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Abstract

Recent work in structure from motion (SfM) has success-

fully built 3D models from large unstructured collections

of images downloaded from the Internet. Most approaches

use incremental algorithms that solve progressively larger

bundle adjustment problems. These incremental techniques

scale poorly as the number of images grows, and can drift

or fall into bad local minima. We present an alternative for-

mulation for SfM based on finding a coarse initial solution

using a hybrid discrete-continuous optimization, and then

improving that solution using bundle adjustment. The ini-

tial optimization step uses a discrete Markov random field

(MRF) formulation, coupled with a continuous Levenberg-

Marquardt refinement. The formulation naturally incorpo-

rates various sources of information about both the cameras

and the points, including noisy geotags and vanishing point

estimates. We test our method on several large-scale photo

collections, including one with measured camera positions,

and show that it can produce models that are similar to or

better than those produced with incremental bundle adjust-

ment, but more robustly and in a fraction of the time.

1. Introduction

Structure from motion (SfM) techniques have recently

been used to build 3D models from unstructured and uncon-

strained image collections, including images downloaded

from Internet photo-sharing sites such as Flickr [1, 6, 11,

25]. Most approaches to SfM from unstructured image col-

lections operate incrementally, starting with a small seed re-

construction, then growing through repeated adding of ad-

ditional cameras and scene points. While such incremental

approaches have been quite successful, they have two sig-

nificant drawbacks. First, these methods tend to be com-

putationally intensive, making repeated use of bundle ad-

justment [29] (a non-linear optimization method that jointly

refines camera parameters and scene structure) as well as

outlier rejection to remove inconsistent measurements. Sec-

ond, these methods do not treat all images equally, produc-

ing different results depending on the order in which pho-

tos are considered. This sometimes leads to failures due

to local minima or cascades of misestimated cameras. Such

methods can also suffer from drift as large scenes with weak

visual connections grow over time.

In this paper we propose a new SfM method for unstruc-

tured image collections which considers all the photos at

once rather than incrementally building up a solution. This

method is faster than current incremental bundle adjustment

(IBA) approaches and more robust to reconstruction fail-

ures. Our approach computes an initial estimate of the cam-

era poses using all available photos, and then refines that

estimate and solves for scene structure using bundle adjust-

ment. This approach is reminiscent of earlier work in SfM

(prior to recent work on unstructured collections) where a

good initialization was obtained and bundle adjustment was

used as a final nonlinear refinement step yielding accurate

camera parameters and scene structure. Thus one can think

of our approach as a means of providing a good initializa-

tion for highly unstructured image sets, one that is readily

refined using bundle adjustment.

Our initialization technique uses a two-step process com-

bining discrete and continuous optimization techniques. In

the first step, discrete belief propagation (BP) is used to

estimate camera parameters based on a Markov random

field (MRF) formulation of constraints between pairs of

cameras or between cameras and scene points. This for-

mulation naturally incorporates additional noisy sources of

constraint including geotags (camera locations) and vanish-

ing points. The second step of our initialization process

is a Levenberg-Marquardt nonlinear optimization, related

to bundle adjustment, but involving additional constraints.

This hybrid discrete-continuous optimization allows for an

efficient search of a very large parameter space of camera

poses and 3D points, while yielding a good initialization

for bundle adjustment. The method is highly parallelizable,

requiring a fraction of the time of IBA. By using all of the

available data at once (rather than incrementally), and by

allowing additional forms of constraint, we find that the ap-

proach is quite robust on large, challenging problems.

We evaluate our approach on several large datasets, find-
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ing that it produces comparable reconstructions—and in the

case of a particularly challenging dataset, a much better

reconstruction—to those produced by the state-of-the-art

IBA approach of [1], in significantly less time. We have

also created a dataset of several thousand photos, includ-

ing some with very accurate ground-truth positions taken at

surveyed points. On this dataset our method and IBA have

similar accuracy with respect to the ground truth, and thus

our method not only can yield similar results to IBA, but the

two achieve comparably accurate reconstructions.

