaluate the

effect of the price schedule changes on welfare using the compensating variation (see Chapter

3 of Mas-Colell, Whinston, and Green (1995) for a general discussion of the compensating

variation). Let P = {{Pk, Ȳk}K−1
k=1 ,PK ,FC} and P′ = {{P′k, Ȳ

′
k}

K′−1
k=1 ,P

′
K′ ,FC′} denote the current

and the suppositional price schedule, respectively. Then, by solving

V = (the right hand side of equation (3) evaluated with P′), (4)

for I, where V is a certain utility level, we obtain the expenditure function at the certain

utility level under the suppositional price schedule, which is given by

Ek′
(
P′,V

)
=

(1−β2)

V +
(P′k′)

1+β1

1+β1


1/(1−β2)

+FC′+
k′−1∑
j=1

(
P′j−P′j+1

)
Ȳ′j, (5)

4As pointed out in Hausman (1985), the approach that involves deciding the demand function first and
deriving its corresponding indirect utility function has two advantages: (i) we can flexibly choose the functional
form of the demand function based on the empirical data set, and (ii) the stochastic specification becomes
convenient.
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where k′ = argmax jV
′
j and V′j is the indirect utility conditional on the j-th block under P′

(see Hausman (1981) for the case in which there is a single unit price). Then, welfare can be

quantitatively evaluated using the so-called compensating variation, which is derived as

CV = I−Ek′
(
P′,Vk

)
, (6)

where k = argmax jV j and V j is the j-th conditional indirect utility under P. By definition,

CV is the difference between the current income and the income required to attain the current

utility level under the suppositional price system. The amount of positive (negative) differ-

ence can be interpreted as the degree of improvement (decline) in consumer welfare under

the suppositional price schedule. When we assume P′ to be the uniform price system, that

is, P′ = {P∗,FC∗}, we have

Ek′
(
P′,V

)
=

[
(1−β2)

{
V +

(P∗)1+β1

1+β1

}]1/(1−β2)

+FC∗. (7)

The conditional indirect utility under P is given by equation (3). Then, the compensating

variation is calculated as

CV = I−
(1−β2)

(P∗)1+β1 −P1+β1
k

1+β1
+

Q1−β2
k

1−β2



1/(1−β2)

−FC∗. (8)

In subsection 4.3, we will conduct the welfare analysis based on the compensating variation

using the empirical data.

Remark 2. Another welfare measure is equivalent variation, which is given by

EV = Ek
(
P,V′k′

)
− I.

Because both EV and CV show similar patterns with our empirical data set, the discussion

and the results of EV are suppressed.
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2.3 Type II Tobit model with a nonlinear indirect utility comparison

This subsection describes a statistical model that is a nonlinear type II Tobit model based

on the theoretical framework with equations (1)-(3). There are n consumers. Let subscript i

denote the consumer i (i = 1, . . . ,n) and let (yi,yik, pik,qik) = (logYi, logYik, log Pik, log Qik).

Then, the statistical model for the demand function under decreasing block rate pricing

is given by

yi = yis∗i
+w∗i +ui, ui ∼ i.i.d. N

(
0,σ2

u

)
, (9)

where

yis∗i
= β1 pis∗i

+β2qis∗i
,5 (10)

w∗i = zzz′iδδδ+ vi, vi ∼ i.i.d. N
(
0,σ2

v

)
, (11)

s∗i = k, if w∗i ∈ Rik =
{
w∗i | Vik > Vi j for k , j

}
and k = 1, . . . ,Ki, (12)

Vik = −exp
(
w∗i

) P1+β1
ik

1+β1
+

Q1−β2
ik

1−β2
, (13)

β1 , −1, and β2 , 1.

In this statistical model, there are three components in addition to the theoretical frame-

work with equations (1)-(3). The first component is w∗i , which represents the consumer’s

heterogeneity in preferences. We introduce a hierarchical structure into the heterogeneity

and assume it to be linear in the d-dimensional covariate vector zzzi with its corresponding

coefficient vector δδδ. The disturbance vi of the heterogeneity is normally distributed with a

mean of 0 and a variance of σ2
v . Then, the indirect utility conditional on the block choice is

derived from the sum of yik and w∗i using Roy’s identity.

Consequently, the comparison of conditional indirect utilities is solved with respect to

5Because of the log-linear function in (10), we require PiKi > 0 and QiKi > 0 for all i. In our empirical data
set, there are no households whose QiKi ≤ 0.
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heterogeneity. The resulting interval is called the heterogeneity interval and is denoted by

Rik. The explicit formula for the heterogeneity interval is given in Appendix A.1. To be

rigorous, this interval must be R̄ik = {w∗i | Vik =max j Vi j}, where a tie among the conditional

indirect utilities is allowed. Clearly, Rik ⊆ R̄ik. However, because the set, Vik = Vi j ( j, k), has

a probability of zero in our statistical model, we replace R̄ik with Rik. This zero probability

implies that the statistical model excludes the multiple optima. The reason is as follows.

Conditional on β1 and β2, the condition Vik = Vi j leads to the condition that w∗i must equal

to a certain real value, ln Ek j, which is derived in Appendix A.1. Because w∗i is a continuous

random variable, this condition has a zero probability.

