
Discrete-Continuous Gradient Orientation Estimation

for Faster Image Segmentation

Michael Donoser and Dieter Schmalstieg

Institute for Computer Graphics and Vision

Graz University of Technology

{donoser,schmalstieg}@icg.tugraz.at

Abstract

The state-of-the-art in image segmentation builds

hierarchical segmentation structures based on analyzing

local feature cues in spectral settings. Due to their

impressive performance, such segmentation approaches

have become building blocks in many computer vision

applications. Nevertheless, the main bottlenecks are

still the computationally demanding processes of local

feature processing and spectral analysis. In this paper,

we demonstrate that based on a discrete-continuous

optimization of oriented gradient signals, we are able

to provide segmentation performance competitive to

state-of-the-art on BSDS 500 (even without any spectral

analysis) while reducing computation time by a factor of

40 and memory demands by a factor of 10.

1. Introduction

Image segmentation is still one of the main building

blocks in many different computer vision applications. In

general segmentation has the goal to partition an image

into a set of meaningful atomic regions. Depending

on the subsequent application, one mainly distinguishes

two different scenarios for segments: (a) superpixel

segmentation, where one aims at partitioning the image

into a large number of regions (typically hundreds),

which should not straddle object boundaries, and (b)

segmentations into larger perceptually meaningful regions

that are frequently used for subsequent recognition tasks

and in this scope are referred to as object proposals.

To be able to handle the diverging requirements of the

two scenarios, the state-of-the-art in image segmentation

provides results in terms of a hierarchy [23, 28, 3], where

the lower levels provide accurate superpixel segments,

which are merged into larger hopefully semantically

meaningful segments at higher levels. Especially the

remarkable Ultrametric Contour Map (UCM) [3] has led to

improved performance in several diverse computer vision

applications that are based on a segment hierarchy.

For example, in [27] the UCM was used for

distinguishing between internal and occlusion boundaries

in video streams based on an optical flow analysis. The

approach significantly outperformed the state-of-the-art in

this field. In [21] the UCM was exploited to learn the

parameters of a Conditional Random Field (CRF), which is

frequently used for image labeling. Authors showed how to

learn 105 parameters in a global optimal manner, allowing

to derive previously unclear key findings for the area of

parameter learning. In [2] the problem of segmenting and

recognizing objects was addressed by combining bottom-up

segmentation cues from the UCM with top-down sliding

window part models. Evaluation showed that the proposed

semantic segmentation method especially outperforms

state-of-the-art approaches on articulated objects. In [16]

a random field image labeling problem was formulated

over a UCM hierarchy and it is demonstrated that optimal

solutions for the defined graph, that is denoted as pylon

model, can still be found by standard graph cut algorithms.

To sum up, the hierarchical segments delivered by

the Ultrametric Contour Map (UCM) [3] algorithm have

proven to be an indispensable tool for diverse computer

vision applications. In general, finding the UCM of

an image mainly consists of three subsequent steps: (a)

estimating local gradient orientations and magnitudes based

on evaluating powerful local feature cues using advanced

learning techniques, (b) analysis of the oriented gradient

signals to encode global dependencies using spectral

partitioning procedures and (c) greedily merging oriented

watershed segments to build the final hierarchical data

structure. The UCM provides excellent results, but its

main bottlenecks are the time and memory demanding steps

of local feature processing and spectral partitioning. As

a consequence, building the segment hierarchy takes on

average a few minutes and requires Gigabytes of memory

even for small images, which might prevent its usage in an

even broader range of computer vision applications.

1

Some papers tried to address these performance issues

by either exploiting additionally available hardware or by

approximating core parts of the algorithm. For example

in [6] the runtime for calculating the required gradient

magnitudes was decreased by two orders of magnitudes due

to effective parallelization on powerful Graphics Processing

Units (GPUs). Nevertheless, this performance boost comes

at the cost of requiring a powerful GPU, that e. g. is

not available on mobile platforms. In contrast, in [28]

some algorithmic improvements to the UCM pipeline were

proposed. The main ideas were to base the segmentation on

a simple edge detection approach and to approximate the

spectral analysis by solving a reduced eigensystem, which

enables more efficient calculation.