2. Related work

Current techniques for large-scale SfM from unordered

photo collections (e.g, [1, 11, 21, 25]) make heavy use of

nonlinear optimization (bundle adjustment), which is sen-

sitive to initialization. Thus, these methods are run iter-

atively, starting with a small set of photos, then repeat-

edly adding photos and refining 3D points and camera

poses. While generally successful, incremental approaches

are time-consuming for large image sets, with a worst-case

running time O(n4) in the number of images.1 Hence re-

cent work has used clustering or graph-based techniques

to reduce the number of images that must be considered

in SfM [1, 3, 11, 26, 30]. These techniques make SfM

more tractable, but the graph algorithms themselves can be

costly, the number of remaining images can be large, and

the effects on solution robustness are not well understood.

Other approaches to SfM solve the full problem in a sin-

gle batch optimization. These include factorization meth-

ods [28], which in some cases can solve SfM in closed form.

However, it is difficult to apply factorization to perspective

cameras with significant outliers and missing data (which

are the norm in Internet photo collections).

Our work is most closely related to batch SfM methods

that solve for a global set of camera poses given local esti-

mates of geometry, such as pairwise relative camera poses.

These include linear methods for solving for global cam-

era orientations or translations [8, 14, 20], and L∞ meth-

ods for solving for camera (and possibly point) positions

given known rotations and pairwise geometry or point cor-

respondence [9, 22]. While fast, these methods do not have

built-in robustness to outliers, and it can be difficult to inte-

grate noisy prior pose information into the optimization. In

contrast, our MRF formulation can easily incorporate both

robust error functions and priors.

Some very recent work has incorporated geotags and

other prior information into SfM, as we do here. Sinha

et al. [24] proposed a linear SfM method that incorporates

1If the system is dense, direct methods for solving the reduced camera

matrix during bundle adjustment [29] take O(n3) time in the number of

images added so far. If a constant number of images is added during each

round of incremental SfM, the overall running time is O(n4). This can be

alleviated for some problems through sparse or iterative methods. [1]

vanishing points (but not geotags) in estimating camera ori-

entations. They use only a small number of pairwise esti-

mates of geometry (forming a spanning tree on an image

graph) for initializing translations, while our method in-

corporates all available information. Prior information has

also been used as a postprocess for SfM, e.g., by apply-

ing vanishing point or map constraints to straighten out a

model [12, 23], using sparse geotags to georegister an exist-

ing reconstruction [10], or using geotags, terrain maps, and

GIS data to register different connected components of a re-

construction [27]. In our work, we incorporate such geotag

and vanishing point information into the optimization itself.

Finally, other techniques for accelerating SfM have been

proposed, including methods for hierarchical reconstruc-

tion or bundle adjustment [7, 11, 15]. These methods still

depend on an incremental approach for initialization, but

structure the computation more efficiently. We present an

alternative that avoids incremental reconstruction entirely.

3. Global estimation of cameras and points

Our approach represents a set of images as a graph mod-

eling geometric constraints between pairs of cameras or be-

tween cameras and scene points (as binary constraints), as

well as single-camera pose information such as geotags (as

unary constraints). This set of binary and unary constraints

can be modeled as a Markov random field (MRF) with

an associated energy function on configurations of cam-

eras and points. A key contribution of our work is to use

both discrete and continuous optimization to minimize this

energy function; in particular, we use belief propagation

(BP) on a discretized space of camera and point parame-

ters to find a good initialization, and non-linear least squares

(NLLS) to refine the estimate. The power and generality of

this combination of techniques allow us to efficiently opti-

mize a more general class of energy functions than previous

batch techniques. This class includes robust error functions,

which are critical to obtaining good results in the presence

of noisy binary and unary constraints.

3.1. Problem formulation

The input to our problem is a set of images I =
{I1, . . . , In}, relative pose estimates between some pairs

of images (computed using two-frame SfM, described in

Section 4), point correspondences between the images, and

noisy absolute pose estimates for a subset of cameras (de-

rived from sources like geotags). Our goal is to estimate

an absolute pose for each camera, and a location for each

scene point, consistent with the input measurements and in

a geo-referenced coordinate system. We denote the abso-

lute pose of camera Ii as a pair (Ri, ti), where Ri is a 3D

rotation specifying the camera orientation and ti is the po-

sition of the camera’s optical center in a global coordinate

frame. The 3D position of a scene point is denoted Xk.
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Each pairwise estimate of relative pose between two

cameras Ii and Ij has the form (Rij , tij), where Rij is

a relative orientation and tij is a translation direction (in

the coordinate system of camera Ii). Given perfect pairwise

pose estimates, the absolute poses (Ri, ti) and (Rj , tj) of

the two cameras would satisfy

Rij = R⊤
i Rj (1)

