
Fakultet elektrotehnike i računarstva
Poslijediplomski studij

Predmet: Multimedijski računalni sustavi

DISCRETE COSINE TRANSFORM ALGORITHMS FOR
FPGA DEVICES

Domagoj Babić

Zagreb, 11. April 2003

Contents

1 Motivation 6

2 Discrete Cosine Transform 7

2.1 Transforms . 7
2.2 Fourier Transform . 8
2.3 Discrete Fourier Transform . 9
2.4 Multidimensional Transforms 10
2.5 Discrete Cosine Transform . 11

2.5.1 Fourier cosine transform 11
2.5.2 Basis vectors . 12
2.5.3 Karhunen-Loéve transform 14
2.5.4 Discrete cosine transform types 16

3 Polynomial Transform 18

3.1 Chinese Remainder Theorem 18
3.1.1 Greatest common divisor 18
3.1.2 Euler’s function . 20
3.1.3 Chinese remainder theorem 21
3.1.4 Polynomial CRT . 23

3.2 Polynomial Transforms . 25
3.2.1 Basic definition . 25
3.2.2 Computation . 26

3.3 Application of PTs . 28
3.3.1 Convolution . 28
3.3.2 DFT . 32

4 Previous Work 37

4.1 Computational Complexity . 37
4.2 One-dimensional Algorithms 38
4.3 Early Multidimensional Algorithms 39
4.4 Advanced Multidimensional Algorithms 41

4.4.1 Duhamel’s 2D algorithm 41
4.4.2 Multidimensional PT algorithm 44

5 Reference DCT Implementation 51

5.1 Distributed Arithmetic . 51
5.2 Algorithm Realization . 54
5.3 Accuracy Analysis . 56
5.4 FPGA Implementation . 60

1

CONTENTS 2

6 MPTDCT Implementation 64

6.1 Accuracy Analysis . 64
6.2 FPGA Implementation . 67

7 Summary 71

8 Sažetak 72

9 Resume 73

10 Životopis 74

A Appendix A 75

List of Figures

2.1 The basis vectors for 8-point DCT 14
2.2 The basis matrices for 8 x 8 DCT 14

3.1 Block diagram of PT based 2-D convolution 31
3.2 Block diagram of PT based 2-D DFT 35
3.3 Realization of DFT via circular convolution 36

5.1 Final products summation . 52
5.2 Summation of partial products 52
5.3 Implementation of partial product addition table 52
5.4 Data flow diagram of 8-point DADCT algorithm 55
5.5 DCT accuracy measurement 57
5.6 Simulation stimulus pictures 58
5.7 DADCT simulation results for various ROM word-lengths . . . 59
5.8 DADCT simulation results for differentROMwidth and 1DIMprec

values . 59
5.9 Simulation results for picture Lena 60
5.10 Simulation results for noise stimulus 61

6.1 Coefficients distribution histograms 65
6.2 MPTDCT simulation results for various ROM word lengths . 66
6.3 MPTDCT accuracy simulation results 66
6.4 Input matrix permutation . 68

3

List of Tables

3.1 Euler function for n ≤ 20 . 21
3.2 Polynomial reduction . 26
3.3 2D convolution multiplicative complexity 29
3.4 Computational complexity of PT based DFT 35
3.5 DFT computational complexity comparision 36

5.1 Maximal allowed errors for 2-D DCT implementations 56
5.2 DADCT implementation accuracy 61
5.3 Parallel DADCT processor frame rates 62

6.1 MPTDCT implementation accuracy 64

4

Listings

3.1 Euclid algorithm C code . 19
3.2 Solving a system of polynomial congruence relations 24
A.1 Mathematica code for symmetry analysis and computing PT

transform matrix . 75
A.2 Second stage of MPTDCT algorithm 77
A.3 Third stage of MPTDCT algorithm 78
A.4 Fourth stage of MPTDCT algorithm 79

5

1 Motivation

Discrete cosine transform (DCT) is widely used transform in image pro-
cessing, especially for compression. Some of the applications of two-dimensio-
nal DCT involve still image compression and compression of individual video
frames, while multidimensional DCT is mostly used for compression of video
streams and volume spaces. Transform is also useful for transferring multi-
dimensional data to DCT frequency domain, where different operations, like
spread-spectrum data watermarking, can be performed in easier and more
efficient manner. A countless number of papers discussing DCT algorithms
is strongly witnessing about its importance and applicability.

Hardware implementations are especially interesting for the realization
of highly parallel algorithms that can achieve much higher throughput than
software solutions. In addition, a special purpose DCT hardware discharges
the computational load from the processor and therefore improves the per-
formance of complete multimedia system. The throughput is directly influ-
encing the quality of experience of multimedia content. Another important
factor that influences the quality of is the finite register length effect on the
accuracy of the forward-inverse transformation process.

Hence, the motivation for investigating hardware specific DCT algorithms
is clear. As 2-D DCT algorithms are the most typical for multimedia appli-
cations, the main focus of this thesis will be on the efficient hardware imple-
mentations of 2-D DCT. As the number of applications that require higher-
dimensional DCT algorithms is growing, a special attention will be payed to
the algorithms that are easily extensible to higher dimensional cases.

A class of transforms, called polynomial transforms, have been used heav-
ily for the realization of efficient multidimensional algorithms in digital sig-
nal processing. Some of the examples of significant computational savings
achieved by using the results from number theory and polynomial transforms
include multidimensional discrete Fourier transforms, convolutions and also a
discrete cosine transform. The application of polynomial transforms to DCT
is not so straightforward as it is the case with discrete Fourier transform
and convolutions. A suitable polynomial transform based multidimensional
DCT algorithm has emerged very recently and it will be later introduced as
MPTDCT algorithm. According to the best of author’s knowledge neither
hardware implementation has been made nor any accuracy measurements
performed.

The goal of this thesis will be to research computational savings, accu-
racy improvements and chip area savings that result from the application of
polynomial transforms to DCT.

6

2 Discrete Cosine Transform

2.1 Transforms

Mathematical transforms can be defined as operators that map functions
from one functional space to another. It’s important to introduce the notion
of functional to understand how transforms can be constructed.

Functional is defined as an operation that associates a real number to
every function from a selected class. Integration is an example of functional:

I(x) =

b
∫

a

x(t)dt, (2.1)

where x(t) is an integrable function defined on interval [a, b]. Transform can
be created by multiplying any subintegral function of functional (integral in
this case, but it can be also derivative) by a kernel containing a parameter
that determines the result of functional. Effectively, we obtain transform
from functional by using different kernels, which determine transform prop-
erties. Integral transforms are often used for the reduction of complexity of
mathematical problems. The Fourier transform is certainly one of the best
known of the integral transforms and its direct and inverse forms are given
by:

F [x (t)] =

∞
∫

−∞

x(t)e−j2πftdt (2.2)

F−1 [X (f)] =

∞
∫

−∞

X(F)ej2πftdf , (2.3)

where x(t) is an absolutely integrable function on interval (−∞,∞) and 2πf
is angular frequency. Transform kernel is e−j2πft.

7

CHAPTER 2. DISCRETE COSINE TRANSFORM 8

2.2 Fourier Transform

In the early 1800s French mathematician Joseph Fourier has introduced
Fourier series for the representation of continuous-time periodic signals:

x(t) =
∞
∑

k=−∞
cke

j2πkf0t (2.4)

ck =
1

Tp

∫

Tp

x(t)e−j2πkf0tdt, (2.5)

where Tp = 1/f0 is the period of signal x(t). The signal can be decomposed
to a linear weighted sum of harmonically related complex exponentials. This
weighted sum represents the frequency content of signal called spectrum.
When the signal becomes aperiodic, its period becomes infinite and its spec-
trum becomes continuous. This special case represents Fourier transform
for continuous-time aperiodic signals, defined as shown in Eq. 2.2 on the
preceding page. A detailed explanation and proof can be found in [29].

From continuous form one can obtain the form for discrete-time signals.
Before proceeding to discrete Fourier transform, some properties of continu-
ous Fourier transform need to be mentioned:

• Linearity
• Invertibility
• Symmetry
• Scaling
• Translation
• Convolution.

Only the first two will be explained in somewhat more detail because
they will be occasionally referenced to later. More details about others can
be found in the large body of literature. An especially good overview is given
in [27].

Linearity property makes the Fourier transform suitable for the analysis
of linear systems. It means that the Fourier transform of a linear combination
of two or more signals is equal to the same linear combination of the Fourier
transforms of individual signals. A detailed explanation of the term “linear
combination” can be found in almost any linear algebra book. The property
can be expressed as:

CHAPTER 2. DISCRETE COSINE TRANSFORM 9

F [αf + βg] = αF [f] + βF [g] . (2.6)

Invertibility means that the Fourier transform and the inverse Fourier
transforms are operational inverses, thus:

ψ = F [φ] ⇔ F−1 [ψ] = φ (2.7)

F−1 [F [f]] = f .