In this paper, we also address the runtime issues

of the UCM approach. Our idea is to locally predict

oriented gradient signals by analyzing mid-level patches

in a discrete-continuous setup, hence we denote our

approach as DC-Seg. We first train a random forest

classifier for predicting prototypical edge templates using

efficiently calculated features, where the prototypes are

obtained by clustering ground truth segmentation patches.

For each prototype cluster, we afterwards independently

predict the continuous gradient orientation signals. During

test time, we only have to estimate the mid-level

patch features and pass them to the classifier and the

corresponding subsequent regressor, which provides local

gradient orientation measures in a fast manner. For the

last step, we stick to the original UCM idea of calculating

an oriented watershed transform and greedily merging the

neighbors to provide the final segmentation hierarchy.

Such an approach of exploiting edge patch prototypes

was also recently used in [18] for efficiently providing

feature responses that are complementary to conventional

gradient histogram representations. In a first step mid-level

patches of manually generated contours are clustered to

form so called sketch tokens, i. e. edge patch prototypes.

Then a random forest classifier is applied to predict for

all patches in the test image the sketch token assignment

probability maps, and the obtained responses are exploited

in a state-of-the-art detection framework. Promising results

on standard datasets were achieved.

The main motivation for such a discrete-continuous

approach is that for identifying the edge patch prototypes, a

different representation, i. e. the ground truth segmentation

instead of the image content, is used. The pre-assignment

step to prototypes injects more prior information into

the prediction problem, and as a consequence improves

prediction quality. As we show in the experiments, our

approach outperforms the approach of directly regressing

the oriented gradient signals.

The experimental evaluation finally shows that our

approach provides segmentation performance competitive

to the state-of-the-art reducing computation time in

comparison to UCM by a factor of 40 and memory demands

by a factor of 10, even if we do not include spectral analysis.

Additionally, it is easily possible to add a spectral analysis

step, which improves performance even beyond the UCM

results, but still at significantly lower runtime.

2. Related Work

Image segmentation is a well-researched field in

computer vision and many different methods have been

proposed over the last years. We can mainly group them

into (a) the superpixel field or (b) the large segment field.

In the superpixel field three different methods have

proven to be most popular: the global optimal graph based

segmenter [12], the normalized cut based method [24], and

the mean shift algorithm [7]. Recently, several new methods

addressed specific limitations of the aforementioned

algorithms. For example in [9] an algorithm denoted as

SEEDS was introduced. It is based on a simple and

efficient hill-climbing optimization, which continuously

refines superpixel boundaries. Since the hill-climbing

optimization can be stopped at any time, the method

can be optimally adjusted to the available computational

power. In [1] a fast method called SLIC was described

that allows to specify the desired number of regular,

compact superpixels in the returned segmentation result.

Hence, for SLICs simply the approximate number of

superpixels has to be specified as the only parameter.

The method proposed in [20] returns segments that are

forced to conform to a regular superpixel lattice. Such an

approach has the advantage, that the segmentation result

maintains a regular relationship between segments yielding

fixed neighbourhood relations. Subsequent algorithms may

benefit from such a relationship.

In the large segment field, the most popular approach

is the aforementioned Ultrametric Contour Map (UCM)

algorithm. The UCM was recently adapted in [23], where

the greedy merging process in the final step of the UCM

was explicitly addressed. The core idea is to base the

merging step on a cascade of classifiers that is trained

sequentially by maximizing the boundary recall. Such an

approach enables to adapt the weights of the individual

features to the different scales that are analyzed. Excellent

results were shown on standard benchmarks, however at

the cost of increased runtime. In [15] a higher-order

correlation clustering method was proposed. The method

starts from a fine-grained segmentation, and afterwards

partitions the corresponding graph in a single clustering

step, where the number of regions has to be specified. In [5]

the Maximum Weight Independent Set (MWIS) algorithm

was used to infer meaningful segments from a provided

ensemble of distinct, low-level segmentations of the image.

By specifying reasonable weights for each segment and

2

for each neighboring segment pair the MWIS outputs a

single, unique partition of the image. If for example applied

onto the UCM results, segmentation performance is further

increased, because it implicitly selects optimal segments

that may come from different levels of the UCM hierarchy.