The second component is the state variable, s∗i , and we can use the data augmentation

method to estimate the model parameters (see Tanner and Wong (1987) for more information

on this method). The s∗i is a discrete latent variable that takes one of the values from 1 to Ki

and indicates the optimal block for the i-th consumer.

The third component is an error ui for demand that follows a normal distribution with a

mean of 0 and a variance of σ2
u. This term is assumed to be independent of vi. As discussed

in Hausman (1985) and Moffitt (1986), ui represents an optimization error by the consumer

and a misspecification error by the statistician.

2.4 Likelihood function subject to many nonlinear constraints

The likelihood function augmented by the latent variables is given by

f
(
yi, s∗i ,w

∗
i | βββ,δδδ,σ2

u,σ
2
v

)
∝ (σuσv)−1 exp

[
−1

2

{
σ−2

u

(
yi− yis∗i

−w∗i
)2
+σ−2

v

(
w∗i − zzz′iδδδ

)2
}]

I
(
w∗i ∈ Ris∗i

)
×

Ki−1∏
k=2

I (RLik ≤ RUik) , (14)

11



-8 -6 -4 -2 0
-4

-2

0

2

4

b1

b 2

Figure 2: Region implied by the separability condition.

where βββ ≡ (β1,β2)′ and I(A) is the indicator function: I(A) = 1 if A is true and I(A) = 0

otherwise. RLik and RUik are the respective lower and upper limits of the heterogeneity

interval Rik, and their definitions are given in equation (31) in Appendix A.1. Because we

take a Bayesian approach as described later and treat βββ as a continuous random vector, the

conditions β1 , −1 and β2 , 1 are omitted hereafter.

The last term, the product of the Ki − 2 indicator functions, is the condition that the

heterogeneity intervals are separable, that is, Rik , ∅ (for all k). We call this condition the

separability condition. This condition is a set of nonlinear constraints on β1 and β2, and the

number of nonlinear constraints increases as the number of observations and blocks grows.

Because of this condition, it is often difficult to numerically maximize the likelihood.

Figure 2 is included to show how the separability condition restricts (β1,β2) by using the

empirical data set. Because the separability condition is analytically intractable, each point

is checked whether it satisfies the condition to draw this figure. The light blue area is the area

in which the separability condition holds, whereas the deep blue area is the area in which

it does not. We can see that the separability condition simulated by the empirical data set

imposes nonlinear (piecewise-linear) constraints on (β1,β2).
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In general, when we analyze the multinomial choice model, such a condition is always

required so that every choice is separable. Similarly, Miyawaki et al. (2010) analyzed the de-

mand model under increasing block rate pricing, which is another multinomial choice model,

and explicitly considered the requirement that the choice intervals be separable. In this case,

the separability condition is a set of linear constraints on elasticity parameters. Furthermore,

the separability condition is one of the sufficient conditions to make the underlying prefer-

ence relation strictly convex (see Hurwicz and Uzawa (1971)). The separability condition is

illustrated in the next subsection.

We refer to the identification problem of two errors: ui for the observed demand and

vi for heterogeneity. They cannot be fully identified unless there is additional information

through the prior distribution about these errors because there is only one equation for them:

yi = yis∗i
+w∗i +ui.

3 Efficient MCMC simulator based on two inequalities

3.1 Prior-Posterior analysis

This article assumes the following proper prior distributions.

β j | σ2
u ∼ T NB j

(
µβ j,0,σ

2
uσ

2
β j,0

)
, ( j = 1,2), σ2

u ∼ IG
(
nu,0

2
,
S u,0

2

)
,

δδδ | σ2
v ∼ Nd

(
µµµδδδ,0,σ

2
vΣΣΣδδδ,0

)
, σ2

v ∼ IG
(
nv,0

2
,
S v,0

2

)
.

(15)

Conditional on σ2
u, β j follows the truncated normal distribution with mean µβ j,0, variance

σ2
uσ

2
β j,0

, and support B j = [l j,m j] ( j = 1,2). Conditional on σ2
v , δδδ follows the d-dimensional

multivariate normal distribution with mean vector µµµδδδ,0 and covariance matrix σ2
vΣΣΣδδδ,0. The

variance parameter σ j follows the inverse gamma distribution with parameters n j,0/2 and

S j,0/2 ( j = u,v). Its mean and variance are S j,0/(n j,0 − 2) for n j,0 > 2 and 2S 2
j,0/{(n j,0 −

2)2(n j,0 −4)} for n j,0 > 4, respectively. The support of β j ( j = 1,2) reflects our prior knowl-
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edge. To elicit the prior distribution, one can make use of knowledge based on demand

theory or utilize the estimates obtained from a similar population (see Subsection 4.2).

Let π(βββ,δδδ,σ2
u,σ

2
v) be the prior density function of (βββ,δδδ,σ2

u,σ
2
v). Then, it is straightfor-

ward to derive the posterior density function, which is given by

π
(
βββ,δδδ,σ2

u,σ
2
v , sss
∗,www∗ | yyy

)
∝ π

(
βββ,δδδ,σ2

u,σ
2
v

)
× (σuσv)−n exp

[
−1

2

{
σ−2

u
(
yyy− yyys∗ −www∗

)′ (yyy− yyys∗ −www∗
)
+σ−2

v
(
www∗−ZZZδδδ

)′ (www∗−ZZZδδδ
)}]

×
n∏

i=1

{
I
(
w∗i ∈ Ris∗i

)Ki−1∏
k=2

I (RLik ≤ RUik)
}
, (16)

where yyy= (y1,y2, . . . ,yn)′, yyys∗ = (y1s∗1
,y2s∗2
, . . . ,yns∗n)′, sss∗ = (s∗1, s

∗
2, . . . , s

∗
n)′, www∗ = (w∗1,w

∗
2, . . . ,w

∗
n)′,

and ZZZ = (zzz1,zzz2, . . . ,zzzn)′.

