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CAS 101

1. Transform Coding
In transform coding, N discrete-time data samples are first-
ly transformed, then the coefficients are individually quan-
tized and entropy coded into binary bits serving two pur-
poses: (i) to compact the energy of the original N samples 
into coefficients with increasingly smaller variances so 
that removing smaller coefficients have negligible recon-
struction errors; and (ii) to decorrelate the original sam-
ples so that the coefficients can be quantized and entropy 
coded individually. Karhunen-Loeve transform (KLT) is 
an optimal transform for a signal with a stationary covari-
ance matrix in the sense that it completely decorrelates the 
original samples and maximizes the energy compaction. 
Ahmed et al. [4] showed rigorously that DCT has an energy 
compaction performance almost as good as the KLT, and 
the DCT can be readily derived as the limiting case of the 
KLT of the first-order Markov processes, as the correlation 
coefficient approaches unity. Fortunately, most real-world 
1-D or multi-dimensional signals can be well modeled by a 
first-order Markov process, making DCT superior to other 
orthogonal transforms for signal compression.

2. Discrete Cosine Transform
Orthogonal expansion for an even periodic function is 
possible with only cosine harmonics, while an odd pe-
riodic function requires only sine harmonics as basis-
functions. These properties are suitably exploited for a 
finite discrete-time sequence to have orthogonal trans-
forms with only discrete cosine or discrete sine basis 
vectors. These transforms are defined under the same 
framework of Generalized Discrete Fourier Transform 
(GDFT) by symmetrically or anti-symmetrically extend-
ing the sequence at both ends so that the extended 
sequence becomes either an even or an odd sequence 
about a point of symmetry. Thus, all these expansions 
can be expressed by a linear combination of either dis-
crete cosine or discrete sine basis vectors. These trans-
forms, in general, are referred to as discrete trigonomet-
ric transforms. Therefore, their expansions with either 
a set of cosine or sine basis vectors are possible. In this 
article, the development of the discrete cosine transform 
is considered. A finite discrete sequence of length N can 
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the widely known Discrete Fourier Transform 
(DFT), the frequency-domain representation of a 
finite-length time-domain sequence is an orthog-

onal transform and has been known for a very long time 
and has found many application. The popularity of the 
DFT increased tremendously after the publication of the 
Fast Fourier Transform (FFT) algorithm by Cooley and 
Tukey in 1965 [1]. Orthogonal transforms offer many ad-
vantages, namely fast computational speeds, less stor-
age space, less rounding off errors, etc. The benefits of 
the orthogonal transforms stem from the fact that they 
can be factored based on matrix computations. Data 
compression, digital filter design, speech processing, 
image and video processing are applications where the 
orthogonal transforms have made a significant impact.

Unfortunately, the FFT samples are complex-valued 
functions even though the original time-domain se-
quence has only real-valued samples. In 1974, Nasir 
Ahmed with T. Natarajan and K. Rao, proposed the 
Discrete Cosine Transform (DCT), also an orthogonal 
transform, which is a real-valued frequency-domain 
representation of a finite-length time-domain sequence 
with real-valued samples [2]. DCT became extremely 
popular due to its energy compaction property, data 
decorrelation property, and availability of a fast trans-
form to speed up the computations. Moreover, DCT 
comes very close compared to the Karhunen-Loeve 
Transform (KLT), which to date is the optimal transform 
in the mean square sense yet is limited due to the lack of 
a fast transform to compute it as it is signal dependent. 
Although it had a humble beginning in the sense that it 
was being investigated with the motivation to achieve 
an approximation to the KLT along with being computa-
tionally faster, yet the reach and the scale that DCT has 
achieved in the 21st century is beyond words. The inter-
esting story of how DCT was developed can be found in 
[3]. Nasir Ahmed’s account on the genesis of the DCT 
can be seen in the video “The Algorithm That Transform 
The World: The Story Of Nasir Ahmed”’ (https://www.
youtube.com/watch?v=I9VXaVVs7WY).
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be symmetrically extended at its endpoint in two ways. 
First, the extended sequence is symmetric about the end 
point itself, referred to as the whole-sample symmetric 
(WS) extension [5]. Second, the symmetric extension is 
centered about the midpoint between the end sample, 
referred to as the half-sample symmetric (HS) extension. 
Likewise, two types of antisymmetric extensions about 
a sample point of a sequence are possible, referred to as 
the whole-sample antisymmetric (WA) extension and the 
half-sample antisymmetric extension. This results in 16 
distinct types of periodic extensions, of which 8 are sym-
metric-periodic, leading to 8 different types of DCTs, and 
8 are antisymmetric-periodic, leading to 8 different types 
of DSTs. In this article, the focus is on DCTs, especially 
the Type-I and Type-II DCTs, due to the advantages their 
properties offer and their applicability in a wide range of 
applications. The governing equations for the Type-I DCT 
XI  and Type-II DCT XII  are given below [6]:
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If the sequence x(n)(n = 0, 1, …N − 1) is represented by N-
dimensional column vector x. The Type-II DCT of x can 
be expressed in matrix form as

