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Abstract

In this paper, we tackle the problem of estimating the

depth of a scene from a single image. This is a challeng-

ing task, since a single image on its own does not provide

any depth cue. To address this, we exploit the availability

of a pool of images for which the depth is known. More

specifically, we formulate monocular depth estimation as a

discrete-continuous optimization problem, where the con-

tinuous variables encode the depth of the superpixels in

the input image, and the discrete ones represent relation-

ships between neighboring superpixels. The solution to this

discrete-continuous optimization problem is then obtained

by performing inference in a graphical model using parti-

cle belief propagation. The unary potentials in this graph-

ical model are computed by making use of the images with

known depth. We demonstrate the effectiveness of our model

in both the indoor and outdoor scenarios. Our experimen-

tal evaluation shows that our depth estimates are more ac-

curate than existing methods on standard datasets.

1. Introduction

In this paper, we address the problem of scene depth es-

timation from a single image. Estimating the depth of a

general scene from a monocular, static viewpoint is a very

challenging task, since no reliable cues, such as stereo cor-

respondences, or motion, can be exploited.

In recent years, much progress has been made towards

accurate 3D scene reconstruction from single images. For

instance, simple geometric assumptions (i.e., box models)

have proven effective to estimate the layout of a room [9,

17, 27]. Similarly, for outdoor scenes, the Manhattan, or

blocks world, assumption has been utilized to perform 3D

scene layout estimation [7]. These box models, however,

are limited to represent simple structures, and are therefore

ill-suited to obtain detailed 3D reconstructions.
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Figure 1. Depth estimation from a single image: Input images and

depth maps estimated by our method.

In contrast, several methods have been proposed to di-

rectly estimate the depth of image (super)pixels [24, 25]. In

this context, it was shown that exploiting additional sources

of information, such as user annotations [22], semantic la-

bels [18], or the presence of repetitive structures [30], could

help improving reconstruction accuracy. Unfortunately,

such additional information is not available in general. Re-

cently, nonparametric approaches were therefore introduced

to handle this case [13, 15, 16]. Given an input image, these

approaches proceed by retrieving similar images in a pool

of images for which the depth is known. The depths of the

retrieved candidates are then employed in conjunction with

smoothness constraints to estimate a depth map. While this

has achieved some success, as suggested in [31] in the con-

text of stereo, the gradient-aware smoothing strategy often

poorly reflects the real 3D scene observed in the image.

In this paper, we introduce a method that addresses this

issue by modeling depth estimation as a discrete-continuous

optimization problem. In particular, in addition to the stan-

dard continuous variables that encode the depth of the su-

perpixels in the input image, we make use of discrete vari-

ables that allow us to model complex relationships between
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neighboring superpixels. Depth estimation can then be ex-

pressed as inference in a higher-order, discrete-continuous

graphical model.

More specifically, given an input image, we make use

of a nonparametric approach to retrieve similar images in

a dataset of images with known depth. We exploit the

depths of these images to construct data terms for the con-

tinuous variables in our model. Furthermore, we employ

discrete variables to encode the occlusion relationships be-

tween neighboring superpixels. The interactions of several

discrete variables can then be expressed with junction po-

tentials, which define invalid configurations. These discrete

occlusion variables also let us define smoothness constraints

that better reflect realistic scenes. We make use of particle

belief propagation [12, 20] to perform inference in the re-

sulting higher-order, discrete-continuous graphical model.

In contrast to most existing methods which typically con-

sider either indoor scenes, or outdoor ones, we demonstrate

the effectiveness of our model in these two scenarios. Our

experiments show the benefits of our discrete-continuous

formulation, which yields state-of-the-art accuracies on the

NYU v2 indoor scenes dataset [28] and on Make3D [25].

2. Related Work

Estimating the depth of a scene from images is one of

the major goals of computer vision. Therefore, it has at-

tracted a lot of attention over the years. Here, we focus on

the advances that have been made in the recent years.