λijtij = R⊤
i (tj − ti), (2)

where λij is an unknown scaling factor (due to the gauge

ambiguity in SfM). We can also write constraints between

cameras and scene points. For a scene point Xk visible to

camera Ii, let xik denote the 2D position of the point in Ii’s

image plane. Then we can relate the absolute pose of the

camera and the 3D location of the point:

µikxik = KiRi(Xk − ti) (3)

where Ki is the matrix of intrinsics for image Ii (assumed

known, see Section 4), and µik is an unknown scale factor

(the depth of the point). Equation (3) is the basis for the

standard reprojection error used in bundle adjustment. The

above three constraints can be defined on a reconstruction

graph G = (V,EC ∪ EP ) having a node for each camera

and each point, a set EC of edges between pairs of cameras

with estimated relative pose, and a set EP of edges linking

each camera to its visible points. Bundle adjustment typi-

cally only uses point-camera constraints, but in batch tech-

niques constraints between cameras have proven useful.

These constraints are unlikely to be satisfied exactly be-

cause of noise and outliers in relative pose estimates, so we

pose the problem as an optimization which seeks absolute

poses most consistent with the constraints according to a

cost function. Ideally, one would minimize an objective on

camera poses and points simultaneously, as in bundle ad-

justment, but in practice many batch techniques solve for

camera rotations and translations separately [14, 22, 24].

We follow this custom and define an MRF for each of these

two subproblems. A key concern will be to use objectives

that are robust to incorrect two-frame geometry and point

correspondence.

Rotations. From equation (1) we see that for neighboring

images Ii and Ij in the reconstruction graph, we seek abso-

lute camera poses Ri and Rj such that dR(Rij ,R
⊤
i Rj) is

small, for some choice of distance function dR. This choice

of distance function is tightly linked with the choice of pa-

rameterization of 3D rotations. Previous linear approaches

to this problem have used a squared L2 distance between

3 × 3 rotations matrices (i.e., the Frobenius norm) or be-

tween quaternions. Such methods relax the orthonormal-

ity constraints on these representations, which allows for an

approximate least squares solution. In our case, we instead

define dR to be a robustified distance,

dR(Ra,Rb) = ρR(||Ra − Rb||), (4)

for some parameterization of rotations (detailed below), and

a robust error function ρR (we use a truncated quadratic).

For some cameras we may have noisy pose information

from evidence like vanishing point detection and camera

orientation sensors. To incorporate this evidence into our

optimization, we assume that for each camera Ii there is a

distance function dO

i (R) that gives a cost for assigning the

camera to any absolute orientation R. This function can

have any form, including uniform if no prior information is

available; we propose a particular cost function in Section 4.

We combine the unary and binary distances into a total

rotational error function DR,

DR(R) =
∑

eij∈EC

dR
(

Rij ,R
⊤
i Rj

)

+ α1

∑

Ii∈I

dO

i (Ri), (5)

where R is an assignment of absolute rotations to the entire

image collection, EC is the set of camera-camera edges, and

α1 is a constant. We minimize DR using a combination of

BP and NLLS, as described in Section 4.

Camera and point positions. Having solved for camera

rotations, we fix them and estimate the positions of cam-

eras and a subset of scene points by solving another MRF

inference problem on the graph G. As with the rotations,

we define an error function using a combination of binary

and unary terms, where the binary terms correspond to the

pairwise constraints in equations (2) and (3), and the unary

terms correspond to prior pose information from geotags.

Equation (2) implies that for a pair of adjacent images Ii
and Ij we seek absolute camera positions ti and tj such that

the relative displacement induced by those absolute camera

positions, tj−ti, is close to the relative translation estimate

t̂ij = Ritij . Similarly, for a point Xk visible in image Ii,

we want the displacement Xk − ti to be close to the “ray

direction” x̂ik derived from the 2D position of that point in

the image (where x̂ik = R⊤
i K−1

i xik given observed posi-

tion xik and known intrinsics Ki). Thus, we can utilize both

camera-camera constraints and camera-point constraints.