2.3 Discrete Fourier Transform

The Fourier series representation of a continuous-time periodic signal can
contain a countably finite number of frequency components because the fre-
quency range of continuous-time signals can extend between −∞ to ∞. The
frequency spacing between two adjacent components is 1/Tp. Discrete-time
signals have also infinite frequency range, but it is periodic, so one period
is sufficient for the complete reconstruction of discrete signal. Thus, we can
say that frequency range is in the interval (−π, π) or (0, 2π). If discrete sig-
nal is periodic with the fundamental period N , then its adjacent frequency
components are separated by 2π/N radians. In conclusion, Fourier series of
discrete-time signal can contain at most N unique frequency components.

If x(n) is a periodic sequence with period N , Fourier series is defined as:

x(n) =
N−1
∑

k=0

cke
j2πkn/N (2.8)

where ck are Fourier coefficients:

ck =
1

N

N−1
∑

n=0

x(n)e−j2πkn/N . (2.9)

In the same way as Fourier transform for aperiodic continuous-time sig-
nals can be derived from Fourier series of continuous-time periodic signal,
we can obtain discrete Fourier transform (DFT) of discrete-time aperiodic
signal from discrete Fourier series. The relation between continuous and dis-
crete Fourier transform is described in the literature, and especially detailed
explanation is given in [16]. Direct and inverse DFT equations are shown in
Eq. 2.10 and 2.11.

CHAPTER 2. DISCRETE COSINE TRANSFORM 10

X(ω) =
∞
∑

n=−∞
x (n) e−jωn (2.10)

x(n) =
1

2π

2π
∫

0

X (ω) ejωndω (2.11)

If the discrete signal in previous equation is periodical (or we assume peri-
odicity), then we can limit DFT range to N points:

X(ω) =
N−1
∑

n=0

x(n)e−jωn. (2.12)

From the linearity property and the fact that DFT contains a finite num-
ber of frequency components N , it can be deduced that DFT can be repre-
sented as a linear operator. Therefore, the DFT operation can be realized as
a matrix multiplication with vector. Matrix represents the transform kernel
coefficients and the vector represents the samples of input signal. Further,
from linearity and invertibility properties it follows that coefficient matrix
must be regular, i.e. it must be invertible. This isomorphism has far reach-
ing consequences and it also applies to transforms derived from DFT. It has
spurred the development of a large number of algorithms that rely on the
properties of coefficient matrix.

2.4 Multidimensional Transforms

Fourier series and transform can be easily extended to a multidimensional
case. For example, two dimensional DFT is defined by the following equation:

X(k1, k2) =

N1−1
∑

n1=0

N2−1
∑

n2=0

x (n1, n2) e
−j2π

(

n1k1

N1
+

n2k2

N2

)

(2.13)

k1 = 0, ..., N1 − 1, k2 = 0, ..., N2 − 1

The transform kernel can be written as:

e
−j2π

(

n1k1

N1
+

n2k2

N2

)

= e
−j2π

n1k1

N1 e
−j2π

n2k2

N2 , (2.14)

CHAPTER 2. DISCRETE COSINE TRANSFORM 11

and if we use substitution:

W1 = e−j2π/N1 , W2 = e−j2π/N2 , (2.15)

then we can rewrite Eq. 2.13 as:

X(k1, k2) =

N1−1
∑

n1=0

W n1k1

1

N2−1
∑

n2=0

x (n1, n2)W
n2k2

2 (2.16)

Hence, the two-dimensional DFT can be computed by performing one-dimen-
sional DFT on the result of another one-dimensional DFT. This important
property is called separability and it also applies to other transforms derived
from Fourier transform. It means that the 2D DFT of two-dimensional signal
can be computed by computing a one-dimensional DFT of the rows of input
signal matrix followed by the computation of one-dimensional DFT of the
columns. This simple procedure for computing multidimensional separable
transforms is called row-column decomposition. It follows that any separable
multidimensional transform can be computed by a series of one-dimensional
transforms. Later it will be shown that row-column decomposition is not an
ideal way of computing multi-dimensional transforms, actually it’s a rather
naive approach. More complex algorithms for computing multidimensional
transforms rely on the properties of the transform itself to compute the result
directly without decomposition.

2.5 Discrete Cosine Transform

Although the invention of Fourier series was motivated by the problem of
heat conduction, Fourier series and transform have found a vast number
of applications and were a basis for development of other transforms, like
discrete cosine transform (DCT).

2.5.1 Fourier cosine transform

The Fourier transform kernel is complex valued. Fourier cosine transform is
obtained by using only a real part of complex kernel:

Re
[

ejωt
]

= cos (ωt) =
1

2

[

ejωt + e−jωt
]

(2.17)

CHAPTER 2. DISCRETE COSINE TRANSFORM 12

where ω is angular frequency. So, Fourier cosine transform of real or complex
valued function f (t), which is defined over t ≥ 0, for ω ≥ 0, is written as:

Fc [f (t)] =

∞
∫

0

f(t) cosωtdt. (2.18)

The close relationship between Fourier transform and the cosine trans-
form is apparent. Given the extended f (t) function defined on the interval
(−∞,∞) so that f is an even function:

fc (t) = f (|t|) , t ∈ R. (2.19)

Its Fourier transform is shown in Eq. 2.20. As f is an even function, integral
2.20 can be written as 2.21. The relation between transforms follows in
Eq. 2.22.

F [fc (t)] =

∞
∫

−∞

fc (t) e−jωtdt, t ∈ R (2.20)

F [fc (t)] =





∞
∫

0

fc (t) ejωtdt+

∞
∫

0

fc (t) e−jωtdt



 (2.21)

F [fc (t)] = 2Fc [f (t)] (2.22)

Eq. 2.22 describes the relation between continuous Fourier and cosine
transforms. For discrete case, DCT can be obtained from DFT of the mir-
rored original N-point sequence (effectively a 2N-point sequence). DCT is
simply the first N points of the resulting 2N-point DFT. This relation be-
tween discrete cosine and discrete Fourier transform was used for computing
DCT before efficient DCT algorithms have been developed.

Fourier cosine transform inherits many properties from Fourier transform,
although many of them are less elegant and more complex. Linearity, invert-
ibility and separability properties are directly inherited, others, like convo-
lution, are much more complex. Despite this inelegancy, cosine transform,
especially discrete cosine transform, has found many applications. DCT is
most well known after its usage in multimedia systems for lossy compression.
An in-depth survey of other applications can be found in [38].

2.5.2 Basis vectors

Transform kernel of Fourier cosine transform Kc of Eq. 2.18, evidently an
even function, is denoted as:

CHAPTER 2. DISCRETE COSINE TRANSFORM 13

Kc (ω, t) = cos (ωt) . (2.23)

The kernel of discrete cosine transform can be obtained by sampling an-
gular frequency and time. If δf and δt represent the unit sample intervals
for frequency and time, then the sampled angular frequency and time (ω and
t) can be written as ωm = 2πmδf and tn = nδt yielding:

Kc (ω, t) = Kc (2πmδf, nδt) = cos (2πmnδfδt) = Kc (m,n) (2.24)

Kc (m,n) = cos
(πmn

N

)

,

where m,n and N = 1
2δfδt

are integers. As explained before, linear dis-
crete transforms can be represented by a kernel coefficient matrix. The co-
efficient matrix of simple one-dimensional (N + 1)-point cosine transform,
named symmetric cosine transform (SCT), shown below:

X (m) =
N
∑

n=0

x (n) cos
(πmn

N

)

m,n = 0, 1, ..., N (2.25)

is given by:

[M]mn = cos
(πmn

N

)

m,n = 0, 1, ..., N . (2.26)

The vectors in M coefficient matrix are called basis vectors. Basis vec-
tors of SCT are orthogonal, but not normalized, and coefficient matrix is
symmetric1.

The basic vectors of one-dimensional 8-point DCT-II2 are shown in Fig. 2.1.
Simply put, the forward transform computes the dot product of every single
basis vector and the input data with the purpose of extracting its frequency
information.

Two-dimensional transforms have basis matrices instead of vectors. The
basis matrices of DCT-II are shown in Fig. 2.2 on the following page. It
should be noticed that the frequency of variation increases from top to bottom
and from left to right.

1Symmetric matrices have the property that the transpose of the matrix is equal to the
matrix itself.

2DCT-II is a type of DCT, see equation 2.27 on page 16.

CHAPTER 2. DISCRETE COSINE TRANSFORM 14

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

2

0

4

6 7

5

3

1

Figure 2.1: The basis vectors for 8-point DCT

Figure 2.2: The basis matrices for 8 x 8 DCT

2.5.3 Karhunen-Loéve transform

Prior to introducing different types of DCT and orthonormalization of kernel
coefficient matrix, the foundations for the application of DCT have to be
explained.

CHAPTER 2. DISCRETE COSINE TRANSFORM 15

The most important application of DCT stems from its similarity to
Karhunen-Loéve transform (KLT), first discussed by K. Karhunen 1947. KLT
is optimal transform for energy decorrelation of the signals of the stochas-
tic Markov-1 process types. In order to give a simple informal explanation,
the KLT of simple sinusoid can be considered. A signal, more accurately a
sinusoid, is transmitted sequentially sending sampled values. More samples
means that it is possible to reconstruct the waveform more precisely. Anyway,
it is not needed to send all samples, it would be enough to send information
about magnitude, phase, frequency, starting time and the fact that it is a
sinusoidal waveform. Thus, only five pieces of information are needed to re-
construct the given waveform at the receiver. Because the sampled values of
sinusoid are highly correlated, the information content is low. Therefore, if
we would be able to decorrelate the input signal, we would ideally get exactly
the minimum amount of information needed to reconstruct the transmitted
signal. In the given example, it would be only five parameters. KLT is per-
forming ideal decorrelation of input data when the transmitted signal is of
Markov-1 type.