A classical approach to reconstructing 3D scenes con-

sists in exploiting video. In this context, 3D scene flow is

one of the most popular and mature approaches to depth

estimation [3, 4, 29]. Similarly, structure-from-motion [5]

and SLAM [19] have now reached the stage where exist-

ing systems can efficiently handle huge amounts of images.

Therefore, they are now being integrated into 3D scene un-

derstanding methods that jointly detect, or segment objects

while performing 3D reconstruction [6, 8, 23]. While here

we tackle the monocular, static case, it was shown that the

depth maps obtained from single images could also have a

beneficial impact on video-based 3D reconstruction [13].

When it comes to single images, 3D reconstruction

methods have not yet attained the same degree of maturity

as video-based techniques. Nonetheless, much progress has

been made in recent years. In particular, for indoor scenes,

effective techniques have been proposed to estimate the lay-

out of rooms. These methods typically rely on box-shaped

models, and try to fit the box edges to those observed in the

image [9, 17, 27]. The same simple geometric prior, blocks

world, was exploited in outdoor scenes [7]. In [10], a more

accurate geometric model was employed, but the results re-

main only a rough estimate of surface normals.

The simple geometric models described above do not al-

low us to obtain a detailed 3D description of the scene. In

contrast, several methods have proposed to directly estimate

the depth of image (super)pixels. Since a single image does

typically not provide enough information to estimate depth,

other sources of information have been exploited. In par-

ticular, in [22], depth was predicted from user annotations.

In [18], this was achieved by making use of semantic class

labels. Alternatively, the presence of repetitive structures

in the scene was also employed for 3D reconstruction [30].

With the recent popularity of depth sensors, sparse depths

have also been used to estimate denser depth maps [2].

In this work, however, we focus on the scenario where no

such sources of information are available. In this setting, su-

pervised learning techniques were the first to provide real-

istic results by learning the parameters of a Markov random

field [24, 25]. More recently, several nonparametric ap-

proaches were introduced [13, 15, 16]. These methods ex-

ploit the availability of a set of images for which the depths

are known. Depth in the input image is then estimated

by first retrieving similar images in this set, and optionally

warping their depth using SIFT flow. These (warped) depth

maps are then utilized in the objective function of a non-

linear optimization problem that encourages the resulting

depth to be smooth.

Our work is close in spirit to that of [13, 15, 16] in the

sense that we also make use of a nonparametric approach

to retrieve candidate depth maps. However, we avoid the

warping process of [13, 15], which is computationally ex-

pensive and does not necessarily improve the quality of the

candidates. More importantly, we introduce the use of dis-

crete variables that allow us to model more complex re-

lationships between neighboring superpixels, and formu-

late depth estimation as inference in a discrete-continuous

graphical model. As evidenced by our results, this formu-

lation is beneficial in terms of accuracy of the estimated

depth, and proved effective for both the indoor and outdoor

scenarios.

3. Discrete-Continuous Depth Estimation

We now describe our approach to depth estimation from

a single image. To this end, we first derive the Conditional

Random Field (CRF) that defines our problem, and discuss

the inference method that we use. We then define the differ-

ent potentials utilized in our model.

3.1. Discrete­Continuous CRF

Our goal is to estimate the depth of the pixels observed

in a single image depicting a general scene. We formulate

this problem in terms of superpixels, making the common

assumption that each superpixel is planar. The pose of a

superpixel is then expressed in terms of the depth of its cen-

troid and its plane normal. Furthermore, we make use of

additional discrete variables that encode the relationship of

two neighboring superpixels. In particular, here, we con-



sider 4 types of relationships encoding the fact that the two

superpixels (i) belong to the same object; (ii) belong to two

different but connected objects; (iii) belong to two objects

that form a left occlusion; and (iv) belong to two objects that

form a right occlusion. Here, the notion of left and right oc-

clusions follows the formalism of [11] based on edge direc-

tions. Given these variables, we express depth estimation as

an inference problem in a discrete-continuous CRF.