Previous linear approaches have considered one or the

other of these constraints, by observing that t̂ij×(tj−ti) =
0 for camera-camera constraints [8], or that x̂ik × (Xk −
ti) = 0 for camera-point constraints [20]. These constraints

form a homogeneous linear system, but the corresponding

least squares problem minimizes a non-robust cost func-

tion that disproportionately weights distant points. Alter-

natively, L∞ formulations to this problem have been de-

fined [9, 22], but these too lack robustness. In contrast, we

explicitly handle outliers by defining a robust distance on

the angle between displacement vectors,

dT(ta, tb, tab) = ρ(angleof(tb − ta, tab)), (6)

where ρ again denotes a robust distance function.

We also integrate geotags into the optimization. For now,

we simply assume that there is a cost function dG

i (ti) for
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each camera Ii over the space of translations, which may be

uniform if no geotag is available; we propose a particular

form for dG

i in Section 4. We define the translational error

of an assignment of absolute positions T to cameras and

points as a combination of binary and unary terms,

DT(T ) = α2

∑

eij∈EC

dT(ti, tj , t̂ij) + dT(tj , ti, t̂ji) +

α3

∑

eik∈EP

dT(Xk, ti, x̂ik) +
∑

Ii∈I

dG

i (ti) (7)

where EC denotes the set of camera-camera edges in G,

EP is the set of camera-point edges, and α2 and α3 are

weighting constants. We could ignore one of these sets by

fixing α2 or α3 to 0; we evaluate these options in Section 5.

3.2. Initial poses and points via discrete BP

The objectives in equations (5) and (7) can be minimized

directly using Levenberg-Marquardt with reweighting for

robustness, as we discuss in section 3.3, but this algorithm

requires a good initial estimate of the solution. We tried

using raw geotags to initialize the camera positions, for ex-

ample, but we have found that they alone are too noisy for

this purpose. In this section, we show how to compute a

coarse initial estimate of camera poses and point positions

using discrete belief propagation on an MRF.

The reconstruction graph G can be viewed as a first-

order MRF with hidden variables corresponding to absolute

camera orientations and camera and point positions, observ-

able variables corresponding to prior camera pose informa-

tion, and constraints between pairs of cameras and between

cameras and points. Finding an optimal labeling of an MRF

is NP-hard in general, but approximate methods work well

on problems like stereo [4]. However compared with those

problems, our MRF is highly non-uniform (dense in some

places, sparse in others) and the label space is very large. To

do inference on this MRF efficiently, we use discrete belief

propagation (BP) [19], computing the messages in linear

time using distance transforms [5]. We use BP to solve both

the rotations in equation (5) and the translations in (7).

Estimating rotations. We first solve for absolute camera

rotations R by minimizing equation (5) using discrete BP.

Instead of solving for full 3D rotations, we reduce the state

space by assuming that most cameras have little twist (in-

plane rotation) because most photos are close to landscape

or portrait orientations and most digital cameras automati-

cally orient images correctly. (We estimate that about 80%

of photos in our datasets have less than 5◦ twist, and 99%

have less than 10◦ twist. The no-twist assumption is made

only during the BP stage; in the later NLLS and bundle ad-

justment stages we allow twist angles to vary.) Under this

assumption, camera orientations Ri can be represented as a

single unit 3-vector vi (the viewing direction). The distance

function in equation (5) then simplifies to

dR0(vi,vj) = ρR(||vij − R0(vi)
−1vj ||), (8)

where vij is the expected difference in viewing directions

(which can be computed from Rij) and R0(v) is a 3D ori-

entation with viewing direction v and no twist.2 We define

ρR(x) = min(x2,KR), for constant KR (we use 1.0).

Estimating translations and points. Having solved for

absolute camera orientations, estimating camera and point

positions involves minimizing Eq. (7). We use a modified

pairwise distance function dT based on the cross product

between vectors, which allows us to efficiently compute BP

messages using distance transforms [5]:

dT

approx(ta, tb, tab) = ρT (||tab × (tb − ta)||) (9)

= ρT (||tb − ta|| ||tab|| sin(θab)),

with θab=angleof(tb − ta, tab) and ρT (x)=min(x,KT )2

with KT set to about 10m. This approximation is related to

the linear approach of [8], which uses a non-robust version

of dT
approx and estimates translations by solving a sequence

of reweighted least squares problems. We note that such ap-

proaches are sensitive to outliers, as without the truncation

each term is unbounded and grows with ||tj − ti||
2.