X = CN · x (4)
where the (k, n)th element of CN is given by
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As in the conventional literature, by the word DCT, 
it implies Type-II DCT, we also follow the same conven-
tion. A Fast DCT (FDCT) algorithm [7] following an ap-
proach similar to Fast Fourier Transform (FFT) exists, 
i.e., by splitting the DCT sum into odd and even terms, 
making DCT popular in the research community.

3. DCT Properties
The popularity of the Type-II DCT is due to the number 
of interesting properties [5] as summarized below:

1) Linearity and Orthogonality: Since � �x n y n� � � � � �   
� �X k Y kDCT DCT� � � � �  holds, DCT is said to be  

satisfy linearity. Linear DCT transform matrix C is 
real and orthogonal i.e. C−1 = CT where
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DCT is related to the DFT of a symmetrically ex-
tended signal, which gives less discontinuity at 
the boundaries and better energy compaction, 
unlike the DFT, which introduces discontinuities.

2) Energy Conservation and Decorrelation: Consider 
the transform as y = Cx in vector form. Energy 
conservation property is derived as follows.
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A large part of signal energy is packed in a few 
transform coefficients, typically in the low-fre-
quency range, commonly known as the energy 
compaction property. The decorrelation property 
removes the high amount of correlation that ex-
ists in the spatial domain signal when DCT is ap-
plied to it. This can be validated by estimating the 
covariance matrix of the transformed signal, i.e., 
E[(y − E(y))(y − E(y))T]where the off-diagonal ele-
ments in the covariance matrix tend to be small. 
Due to this property, the angles between vectors 
are preserved.

3) Matrix Factorization: CN, the N-point DCT matrix can 
be factored into a product of a few sparse matrices.
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where, PN, IN, JN, and 0N are the N × N permuta-
tion matrix, identity, reverse identity, and zero 
matrices, respectively. This property is useful in 
designing fast matrix multiplication operations for 
various algorithms.

4) Subband Relationship and Approximate DCT Com-
putation: Let the sequence x(n), 0 ≤ n ≤ (N − 1) be an 
N-point sequence with even N. Let x(n) be decom-
posed into two subbands xL(n) and xH(n) of length 
N
2

 each as follows:
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The relationship between the DCT of subbands (of 
N
2

 point), XL(k) and SH(k), with the original DCT 

(of N point) of the sequence, X(k), is given by
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Since DCT packs most of the energy in the low-fre-
quency coefficients, Eq. (10) can be approximated 
to contain only the cosine term referred as sub-
band approximation of DCT given below.
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5) Decimation and Interpolation Property: These prop-
erties are useful for decimating signals directly in 
the transform domain as well as carrying out the 
interpolation operations. Let us denote Type-I DCT 
and Type-II DCT of x(n) as X1(k) = C1(x(n)), k.n = 0, 

1, 2, …, N and X k C x n k n
N
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respectively, where C1(.) and C2(.), refers to the 
corresponding transformation functions as giv-
en in Eqs. (1) and (2). Then, the decimation is 
expressed as
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Similarly, the interpolation is expressed as
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6) Convolution-Multiplication Property: Convolution 
between two sequences x(n) and y(n) is defined 
as the convolution between their symmetrically 
extended sequences of the same general period. 
When both the extended sequences are period-
ic, the convolution operation is defined as the 
circular convolution. If both are antiperiodic, 
the operation is defined as the skew-circular 
convolution. Let u n x n y n x n� � � � � � � � � ,  and 
y(n) are such that their symmetric extensions 
produce a general period of 2 N. The convolu-
tion multiplication property for DCT-I and DCT-
II are given as

C u n NC x l C y m n l m N1 1 12 0� �� � � � �� � � �� � � �, , ,  (17)
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7) Integer Cosine Transforms (ICT): ICTs are derived 
from a DCT matrix as its integer approximations 
and preserves its properties of orthogonality, 
symmetry, relative order, and sign of the elements 
of the matrix. The motivation for utilization of 
ICTs is to achieve fast computations. For example, 
H.264 video codec utilizes a 4-point integer trans-
form which is useful during matrix multiplication 
operations.