There’s another way to look at this process [3]. A two-dimensional input
data 8 x 8 matrix can be seen as a set of eight vectors in the eight dimensional
space. Let this matrix represent an image block, and every individual vector
a single pixel row in that block. Usually, pixels, as well as rows (or columns),
are highly correlated. Therefore, the set of those eight vectors represents a
small, more or less homogeneous, cluster in the eight-dimensional space. It
is obvious that there is some redundancy and the most important question
is whether these vectors can be represented in less dimensional space.

By rotating this cluster and aligning it along some of the coordinate axes,
the cluster can be represented only with the information about chosen axis
and the distance of individual points. KLT is ideal in the sense that it always
finds the flattest possible direction so that the information can be coded in
the smallest amount of data. In other words, KLT achieves optimum energy
concentration. Basis vectors of KLT are obtained as the eigenvectors of the
corresponding auto-covariance matrix of a data vector.

Although KLT is ideal transform, it is not very practical. The main
drawbacks are:

• KLT is data-dependent
• KLT is not separable for image blocks
• transform matrix cannot be factored into sparse matrices.

Hence, other simpler and more practical transforms that would have similar
effect had to be found. DCT is very close to ideal KLT for 1st order stationary

CHAPTER 2. DISCRETE COSINE TRANSFORM 16

Markov sequence when correlation parameter ρ is close to 1 and therefore it
can be applied to the same purpose of signal decorrelation. DCT performs
the best for highly correlated data, with ρ ≥ 0.5. When the correlation
parameter is −0.5 ≤ ρ ≤ 0.5, discrete sine transform is a better choice.

2.5.4 Discrete cosine transform types

According to previous discussion, two-dimensional discrete cosine transform
can be seen as a rotation operator in multidimensional space, where the
number of dimensions depends on the size of transform. Rotation operator
must be an orthonormalized matrix which has a property that a transposed
matrix is equal to its inverse (antisymmetrical). Thus, the inverse operator
is simply a transposed version of it. The rotation axis is an eigenvector of
the operator matrix. If the rotation is performed around axis for an angle π
then the rotation operator is also symmetrical. As SCT basis vectors are not
normalized, it cannot be a rotation operator. A simple way to orthonormal-
ize SCT basis vectors is to multiply individual coefficients with correction
factors. It can be easily shown that the first type DCT (according to classi-
fication in [38]), called DCT-I and representing SCT with correction factors,
has orthonormalized basis vectors.

Altogether, there are four types of DCT, denoted by Mtype
size :

DCT-I:

[

MI
N+1

]

mn
=

(

2

N

)1/2
[

kmkn cos
(mnπ

N

)]

m,n = 0, 1, ...N

DCT-II:

[

MII
N

]

mn
=

(

2

N

)1/2
[

km cos

(

m
(

n+ 1
2

)

π

N

)]

(2.27)

m,n = 0, 1, ...N − 1

DCT-III:

[

MIII
N

]

mn
=

(

2

N

)1/2
[

kn cos

(

(

m+ 1
2

)

nπ

N

)]

m,n = 0, 1, ...N − 1

DCT-IV:

[

MIV
N

]

mn
=

(

2

N

)1/2

cos

[

(

m+ 1
2

) (

n+ 1
2

)

π

N

]

m,n = 0, 1, ...N − 1

CHAPTER 2. DISCRETE COSINE TRANSFORM 17

kj =

{

1 if j 6= 0 or N
1√
2

if j = 0 or N

The correction factors are chosen so as to normalize coefficient matrix M,
which is already orthogonal. This new orthonormalized matrix represents the
rotation operator in multidimensional space. Orthonormalized DCT matrix
dotted with its transpose gives an identity matrix. Accordingly, another
important role of these correction coefficients is that the energy level of signal
is maintained after forward and inverse transforms are performed.

Further on, the focus will be on DCT-II, because this type is the most
frequent in different applications.

3 Polynomial Transform

The elementary basics of number theory need to be explained before intro-
ducing polynomial transform (PT). Despite the abundance of number theory
and polynomial algebra literature, it is hard to find books about applica-
tion of that theory to digital signal processing. Two notable exceptions are
[25, 17]. Therefore, this introduction section relies heavily on those sources.

The section begins with fast sweep over some basic terms from number
theory and than proceeds to Chinese remainder theorem (CRT) which is one
of the most important theorems for application of number theory to digital
signal processing. After integer CRT is explained, a short introduction to
polynomial CRT will be given.

Polynomial transform is explained in somewhat more detail, as it is the
core of efficient multidimensional digital signal processing algorithms that
will be mentioned in the final subsection about applications.

3.1 Chinese Remainder Theorem

3.1.1 Greatest common divisor

Two integers a and b, a ≥ b can be written as:

a = bq + r, 0 ≤ r < b (3.1)

where q is quotient and r is remainder. If r = 0, it is said that b and q are
factors or divisors of a, in other words, b and q divide a. This relation is
usually marked with symbol b|a. In the case that the only factor of a is 1, a
is a prime number. A notion of prime number is the basis for understanding
CRT.

Further, we can define the greatest common divisor (GCD) as the largest
positive integer that divides two integers a and b, and we denote it with
braces (...) :

d = (a, b) (3.2)

If (a, b) = 1, a and b are relatively prime, i.e. their greatest common divisor
is 1.

A simple algorithm for computing GCD is called Euclid algorithm and
it is based on modulo operation. Modulo operation a mod b produces as a

18

CHAPTER 3. POLYNOMIAL TRANSFORM 19

result the remainder of the division of a by b. Two integers c and d are said
to be congruent modulo b if:

c ≡ d mod b. (3.3)

Actually, integers c and d have the same residues when divided by b. A
simpler way to represent it is by using 〈 〉 symbol:

〈c〉b = 〈d〉b (3.4)

int gcd (int u , int v) {
int t ;
while (u != 0) {

t = u mod v ;
u = v ;
v = t ;

}
return u ;

}
Listing 3.1: Euclid algorithm C code

C code implementing Euclid algorithm is given in Lst. 3.1. From the code
and Eq. 3.1 on the previous page, it can be seen that GCD of two numbers,
a and b, can be represented as a linear combination, where m and n are
integers:

(a, b) = ma+ nb. (3.5)

This fact is used for the analysis of solvability and finding solutions of Dio-
phantine equations. It can be shown that Diophantine equation with integer
coefficients a, b and c :

ax+ by = c (3.6)

can be solved if and only if (a, b)|c.
Operations, like addition and multiplication, can be performed directly

on residues, while division is not defined:

〈c+ d〉 = 〈〈c〉 + 〈d〉〉 (3.7)

〈cd〉 = 〈〈c〉〈d〉〉.

CHAPTER 3. POLYNOMIAL TRANSFORM 20

Such modulo equations are called congruence relations. An example of linear
congruence equation is Diophantine equation in which all terms are defined
modulo b:

ax ≡ c mod b. (3.8)

Eq. 3.8 can be easily seen as an ordinary Diophantine equation and solved
in the same way, as shown in 3.9.

ax− q1b = c− q2b

ax+ b(q2 − q1) = c (3.9)

ax+ by = c

In the special case, when (a, b) = 1, Eq. 3.8 has a unique solution that can
be obtained more elegantly by using Euler’s theorem. As solving this special
case will be a part of CRT, it is important to give a short introduction to
Euler’s function and theorem.

3.1.2 Euler’s function

Congruence can be understood as an equivalence of residues of two expres-
sions modulo some integer, as described before. It follows that modulo oper-
ation actually maps integers into equivalence classes. The number of classes
of mod M operation is exactly M , where M is an integer. Simply, if M
divides an arbitrary integer a, the result of modulo operation is 0. The
largest possible result is M − 1 and it is obvious that the range of solutions
is {0, ...,M − 1} - a set of M members.

Another important property of modulo operation, beside partitioning into
equivalence classes, is permutation. Having a set S = {0, ...,M − 1}, let
ni represent i-th member and a an integer relatively prime with M . By
multiplying ni with a modulo M , we obtain M distinct bi integer results
having values from set S, but in a different order.

bi ≡ ani mod M (3.10)

A simple proof by contradiction follows. In the case that modulo operation
would map nj, nk multiplied with a to bj = bk, we would have:

bj − bk ≡ a(nj − nk) mod M (3.11)

bj − bk = 0 (3.12)

a(nj − nk) ≡ 0 mod M . (3.13)

CHAPTER 3. POLYNOMIAL TRANSFORM 21

And because of (a,M) = 1, a must be relatively prime with M and nj − nk

is by definition less then M , so Eq. 3.13 is not possible. Therefore our initial
assumption about bj = bk is wrong and we have proved that modulo operation
performs permutation, distinctively mapping ni into bi.