More specifically, let Y = {y1, . . . ,yS} be the set of

continuous variables, where each yi ∈ R
4 concatenates the

centroid depth and plane normal of superpixel i, and where

S is the total number of superpixels in the input image. Fur-

thermore, let E = {ep}p∈E be the set of discrete variables,

where each ep ∈ {so, co, lo, ro}, which indicates same ob-

ject (so), connected but different objects (co), left occlusion

(lo) and right occlusion (ro), respectively. E is the set of

pairs of superpixels that share a common boundary.

Given these variables, we then form a CRF, where the

joint distribution over the random variables factorizes into

a product of non-negative potentials. This joint distribution

can be written as

p(Y,E) =
1

Z

∏

i

Ψi(yi)
∏

α

Ψα(yα, eα)
∏

β

Ψβ(eβ) ,

where Z is a normalization constant, i.e., the partition func-

tion, Ψi is a unary potential function over the continuous

variables that defines the data term for depth, and Ψα and

Ψβ are potentials over mixed variables and discrete vari-

ables, respectively, which encode the smoothness and con-

sistency between depth and edge types.

Inference in the graphical model is then performed by

computing a MAP estimate. By working with negative log

potential functions, e.g., φi(yi) = − ln (Ψi(yi)), this can

be expressed as the optimization problem

(Y∗,E∗) (1)

= argmin
Y,E

∑

i

φi(yi) +
∑

α

φα(yα, eα) +
∑

β

φβ(eβ) .

The potentials that we use here are discussed in Section 3.2.

To handle mixed discrete and continuous variables,

we make use of particle (convex) belief propagation

(PCBP) [20], which lets us obtain an approximate solution

to the optimization problem (1). More specifically, PCBP

proceeds by iteratively solving the following steps:

1. Draw Ns random samples y
j
i , 1 ≤ j ≤ Ns around

the previous MAP solution for each variable yi.

2. Compute the (approximate) MAP solution of the dis-

crete CRF formed by the discrete variables {ep} and

by utilizing the random samples {yj
i } as discrete states

for the variables {yi}.

In practice, we draw samples for the plane normal of

the superpixels according to a Fisher-Bingham distribution,

which forces them to have unit norm. Samples for the depth

of the centroid of each superpixel are drawn according to

a Gaussian distribution. At each iteration, we tighten the

sampling around the previous MAP solution. The approx-

imate MAP of the discrete CRF is obtained by distributed

convex belief propagation [26].

In this work, we make use of a nonparametric approach

to obtain a reasonable initialization for the algorithm. In

particular, we retrieve the K images most similar to the

input image from a set of images for which the depth is

known. To this end, we perform a nearest-neighbor search

based on concatenated GIST, PHOG and Object Bank fea-

tures and directly make use the depth of the retrieved im-

ages, i.e., in contrast to [13, 15], we do not warp the depth

of the retrieved images. The retrieved K depth maps then

directly act as states in the first round of PCBP, i.e., no ran-

dom samples are used in this round.

In the next section, we describe the specific potentials

used in the optimization problem (1).

3.2. Depth and Occlusion Potentials

The objective function in (1) contains three different

types of potentials involving, respectively, continuous vari-

ables only, discrete and continuous variables, and discrete

variables only. Below, we discuss the functions used in

these three different types of potentials.

Potentials for continuous variables:

The potentials involving purely continuous variables are

unary potentials, and are of two different kinds. For the first

one, we exploit the K candidates retrieved by the image-

based nearest-neighbor strategy mentioned in the previous

section. The first potential encodes the fact that the final

depth should remain close to at least one candidate. To this

end, we make use of the squared depth difference. More

specifically, assuming a calibrated camera, the depth d
uj

i of

pixel uj = (uj , vj) in superpixel i can be obtained by in-

tersecting the visual ray passing through uj with the plane

defined by yi. This lets us write the potential

φc
i (yi) =

K

min
k=1

1

Np
i

N
p

i
∑

j=1

(d
uj

i (yi)− d
uj

k,i)
2 , (2)

where Np
i is the number of pixels in superpixel i, and d

uj

k,i

denotes the depth of the kth candidate for superpixel i at

pixel uj . In practice, instead of directly using the candidate

depth, we fit a plane to the candidate superpixels and use the

intersection of this plane with the visual rays. This provides

some robustness to noise in the candidates.