To draw samples of model parameters from this posterior density function, we use the

standard Gibbs sampler, the details of which are given in Appendix A.2 and the next subsec-

tion.

3.2 Sampling β1 with an efficient blanket

The full conditional distribution of β1 is the truncated normal distribution, T NC1(µβ1,1,σ
2
uσ

2
β1,1

),

where

σ−2
β1,1 = σ

−2
β1,0+

n∑
i=1

(
pis∗i

)2
, (17)

µβ1,1 = σ
2
β1,1

σ−2
β1,0µβ1,0+

n∑
i=1

pis∗i

(
yi−β2qis∗i

−w∗i
) , (18)

C1 =

 n∩
i=1

Ki∩
j=1, j,s∗i

{
β1 | Vik > Vi j

}∩
 n∩

i=1

Ki−1∩
k=2

{β1 | RLik ≤ RUik}
∩ [l1,m1]. (19)

Because C1 is difficult to evaluate analytically, we use rejection sampling. However, as re-

vealed in the next subsection, a simple blanket, the envelope function in rejection sampling,
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is not efficient in the sense that the acceptance rate of the proposed candidate is extremely

low. Therefore, we closely approximate C1 by C̃1, which is derived by using two prop-

erties of convex functions (the Hermite-Hadamard integral inequality and the power-mean

inequality), thus improving our sampling efficiency.

First, without loss of generality, we assume that the support of the prior for β1 is B1 =

[l1,0]. Then, we decompose C1 into a set of larger sets and approximate them to obtain C̃1.

More precisely,

C1 ⊂
n∩

i=1

Ki∩
j=1, j,s∗i

C1i
s∗i j ⊂

n∩
i=1

Ki∩
j=1, j,s∗i

C̃1i
s∗i j ≡ C̃1, (20)

where C1i
k j = {β1 | Vik > Vi j} ∩ [l1,0]. Third, we construct the interval C̃1i

k j (⊃ C1i
k j) using the

following three steps.

Step 1. Apply the Hermite-Hadamard integral inequality. The Hermite-Hadamard integral

inequality6and β1 ∈ [l1,0] imply

∫ Pik

Pi j

xβ1dx ≥


(
Pik −Pi j

) (Pik+Pi j
2

)β1
, if k < j,(

Pik −Pi j
) P
β1
ik +P

β1
i j

2 , if k > j.
(21)

Using this inequality, we have

Vik > Vi j⇐⇒ a1 >

∫ Pik

Pi j

xβ1dx =⇒ a1 > (the right hand side of equation (21)), (22)

where a1 = exp(−w∗i )(1−β2)−1(Q1−β2
ik −Q1−β2

i j ).

6Let f : [a,b]→ R be a convex function. Then,

f
(

a+b
2

)
≤ 1

b−a

∫ b

a
f (x)dx ≤ f (a)+ f (b)

2
. (23)

See, for example, Niculescu and Persson (2003) for a proof. Niculescu and Persson (2003) also noted that the
first (or last) inequality can define the convex function itself.
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Step 2. Apply the power-mean inequality. The power-mean inequality and β1 ∈ [l1,0] imply

Pl1
ik +Pl1

i j

2


1/l1

<

Pβ1
ik +Pβ1

i j

2


1/β1

⇐⇒
Pβ1

ik +Pβ1
i j

2
<

Pl1
ik +Pl1

i j

2


β1/l1

.7 (24)

Step 3. Combine the above two-step results. By combining equations (22) and (24), and

by rearranging these inequalities for β1, we derive the closely approximated interval C̃1i
k j =

C̃?1i
k j ∩ [l1,0], where

C̃?1i
k j =



(−∞,b1/ p̄(1)) , if k < j and p̄(1) > 0,

(−∞,∞) , if k < j and p̄(1) = 0,

(b1/p̄(1),∞) , if k < j and p̄(1) < 0,

(b1/p̄(l1),∞) , if k > j and p̄(l1) > 0,

(−∞,∞) , if k > j and p̄(l1) = 0,

(−∞,b1/ p̄(l1), ) , if k > j and p̄(l1) < 0,

(25)

b1 = log(a1/(Pik − Pi j))8, and p̄(x) = x−1 log{(Px
ik + Px

i j)/2} (x = 1, l1). By construction,

C1i
k j ⊂ C̃1i

k j. If PiKi > 1 is assumed, we have p̄(1) > p̄(l1) > 0, which simplifies the above

expression.

Finally, by using this interval C̃1i
k j, we approximate C1 by C̃1 = ∩n

i=1 ∩
Ki
j=1, j,s∗i

C̃1i
s∗i j as

mentioned above. Figure 3 illustrates the relationships among C1, C̃1, and B1.

With C̃1, the sampling procedure for β1 is implemented using the following two steps.

Step a. Generate β′1 from the uniform distribution on C̃1 until it is in C1.