An integer M partitions integers into M equivalence classes. Euler func-
tion is defined as a number of members of those equivalence classes that are
relatively prime with M and denoted with φ (M). A number of examples is
given in the Table 3.1.

n φ(n) n φ(n) n φ(n) n φ(n)

1 1 6 2 11 10 16 8
2 1 7 6 12 4 17 16
3 2 8 4 13 12 18 6
4 2 9 6 14 6 19 18
5 4 10 4 15 8 20 8

Table 3.1: Euler function for n ≤ 20

Prime numbers are relatively prime with all smaller numbers, because
they don’t have any common divisor except 1, therefore for prime p:

φ(p) = p− 1. (3.14)

It can be shown that the linear congruence Eq. 3.8 on the previous page,
which will be an essential part of solving CRT, can be easily solved when
(a, b) = 1 and that its solution is unique. The solution is given by:

x ≡ caφ(b)−1 mod b. (3.15)

By substituting with 3.14 when b is prime we obtain:

x ≡ cab−2 mod b. (3.16)

3.1.3 Chinese remainder theorem

Previous discussion explained the basic terms needed to understand Chinese
remainder theorem. Suppose that we have k positive integers mi > 1 that
are relatively prime in pairs, then the set of linear congruence equations:

x ≡ ri mod mi (3.17)

has a unique solution modulo M , where M =
∏k

i=1mi.

CHAPTER 3. POLYNOMIAL TRANSFORM 22

The problem boils down to reconstructing an integer having only its
residues modulo mi and it is solved by introducing Ti:

(

M

mi

)

Ti ≡ 1 mod mi, (3.18)

that is used in the reconstruction of x as shown:

x ≡
k
∑

i=1

(

M

mi

)

riTi mod M . (3.19)

The connection between Eq. 3.17 and 3.18, follows from the fact that mi are
relatively prime and therefore mi and M/mi are also relatively prime because

M

mi

=
k
∏

j 6=i

mj (3.20)

doesn’t contain any factors that would have GCD > 1 with mi. When we
reduce1 Eq. 3.19 with mu, all factors in the sum, except M/mu, become equal
to zero because they all contain mu in the product. Thus, Eq. 3.19 reduces
to:

x ≡
(

M

mu

)

ruTu mod mu, (3.21)

and since Ti is introduced as shown in Eq. 3.18, previous equation equals to:

x ≡ ri mod mi, (3.22)

so we have obtained the equations needed to reconstruct the integer knowing
only its residues modulo relatively prime integers mi.

Effectively, the problem of reconstruction has been decomposed to solving
a set of simple congruence relations (Eq. 3.19) that can be easily solved by us-

ing either Euclid’s or more elegant Euler’s algorithm, because
(

M
mi
,mi

)

= 1.

Equipped with the understanding of simple CRT, we can proceed to poly-
nomial CRT. But first, some introduction to polynomial algebra should be
given.

1The application of modulo operation is usually called reduction.

CHAPTER 3. POLYNOMIAL TRANSFORM 23

3.1.4 Polynomial CRT

It is said that a polynomial P (z) divides a polynomial H(z) if there exists a
polynomial D(z) such that:

H(z) = P (z)D(z). (3.23)

If P (z) is not a divisor of H(z), it produces a residue polynomial R(z):

H(z) = P (z)D(z) +R(z). (3.24)

Modulo operation is defined pretty much the same as with integers:

R(z) ≡ H(z) mod P (z). (3.25)

P (z) also maps polynomials into equivalence classes. Further, if we can
decompose P (z) into factors it is said to be reducible, otherwise it is irre-
ducible. Polynomials that are irreducible in the field of rational numbers
(i.e. it is not possible to find any factors that have rational polynomial co-
efficients) are called cyclotomic polynomials. Depending on the variety of
P (z) polynomial, mathematical structures that consist of a set of polynomi-
als with defined operations of addition and multiplication modulo P (z) are
called a ring if P (z) is reducible and a field if P (z) is irreducible.

The polynomial equivalent of CRT is quite similar to its integer version.
If Pi(z) are relatively prime polynomials (i.e. they have no common factors)
and we define P (z) by:

P (z) =
k
∏

i=1

Pi(z), (3.26)

then CRT is expressed with:

H(z) ≡
k
∑

i=1

Si(z)Hi(z) mod P (z). (3.27)

This can be seen as a problem of reconstruction of H(z) knowing its residues
Hi by polynomials Pi(z). Su(z) is defined as:

Su(z) = Tu(z)
k
∏

j 6=u

Pj(z) (3.28)

To find a solution, we have introduced Tu(z) such that:

CHAPTER 3. POLYNOMIAL TRANSFORM 24

Tu(z)
k
∏

j 6=u

Pj(z) ≡ 1 mod Pu(z). (3.29)

Thus, the problem of reconstruction of the polynomial H(z) can be solved
by solving a set of equations 3.29. The proof is quite similar to the proof of
integer CRT and it relies on the fact that:

Su(z) ≡
{

0 mod Pi(z), i 6= u
1 mod Pu(z)

(3.30)

which follows from the definition of P (z).

Solving for Tu(z) can be a tedious job. A symbolic mathematical package,
like Wolfram’s Mathematica2 can be of great help. For example, let us denote
∏k

j 6=u Pj(z) in Eq. 3.29 with Mu(z). Then we can simply solve for Tu(z) by
using instructions in Lst. 3.2.

Solve [
PolynomialRemainder [Tu(z)∗Mu(z) ,Pu(z) , z]==1,Tu(z)

]

Listing 3.2: Solving a system of polynomial congruence relations

Now, when CRT is outlined, we can reason about its applications. In the
3.3 section, an example of its usage will be given. The crux of idea is to par-
tition the problem into smaller ones, perform necessary operations, and then
reconstruct the final solution by CRT. Other outlined applications, namely
fast multidimensional DFT and DCT algorithms, are based on polynomial
reduction. Basically idea is the same - to break the problem into smaller
pieces, but the final solution reconstruction is different as it will be seen.
The middle stages of all applications that will be explained are based on
polynomial transforms.

2http://www.wolfram.com/

http://www.wolfram.com/

CHAPTER 3. POLYNOMIAL TRANSFORM 25

3.2 Polynomial Transforms

3.2.1 Basic definition

After surveying modulo arithmetic and CRT, we can broach the subject of
polynomial transforms (PT). Polynomial transform was introduced by Nuss-
baumer [22, 23] to map multidimensional convolutions into one-dimensional.
Higher dimensions are obtained by polynomial products and additions needed
to implement polynomial transform and Chinese remainder reconstruction,
effectively decreasing computational complexity. Polynomial product can be
performed by scalar coefficient multiplication, but there’s a more efficient
method based on combination of direct and inverse polynomial transform.

PT can also be applied to reduce multidimensional DFTs to one-dimen-
sional and a number of additions for implementing polynomial transform.
Many digital signal processing operations, like DCT and correlation, are
closely related to DFT and convolution and therefore PT can be also applied
to reduce their computational complexity. Even more, PT can be applied
to single-dimensional convolution and DFT, as will be described later. By
using polynomial transforms we also avoid matrix transpositions that are
needed in naive implementations of separable transforms. Another important
property of PT based DFT and convolution algorithms is that dynamic range
limitation and round-off errors are avoided. PT based algorithms are also
suitable for hardware implementation because they can be easily parallelized.

In the most general case [10], DFT can also be considered as a very
simple polynomial transform corresponding to projection of an input data
sequence onto the family of monomials and evaluated at the roots of unity
KDFT = ej2πkn/N , k = 0, ...N − 1. But further on, we will use only a class of
polynomial transforms of the form:

Yk(z) ≡
N−1
∑

m=0

Xm(z) [G(z)]mk mod P (z), k = 0, ..., N − 1, (3.31)

where G(z) is root of transform kernel and z is just an auxiliary variable. All
members of the class have to satisfy:

[G(z)]N ≡ 1 mod P (z) (3.32)

S(q) ≡
N−1
∑

k=0

[G(z)]qk mod P (z) ≡
{

0 for q 6≡ 0 mod N
N for q ≡ 0 mod N

(3.33)

CHAPTER 3. POLYNOMIAL TRANSFORM 26

Additional condition is that N and G(z) must have inverses mod P (z). In-
verse PT is defined as:

Xm(z) ≡ 1

N

N−1
∑

k=0

Yk(z) [G(z)]−mk mod P (z). (3.34)

As long as the three mentioned conditions are satisfied, we can also use
composite roots of the type WG(z), W ∈ C.

3.2.2 Computation

In general, algorithms based on polynomial transform require computation of
polynomial reductions, polynomial transforms and Chinese remainder recon-
struction. In many cases the first two operations can be completely computed
without multiplications. Reconstruction is a bit more complex and in some
cases it can be computed without multiplications with the reorganization of
computation.

A few examples will be given to demonstrate polynomial reduction, which
is simply a modulo operation. The type of operations needed to compute the
reduction depends on a polynomial that defines a polynomial ring. Examples
of the most often used cases are given in Table 3.2, where p stands for an
odd prime and W ∈ C.