3. Method Description

The core part of our image segmentation approach which

we denote as DC-Seg is to predict local gradients for each

pixel in a test image, by applying a discrete-continuous

learning pipeline to local mid-level patch descriptors. We

first have to train our model using labeled training data,

i. e. we assume that we have given a set of color images and

corresponding ground truth segmentations (Section 3.1).

Once our model is trained, we can locally predict the

gradients, which are then passed to an oriented watershed

transform and the results are analyzed to obtain the

hierarchical segmentation (Section 3.2).

3.1. Training

We assume that we have given a set of N color images

I = {I1, I2, . . . , IN} (1)

and a corresponding set of ground truth segmentations

S =
{

S1
1 , S

2
1 , . . . , S

k1

1 , S1
2 , . . . S

k2

2 , . . . , Skn

N

}

(2)

where each image Ii might have a different number ki of

segmentation ground truths S
j
i . Each segmentation ground

truth can be represented as a binary image B
j
i , highlighting

the contours between neighboring segments.

The main goal of our training step is to learn how

to effectively and efficiently predict an oriented gradient

signal ∇ = {∇1,∇2, . . . ,∇C} for all patches in a test

image, where C is the number of discretization levels for

the orientation (fixed to 8 in all our experiments). The

predicted local gradients are then used to infer a hierarchical

segmentation structure. Obviously the final quality of

the segmentation hierarchy is strongly depending on an

accurate local prediction of the gradients.

The most straight forward way for predicting the

oriented gradients would be to directly learn a regressor,

that maps local patch descriptors to C different gradient

orientations. As we show in the experimental evaluation,

such a basic approach fails to provide satisfactory results.

For this reason, we propose a discrete-continuous inference

process. The idea is to first train a classifier that assigns

the local patch to one of a set of prototypical edge patches

P = {P1, P2, . . . , PP } or to a background class PP+1.

Afterwards all training patches assigned to a specific class

Pi are used to define a prediction function Ri with i =
1, . . . , P (background predicts zero magnitudes) to obtain

the required continuous gradient orientations.

To sum up, our overall training process consists of

the following three steps: (a) identification of edge patch

prototypes P , (b) prototype classifier training and (c)

oriented gradient regressor training.

Edge Patch Prototypes As a first step we aim at

identifying a set of prototypical mid-level edge patches

from our training data using the provided ground truth

data as representation. Note that such mid-level patch

prototypes were recently in the focus of several research

papers [26, 10, 18]. We randomly select a set of positive

edge patches pi of the same size S × S from all binary

images B
j
i provided in our training data set S . Positive

samples here means that these patches all have a segment

boundary at their center pixel, i. e. the binary value of the

center pixel of the patch in B
j
i is one.

To identify the prototype set P in general any

unsupervised clustering approach can be applied. We stick

to the standard approach of applying K-Means clustering,

as it is frequently done in the field of image retrieval.

As suggested in [18], to be able to handle slight

shifts of the edges within the local patches, we extract

a shift-invariant descriptor based on orientated gradient

histograms and use the descriptor output in the K-Means

clustering. In such a way, we obtain a representative

set of edge patch prototypes P = {P1, P2, . . . , PP } and

the unique assignment of all positive edge patches to the

prototypes. This information is now used for mid-level

patch classification in our second step.

Patch Classifier Training Once we have obtained our P

prototypes, we train a single mid-level patch classifier

f : RD → L , (3)

which enables to classify a D-dimensional vector x (our

mid-level patch descriptor) to one label within our label set

L = {l1, l2, . . . lP+1}. Hence, we define P + 1 labels,

including P labels representing all prototypes obtained in

the way as described in the previous paragraph and one

additional background label.

For defining the training samples, we use all patches

assigned to the corresponding cluster obtained by the

K-Means approach for the positive edge patches (labels

l1, l2, . . . lP), and for the background we randomly sample

non-edge patches (center pixel is zero) from our training

set (label lP+1). As input to the classifier we use same

features as proposed in [18], that have shown to be powerful

and fast due to the usage of the integral image structure.

Specifically, we exploit color channel, gradient magnitude,

quantized gradient channel and self-similarity features for

our segmentation approach.

As classifier we apply the widely used random

forests approach [4], which naturally handles multi-class

3

problems in a probabilistic and efficient manner and

has shown to outperform related approaches in several

vision applications, especially if many training samples

are available as in our scenario. Random forests were

successfully applied in diverse computer vision fields like

human pose recognition from depth images [25], object

detection [13] or tracking [17].