7See, for example, Chapter 2 of Hardy, Littlewood, and Pólya (1952) for a proof of the power-mean in-
equality. This equivalence also uses the fact that f (x) = xβ1 (β1 ∈ [l1,0]) is decreasing as x(> 0) increases.

8Because a1 ≷ 0 for all k ≶ j, a1/(Pik −Pi j) > 0 for any k and j (k , j).
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Figure 3: Relationships among C1, C̃1, and B1.

Step b. Accept β′1 with the acceptance probability α(β1,β
′
1); otherwise, retain β1, where

α
(
β1,β

′
1

)
=min

1, φ
{(
β′1−µβ1,1

)
σ−1

u σ
−1
β1,1

}
φ
{(
β1−µβ1,1

)
σ−1

u σ
−1
β1,1

} , (26)

and φ(·) is the probability density function of the standard normal distribution.

The sampling of β2 is conducted in a similar manner. See Appendix A.2 for its full

conditional distribution and Appendix A.3 for the derivation of its efficient blanket.

Joint sampling for (β1,β2) is an alternative sampling algorithm. While using this strategy

could improve the sampling efficiency, its efficient two-dimensional blanket is difficult to

construct. One of the simplest blankets is B1 × B2, which is the support of the joint prior

distribution of (β1,β2). As we see in Figure 4 and Table 1, however, this blanket is extremely

inefficient with respect to the empirical data set.

3.3 Adequacy of the efficient blankets

In this subsection, we evaluate the adequacy of the efficient blanket in two respects by using

the Japanese residential gas demand data. The first measure is the absolute differences,

maxC̃ j −maxC j and minC j −minC̃ j ( j = 1,2), and the second measure is the adequacy

ratio, |C j|/|C̃ j| ( j = 1,2), where |A| is the area of the set A. Figure 3 is helpful in that it

clarifies what these measures mean.

Because C j is analytically intractable, we calculate these measures via simulation. Dur-

ing each step in the MCMC iterations (Appendix A.2), we obtain the approximated interval,
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Figure 4: Absolute differences.

Table 1: Adequacy ratios

Coefficient |C j|/|C̃ j| = r1 |C j|/|B j| = r2 Efficiency ratio (r1/r2)

β1 .67 (.21) .0037 (.0026) 181
β2 1.00 (.00) .0004 (.0003) 2,500
∗ Standard deviations in parentheses.

C̃ j. Then, we compute 1,001 equispaced samples in this approximated interval and deter-

mine whether they belong to C j. Among the samples that are in C j, we obtain the maximum

and the minimum to calculate the absolute differences. Furthermore, the ratio of the number

of samples that belong to C j to the number of those that do not is the adequacy ratio condi-

tional on model parameters. These conditional adequacy ratios are averaged to calculate the

adequacy ratio after the MCMC iterations are complete.

We calculate these two measures using the empirical data set. The results are shown in

Figure 4 and given in Table 1. Figure 4 presents time series plots of absolute differences. The
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red lines represent time series plots of absolute differences that calculated from our efficient

blankets, whereas the blue lines are those obtained using the simple method, where C̃ j is

replaced by B j. The red lines are very close to the horizontal lines at zero, which implies

that the proposed efficient blankets are sufficiently close to the true sets. Table 1 indicates the

adequacy ratios in the first two columns and the efficiency ratio, the ratio of two adequacy

ratios, in the third column. Although the adequacy ratios of the efficient blankets differ with

respect to their parameters, they are much (about 200 to 2,500 times) higher than those of

the simple blanket B j. Therefore, based on the empirical data set, our proposed method well

approximates the true regions for both β1 and β2.

4 Empirical analysis and policy evaluation of residential

gas demand

4.1 Data description

This subsection describes the data to be used for the empirical study in the next subsection.

We conducted an online survey on the Internet from June 2006 to May 2008 that was de-

signed to analyze the water and energy consumption and the garbage emission behavior of

Japanese households. The population of this survey was comprised of the households living

in the Tokyo and Chiba prefectures. There were about 8.4 million households as of January

2007. Among them, 47,239 individuals were registered to the survey company, INTAGE

Inc. (http://www.intage.co.jp/english/). Out of 47,239 individuals, 1,687 individuals were

randomly selected. Then, out of 1,687 individuals, 1,250 participated in our survey. They

were asked for household attributes such as annual income, the number of members in the

household, and so on in June 2006 and April 2007. They were also asked to record their

water and energy consumptions and the garbage emission behavior every month.

For the empirical study, we used the attribute data in June 2006 and the gas consumption
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Table 2: Independent variables used in the gas demand function
Coefficient Variable Attribute

β1 (pi1, . . . , piKi) log of monthly unit prices of gas (log ¥50 /m3)
β2 (qi1, . . . ,qiKi) log of monthly virtual incomes (log ¥50)

δ1 zi1 the constant
δ2 zi2 the number of members in a household (person)
δ3 zi3 the number of rooms in a home (room)
δ4 zi4 the total floor space of a home (50m2)

data in January 2007. The dependent variable is the amount of gas consumption (logm3),

which was calculated from the bill by using the corresponding gas price schedule that de-

pends on the area in which the individuals were living. The list of independent variables and

their corresponding coefficients is given in Table 2.

The number of households is decreased from 1,250 to 473 for the reasons listed below.