3.3. Refining poses using non­linear least squares

Using the coarse estimates of rotations or translations

determined by BP, we apply continuous optimization to

the objective functions in equations (5) and (7), using the

Levenberg-Marquardt (LM) algorithm for non-linear least

squares [18]. Instead of defining a robust objective for LM,

we simply remove edges and geotags from the reconstruc-

tion graph that disagree with the BP estimates more than a

threshold, then run LM with a sum-of-square residual ob-

jective. These NLLS steps are related to bundle adjustment

in that both minimize a non-linear objective by joint esti-

mation of camera and (in the case of translations) point pa-

rameters. However, our NLLS stages separate rotation es-

timation from translation estimation, and integrate camera-

camera constraints in addition to point-camera constraints.

4. A large-scale reconstruction system

We now show how to use the approach described in the

last section to perform SfM on large unstructured image col-

lections. Our method consists of the following main steps:

1. Build the reconstruction graph G through image

matching and two-view relative pose estimation.

2. Compute priors from geotags and vanishing points.

3. Solve for camera orientations, R, using discrete BP

followed by continuous optimization.

2
R0(v) is unique unless v is straight up or down; we found that such

cases were uncommon enough to not have an effect on the optimization.
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4. Estimate the camera and 3D point positions, T , again

using BP followed by continuous optimization.

5. Perform a single stage of bundle adjustment, with the

pose estimates from steps 3 and 4 as initialization.

We now describe these five steps in detail.

Step 1: Producing pairwise transformations. We use

SIFT matching [13] and two-frame SfM [17] to estimate

correspondence and pairwise constraints between images.

We tried two approaches to avoid matching all pairs of im-

ages: first, a simplification of [1] that uses a vocabulary

tree [16] to find, for each image, a set of 80 candidate im-

ages to match; second, using geotags to find, for each im-

age, 20 nearby images as initial candidates [6], sampling

additional pairs from different connected components of

the match graph, and densifying the graph using query ex-

pansion [1]. For matched pairs, we use the 5-point algo-

rithm [17] followed by bundle adjustment to estimate rel-

ative pose. Since the 5-point algorithm requires intrinsi-

cally calibrated cameras, we only use images having focal

lengths in the Exif metadata. We also apply a heuristic to

remove high-twist images by finding images for which the

relative twist of most pairwise transformations is above 20◦.

In addition, we remove images with unusual aspect ratios,

as these are often panoramas or cropped images.

Step 2: Computing prior evidence. We compute unary

cost functions on camera pose using geotags and vanishing

points. For an image Ii with geotag gi, we define the posi-

tional cost function dG

i as a robust distance from the geotag,

dG

i (ti) = ρT (|| en(gi) − π(ti)||), (10)

where ρT is a truncated quadratic, π is a projection of 3D

camera positions into a local Cartesian plane tangent to

the surface of the earth, and en maps geotags in latitude-

longitude coordinates to this plane.3 The robustified dis-

tance function is essential because geotags are typically

quite noisy and contaminated with outliers [27]. For images

without geotags we use a uniform function for dG

i .

For rotations, we use a cost function dO

i for image Ii that

is a sum of distances over the three rotation dimensions,

dO

i (Ri) = dθi (Ri) + d
ψ
i (Ri) + d

φ
i (Ri), (11)

where dθi , d
ψ
i , and d

φ
i measure the error between an abso-

lute camera rotation Ri and prior pose information in pan,

twist, and tilt, respectively. For d
φ
i (Ri), we estimate the

tilt φi using vertical vanishing point (VP) detection and pe-

nalize the tilt of Ri as a function of angular distance to φi.

We detect vertical VPs as in [24], except that we use Hough

voting instead of RANSAC to find VPs. Given a vertical

VP estimate with sufficient support, we compute the corre-

sponding tilt angle φi; if no vertical VP is found, we use

3This coordinate frame is often called local east-north-up; we use only

the 2D east and north coordinates because geotags do not include altitudes.

a uniform function for d
φ
i . To estimate pan angle we ob-

serve that equation (2) constrains the absolute orientation

Ri of camera Ii, given absolute positions of cameras Ii and

Ij and the relative translation between them. Using geotags

as estimates of the camera positions, we obtain a weak cost

distribution for camera pan (heading direction),

dθi (Ri) =
∑

j∈N(i)

w
g
iw

g
j min(||Ritij −

gij

||gij ||
||,KG)2,

where N(i) are the neighboring cameras of Ii, gij =
en(gj) − en(gi), w

g
i and w

g
j indicate whether Ii and Ij

have geotags, and KG is a constant set empirically to 0.7.