In general the goal of random forests is to obtain

the posterior distribution p (l|x), where x ∈ R
D is the

observation (in our case the local patch descriptor) and

l ∈ L is the discrete class label (in our case l ∈
{l1, l2, . . . lP+1}). Based on imitating the natural behavior

of seeking several opinions before making any crucial

decision, random forests combine the prediction of several

base classifiers (decision trees) inducing randomization at

several levels to produce ensembles of strongly diversified

models. Each tree uniquely splits the feature space into

several bins and estimating the class-specific posterior

probabilities simply boils down to counting the number of

class occurrences within the individual bins. We follow the

standard procedure of building the forest for classification

as outlined in [8]. After we have trained our random forest,

we are able to predict the class assignments of a previously

unseen test sample (a mid-level patch descriptor) to our

classes in a probabilistic manner.

Oriented Gradient Regression For each obtained

edge patch prototype cluster, we additionally define a

prototype-specific prediction function

rl : RD → R
C , (4)

where l is an index for the prototype cluster analyzed and C

is the number of gradient orientations considered. Based on

the functions rl, we can then predict the oriented gradient

signals ∇ = {∇1,∇2, . . . ,∇C} per mid-level patch that

are required for the oriented watershed step outlined in

the next paragraph. The core idea here is that we want

to approximate the excellent gPb-performance [19], which

is considered as state-of-the-art gradient detector. For this

reason, we apply the gPb detector to all images within our

training dataset I. According to the randomly selected set

of positive mid-level training patches, we consider the C

gradient orientations of the patch center pixel, as provided

by the gPb algorithm, as the ground truth data for training.

Since we have assigned each patch to one of our

P + 1 labels in the previous step, we have to define

a regression function rl independently for all positive

classes assuming that for the background class the gradient

magnitudes are all zero, i. e. in overall we have to find P

independent functions rl. We again describe the patches

by the same features as outlined before. For predicting the

orientation signals, we stick to a simple approach due to

efficiency reasons. We represent each prototype cluster by

the mean gradient orientation responses over all training

samples assigned to the corresponding cluster denoted

as ∇
l

=
{

∇
l

1,∇
l

2, . . . ,∇
l

C

}

. For prediction we then

use the probabilistic assignment values p (l|x) to weight

the corresponding mean gradient responses per cluster,

which allows to predict the local gradient orientations for

each mid-level patch within a test image. The predicted

values are finally used in an oriented watershed based

segmentation step, which is outlined in the next section.

3.2. Image Segmentation

After training our classifier f and the corresponding

functions rl per prototype as described in the previous

section, we are now able to predict the local gradient

orientation densely for a previously unseen test image in an

efficient manner. We first densely calculate local features,

which yields a D-dimensional vector x ∈ R
D per pixel.

These vectors are passed to the generic classifier f , which

returns the class-specific posterior probabilities p (li|x).
We then use a weighted combination of the average

prototype gradient orientations for prediction by

∇ = p (li|x) ∇
li

. (5)

As a byproduct, the classification process allows to

predict the probability e of having an edge at the center pixel

of the mid-level patch by

e =
∑

i=1...P

p (li|x) = 1− p (lP+1|x) , (6)

where the label P + 1 again represents our background

class. We use the estimated edge probabilities e to reweight

the local gradient orientation signals for every pixel in the

image. Note that the entire prediction pipeline is quite fast,

since we use efficient features in combination with a very

efficient classifier and prediction step.

The final step of our method is the same as in the

Ultrametric Contour Map (UCM) [3] algorithm. We

use the predicted local gradient orientations and calculate

an over-segmentation by applying an oriented watershed

segmentation, where the obtained segments define the

highest level of detail considered, i. e. the leaf nodes

of the final segmentation hierarchy. The regions of

the finest level-of-detail are subsequently merged using a

greedy strategy, which yields the segment hierarchy we are

interested in. For more details on this step see [3].