• Dropped out of the survey before January 2007.

• Missing data concerning household attributes or gas consumption.

• Use of liquefied petroleum gas. (Its price schedule is not publicly available.)

• Consumption within the zero marginal price block.

For these 473 households, we conducted an empirical study that is presented in the next

subsection. The mean, standard deviation, minimum, and maximum of the dependent vari-

able are 3.75logm3, 0.78logm3, 0.053logm3, and 5.70logm3, respectively. All households

faced decreasing block rate pricing, and their price schedules differed depending on the cities

in which they live. The price structures are shown in Figure 5, wherein the relative frequency

of the number of blocks, the histogram of the unit price where the gas was actually consumed,

and the histogram of the fixed gas service fee are illustrated.

Because the exact annual income level is sensitive information to request, our survey

divides annual income levels into eight categories: (in million yen) 0-2, 2-4, 4-6, 6-8, 8-10,

10-12, 12-15, and over 15. Then, we ask the household its income category. The monthly
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Figure 5: Relative frequency of the number of blocks and histograms of the unit price and
the fixed gas service fee in January 2007.

Table 3: Summary statistics of explanatory variables for the heterogeneity
Variable Unit Mean SD Min. Max.

zi2 (the number of members in a household) person 2.81 1.28 1 9
zi3 (the number of rooms in a home) room 4.09 1.10 1 8
zi4 (the total floor space of a home) 50m2 1.54 .74 .20 8.00

income variable to be used for the empirical study is estimated using the median of the

recorded income category divided by 12. For the last category (over 15 million yen), the

approximate annual income is also recorded, and we use this figure divided by 12 as the

monthly income. This income variable has a mean of 9.22, a standard deviation of 0.56, a

minimum of 7.42, and a maximum of 10.82 in log ¥50.

The summary statistics for the explanatory variables for heterogeneity are given in Table

3. We calculated the correlation coefficients among the explanatory variables for hetero-

geneity: Corr(zi2,zi3) = 0.49, Corr(zi2,zi4) = 0.38, and Corr(zi3,zi4) = 0.71. Thus, we can

establish that there is a high positive correlation between the number of rooms and the total

floor space, such that either of these variables could not explain the residential gas demand.
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4.2 Residential gas demand function

We assume the following prior distributions.

β1 | σ2
u ∼ T N[−2,0]

(
0,100σ2

u

)
, σ2

u ∼ IG (0.01,0.01) ,

β2 | σ2
u ∼ T N[0,2]

(
0,100σ2

u

)
, σ2

v ∼ IG (0.01,0.01) ,

δδδ | σ2
v ∼ N4

(
000,100σ2

v III
)
,

(27)

where III is the identity matrix. The truncation interval for β j ( j = 1,2) is elicited as follows.

Because residential gas is one of the necessities for households, its demand is relatively

inelastic with respect to price and income. Thus, we can expect the absolute values of β1

and β2 to be less than one. Furthermore, we assume negative price elasticity according to

microeconomic demand theory (see, e.g., Mas-Colell et al. (1995)), and positive income

elasticity according to the estimate taken from the Family Income and Expenditure Survey

(FIES) conducted in 2008. The FIES survey is intended to analyze the Japanese households

and estimated the expenditure elasticity for gas to be 0.29 (for households with more than

two members) and away from zero at a 5% significant level. Thus, we assume the interval

[−2,0] ([0,2]) for β1 (β2), where −1 (1) is included to examine whether β1 (β2) is less than

−1 (more than 1). Further analysis of our empirical data set reveals that this prior truncation

area for βββ is included in the area in which the separability condition is satisfied (see Figure

2).

With these prior distributions, the MCMC simulation (Appendix A.2) was carried out

to obtain 6× 106 samples after deleting the first 6× 105 samples. We reduced the obtained

6×106 samples to 104 samples by picking up every 600-th sample. The results are given in

Table 4 and shown in Figure 6.

Each column of the table represents the parameter names, the posterior means, the pos-

terior standard deviations, the 95% credible intervals, and the estimated inefficiency factors.

The inefficiency factor is defined as 1+2
∑∞

j=1 ρ( j), where ρ( j) is the sample autocorrelation
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Table 4: Gas demand function

Parameter Mean SD 95% interval INEF

β1 (price) −.84 .26 [−1.35 −.32] 136
β2 (income) .26 .060 [ .14 .38] 218
δ1 (constant) .84 .62 [− .32 2.06] 259
δ2 (number of members) .17 .026 [ .12 .22] 11
δ3 (number of rooms) .18 .037 [ .11 .25] 5
δ4 (total floor space) .038 .052 [− .067 .14] 6
σu (measurement error) .55 .13 [ .12 .65] 19
σv (heterogeneity error) .17 .15 [ .049 .58] 30
∗ “SD” and “INEF” denote the posterior standard deviation and the ineffi-

ciency factor, respectively.

at lag j, and is estimated using the spectral density. It can be interpreted as the ratio of the

variance of the sample mean obtained by the MCMC draws to the variance of the sample

mean by an uncorrelated Monte Carlo draw (see, e.g., Chib (2001)).