As a second unary potential for the continuous variables,

we also make use of the candidate depths, but in a less di-



rect manner. More specifically, we train 4 different Gaus-

sian Process (GP) regressors, each corresponding to one di-

mension of the variable yi. The input to each regressor is

composed of the corresponding measurement of the candi-

dates for superpixel i. We found these inputs to be more

reliable than image features. For each GP, we used an RBF

kernel with width set to the median squared distance com-

puted over all the training samples. For more details on GP

regression, we refer the reader to [21]. Given the regressed

value yr
i for superpixel i, we compute the depth d

uj

r,i at each

pixel uj in the same manner as before, and write the poten-

tial

φr
i (yi) =

wr

Np
i

N
p

i
∑

j=1

(d
uj

i (yi)− d
uj

r,i)
2 , (3)

where wr is the weight of this potential relative to φc
i (yi).

In practice, we also use the regressed value yr
i as a state for

superpixel i in the first round of PCBP where no sampling

is performed.

Potential for mixed variables:

Our model also exploits a potential that involves both con-

tinuous and discrete variables. In particular, we define a

potential that encodes the compatibility of two superpixels

that share a common boundary and the corresponding dis-

crete variable. This potential can be expressed as

φm
i,j(yi,yj , ei,j) = wm×






























gi,j‖ni − nj‖
2

+ 1

Nb
i,j

Nb
i,j
∑

m=1

(dum

i (yi)− dum

j (yj))
2 if ei,j = so

1

Nb
i,j

∑Nb
i,j

m=1
(dum

i (yi)− dum

j (yj))
2 if ei,j = co

φo
i,j(yi,yj , ei,j) otherwise,

where wm is the weight of this potential, ni is the plane

normal of superpixel i, i.e., 3 components of yi, N
b
i,j is the

number of pixels shared along the boundary between super-

pixel i and superpixel j, and gi,j is a weight based on the

image gradient at the boundary between superpixel i and

j, i.e., gi,j = exp(−µi,j/σ), with µi,j the mean gradient

along the boundary between the two superpixels. To handle

the occlusion cases, the function φo
i,j(yi,yj , ei,j) assigns

a cost 0 if the two superpixels are in a configuration that

agrees with the state of ei,j , i.e., left occlusion or right oc-

clusion, and a cost θmax otherwise. While this potential de-

pends on three variables, it remains fast to compute, since

ei,j can only take four states.

Potentials for discrete variables:

Finally, we use two different potentials that only involve

discrete variables. The first one is a unary potential that

makes use of a classifier trained to discriminate between

occlusion (i.e., lo ∪ ro) and non-occlusion (i.e., so ∪ co)

cases. To this end, we utilize the image-based occlusion

cues introduced in [11] and employ a binary boosted deci-

sion tree classifier. Given the prediction of the classifier êp,

our potential function takes the form

φt
p(ep) =

{

−θt if ep agrees with êp
θt otherwise ,

(4)

where θt is a parameter of our model. Note that distinguish-

ing between all four types of edge variables proved too un-

reliable, which motivated our decision to only consider oc-

clusion vs. non-occlusion.

The second purely discrete potential is similar to the

junction feasibility potential used in [31] for stereo. More

specifically, it encodes information about whether the junc-

tion between three edge variables is physically possible, or

not. Therefore, this potential takes the form

φt
p,q,r(ep, eq, er) =

{

θmax if impossible case
0 otherwise .

(5)

Here, we employed the same impossible cases as in [31] for

our 4 states, assuming that co typically form a hinge, while

so are mostly coplanar. Note that, here, we only consid-

ered junctions of three superpixels, since junctions of four

occur very rarely. However, 4-junctions could easily be in-

troduced in our framework.

4. Experimental Evaluation

We now present our experimental results on depth esti-

mation in outdoor and indoor scenes. In particular, we eval-

uated our method on two publicly available datasets: the

Make3D range image dataset [25] and the NYU v2 Kinect

dataset [28]. For both datasets, we compare our results with

those of the depth transfer method of [13], which represents

the current state-of-the-art for depth estimation from a sin-

gle image. In addition to the baseline [13], we also evaluate

the results of our unary terms only and of our GP depth re-

gressors on their own, as well as the results of our model

without discrete variables and with the same pairwise term

as the ei,j = so case and of the first approximate MAP in

our model obtained before sampling particles in PCBP.