Please note that in our segmentation pipeline, we

completely omit any global optimization process, for

example based on spectral clustering, as it is done

in state-of-the-art approaches [3, 28]. Such a global

optimization takes a long time, and this was the reason

that e. g. in [28] a more efficient spectral analysis approach

was proposed. As we show in the experiments, we achieve

4

quite competitive performance, even if we do not apply

any global optimization. Nevertheless, any of the spectral

approaches is applicable in our setup, since they are only

an additionally applied analysis step. We show in the

experiments that by including the spectral analysis we can

slightly improve results, however at least at the cost of

doubling the runtime.

4. Experiments

We evaluate our proposed segmentation method denoted

as DC-Seg on the popular Berkeley segmentation dataset

BSDS 500 [3]. This dataset consists of 500 color

images, split into 200 training, 100 validation and 200 test

images. We trained our local oriented gradient estimator

as described in Section 3.1 on the 200 training images and

used the validation set for parameter tuning. We fixed the

patch size to S = 31 which leads to an 17 654 dimensional

feature vector, built a codebook of P = 150 mid-level

patch prototypes and considered C = 8 different gradient

orientations, equally sampled in the interval [0, π). For

learning we used the random forest framework provided

in the toolbox of Piotr Dollar [11]. For the classifier we

trained 25 trees using 1000 positive samples per prototype

class and the same number of negative samples per tree.

The trees are all fully grown until the number of samples is

below 5. We implemented our method in Matlab extending

the publicly available Sketch Tokens code of [18]. Code is

provided online at http://vh.icg.tugraz.at.

We compare our method to the state-of-the-art in image

segmentation using the standard measures of segment

coverage (Cover – per-pixel segment overlap, higher

is better), Probabilistic Rand Index (PRI – pairwise

compatibility of pixel assignments, higher is better) and

Variation of Information (VoI – relative entropy, lower is

better). More details on these measures can be found in [3].

The provided segmentation hierarchy allows to extract

segmentation results of differing granularity by accessing

specific levels of the hierarchy. Hence, we can derive two

independent scores by optimizing the scale in two ways: (a)

select one scale over the entire dataset (ODS) or selecting

an individual, optimal scale per image (OIS).

We compare our method to the following state-of-the-art

approaches: the Ultrametric Contour Map and its

adapted version based on Canny edges (ucm and

canny-ucm) [3], the reduced order spectral approach

(red-spec) [28], the agglomerative merging segmentation

algorithm (agg-mer) [14], the mean-shift algorithm

(mean-shift) [7], the global optimal graph based segmenter

(graph-seg) [12] and the normalized cut based method

(norm-cut) [24]. For comparison, we first list the scores

if we directly apply our proposed method as described in

Section 3 (DC-Seg), which neglects a subsequent spectral

analysis and as a consequence is the fastest.

BSDS 500 Cover PRI VoI

ODS OIS ODS OIS ODS OIS

Human 0.72 0.72 0.88 0.88 1.17 1.17

ucm [3] 0.59 0.63 0.81 0.85 1.70 1.52

red-spec [28] 0.56 0.62 0.81 0.85 1.78 1.56

agg-mer [14] 0.56 0.60 0.81 0.84 1.78 1.66

mean-shif t [7] 0.54 0.58 0.79 0.81 1.85 1.64

graph-seg [12] 0.52 0.57 0.80 0.82 2.21 1.87

norm-cut [24] 0.45 0.53 0.78 0.80 2.23 1.89

canny-ucm [3] 0.49 0.55 0.79 0.83 2.19 1.89

DC-Seg 0.58 0.63 0.82 0.85 1.75 1.59

DC-Seg-appr 0.59 0.64 0.82 0.85 1.69 1.52

DC-Seg-full 0.59 0.64 0.82 0.85 1.68 1.54

Table 1: Evaluation of image segmentation methods on

the Berkeley segmentation dataset BSDS 500. Scores if

selecting the optimal dataset scale (ODS) or the optimal

image scale (OIS) are shown. To measure the quality of

the obtained segmentation results, the coverage (Cover),

the Probabilistic Rand Index (PRI) and the Variation of

Information (VoI) is used. Best results are shown in bold.

The corresponding runtimes are given in Table 2

Additionally, we also considered two global spectral

analysis adaptations of our proposed approach using (a) the

original spectral approach used in the UCM [3] and (b)

the recently proposed reduced order spectral analysis [28]

(DC-Seg-full and DC-Seg-appr). Such spectral extensions

can be easily integrated in our framework, since they

independently also predict oriented gradient signals. We

simply combine our predicted gradients and the spectral

predictions by a weighted linear combination defined as

∇ = α ∇+ (1− α)∇spec , (7)

where ∇spec are the estimates obtained by the

corresponding spectral analysis.