4.2.1 Estimates of price and income elasticities

Price and income elasticities are highly credible to be negative and positive, respectively,

in the sense that their 95% credible intervals do not include zero. Furthermore, income

elasticity is highly credible to be less than one. The estimated inefficiency factors of elasticity

parameters (as well as that of δ1) are much higher than other parameters. This is partly

because of the tight restrictions on βββ and partly because of the high correlation between β2

and δ1 (Corr(β2, δ1) = −0.82). The other correlation coefficients are less than 0.7 in their

absolute values except for that between σu and σv (Corr(σu,σv) = −0.93).

We compared these estimates with those of previous studies. One of the classical studies

of residential gas demand is the study by Balestra and Nerlove (1966). They analyzed the

new gas demand using a dynamic model with random effects. Their data are the state-

level panel data for the United States during 1950−62. They estimated the (long-run) price

and income elasticities to be −0.63 and 0.62, respectively, when the depreciation rate for

gas appliances is unconstrained. While the estimated income elasticity calculated by these
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Figure 6: Marginal posterior densities.

researchers using aggregate data is larger than ours, the estimated price elasticity is similar

to ours.

Bloch (1980) also investigated residential gas demand by using the household-level data.

This includes gas usage data for households living in Twin Rivers, New Jersey, during the

winter months (November through April) from 1971 to 1976. The explanatory variables that

Bloch (1980) used are the number of heating degree days, the price of natural gas, and the

consumer price index. He found that the (long-run) price elasticity is estimated to be −0.596

or −0.224 depending on the functional form of the demand function. The former estimate is

similar to our results.

4.2.2 Other parameters

Among the explanatory variables for heterogeneity, the number of members in a household

and the number of rooms in a home are highly credible to be positive in terms of their 95%

credible intervals. These factors should have a positive relationship with gas demand through

water demand for the two following reasons: (1) these two variables are also credible to be

positive in the Japanese residential water demand function (see Table 4 of Miyawaki et al.
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(2010)); and (2) in Japan, residential gas is mainly used for boiling water.

4.3 Policy evaluation—the effect of price schedule changes

In this subsection, we conduct a welfare analysis and evaluate the effect of price schedule

changes. As the suppositional price schedules, we use the following three uniform price

systems, which differ in their unit price: (unit price, fixed service fee) = (¥50/m3, ¥725),

(¥120/m3, ¥725), and (¥250/m3, ¥725). These unit prices are less expensive, as high as,

or more expensive than the unit price that most households are actually facing. The fixed

service fee is set close to the actual fee for most households.

Figure 7 shows the effect of price changes on households in terms of compensating vari-

ation. Each boxplot is the predictive distribution of the compensating variation in one thou-

sand yen for each household. The number of households is reduced to 90 by selecting every

5-th household. Boxplots are sorted in ascending order based on the number of members in

a household.

These results are consistent with what we expect based on microeconomic theory. We

observe the positive (negative) compensating variation when the unit price decreases (in-

creases). That is, the unit price decrease (increase) implies welfare improvement (decline).

However, uniform pricing itself does not seem to have a noticeable influence on compensat-

ing variation (see the panel of ¥120/m3). Furthermore, the degree of improvement (decline)

is affected by explanatory variables for heterogeneity. The above panels show that the more

members there are in a household, the more the compensating variation is likely to change.

A similar pattern is also found with other explanatory variables for heterogeneity.

5 Concluding remarks

There are many previous studies that have used the discrete/continuous choice approach in

the analysis of household behaviors under block rate pricing, transportation, housing, labor
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Figure 7: Boxplots of the predictive distribution of the compensating variation (¥103). Each
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denote the 95-th and 5-th percentiles, respectively.

supply, etc. It should be noted that the indirect utility function becomes highly nonlinear,

when the budget set is nonconvex, such as in the case of decreasing block rate pricing. How-

ever, previous studies (Burtless and Hausman (1978); Hausman (1980); Burtless and Moffitt

(1985)) on decreasing block rate pricing do not address this problem. Blomquist and Newey

(2002) proposed a nonparametric approach to address this problem, but their approach lacks

the microeconomic theoretical background. This article proposes a new Bayesian estimation

method for residential gas demand on the nonconvex budget set by extending the Bayesian

approach taken by Miyawaki et al. (2010), which proposed a Bayesian estimation method to

analyze consumer demand under increasing block rate pricing. The advantage of our method

is not only that it addresses the nonlinearity problem associated with the nonconvex budget

sets but also that it incorporates the (highly nonlinear) separability condition that is neces-

sary for the demand model under multiple-block block decreasing block rate pricing and

introduces normal disturbance into the multinomial choice model.
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Finally, our method has the potential to estimate the multiple residential energy expen-

diture function. Previous studies have focused on the cross-elasticity of electricity and gas

demand (see Beierlein, Dunn, and James C. McConnon (1981); Baker, Blundell, and Mick-

lewright (1989); Lee and Singh (1994); Maddala, Trost, Li, and Joutz (1997); Vaage (2000)).

However, they do not take into consideration the price structure of electricity and gas ser-

vices. Japanese electricity services are provided under increasing block rate pricing where

the unit price increases as the volume consumed increases. Thus, by combining the pro-

posed method and the method of Miyawaki et al. (2010) to estimate the demand function

under increasing block rate pricing, we could also construct a multivariate demand function

under both increasing and decreasing block rate pricing in a natural manner and estimate the

residential energy demand function using the Bayesian approach. We will leave this for our

future work.