Our current BP implementation assumes that cameras have

zero twist (see sec. 3), so we ignore the twist error term d
ψ
i .

Step 3: Solving for absolute rotations. We use discrete

loopy belief propagation (BP) [19] to perform inference on

our MRFs. For rotations, we parameterize the unit sphere

into a 3D grid with 10 cells in each dimension, for a total of

L = 1000 labels for each camera. The advantage of this pa-

rameterization is that the distance function in equation (8)

becomes separable into a sum over dimensions, which al-

lows the use of distance transforms to compute each mes-

sage in linear time [5]. (Note that cells not intersecting the

surface of the unit sphere are invalid and thus are assigned

infinite cost.) We then run non-linear least squares to op-

timize equation (4) (using a squared distance), initializing

the twist angles to 0 and the viewing directions to those es-

timated by BP. Inside this optimization, we represent dis-

placement rotations using Rodrigues parameters, allowing

the twist angles to vary. We used Matlab’s lsqnonlin, us-

ing its sparse preconditioned conjugate gradients solver.

Step 4: Solving for translations and points. Having es-

timated rotations, we next apply discrete BP to estimate

camera and point positions. To reduce the label space, dur-

ing BP we solve for 2D positions, as for most scenes camera

and point positions vary predominantly over the two dimen-

sions in the ground plane. (The later NLLS and BA stages

remove this constraint.) We discretize this space depending

on the geographic size of the region being reconstructed,

using a 300 × 300 grid where each cell represents an area

of about 1-4 meters square, for a total of L = 90000 la-

bels. We use discrete BP to minimize (7) using the approx-

imate distance function (9), with a modification to allow

the use of the distance transform: when sending a message

from camera i to j, instead of using the pairwise distance

function α2(d
T(ti, tj , t̂ij) + dT(tj , ti, t̂ji)) suggested by

Eq. (7), we use 2α2d
T(ti, tj , t̂ij). For the NLLS optimiza-

tion, we used lsqnonlin to minimize the squared residuals

in Eq. (7), allowing cameras and points to vary in height as

well as ground position. We generate a set of scene points

by finding point tracks [1]; to reduce the size of the op-

timization problem, we greedily select a subset of tracks

that covers each camera-camera edge in the reconstruction
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Figure 1. Translation estimates for CentralRome. Camera positions after BP, after NLLS refinement, and after final bundle adjustment.

Figure 2. CentralRome reconstruction, using incremental bundle adjustment (left) and our technique (right), shown as top views projected

on a map. Black points are cameras; blue points are scene points. There is a large drift in scale in the IBA solution (left), due to several

weak connections between different parts of the reconstruction. For instance, the Colosseum (lower right) is smaller than it should be given

the scale of the reconstructed Il Vittoriano monument (upper left). In addition, the inside and outside of the Colosseum do not align. The

scale and alignment of the scene in our solution (right) is much more consistent.

graph at least k1 times, and that covers each image at least

k2 ≥ k1 times (we used k1 = 5 and k2 = 10).

Step 5: Bundle adjustment. We use the estimates for the

cameras and a sparse set of 3D points obtained in the last

step as initialization to a global bundle adjustment stage in

which all parameters including camera twist and height are

refined simultaneously. We bundle adjust the cameras and

the subset of 3D points selected in the previous step, trian-

gulate the remaining points with reprojection error below a

threshold, and run a final bundle adjustment. We use the

preconditioned conjugate gradients bundle adjuster of [2]

and a robust Huber norm on the reprojection error.

5. Results

We have applied our approach to four large datasets,

summarized in Table 1, including one with over 15,000 im-

ages in the largest connected component of the reconstruc-

tion graph. The Acropolis, Dubrovnik, and CentralRome

datasets consist of images downloaded from Flickr via the

public API, while Quad consists of photos of the Arts Quad

at Cornell University taken by several photographers over

several months. For each dataset we ran the approach de-

scribed in Section 4, including the discrete BP, continuous

NLLS, and a final bundle adjustment. For these problems,

we note that simple initializations to BA or NLLS perform

poorly. We tried both random initialization of parameters,

as well as initializing translations using the geotags, but

both resulted in reconstructions with large errors. This high-

lights the fact that good initialization is critical, as well as

the large degree of noise in the geotags.