For our quantitative evaluation, we report errors obtained

with the three following commonly-used metrics:

• average relative error (rel): 1

N

∑

u

|gu−du|
gu

,

• average log
10

error: 1

N

∑

u
|log10gu − log10du|,

• root mean squared error (rms):

√

1

N

∑

u
(gu − du)2,

where gu is the ground-truth depth at pixel u, du is the cor-

responding estimated depth, and N denotes the total num-

ber of pixels in all the images.
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Figure 2. Qualitative comparison of the depths estimated with depth transfer [13] and with our method on the Make3D dataset. Color

indicates depth (red is far, blue is close).

Method rel log
10

rms

Depth transfer [13]
C1 0.355 0.127 9.2

C2 0.361 0.148 15.1

Our method
C1 0.335 0.137 9.49

C2 0.338 0.134 12.6

Table 1. Depth reconstruction errors on the Make3D dataset for

depth transfer [13] and for our method evaluated on two criteria

(C1 and C2, see text for details.)

In both experiments, we used SLIC [1] to compute the

superpixels. For each test image, we retrieved K = 7 can-

didates from the training images. The parameters of our

model were selected using a small validation set of 10 im-

ages from the NYU v2 dataset and kept the same in both

experiments. The specific values were wr = 1, wm = 10,

Method rel log
10

rms

Unary 0.352 0.142 9.61

GP regression 0.547 0.175 10.5

No discrete variables 0.326 0.147 9.932

No sampling 0.337 0.139 9.54

Full model 0.335 0.137 9.49

Table 2. Make3D: Comparison of our final results with those ob-

tained with unary terms only, with our GP depth regressors only,

using a model without discrete edge type variables, and after the

first round of PCBP where no sampling is involved.

θt = 10, and θmax = 20. Note that these parameters could,

in principle be learned. However, our approach proved ro-

bust enough for this to be unnecessary. We performed two

iterations of PCBP with Ns = 20 particles at each iteration.



Ground-truth Regression No sampling Sampling round 1 Final depth

Figure 3. Make3D: Depth maps at different stages of our approach.

Method rel log
10

rms

Depth transfer [13] 0.374 0.134 1.12

Our method 0.335 0.127 1.06

Table 3. Depth reconstruction errors on the NYU v2 dataset for

depth transfer [13] and for our method using the training/test par-

tition provided with the dataset.

Method rel log
10

rms

Depth fusion (no warp) [16] 0.371 0.137 1.3

Depth fusion [15] 0.368 0.135 1.3

Depth transfer 0.350 0.131 1.2

Our method 0.327 0.126 1.08

Table 4. Comparison of the depth estimation errors on the NYU

v2 dataset using a leave-one-out strategy.

4.1. Outdoor Scene Reconstruction: Make3D

The Make3D dataset contains 534 images with corre-

sponding depth maps, partitioned into 400 training im-

ages and 134 test images. All the images were resized to

460×345 pixels in order to preserve the aspect ratio of the

original images. Since the true focal length of the camera

is unknown, we assume a reasonable value of 500 for the

resized images. Due to the limited range and resolution of

the sensor used to collect the ground-truth, far away pixels,

were arbitrarily set to depth 80 in the original dataset. To

take this, as well as the effect of interpolation when resiz-

ing the images, into account in our evaluation, we report

errors based on two different criteria: (C1) Errors are com-

puted in the regions with ground-truth depth less than 70;

(C2) Errors are computed in the entire image. In this sec-

ond scenario, to reduce the effect of meaningless candidates

in sky regions, we used a classifier to label sky pixels and

for the depth of the corresponding superpixels to take the

value (0, 0, 1, 80). Note that the same two criteria (C1 and

C2) were used to evaluate the baseline.