A Appendices

A.1 Heterogeneity interval

We derive the explicit bounds of the heterogeneity interval, which is given by

Rik =
{
w∗i | Vik > Vi j for j , k

}
=

∩
j,k

{
w∗i | Vik > Vi j

}
. (28)

Let D(x1, x0;θ) = θ−1(xθ1− xθ0) (x0 > 0, x1 > 0, θ , 0). Then, D(x1, x0;θ) ≷ 0 if x1 ≷ x0.9

With this function, we solve Vik > Vi j for w∗i .

Vik > Vi j⇐⇒−exp
(
w∗i

)
D

(
Pik,Pi j;1+β1

)
> −D

(
Qik,Qi j;1−β2

)
(29)

9Suppose x1 > x0 > 0. Then, because xθl (l = 0,1) is decreasing (increasing) with respect to xl if θ < (>)0, the
numerator xθ1− xθ0 ≶ 0 if θ ≶ 0. Therefore, D(x1, x0;θ)> 0 if x1 > x0 > 0. Similarly, D(x1, x0;θ)< 0 if x0 > x1 > 0.
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⇐⇒


w∗i < ln Ek j, if k < j,

w∗i > ln Ek j, if k > j,
(30)

where Ek j = D(Qik,Qi j;1− β2)/D(Pik,Pi j;1+ β1). The last equivalence makes use of the

property of decreasing block rate pricing: Pik ≷ Pi j and Qik ≷ Qi j if k ≶ j. Both Pik > 0 and

Qik > 0 for all k because we assume the log-linear function (10). Thus, D(Pik,Pi j;1+β1) ≷ 0

and D(Qik,Qi j;1−β2) ≷ 0 if k ≶ j.

Finally, we have

Ri1 =

(
−∞,min

1< j
ln E1 j

)
,

Rik =

(
max
k> j

ln Ek j,min
k< j

ln Ek j

)
, k = 2, . . . ,Ki−1,

RiKi =

(
max
Ki> j

ln EKi j,∞
)
.

(31)

We note that Rik∩Ri j = ∅ (k , j).

A.2 Gibbs sampler

The Gibbs sampler is implemented in seven steps.

Step 1. Set initial values to (βββ,δδδ, sss∗,www∗,σ2
u,σ

2
v).

Step 2. Generate β1 given β2, sss∗,www∗,σ2
u.

See Subsection 3.2.

Step 3. Generate β2 given β1, sss∗,www∗,σ2
u.

The full conditional distribution of β2 is the truncated normal distribution, T NC2(µβ2,2,σ
2
uσ

2
β2,2

),

where

σ−2
β2,1 = σ

−2
β2,0+

n∑
i=1

(
qir∗i

)2
, (32)

µβ2,1 = σ
2
β2,1

σ−2
β2,0µβ2,0+

n∑
i=1

qis∗i

(
yi−β1 pis∗i

−w∗i
) , (33)
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C2 =

 n∩
i=1

Ki∩
j,s∗i , j=1

{
β2 | Vik > Vi j

}∩
 n∩

i=1

Ki−1∩
k=2

{β2 | RLik ≤ RUik}
∩ [l2,m2]. (34)

The rejection sampling with an efficient blanket is applied to obtain samples of β2. The

efficient blanket C̃2 will be derived in the next appendix. The acceptance probability is given

by

α
(
β2,β

′
2

)
=min

1, φ
{(
β′2−µβ2,1

)
σ−1

u σ
−1
β2,1

}
φ
{(
β2−µβ2,1

)
σ−1

u σ
−1
β2,1

} . (35)

Step 4. Generate (σ2
v , δδδ) given www∗.

By integrating the joint density function of (σ2
v , δδδ) given www∗ over δδδ, we have the full condi-

tional distribution of σ2
v as the inverse gamma distribution, IG(nv,1/2,S v,1/2), where nv,1 =

nv,0+n and

S v,1 = S v,0+µµµ
′
δδδ,0ΣΣΣ

−1
δδδ,0µµµδδδ,0+www∗′www∗−µµµ′δδδ,1ΣΣΣ

−1
δδδ,1µµµδδδ,1. (36)

Then, given σ2
v , the full conditional distribution of δδδ is the multivariate normal distribution,

Nd(µµµδδδ,1,σ
2
vΣΣΣδδδ,1), where

µµµδδδ,1 = ΣΣΣδδδ,1
(
ΣΣΣ−1
δδδ,0µµµδδδ,0+ZZZ′www∗

)
, ΣΣΣ−1

δδδ,1 = ΣΣΣ
−1
δδδ,0+ZZZ′ZZZ. (37)

Step 5. Generate {s∗i ,w∗i }ni=1 given βββ,δδδ,σ2
u,σ

2
v .

The blocking technique is applied to draw samples of (s∗i ,w
∗
i ). The full conditional distri-

bution of s∗i is the multinomial distribution, the probability mass function of which is given

by

π
(
s∗i = s | βββ,δδδ,σ2

u,σ
2
v

)
∝

[
Φ

{
τ−1 (RUis− θis)

}
−Φ

{
τ−1 (RLis− θis)

}]
exp

(
−mis

2

)
, (38)
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for s = 1, . . . ,Ki, where τ2 = (σ−2
u +σ

−2
v )−1 and

(mis, θis) =

 (σuσv)−2
(
yi− yis− zzz′iδδδ

)2

σ−2
u +σ

−2
v

,
σ−2

u (yi− yis)+σ−2
v zzz′iδδδ

σ−2
u +σ

−2
v

 . (39)

Given s∗i = s, the full conditional distribution of w∗i is the truncated normal distribution,

T NRis(θis, τ
2).