Type Ring Computed by

RI(z) z − 1 additions
RII(z) z −W complex multiplications and additions
RIII(z) zp − 1 additions
RIV (z) (zp − 1)/(z − 1) additions

Table 3.2: Polynomial reduction

For a polynomial:

X(z) =
N−1
∑

k=0

xkz
k, (3.35)

it is easy to see that:

X(z) mod RI(z) =
N−1
∑

k=0

xk. (3.36)

CHAPTER 3. POLYNOMIAL TRANSFORM 27

Auxiliary variable z is substituted with 1, and N −1 additions are needed to
compute the result. The same applies to the second type, with the difference
that z is substituted with complex variable W resulting in N − 1 complex
multiplications by powers of W and N − 1 additions. Third type can be
factored into the first and the fourth so as to decompose a problem into two
smaller ones. Basically, if p ≥ N the reduction has no effect. If p < N , it
maps coefficients of degree d > N into equivalence classes of degree d mod N ,
and thus it can be computed without multiplications.

For the third type, we will assume that N = p. It follows that:

X(z) mod RIII(z) =

p−2
∑

k=0

(xk − xp−1) z
k. (3.37)

While we were talking about Euler’s function in section 3.1.2, it was
explained how a set of integers can be permuted using modulo operation.
The same principle applies to polynomial transforms. Generalizing a third
type from the Table 3.2 on the preceding page, a polynomial transform, with
N ∈ R :

Xm(z) =
N−1
∑

k=0

xk,mz
k (3.38)

Yk(z) =
N−1
∑

m=0

Xm(z)zmk mod zN − 1 (3.39)

can be viewed as a permutation of Xm(z) polynomial. When mk = 1, per-
mutation is a one-word polynomial rotation followed by a sign inversion of
the overflow words. One-word rotation means that if polynomial is of degree
k, than a coefficient of zk would be rotated to z0 position.

Computational complexity of polynomial transformation is a bit harder to
explain, but essentially it is performed by a series of reductions. An example
of computational complexity analysis for polynomial transforms can be found
in [25].

The computation of Chinese remainder reconstruction will be shortly ex-
plained in the discussion about applications of polynomial transform in the
next section.

CHAPTER 3. POLYNOMIAL TRANSFORM 28

3.3 Application of PTs

3.3.1 Convolution

Convolution has many applications in digital signal processing. One of espe-
cially important applications is in design of finite impulse response filters. It
is a well known fact that a form of convolution, named circular convolution,
can be computed by multiplication of two DFT sequences:

yk = DFT−1 (DFT (xm)DFT (hn)) . (3.40)

Circular convolution is the same as an ordinary convolution with the
index defined modulo N , as shown:

ym =
N−1
∑

n=0

xnh〈m−n〉N . (3.41)

Ordinary linear convolution can be obtained from circular one by padding
input sequences with a sufficient number of zeros [29].

Brute force computation of convolution of length N requires N2 multipli-
cations. From Eq. 3.40 it is clear that circular convolution can be computed
using DFT which can be computed by Fast Fourier transform (FFT) algo-
rithm. Multiplicative complexity of FFT is Nlog2N . Hence, the benefit of
using FFT for the computation of convolution is obvious.

Another way to compute one-dimensional real convolution is by using
reductions and Chinese remainder reconstruction iteratively [23]. The prob-
lem is decomposed into two smaller ones, more precisely into polynomial
products and smaller convolution. Polynomial products can be computed ef-
ficiently using polynomial transform. The multiplicative complexity of such
an approach is also Nlog2N making a direct comparison difficult, especially
because there is a large number of different FFT algorithms. Taking roundoff
error and auxiliary operations into consideration makes this comparison even
harder.

But in the case of multidimensional convolutions, polynomial transform
based approach has a clear advantage in many cases over the usage of naive
row-column FFT algorithms and even over Winograd nesting Fourier trans-
form algorithm (WFT). In the case when coefficients H(k, l) = DFT2(hn,m)
are precomputed, NxN WFT can be implemented via M2 complex multipli-
cations, whereM represents a number of multiplications needed to implement

CHAPTER 3. POLYNOMIAL TRANSFORM 29

one-dimensional DFT of length N . Each complex multiplication can be im-
plemented either with 4 real multiplications and 2 real additions, or with 3
multiplications and 5 additions3:

(a+ ib)(c+ id) = (k0 − k1) + i(k2 − k1 − k0)

k0 = ac

k1 = bd

k2 = (a+ b)(c+ d)

Hence, 3 (Nlog2N)2 real multiplications are needed for the realization of
WFT. FFT based approach requires 2N2log2N

2 + 2N2 [11] real multipli-
cations. Polynomial transform based approach for computing NxN convolu-
tion, where N is prime requires only 2N2 −N − 2 real multiplications, and
it can be proved that it is the theoretical minimum. Comparison is given in
the Table 3.3.

Algorithm Real multiplications

PT 2N2 −N − 2

WFT 3 (Nlog2N)2

FFT 2N2log2N
2 + 2N2

Table 3.3: 2D convolution multiplicative complexity

The multiplicative complexity analysis provides a strong motivation for
using polynomial transform based algorithms. The constraint that N has to
be prime was used only to simplify the following example, but it is possible
also to design PT algorithms when the length is not a prime number. PT
algorithms can be easily applied to multidimensional convolutions.

Two-dimensional circular convolution can be written as a polynomial:

Yl ≡
N−1
∑

m=0

N−1
∑

n=0

N−1
∑

u=0

hn,mxu−n,l−mz
u mod (zN − 1). (3.42)

It should be noted that modulo operation is superfluous in the above equa-
tion, but it will make further presentation easier to follow4. To simplify
Eq. 3.42, let us write:

3Although it might not be worth the effort on the machines with fast multiplication,
it might save significant area on chip, depending on the implementation of multiplication
circuit.

4As the highest degree of a polynomial Yl is less than N , this modulo operation does
not have any effect.

CHAPTER 3. POLYNOMIAL TRANSFORM 30

Hm(z) =
N−1
∑

n=0

hn,mz
n, m = 0, ..., N − 1 (3.43)

Xr(z) =
N−1
∑

s=0

xs,rz
s, r = 0, ..., N − 1 (3.44)

Yl(z) ≡
N−1
∑

m=0

Hm(z)Xl−m(z) mod (zN − 1). (3.45)

The proof simply follows from the periodicity of the sequence defined modulo
zN − 1. Now, we shall constrain N to be an odd prime N = p, so that zp − 1
can be factored into two cyclotomic polynomials.

zp − 1 = (z − 1)P (z) (3.46)

P (z) = zp−1 + zp−2 + ...+ 1 (3.47)

Y2,l is computed by reduction by z − 1 and p point convolution.

Y1,l(z) = Yl(z) mod P (z) (3.48)

Y2,l(z) = Yl(z) mod (z − 1) (3.49)

Y2,l(z) =

p−1
∑

m=0

H2,mX2,l−m l = 0, ..., p− 1 (3.50)

Computing Y1,l is slightly more complex and it is based on the properties of
polynomial transform:

Y1,l ≡
p−1
∑

m=0

p−1
∑

r=0

H1,m(z)X1,r(z)
1

p

p−1
∑

k=0

zqk mod P (z), (3.51)

where q = m+ r− l and X1,r(z) ≡ Xr(z) mod P (z). Since all the exponents
in the last sum are defined modulo p, and q is relatively prime with p, it is
easy to see that if q 6≡ 0 the last sum is a polynomial with the exponents
{0, 1, ..., p − 1}. This polynomial reduces to zero modulo P (z). In the case
q ≡ 0 the last sum computes to p. If q ≡ 0 then r ≡ l − m and therefore
Eq. 3.51 can be written as a circular convolution:

Y1,l ≡
p−1
∑

m=0

H1,m(z)X1,l−m(z) mod P (z). (3.52)

CHAPTER 3. POLYNOMIAL TRANSFORM 31

�✂✁☎✄✝✆☎✞✠✟☛✡✌☞✎✍
✏ ☞✝✄✒✑✔✓☛✕✗✖

✑✘☞✎✙✛✚✜✍✢☞ ✏ ✡✌✣✎✙✥✤✢✦✧☞✝✄☎✆✝✞✠✟
✏ ☞✝✄✒✑✔✓☛✕✗✖

★ ✦✩✄✢✁✪✦✩✡✫✍✜✬✭☞☎✮
✤✯☞✎✙✛✚✜✍✢☞ ✏ ✡✌✣✎✙✱✰

�✂✁☎✄✝✆☎✞✠✟✲✡✌☞☎✍
✏ ☞✝✄✭✓☛✕✴✳✶✵✷✖

✤✯✳✸✤✹☞✜✡✱✍✢✟✝✞✠☞✪✍✻✺✼☞✎✙✌✆✝✟✽✡✌☞✎✍

✾✘✿ ✡✫✍✝✁☎✰❀✁❁✦❂✁ ✏ ✣✎✡✱✍❃✄☎✁✜✦
✦❂✁✜✞✠☞✜✍☎✰✪✟❄✦✧✆☎✞❀✟✲✡✌☞✎✍

❅✝❆❈❇❊❉

✚✜❋ ❇❍●

■ ❉ ✓☛✕✗✖

❏▲❑ ❇❍▼ ✓✽✕✗✖

◆ ❑ ❇❍● ✓☛✕✗✖◆P❖ ❇❊● ✓✽✕◗✖

■❘❑ ❇❍❉ ✓✲✕✗✖■ ❖ ❇❍❉ ✓✲✕✗✖

❏ ❖ ❇❍▼ ✓✽✕✗✖

(a)