Comparison to Incremental BA (IBA). To compare our

approach to a state-of-the-art technique that uses IBA, we

ran the datasets through a version of Bundler [25] that uses

an efficient bundle adjuster based on preconditioned con-

jugate gradients [2], then georegistered the results by us-

ing RANSAC to align the model with the geotags. Table 2

summarizes results of this comparison, including distances

between corresponding camera positions and viewing direc-

tions. It is important to note that the IBA solution has errors

and is thus not ground truth, but it does represent the state-

of-the-art in SfM and is thus a useful comparison. These

results show that the raw geotags are quite noisy, with a me-

dian translation error of over 100 meters for some datasets.

The estimates from BP are significantly better, and results

from the full process (including a final bundle adjustment

step) agree with the IBA solution within a meter for all

datasets except CentralRome. The differences for Central-

Rome are large because IBA produced poor results for this

set, as discussed below. The median differences between

point positions for the two methods are also less than 1m

for all sets except CentralRome. For the camera orienta-
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Total Images in largest Cam-cam edges Cam-pt edges % Scene size Reconstructed

Dataset images CC (|V |) (|EC |) (|EP |) geotagged (km2) images

Acropolis 2,961 463 22,842 42,255 100.0% 0.1×0.1 454

Quad 6,514 5,520 444,064 551,670 77.2% 0.4×0.3 5,233

Dubrovnik 12,092 6,854 1,000,178 835,310 56.7% 1.0×0.5 6,532

CentralRome 74,394 15,242 864,758 1,393,658 100.0% 1.5×0.8 14,754

Table 1. Summary of datasets: Total number of photos; number of images, camera-camera edges, and camera-point edges in the largest

connected component; fraction of images with geotags; approximate scene size; and number of reconstructed images using our approach.

Rotational difference Translational difference Point difference

Our approach Linear approach [8] Our approach Our approach

Dataset BP NLLS Final BA Linear NLLS Geotags BP NLLS Final BA Final BA

Acropolis 14.1◦ 1.5◦ 0.2◦ 1.6◦ 1.6◦ 12.9m 8.1m 2.4m 0.1m 0.2m

Quad 4.7◦ 4.6◦ 0.2◦ 41◦ 41◦ 15.5m 16.6m 14.2m 0.6m 0.5m

Dubrovnik 9.1◦ 4.9◦ 0.1◦ 11◦ 6◦ 127.6m 25.7m 15.1m 1.0m 0.9m

CentralRome 6.2◦ 3.3◦ 1.3◦ 27◦ 25◦ 413.0m 27.3m 27.7m 25.0m 24.5m

Table 2. Median differences between our camera pose estimates and those produced by incremental bundle adjustment.

tions, the median angle between viewing directions of the

IBA solution and the output of BP is between about 5◦ and

14◦, with the continuous optimization decreasing the dif-

ference below 5◦, and the final BA step further reducing

it to less than 1.5◦(and below 0.5◦ for all datasets except

CentralRome). We thus see that our approach produces re-

constructions that are quantitatively similar to incremental

methods in cases where IBA produces reasonable results.

We also tried the batch approach of [8] on these datasets.

The rotation estimates produced by this linear technique

were reasonable for the densely-connected Acropolis and

Dubrovnik sets, but poor for the other two sets (as shown in

the table), even when we ran NLLS on the output of [8]. The

translations estimates were very poor for all of the datasets,

even when we modified [8] to include geotag priors. This

suggests that the robustness used by our approach is im-

portant in getting good results on large, noisy datasets (as

existing evaluations of linear approaches like [8] and [24]

were on much simpler, more homogeneous datasets).

Running times. As shown in Table 3, our approach is sig-

nificantly faster than incremental bundle adjustment on all

of the datasets that we study. The improvement is particu-

larly dramatic for the larger datasets; for CentralRome for

example, our approach took about 13 hours compared to

about 82 hours for IBA, or a more than 6x speed-up. One

of the reasons for this speed-up is that BP (unlike IBA) is

easily parallelizable. The running times reported here used

a multi-threaded implementation of rotations BP on a single

16-core 3.0GHz machine and a map-reduce implementation

of translations BP on a 200-core 2.6GHz Hadoop cluster.