Step 6. Generate σ2
u given βββ, sss∗,www∗.

The full conditional distribution of σ2
u is the inverse gamma distribution, IG(nu,1/2,S u,1/2),

where nu,1 = nu,0+n+2 and

S u,1 = S u,0+
(
βββ−µµµβββ,0

)′
ΣΣΣ−1
βββ,0

(
βββ−µµµβββ,0

)
+

(
yyy− yyy∗

)′ (yyy− yyy∗
)
. (40)

Step 7. Go to Step 2.

A.3 Efficient blanket of C2

We assume that the support of the prior distribution for β2 is B2 = [0,m2]. Let

C2i
k j =

{
β2 | Vik > Vi j

}
∩ [0,m2] and a2 = exp(w∗i )(1+β1)−1

(
P1+β1

ik −P1+β1
i j

)
. (41)

Then, the Hermite-Hadamard integral inequality and β2 ∈ [0,m2] derive

a2 <


(
Qik −Qi j

) Q
−β2
ik +Q

−β2
i j

2 , if k < j,(
Qik −Qi j

) (Qik+Qi j
2

)−β2
, if k > j.

(42)
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By applying the power-mean inequality, we have C̃2i
k j = C̃?2i

k j ∩ [0,m2] (⊃C2i
k j), where

C̃?2i
k j =



(−∞,−b2/q̄(−m2)) , if k < j and q̄(−m2) > 0,

(−∞,∞) , if k < j and q̄(−m2) = 0,

(−b2/q̄(−m2),∞) , if k < j and q̄(−m2) < 0,

(−b2/q̄(1),∞) , if k > j and q̄(1) > 0,

(−∞,∞) , if k > j and q̄(1) = 0,

(−∞,−b2/q̄(1)) , if k > j and q̄(1) < 0,

(43)

b2 = log(a2/(Qik −Qi j)), and q̄(x) = x−1 log{(Qx
ik +Qx

i j)/2} (x = 1,−m2). If QiKi > 1 is as-

sumed, we have q̄(1) > q̄(−m2) > 0, which simplifies the above expression. With this closely

approximated interval C̃2i
k j, we have C̃2 = ∩n

i=1∩
Ki
j=1, j,s∗i

C̃2i
s∗i j, which includes C2.
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Hardy, G. H., J. E. Littlewood, and G. Pólya (1952). Inequalities (2nd ed.). Cambridge:

Cambridge University Press.

Hausman, J. A. (1980). The effect of wages, taxes, and fixed costs on women’s labor force

participation. Journal of Public Economics 14(2), 161–194.

Hausman, J. A. (1981). Exact consumer’s surplus and deadweight loss. American Economic

Review 71(4), 662–676.

Hausman, J. A. (1985). The econometrics of nonlinear budget sets. Econometrica 53(6),

1255–1282.

Hausman, J. A., M. Kinnucan, and D. McFaddden (1979). A two-level electricity demand

model: Evaluation of the Connecticut time-of-day pricing test. Journal of Economet-

rics 10(3), 263–289.

33



Hewitt, J. A. and W. M. Hanemann (1995). A discrete/continuous choice approach to resi-

dential water demand under block rate pricing. Land Economics 71(2), 173–192.

Hurwicz, L. and H. Uzawa (1971). On the integrability of demand functions. In J. S. Chip-

man, L. Hurwicz, M. K. Richter, and H. F. Sonnenschein (Eds.), Preferences, Utility, and

Demand, The Harbrace series in business and economics, Chapter 6, pp. 114–148. New

York: Harcourt, Brace, Jovanovich.

Lee, L.-F. and R. P. Trost (1978). Estimation of some limited dependent variable models

with application to housing demand. Journal of Econometrics 8(3), 357–382.

Lee, R.-S. and N. Singh (1994). Patterns in residential gas and electricity consumption: An

econometric analysis. Journal of Business & Economic Statistics 12(2), 233–241.

Maddala, G. S., R. P. Trost, H. Li, and F. Joutz (1997). Estimation of short-run and long-

run elasticities of energy demand from panel data using shrinkage estimators. Journal of

Business & Economic Statistics 15(1), 90–100.

Mas-Colell, A., M. D. Whinston, and J. R. Green (1995). Microecnomic Theory. New York:

Oxford University Press.

Miyawaki, K., Y. Omori, and A. Hibiki (2010). Bayesian estimation of demand functions

under block rate pricing. University of Tokyo CIRJE Discussion Paper Series CIRJE-F-

712, Revised version of CIRJE-F-424, CIRJE-F-568, and CIRJE-F-631.

Moffitt, R. (1986). The econometrics of piecewise-linear budget constraint. Journal of

Business & Economic Statistics 4(3), 317–328.

Niculescu, C. P. and L.-E. Persson (2003). Old and new on the Hermite-Hadamard inequality.

Real Analysis Exchange 29(2), 663–685.

34



Olmstead, S. M., W. M. Hanemann, and R. N. Stavins (2007). Water demand under al-

ternative price structures. Journal of Environmental Economics and Management 54(2),

181–198.
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