In Table 1, we compare the results of our approach with

those obtained by depth transfer [13]. Note that, using cri-

teria C1, we outperform the baseline in terms of relative

error and perform slightly worse for the other metrics. Us-

ing criteria C2, we outperform the baseline for all metrics.

Method rel log
10

rms

Unary 0.350 0.132 1.11

GP regression 0.431 0.151 1.21

No discrete variables 0.354 0.141 1.20

No sampling 0.339 0.129 1.08

Full model 0.335 0.127 1.06

Table 5. NYU v2: Comparison of our final results with those ob-

tained with unary terms only, with our GP depth regressors only,

using a model without discrete edge type variables, and after the

first round of PCBP where no sampling is involved.

Fig. 2 provides a qualitative comparison of our depth maps

with those estimated by depth transfer [13] for some im-

ages of the dataset. Note that depth transfer tends to over-

smooth the depth maps and, e.g., merge foreground objects

with the background. Thanks to our discrete variables, our

approach better respects the discontinuities in the scene. In

Table 2, we show the results obtained with some of the parts

of our model. Note that, even though the sampling in PCBP

does not seem to have a great impact on the errors, it helps

smoothing the depth maps and thus makes them look more

realistic. This is evidenced by Fig. 3, where we show the

depth maps at different stages of our approach. Note that

the influence of each stage is more easily seen with NYU

v2 (see Fig. 5) for which the overall depth range is smaller.

4.2. Indoor Scene Reconstruction: NYU v2

The NYU v2 dataset contains 1449 images, partitioned

into 795 training images and 654 test images. All the im-

ages were resized to 427×561 pixels, while simultaneously

respecting the masks provided with the dataset. In this case,

the intrinsic camera parameters are given with the dataset.

We evaluated the depth transfer code provided by [13] to

obtain baseline results on the training/test provided with the

dataset and compare these results with those obtained with

our approach in Table 3. To be able to compare our results

with those reported in [14], we also applied our method in

a leave-one-out manner on the full dataset. The results are

reported in Table 4. Note that, in both cases, we outperform

the baselines for all metrics. These error metrics were com-

puted over the valid pixels (non-zero depth) in the ground-
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Figure 4. Qualitative comparison of the depths estimated with depth transfer [13] and with our method on the NYU v2 dataset.

Ground-truth Regression No sampling Sampling round 1 Final depth

Figure 5. NYU v2: Depth maps at different stages of our approach.

truth depth maps.

In Fig. 4, we provide a qualitative comparison of our re-

sults with those of [13] for some images. Note that the over-

smoothing of the depth maps generated by depth transfer is

even more obvious in the short depth range scenario. In

contrast, our approach still yields a realistic representation

of the scene. In Table 5, we show the influence of the dif-

ferent parts of our model. Note that all the components con-

tribute to our final results. Fig. 5 depicts the depth maps at

different stages of our approach. While sampling smoothes

the depth map, it still respects the image discontinuities.

In addition to the estimated depth, our model can also

predict the boundary type of the superpixel edges. In par-

ticular, the occlusion boundaries are useful cues for spatial

reasoning. We qualitatively evaluate the occlusion bound-

ary prediction by showing typical results in Fig. 6 for both

indoor and outdoor scenarios. Note that our model captures

most of the occlusion edges.

5. Conclusion

In this paper, we have presented an approach to estimat-

ing the depth of a scene from a single image. To this end, we

have employed continuous variables to represent the depth

of image superpixels, and discrete ones to encode relation-

ships between neighboring superpixels. As a result, we have

formulated depth estimation as inference in a higher-order,

discrete-continuous graphical model, which we have per-

formed using particle belief propagation. Our experiments



Figure 6. Estimated boundary occlusion map. The top row shows

the input image and the bottom row shows the estimated bound-

ary occlusion map. The superpixel boundaries are drawn in blue.

Pixels in magenta denote the estimated occlusion boundaries.

have shown that this model let us effectively reconstruct

general scenes from still images in both the indoor and out-

door scenarios. In the future, we intend to study how this

model can be exploited in 3D scene understanding by, e.g.,

jointly performing semantic labeling and depth estimation.
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