�✂✁☎✄✝✆☎✞✟✁☎✠☛✡✌☞☎✄✎✍✑✏✒☞✓✞✕✔✎✖✑✁✓✏✗✠
✠✘✁✓✙✚�✜✛✣✢✥✤✧✦★✔✩✡✪✢✬✫✮✭✯✦✟✏✒✁★✁✕✍☎✢

✰✲✱✴✳✶✵✷✛✣✢✸✤

✹ ✱✑✳✶✺ ✛✑✢✻✤

✼ ✱✽✳✿✾ ✛✣✢✥✤✭✚✭❀✁☎✄✝✆✓✞❁✁☎✠✚✡✌☞☎✄❂✠✚❃✓✄✌✍✽✡✝✭❄✄❅✡✌❆❇☞★✍✣✡✌✁☎✞★✔
✠✚✁★✙❈�✜✛✑✢✥✤

❉✑✞❋❊●✫✓✏✗✔✎✫❍✭■✁✓✄✝✆☎✞❁✁✓✠❈✡✌☞✕✄❂✍✽✏❏☞✎✞❁✔❂✖✴✁✎✏✒✠
✠✘✁✓✙✚�✜✛✣✢✥✤✧✦★✔✩✡✪✢✬✫✮✭✯✦✟✏✒✁★✁✕✍☎✢

✹▲❑▼✛✑✢✥✤

(b)

Figure 3.1: Block diagram of PT based 2-D convolution

A block diagram of main computational steps is shown in Fig. 3.1. Fig. 3.1(a)
represents the basic flow of operations, while Fig. 3.1(b) shows the realization
of polynomial products.

Polynomial product in Eq. 3.51 is actually an inverse polynomial trans-
form of the product of polynomial transforms of X1,r(z) and H1,m(z) modulo
P (z):

Y1,l =
1

p

p−1
∑

k=0

(

p−1
∑

r=0

X1,r(z)z
rk

p−1
∑

m=0

H1,m(z)zmk

)

z−lk. (3.53)

The final result can be obtained by Chinese remainder reconstruction.
Solving a set of polynomial congruence relations is relatively simple when
the ring is defined modulo zp − 1, because Si polynomials can be simply
computed as shown below.

Yl(z) ≡ S1(z)Y1,l(z) + S2(z)Y2,l mod (zp − 1)

S1(z) =
p− P (z)

p
(3.54)

S2(z) =
P (z)

p

In order to decrease the number of multiplications even further, a part of

CHAPTER 3. POLYNOMIAL TRANSFORM 32

Chinese remainder reconstruction can be precomputed together withH1,m(z),
but this is not shown in the block diagrams.

3.3.2 DFT

DFT and DCT are closely related. Some of the early algorithms for multi-
dimensional DCT were based on multidimensional DFT algorithms. Thus,
an example of application of polynomial transforms to the computation of
multidimensional DFT will make the presentation more complete and easier
to follow.

Two important properties of polynomial reduction have to be mentioned
before proceeding with PT based two-dimensional DFT algorithm:

I. If Q(z) = z − a, then:

P (z) mod Q(z) = P (a). (3.55)

II. When Q(z) can be factored, then we can write:

Q(z) = Q1(z)Q2(z) (3.56)

P (z) mod Q1(z) = (P (z) mod Q(z)) mod Q1(z). (3.57)

Two-dimensional DFT of size NxN is defined as:

X̂k1,k2
=

N−1
∑

n1=0

N−1
∑

n2=0

xn1,n2
W n1k1W n2k2 (3.58)

k1, k2 = 0, ..., N − 1, (3.59)

where W = e−j2π/N . Using the properties of polynomial reduction, previous
equation can be rewritten as:

X̂k1,k2
=

N−1
∑

n1=0

N−1
∑

n2=0

xn1,n2
W n1k1zn2 mod

(

z −W k2

)

, (3.60)

or more formally:

X̄k1
(z) ≡

N−1
∑

n1=0

Xn1
(z)W n1k1 mod (zN − 1) (3.61)

CHAPTER 3. POLYNOMIAL TRANSFORM 33

Xn1
(z) =

N−1
∑

n2=0

xn1,n2
zn2 (3.62)

X̂k1,k2
≡ X̄k1

(z) mod
(

z −W k2

)

. (3.63)

It should be noted that modulo operation in Eq. 3.61 is not required, but it
makes further exposition clearer. Now, let us constraintN to be an odd prime
number p so that zp − 1 can be factored into two cyclotomic polynomials as
shown in 3.46 and 3.47 on page 30. As a polynomial of degree N has N
complex roots, the chosen polynomial zp − 1 has p roots and each W k2 is
a root of the chosen polynomial. For k2 = 0, we get DFT of length N by
Xn1

mod (z − 1):

X̂k1,0 =

p−1
∑

n1=0

(

p−1
∑

n2=0

xn1,n2

)

W n1k1 . (3.64)

For k2 6= 0, we can write 3.58 as:

X̄1
k1

(z) ≡
p−1
∑

n1=0

X1
n1

(z)W n1k1 mod P (z), k1 = 0, ..., p− 1 (3.65)

X1
n1

(z) =

p−2
∑

n2=0

(xn1,n2
− xn1,p−1)z

n2 ≡ Xn1
(z) mod P (z) (3.66)

X̂k1,k2
≡ X̄1

k1
(z) mod (z −W k2), k2 = 1, ..., p− 1. (3.67)

If k2 6= 0, W k2 are roots of P (z) and DFT can be obtained by a series of
polynomial reductions and one-dimensional DFTs.

X̂k1,k2
≡
{[

X̄k1
(z) mod (zp − 1)

]

mod P (z)
}

mod (z −W k2) (3.68)

As k2 is relatively prime with p, it can be introduced in the exponent in order
to eliminate W factor in Eq. 3.65. The result is simply a permuted sequence.

X̄1
k1k2

(z) ≡
p−1
∑

n1=0

X1
n1

(z)W k1k2n1 mod P (z) (3.69)

X̂k1k2,k2
≡ X̄1

k1k2
(z) mod

(

z −W k2

)

(3.70)

By substituting z by W k2 we obtain a polynomial transform of length p which
can be computed without multiplications.

CHAPTER 3. POLYNOMIAL TRANSFORM 34

X̄1
k1k2

≡
p−1
∑

n1=0

X1
n1

(z)zk1n1 mod P (z) (3.71)

Since the previous equation is defined modulo P (z), the highest exponent is
p− 2 and the equations can be written as:

X̄1
k1k2

=

p−2
∑

l=0

yk1,lz
l (3.72)

X̂k1k2,k2
=

p−2
∑

l=0

yk1,lW
k2l, k2 = 1, ...p− 1. (3.73)

The last equation represents p DFTs of length p. Hence, pxp DFT has
been reduced to (p + 1) p-length DFTs, while row-column decomposition
would require 2p DFTs. Further, p DFTs of length p can be converted
into a convolution using chirp z-transform. Even more efficient way is to
convert DFTs to circular convolution using Rader’s algorithm [6]. Circular
convolution can be computed using polynomial transforms yielding a very
efficient way for computing multidimensional DFTs. A block diagram for
computing pxp can be seen in Fig. 3.2.

The left part of block diagram 3.2 can be implemented as follows in
diagram 3.3. As p − 1 is always an even number, one of the factors of
zp−1 − 1 is surely z2 − 1.

Finally, we should compare polynomial transform approach with other
more traditional approaches like WFT and FFT. Computational complexity
of polynomial transform based NxN DFT is given in the Table 3.4 on the
next page. Numbers p, p1 and p2 are prime and t ∈ N. Comparison of the
number of multiplications and additions, denoted with µ and α respectively,
can be viewed in Table 3.5 on page 36. Both tables are adapted from [26].

Obviously, polynomial transform based approach for computing multi-
dimensional DFTs results in significant computational savings. It has been
shown in paper [8] that this approach saves 46% of logic resources for 512x512
DFT implemented in Xilinx5 4025 FPGA [36] over conventional row-column
decomposition approach, while maintaining the same throughput.