Table 1 follows the main evaluation protocol of BSDS

500 by summarizing all results by rounding the values

to two digits. As can be seen, our proposed approach

(DC-Seg) yields results that are competitive to the much

more computationally demanding UCM approach. By

incorporating a spectral analysis, we are even able to

outperform UCM, still at a reduced runtime, since our

approach applies a much more efficient feature extraction

and learning pipeline.

Table 2 directly compares our approaches to the UCM in

more detail, listing scores up to 4 digits and additionally

the average runtime required for segmenting an image,

evaluated on a desktop PC with 3.6 GHz quad-core

Intel Core i7 processor. As can be seen, our proposed

method without any spectral extension provides competitive

performance, while reducing the runtime by a factor

5

http://vh.icg.tugraz.at

Time (s) Cover PRI VoI

ucm 243.14 0.5865 0.8149 1.6953

DC-Seg 5.90 0.5834 0.8209 1.7494

DC-Seg-appr 13.34 0.5939 0.8223 1.6897

DC-Seg-full 143.83 0.5937 0.8218 1.6834

Table 2: Analysis of average runtime required for

segmenting an image and performance on the BSDS 500

dataset using the ODS measure. Best results are shown in

bold. As can be seen, even without a subsequent spectral

analysis (DC-Seg) we achieve competitive performance at a

reduced runtime of a factor of 40.

ODS OIS Area-PR

ucm [3] 0.73 0.76 0.73

Sketch Tokens [18] 0.73 0.75 0.78

SCG [22] 0.74 0.76 0.77

DC-Seg 0.73 0.76 0.76

Table 3: Contour detection performance evaluation on

BSDS 500. Best results are shown in bold. Comparison

to three state-of-the-art approaches.

of 40 compared to the UCM algorithm. Furthermore,

as expected adding the spectral analysis improves the

performance, nevertheless comes at the cost of an increased

runtime, for example doubling it if using the reduced order

approximation. Our result also reassures the effectiveness

of the reduced order spectral scheme proposed in [28],

which provides similar results to the full spectral approach

used in the UCM, but at significantly reduced runtime. Such

a comparison on the entire Berkeley dataset was missing

in [28]. Considering the memory profile, the UCM requires

on average 2 Gigabytes of memory, whereas our method

only uses 0.2 Gigabytes, reducing memory demands by a

factor of 10. As a consequence, our approach enables the

segmentation of megapixel images in a hierarchical manner

on standard desktop PCs.

The resulting hierarchical segmentation result implicitly

also defines a contour detection result for each test

image. Hence, in Table 3, we give a comparison to

the state-of-the-art in contour detection such as the sparse

contour gradients [22].

An additional question that has to be answered is if

the proposed discrete-continuous pipeline is a reasonable

way to predict the oriented gradient signal for image

segmentation. To answer this, we made two additional

experiments. First, we tested the performance if training a

regressor that directly predicts the local gradients, skipping

our intermediate classification step. The direct regressor

leads to a considerably worse performance (Cover: 0.54

vs. 0.58, PRI: 0.78 vs. 0.82, VoI: 2.01 vs. 1.75). This might

be explained by the fact that for obtaining our prototypes,

we use a representation base (the ground truth segments)

that differs from the direct image content. Thus, we are

able to inject more prior knowledge into the prediction

process and as a consequence improve results. Second, we

replaced our prediction by the gradient detector proposed

in [22], which is the currently best-performing gradient

detection method on the Berkeley dataset. This method is

based on discriminatively trained sparse contour gradients,

hence exploits the recently popular concept of sparse

coding of patches. The method implicitly estimates local

gradient orientations which allows to directly replace our

discrete-continuous estimations with the one of [22]. We

again get considerably worse performance (Cover: 0.49

vs. 0.58, PRI: 0.79 vs. 0.82, VoI: 2.33 vs. 1.75), which

might be explained by the circumstance that our approach

aims at directly predicting oriented gradients, that are well

suited for the subsequent oriented watershed analysis. The

oriented gradients predicted by [22] represent the patch by a

sparse coding of prototypes, which seems to be not as suited

for the subsequent segmentation analysis.