NLLS was single-threaded and run on a 3.0GHz machine.

For BA and IBA we used the highly-optimized implemen-

tation of [1], which uses a parallel BLAS library to achieve

some parallelism, on a single 16-core 3.0GHz machine.

The asymptotic running time of our approach also com-

pares favorably to that of IBA. In contrast to the the worst

case O(n4) running time of IBA (using dense linear alge-

bra), where n is the number of images, our approach is

O(n3): each application of belief propagation takes time

O(n2L) per iteration, where L is the size of the label space,

and the final bundle adjustment step takes O(n3) time in the

worst case. Memory use of BP is also O(n2L), although

messages can be compressed and stored on disk between

iterations (as our Hadoop implementation does).

Comparison to ground truth. To evaluate our results

against ground truth, we collected highly accurate geotags

(with error less than 10cm) for a subset of 348 photos for the

Quad, based on survey points found using differential GPS.

We also collected geotags using consumer GPS (an iPhone

3G); the precise geotags are used for ground-truth, while

the consumer geotags are used as priors in the optimization.

Table 4 compares the error of camera pose estimates pro-

duced by IBA to those of the various stages of our method.

IBA produces slightly better estimates than our approach,

but the difference is quite small (1.01m versus 1.16m). The

table also studies the sensitivity of our approach to the frac-

tion of photos having geotags. As the fraction of geotagged

images decreases below about 10%, the accuracy starts to

decrease. This seems to be due to less accurate global ro-

tation estimates, indicating that weak orientation informa-

tion is helpful for getting good results. We also tested us-

ing only the camera-camera edges or only the camera-point

edges during the translations estimation with 40% of im-

ages geotagged (by setting α2 or α3 to 0 in equation (7));

using only camera-point edges increased error from 1.21m

to 1.9m, while using only camera-camera edges increased

error by a factor of 3 (from 1.21m to 3.93m).

Qualitative results. Figure 1 shows views of the Cen-

tralRome dataset at different stages of our approach. Be-

cause our recovered cameras (and points) are reconstructed
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Our approach Incremental

Dataset Rot BP Rot NLLS Trans BP Trans NLLS Bund Adj Total BA

Acropolis 50s 16s 7m 24s 49s 5m 36s 0.2 hours 0.5 hours

Quad 40m 57s 8m 46s 53m 51s 40m 22s 5h 18m 00s 7.7 hours 62 hours

Dubrovnik 28m 19s 8m 28s 29m 27s 7m 22s 4h 15m 57s 5.5 hours 28 hours

CentralRome 1h 8m 24s 40m 0s 2h 56m 36s 1h 7m 51s 7h 20m 00s 13.2 hours 82 hours

Table 3. Running times of our approach compared to incremental bundle adjustment.

% geotags BP NLLS Final BA

80% 7.50m 7.24m 1.16m

40% 7.67m 7.37m 1.21m

16% 7.66m 7.63m 1.22m

8% 8.27m 8.06m 1.53m

4% 18.25m 16.56m 5.01m

Table 4. Median error in camera position with respect to ground

truth for the Quad dataset, with geotags for about 40% of images.

The median error of IBA was 1.01m.

in an absolute coordinate system, they can be displayed on

a map. Figure 2 shows the CentralRome reconstruction

for both our approach and IBA. IBA produced a poor re-

construction for this dataset, while our approach produced

much more reasonable results, likely because prior informa-

tion like geotags helped to avoid problems with sparsely-

connected components of the reconstruction graph.

Conclusion We have presented a new approach to SfM

that avoids solving sequences of larger and larger bundle

adjustment problems by initializing all cameras at once us-

ing hybrid discrete-continuous optimization on an MRF. It

also integrates prior pose evidence from geotags and van-

ishing points into the optimization. Our approach is faster

than incremental SfM both in practice and asymptotically,

and gives better reconstructions on some scenes, especially

when the reconstruction graph is weakly connected. As fu-

ture work, we would like to further characterize the perfor-

mance and tradeoffs of our algorithm, including studying its

scalability to even larger collections (with hundreds of thou-

sands of images) and characterizing its robustness to various

properties of the scene and dataset. We would also like to

study improvements to our approach, including solving for

rotations and translations in a single optimization step.
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