5http://www.xilinx.com/

http://www.xilinx.com/

CHAPTER 3. POLYNOMIAL TRANSFORM 35

�✂✁☎✄✝✆☎✞✠✟☛✡✌☞✎✍
✏ ☞✝✄✒✑✔✓☛✕✗✖

✑✘☞✚✙✜✛✎✍✢☞ ✏ ✡✌✣☎✙✤✟✦✥✧✣✚✍☎★✪✩✫☞✬✥ ✏ ✏ ☞✚✄✑✭✓☛✕✗✖✯✮✰✥✧☞✢☞✚✟✪✕✱✮✝✙✌✁✚✍☎✲✢✟☛✳✵✴

✶ ✥✧✄✢✁✬✥✧✡✷✍✚✲✸☞☎✩✴✹☞✎✙✜✛✚✍✢☞ ✏ ✡✌✣✎✙✺★

�✂✁☎✄✝✆☎✞✠✟✻✡✌☞☎✍
✏ ☞✝✄✸✓☛✕✭✼✾✽✿✖

✴✰✼❀✴❁☞✚✡✺✍✢✟✚❂❄❃❆❅

❇✎❈❊❉✫❋●❈■❍

❏ ❈❊❉ ✓☛✕✗✖ ✴❑✴✹☞☎✙✜✛✬✍✢☞ ✏ ✡✌✣✚✙✺★✵☞☎✩✤✴▲✟☛✁✎✥ ✏ ★

▼ ❍❖◆✝P

◗❙❘❯❚ ❘❲❱❯❳❩❨ ❬❄❬❪❭❊❫❵❴❜❛❝❭❝❞✔❡●❢❣❫✐❤❥❭❣❦❬❪❧✯♠♦♥❯♣❣q❲❞❄❤

▼ ❍❝r ◆sP

✴✸✥t✁☎✄✝✆☎✞✤✁☎✄✉❂❄❃❆❅✎★✈✓✦✴✞✠☞✚✥✇✥✧✁☎✙✌✣☎✟✻✡✌☞✚✍☎★✉☞✚✩✬✴✢✼❊✽①✴♦☞✎✡✺✍✢✟②★③✖

�❄✁☎☞✚✥t✄✝✁✎✥✧✡✐✍✝✲

❏ ❉⑤④ ❉ ④ ❍ ✓☛✕✗✖

❏ ❉ ④ ❉ ④ ❍✧❋ ④ ❍ ✓✦✕⑥✖

Figure 3.2: Block diagram of PT based 2-D DFT

Size Multiplications Number of additions

p 1 DFT of p terms, p correlations of p3 + p2 − 5p+ 4
p− 1 terms

p2 p2 + p correlations of p2 − p terms, 2p5 + p4 − 5p3 + p2 + 6
1 DFT of p terms, p2 + 2p
correlations of dimension p− 1

2t 3(2t−1) reduced DFTs of dimension (3t+ 5)22(t−1)

2t, 1 DFT of dimension 2t/2x2t/2
p1p2 (p1p2 + p1 + p2) correlations of p2

1p
2
2(p1 + p2 + 2)−

(p1 − 1)x(p2 − 1) terms, p1 −5p1p2(p1 + p2)+
correlations of p1 − 1 terms, p2 +4(p2

1 + p2
2)

correlations of p2 − 1 terms, 1
DFT of p1p2 terms

Table 3.4: Computational complexity of PT based DFT

CHAPTER 3. POLYNOMIAL TRANSFORM 36

�✂✁☎✄✝✆✟✞✠✁✡✆☞☛✍✌✏✎

�✑✁✠✞☎✒✠✓✕✔✖☛✗✄✝✌
✘ ✄✏✞✚✙✖✛✢✜✤✣✦✥

✧ ✜✤✣ ✧ ✄✝☛★✌✩✔✓✪✄✏✆✫✆✟✁✝✬✗✭✠✔✮☛✗✄✝✌

✯✱✰✳✲✟✙✴✛✳✥ ✧ ✜✳✣ ✧ ✄✏✬✶✵✏✌☎✄ ✘ ☛✗✭✏✬✸✷✹✄✠✺ ✧ ✔✻✁✝✆ ✘ ✷

✼✾✽✖✿ ✽❁❀★❂❄❃ ❅✂❅❇❆✤❈✶❉❋❊●❆✤❍✢■✸❏✤❈▲❑▼❆●◆❅❇❖❄P❘◗✗❙●❚✮❍✂❑

❯▼✄✝✬❱✵✝✌✩✄ ✘ ☛✗✭✝✬✡✔✴✆✟✭✝✌☎✷✡✺✮✄✝✆ ✘ ✄✠✺
✧ ✜✤✣❲✔✻✁✝✆ ✘ ✷

�✂✁✠✄✏✆☞✞❳✁✡✆☞☛✍✌✏✎

�✑✁✠✞☎✒✠✓❨✔✮☛✗✄✝✌ ✘ ✄❳✞❩✙✮✛●❬❭✜❪✣☞✥☞❫
✙✴✛✝✜❪✣☞✥

�✂✁✏✞❳✒✏✓❨✔✴☛✴✄✏✌ ✘ ✄✏✞✚✙✮✛ ❬❵❴ ✲ ✜❪✣❛✥❜❫
✙✮✛✕❝❛✜✤✣☞✥

�✑✁❳✞✏✒❳✓✪✔✖☛✗✄✏✌
✘ ✄☎✞❞✙✮✛❇❝✠✜✤✣☞✥

✙ ✧ ✜❪✣❛✥✟❡☎❢❣✓❨✄✏✆❜✆❤✁✏✬✗✭✠✔✖☛✗✄✏✌

✧ ✜❪✣ ✧ ✄✏✬❱✵✝✌❳✄ ✘ ☛✗✭✠✬ ✧ ✆✟✄✠✞☎✒✠✓✪✔✖✷
✘ ✄✏✞✚✙✖✛●❬✐❴ ✲ ✜❪✣❛✥❜❫❥✙✮✛ ❝ ✜✤✣☞✥

❦✴✌♠❧●✁✝✆❜✷♥✁ ✧ ✄✡✬▲✵✡✌✩✄ ✘ ☛✗✭✝✬
✔✴✆✟✭✝✌☎✷✡✺✮✄✝✆ ✘ ✄✠✺ ✧ ✜❪✣♦✔♣✁✏✆ ✘ ✷

qsr ☛★✌❳✁✡✷♥✁✹✆✟✁ ✘ ✭✝☛★✌✩✞✠✁✝✆❘✆✟✁✠✓❨✄✏✌✠✷✕✔✖✆✟✒✏✓❨✔✮☛✗✄✝✌

✯✂t ✲♣✉ t ❝

Figure 3.3: Realization of DFT via circular convolution

PT DFT WFT FFT
Size

µ α µ α µ α
2x2 4(4) 8 4(4) 8 8(8) 8
3x3 9(1) 43 9(1) 36 18(6) 36
4x4 16(16) 64 16(16) 64 32(32) 64
5x5 31(1) 221 36(1) 187 60(10) 170
7x7 65(1) 635 81(1) 576 126(14) 504
8x8 64(40) 408 64(36) 416 128(96) 416
9x9 105(1) 785 121(1) 880 198(18) 792

16x16 304(88) 2264 324(64) 2516 576(256) 2368

Table 3.5: DFT computational complexity comparision

4 Previous Work

4.1 Computational Complexity

Feig and Winograd were the first to report the theoretical lower bound on
the multiplicative complexity of multidimensional DCT transform [14]. The
lower bound for one-dimensional DCT was established a few years earlier by
Duhamel and H’Mida [13].

For one-dimensional DCT of the size N = 2n, the minimum number of
nonrational multiplications needed for computation is determined to be equal
to:

µ (K2n) = 2n+1 − n− 2. (4.1)

The lower multiplicative bound for two-dimensional MxN DCT, where M =
2m and N = 2n with m ≤ n, is given in Eq. 4.2.

µ
(

KM

⊗

KN

)

= 2m(2n+1 − n− 2) (4.2)

Symbol
⊗

denotes a tensor product and KM

⊗

KN represents 2D DCT
coefficient matrix. More generally, for N-dimensional DCT, where Mj = 2mj

and m1 ≤ m2 ≤ m3 ≤ · · · ≤ mN , we obtain:

µ
(

KM1

⊗

KM2

⊗

· · ·
⊗

KMN

)

= 2(m1+···+mN−1)
(

2mN+1 −mN − 2
)

.

(4.3)
Complexity results are important for evaluation and design of practical

algorithms. The minimization of the number of multiplications, without
introducing an excessive number of additions, is crucial for the hardware
implementations. For software implementations, one has to consider the
percentage of the total application run-time that is needed for the execution
of the target algorithm before searching for a more advanced one. Even if the
percentage of time is significant, it is questionable whether an algorithm with
smaller number of multiplications (and usually higher number or additions)
will shorten execution time at all. Other effects, like memory and cache
behavior, total number of operations, code scheduling and processor efficiency
in execution of different types of operations might be more important. The
number of multiplications for software implementation has become even more
irrelevant since the ratio multiplication time

addition time
is close to 1 on most processors. As

37

CHAPTER 4. PREVIOUS WORK 38

the topic of this thesis are DCT algorithms for hardware implementation,
multiplicative complexity is an important issue that needs to be considered.

4.2 One-dimensional Algorithms

DCT is probably most widely used transform in image processing, especially
for compression. Many algorithms have been proposed in the literature and it
is virtually impossible to give a detailed survey. Probably the most complete
DCT survey is given in [38].

Discrete cosine transform was invented 1974. [2]. At first, it was computed
using FFT algorithm that was newly rediscovered at the time. For DCT of
length N , 2N FFT had to be used, like described before. One of the early
papers on DCT algorithms [21] reported an improved way to compute DCT
via FFT of length N using (3/4)(Nlog2N −N + 2) real multiplications (if
each complex multiplication is computed by 3 real multiplications). Many
FFT algorithms were optimized for complex data, while in most practical
purposes the transformation is performed on real data. The research in DCT
and FFT algorithms for real data resulted in an efficient recursive algorithm
for computing DCT of real sequence [32].