The scores analyzed do not allow a deeper insight

into performance differences between segmentation results

obtained with different methods, since the correspondences

between the calculated scores and the input images are

lost. In order to overcome this weakness, we compare

our approach directly to the Ultrametric Contour Map

(UCM) using scatter plots, as shown in Figure 1. Each

point in this plots represents one of the 200 test images,

where the x-value is the coverage score of our method,

and the y-value is the coverage score of the UCM, both

evaluated at the optimal image scale. Points on the diagonal

line y = x indicate identical deviation from the ground

truth for both algorithms, while the distance to the line

is a measure for the disagreement between the obtained

segmentation approaches. Points above the diagonal line

represent images, where our algorithm performs better,

whereas points below indicate superior performance of the

UCM. Such plots allow to directly analyze on which images

performance differences are significant and additionally to

identify easy-to-segment images according to their location

along the main diagonal.

As can be seen, for 78 out of 200 images our non-spectral

approach even provides better scores compared to the UCM.

In overall on all images our returned segmentation result is

in close range to the UCM, hence demonstrating that our

much faster algorithm is indeed able to provide competitive

results on all test images. This can also be seen by the

four images where the scores diverge the most, which

are highlighted in Figure 1. But even in these cases,

the segmentations results are quite reasonable. Figure 2

6

Figure 1: Comparison of segmentation performance using

coverage scatter plots (UCM vs. proposed). Points above

the diagonal represent images, where our method performs

better. This discrimination is emphasized by different

colors. Extreme images, where the scores diverge most,

are included (left: image, middle: our result, right: UCM

result).

furthermore shows some exemplary segmentation results

comparing our proposed method to the UCM, where results

are obtained at the optimal database level. As can be seen,

results are also visually quite comparable, despite the fact

that our approach is 40 times faster.

5. Conclusion

In this paper, we introduced a novel approach denoted

as DC-Seg for providing a hierarchical segmentation

result in short computation time. The core idea was to

address computational complexity issues of the widely

used Ultrametric Contour Map (UCM). We proposed

a discrete-continuous approach for predicting oriented

gradients using powerful but fast to calculate features,

which are afterwards analyzed by an oriented watershed

segmentation step that provides the final segmentation

hierarchy. As we demonstrate in the experiments, our

method achieves competitive segmentation performance,

even if fully neglecting any subsequent global spectral

analysis step while reducing computation time by a factor of

40 and memory demands by a factor of 10. Adding spectral

analysis further boosts the performance even beyond UCM,

but at least doubles the runtime. Implementing our

approach on a powerful GPU might lead to a real-time

capable segmentation tool, where for example videos might

be segmented online, while the user can adapt the desired

granularity on-the-fly.

Acknowledgment

The research leading to these results has received

funding from the European Union Seventh Framework

Programme (FP7/2007-2013) under grant agreement

n◦ 601139 CultAR (Culturally Enhanced Augmented

Realities).

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and

S. Süsstrunk. Slic superpixels compared to state-of-the-art

superpixel methods. IEEE Transactions on Pattern Analysis

and Machine Intelligence (T-PAMI), 32:2274–2282, 2012.

[2] P. Arbelaez, B. Hariharan, C. Gu, S. Gupta, L. D. Bourdev,

and J. Malik. Semantic segmentation using regions and parts.

In Proc. of Conf. on Comp. Vision and Pattern Rec. (CVPR),

2012.

[3] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Contour

detection and hierarchical image segmentation. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(T-PAMI), 33(5), 2010.

[4] L. Breiman. Random forests. Machine Learning, 45:5–32,

2001.

[5] W. Brendel and S. Todorovic. Segmentation as

maximum-weight independent set. In Advances in Neural

Information Proc. of Systems (NIPS), pages 307–315, 2010.

[6] B. Catanzaro, B. Su, N. Sundaram, Y. Lee, M. Murphy, and

K. Keutzer. Efficient, high-quality image contour detection.

In Proc. of IEEE Intl. Conf. on Comp. Vision (ICCV), 2009.

[7] D. Comaniciu and P. Meer. Mean shift: a robust

approach toward feature space analysis. IEEE Transactions

on Pattern Analysis and Machine Intelligence (T-PAMI),

24(5):603–619, 2002.