4. Applications
The DCT is a core technology behind almost all inter-
national standards for image and video compression, 
including the ISO JPEG image compression standard 
(1992) and a series of video coding standards from ITU 
and ISO: H.261 (1988), MPEG-1 (1993), MPEG-2 (1995), 
H.263 (1988), MPEG-4 (1998), H.264/AVC (2003), H.265/
HEVC (2013). The impact of these standards in todays 
life is immense. Every digital camera and mobile phone 
camera supports the JPEG format, which is also used 
in essentially all websites. Other image formats us-
ing wavelets exist (JPEG 2000), but the low computa-
tion cost of JPEG, thanks to efficient DCT algorithms 
and its good compression performance, made JPEG 
much more popular. The impact of the ISO/ITU-T vid-
eo formats based on the DCT is immense: early digital 
television and DVDs used the MPEG-2 format, and early 
videoconferencing systems used the H.263 format. To-
day, almost all digital video systems use either H.264 
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(for HD video) or H.265 (for Ultra HF/4k video). When we 
capture video on our phones, watch TV, Netflix, Ama-
zon video, or make a Zoom or Teams call, we use these 
formats, which are all DCT-based. Today, almost 80% 
of all data traffic on the Internet is on video streams 
in those formats. Ahmed et al.’s [2] original DCT work 
was also an inspiration for designing DCT variants and 
extensions, such as the modified discrete cosine trans-
form (MDCT) and lapped transforms (LTs), with over-
lapping basis functions that improve compression and 
reconstruction quality for images and audio. Essential-
ly all modern digital audio formats, such as MP3, WMA, 
and AAC, are based on these digital variants. The JPEG 
XR image format also uses one of those variants and 
is used extensively by hundreds of millions of people, 
as it is integrated with all Microsoft Office applica-
tions. Moreover, compressed domain image and video 
processing which leverages the DCT coefficients, their 
residues along with other information like block cod-
ing modes, motion vectors have offered a completely 
new paradigm for algorithm development courtesy the 
unique DCT properties.
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I do not agree when sometimes people say we have no 
prejudices, when you can cite example after example of 
things that wouldn’t have happened if it wasn’t for such 
a prejudice. So I hope this will change, and I think we 
have to work at it because unless we work at it, change 
will not come.

Question 8: You are on board of director of Enhancing 
Diversity in Graduate Education (EDGE). What role does 
this organization play?

Prof. Daubechies: I have worked with EDGE for many 
years. At first, I have been on the periphery, and now on 
the board. EDGE has helped young women, especially 
women from disadvantaged backgrounds who are inter-
ested in mathematics, to persist in mathematics. Even 
if their background may be less prepared than others, 
EDGE helps them with workshops, special activities, 
and a network that gives them both moral and math-
ematical support. The success rate of young people 
who came through EDGE and then went on to PhDs in 
mathematics is very high, which is very impressive. 
EDGE now also has a program that is not aimed only at 
women but at underrepresented mid-career fellows. It 

is a really remarkable program and I think it’s the same 
idea again - but now for other groups in which we see 
underrepresentation in STEM, like people of color and 
African Americans, to an even more dramatic extent 
than for women. There are young people who have tal-
ent, and we should encourage them if they have the in-
clination to become STEM professionals. That’s why I’m 
proud of my son, because at his school, 95% are black 
or Hispanic. Having a positive, fun math teacher can be 
life changing.

Question 9: What is your own definition of “success”, or 
do you consider one of your past roles to be “success”?

Prof. Daubechies: Things that make me most proud is 
being a member of the community. If my students later 
say that they really appreciate my mentorship and they 
felt that I made a difference for them for the better, that 
is what I find most successful. I now have the next gen-
eration. My son has two small children and asked me to 
help. I am actually taking a week off next week to be a 
grandma, which also makes me feel very proud. I think 
the feeling that I have a meaningful role in people’s lives 
gives me the greatest sense of accomplishment.

Interview (continued from page 5)