[8] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests:

A unified framework for classification, regression, density

estimation, manifold learning and semi-supervised learning.

Foundations and Trends in Computer Graphics and Vision,

7:81–27, 2012.

[9] M. V. den Bergh, X. Boix, G. Roig, B. de Capitani, and

L. Van Gool. Seeds: Superpixels extracted via energy-driven

sampling. In Proc. of European Conf. on Comp. Vision

(ECCV), pages 13–26, 2012.

[10] C. Doersch, S. Singh, A. Gupta, J. Sivic, and A. A. Efros.

What makes paris look like paris? ACM Transactions on

Graphics (SIGGRAPH), 31(4), 2012.

[11] P. Dollár. Piotr’s Image and Video Matlab Toolbox

(PMT). http://vision.ucsd.edu/˜pdollar/

toolbox/doc/index.html.

[12] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient

graph-based image segmentation. Intl. Journal of Comp.

Vision (IJCV), 59(2):167–181, 2004.

[13] J. Gall and V. Lempitsky. Class-specific Hough forests for

object detection. In Proc. of Conf. on Comp. Vision and

Pattern Rec. (CVPR), 2009.

[14] D. Hoiem, A. A. Efros, and M. Hebert. Recovering occlusion

boundaries from an image. Intl. Journal of Comp. Vision

(IJCV), 91:328–346, 2011.

7

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html

Figure 2: Exemplary segmentation results on Berkeley BSDS 500 obtained on the optimal database scale. First: input image,

second: ground truth, third: our result, fourth: UCM result. The obtained segments are mapped to their mean RGB value and

boundaries between segments are highlighted, to be able to see if the main image details are preserved.

[15] S. Kim, S. Nowozin, P. Kohli, and C. D. Yoo. Higher-order

correlation clustering for image segmentation. In Advances

in Neural Information Proc. of Systems (NIPS), 2011.

[16] V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon

model for semantic segmentation. In Advances in Neural

Information Proc. of Systems (NIPS), 2011.

[17] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for

real-time keypoint recognition. In Proc. of Conf. on Comp.

Vision and Pattern Rec. (CVPR), pages 775–781, 2005.

[18] J. Lim, C. L. Zitnick, and P. Dollár. Sketch tokens: A learned

mid-level representation for contour and object detection. In

Proc. of Conf. on Comp. Vision and Pattern Rec. (CVPR),

2013.

[19] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik. Using

contours to detect and localize junctions in natural images.

In Proc. of Conf. on Comp. Vision and Pattern Rec. (CVPR),

2008.

[20] A. P. Moore, S. J. D. Prince, J. Warrell, U. Mohammed, and

G. Jones. Superpixel lattices. In Proc. of Conf. on Comp.

Vision and Pattern Rec. (CVPR), 2008.

[21] S. Nowozin, P. V. Gehler, and C. H. Lampert. On parameter

learning in CRF-based approaches to object class image

segmentation. In Proc. of European Conf. on Comp. Vision

(ECCV), 2010.

[22] X. Ren and L. Bo. Discriminatively trained sparse code

gradients for contour detection. In Advances in Neural

Information Proc. of Systems (NIPS), pages 593–601, 2012.

[23] Z. Ren and G. Shakhnarovich. Image segmentation by

cascaded region agglomeration. In Proc. of Conf. on Comp.

Vision and Pattern Rec. (CVPR), 2013.

[24] J. Shi and J. Malik. Normalized cuts and image

segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence (T-PAMI), 22(8):888–905, 2000.

[25] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,

R. Moore, A. Kipman, and A. Blake. Real-time human pose

recognition in parts from single depth images. In Proc. of

Conf. on Comp. Vision and Pattern Rec. (CVPR), 2011.

[26] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery

of mid-level discriminative patches. In Proc. of European

Conf. on Comp. Vision (ECCV), 2012.

[27] A. Stein and M. Hebert. Occlusion boundaries from motion:

Low-level detection and mid-level reasoning. Intl. Journal

of Comp. Vision (IJCV), 82:325–357, 2009.

[28] C. J. Taylor. Toward fast and accurate segmentation. In Proc.

of Conf. on Comp. Vision and Pattern Rec. (CVPR), 2013.

8