Other research direction was based on the analysis of coefficient matrix
properties. For instance, in [4] a new algorithm based on alternation of cosine
and sine butterfly matrices with binary ones was reported. By reordering
the matrix elements, they obtained a form that preserves a recognizable bit-
reversed patterns.

A general prime factor decomposition algorithm that is very suitable for
hardware implementation was proposed in [37]. The algorithm decomposed
DCT of length N = N1N2, where N1 and N2 are relatively prime, into smaller
DCTs of length N1 and N2 respectively.

Important work on DCT matrix factorization has been done by Feig and
Winograd in [15]. The result was an efficient recursive DCT algorithm, that
is used for one-dimensional DCT implementation in this thesis. It can be
realized by 13 multiplications and 29 additions for 1-D DCT of length 8.
Although not optimal, this algorithm is particularly effective for FPGA im-
plementation when combined with distributed arithmetic algorithms. In the
same paper they also present an algorithm for 8x8 DCT which uses 94 mul-
tiplications and 454 additions. Theoretical minimum is 88 multiplications.

Algorithm proposed by Loeffler in [19] has been devised using graph trans-
formations and equivalence relations. For 8-point DCT, the algorithm is

CHAPTER 4. PREVIOUS WORK 39

optimal and requires only 11 multiplications and 29 additions, achieving the-
oretical minimum number of multiplications, while for larger input widths it
yields the best effort algorithm.

Computation of inner products is essential in many DCT algorithms.
When one of the vectors is fixed, inner products can be efficiently computed
by reformulating the algorithm at the bit level and it is exactly an approach
used in distributed arithmetic reformulation. Inner product can be efficiently
implemented by look-up tables and accumulators. This approach is particu-
larly suitable for FPGA architectures if serial input is acceptable. A detailed
overview of distributed arithmetic and its applications can be found in [33].
Previously mentioned DCT matrix factorization approach can be combined
with distributed arithmetic [39] resulting in a very regular algorithm. This
algorithm with partial DCT matrix factorization is used later for the imple-
mentation of the reference 8x8 DCT and it will be called DADCT algorithm.
An implementation of DADCT in FPGA will be used for comparison with
polynomial transform based approach.

Another very interesting and innovative algorithm is based on the repre-
sentation of DCT by a finite series of Chebyshev polynomials [20]. The order
of the series can be halved by using successive factorization. This method
computes DCT with (1/2)Nlog2N real multiplications and (3/2)Nlog2N ad-
ditions. For 8-point DCT that means 12 multiplications and 36 additions.

Other approaches to the computation of DCT include CORDIC (CO-
ordinated Rotation DIgital Computer) algorithms [18] and systolic arrays.
DCT CORDIC based algorithms can be implemented using only addition
and shift operations as in [41]. Comparison between these different classes of
algorithms is hard, and author is not aware of any detailed published work
on the subject.

4.3 Early Multidimensional Algorithms

Some of the early approaches for computing multidimensional DCT trans-
forms used its separable nature to compute first dimension, transpose the
result and compute DCT of the transposed matrix. If we have NxN DCT
and one-dimensional DCT of length N is computed with M multiplications,
then 2NM multiplications are needed for this naive approach. Examples
of such approach are described in [31, 30]. Each dimension is computed
by partially factorizing DCT matrix, while inner products are realized with
distributed arithmetic. After first dimension is computed, data matrix is

CHAPTER 4. PREVIOUS WORK 40

transposed and fed into second dimension.
Nussbaumer proposed in [24] one of the first 2-D DCT algorithms that

treated both dimensions at once (i.e. without computing each dimension
separately). The algorithm was based on the permutation of input sequence
as follows:

yn1,n2
=















x2n1,2n2
0 ≤ n1 <

N1

2
, 0 ≤ n2 <

N2

2

x2N1−2n1−1,2n2

N1

2
≤ n1 < N1, 0 ≤ n2 <

N2

2

x2n1,2N2−2n2−1 0 ≤ n1 <
N1

2
, N2

2
≤ n2 < N2

x2N1−2n1−1,2N2−2n2−1
N1

2
≤ n1 < N1,

N2

2
≤ n2 < N2.

(4.4)

This permutation is further used to derive N1xN2 DCT without correction
factors:

Xk1,k2
=

N1−1
∑

n1=0

N2−1
∑

n2=0

xn1,n2
cos

[

2π(2n1 + 1)k1

4N1

]

cos

[

2π(2n2 + 1)k2

4N2

]

(4.5)

from N1xN2 DFT:

Ȳ (k1, k2) = W k1

1 W k2

2

N1−1
∑

n1=0

N2−1
∑

n2=0

yn1,n2
W 4n1k1

1 W 4n2k2

2 , (4.6)

by simple additions:

X0,0 = 4Ȳ (0, 0)

X0,k2
= 2

(

Ȳ (0, k2) + jȲ (0, N2 − k2)
)

(4.7)

Xk1,0 = 2
(

Ȳ (k1, 0) + jȲ (N1 − k1, 0)
)

Xk1,k2
= Ȳ (k1, k2)+ jȲ (N1 − k1, k2)+ jȲ (k1, N2 − k2)− Ȳ (N1 − k1, N2 − k2).

The result is obtained by computing DFT, which can be computed by us-
ing polynomial transforms, and multiplying the result with W k1

1 W k2

2 . Even
smaller number of operations can be achieved by applying polynomial trans-
form modulo zN1 − j, where j is

√
−1, directly to 4.6. The algorithm can

be calculated by 2N1N2(2 + log2N1) multiplications and N1N2(8+3log2N1 +
2log2N2) additions if a simple radix-2 FFT is used. Nussbaumer claimed
50% reduction of the number of multiplications, but other algorithm used for
comparison was a very inefficient one. In brief, the first proposed polynomial
transform DCT algorithm was rather inefficient, especially when compared

CHAPTER 4. PREVIOUS WORK 41

with naive row-column decomposition implementation based on Loeffler’s
[19] algorithm. For instance, 8x8 DCT can be computed with 176 multipli-
cations by using 16 8-point DCTs based on Loeffler’s algorithm. Proposed
polynomial transform based DCT requires 640 multiplications.

Although the advantage of application of polynomial transforms to mul-
tidimensional convolution and DFT was clear, more effort was needed to
achieve really efficient multidimensional DCT algorithm.

4.4 Advanced Multidimensional Algorithms

Many researchers have been working on 2-D DCT algorithms that are used
mostly for image compression. Higher-dimensional algorithms were rarely
considered. New applications that require 3-D and even 4-D DCT algorithms
are emerging lately. Three dimensional image and video systems, like 3-D
TV [7], use DCT for lossy compression of integral 3-D image data. In [35] 3-
D DCT is used for watermarking volume data by applying spread-spectrum
technique in frequency DCT domain in order to hide watermark trace in
multiple frequencies.

A very efficient 2-D DCT algorithm was proposed by Cho and Lee in [5].
Their algorithm requires onlyNM multiplications forNxN DCT, whereM is
the number of multiplications required for 1-D N -point DCT. The algorithm
decomposes multidimensional DCT to one-dimensional DCTs and a number
of additions. They reported multiplicative complexity of (N2/2)log2N , but
they used non-optimal 1-D algorithm requiring (N/2)log2N multiplications.
If optimal one-dimensional DCT is used for computing the first dimension in
their algorithm, resulting 2-D algorithm will be also optimal [34]. Hence, for
8x8 DCT it is possible to achieve the theoretical minimum of 88 multiplica-
tions by using Loeffler’s algorithm for the first dimension and compute the
second dimension by Cho’s algorithm. It is not clear whether their approach
could be extended to multidimensional DCT.

4.4.1 Duhamel’s 2D algorithm

Duhamel and Guillemot [12] have used a bit different approach to map 2-D
DCT to complex polynomials. The approach is quite complex, especially for
forward transform. Inverse DCT (IDCT) algorithm is somewhat easier to
prove.

CHAPTER 4. PREVIOUS WORK 42

In order to demonstrate the basic steps of Duhamel’s IDCT algorithm,
let us now constraint that N1 = N2 = N . Input data permutation 4.4 can
be rewritten as follows.

yn1,n2
= x2n1,2n2

yN−n1−1,n2
= x2n1+1,2n2

yn1,N−n2−1 = x2n1,2n2+1 (4.8)

yN−n1−1,N−n2−1 = x2n1+1,2n2+1

n1, n2 = 0, ...,
N

2
− 1

And from 2-D DCT equation 4.5 on page 40 we get:

X̂k1,k2
= (Xk1,k2

−XN−k1,N−k2
) + j (XN−k1,k2

+Xk1,N−k2
) (4.9)

=
N−1
∑

n1=0

N−1
∑

n2=0

yn1,n2
W

−(4n1+1)k1

4N W
−(4n2+1)k2

4N , (4.10)

where W4N is defined as:

W4N = e
−j2π

4N . (4.11)

An equivalent to 2-D IDCT plus a few superfluous additive terms can be
obtained from previous equation. The proof is not trivial.

zn1,n2
=

N−1
∑

k1=0

N−1
∑

k2=0

X̂k1,k2
W

(4n1+1)k1

4N W
(4n2+1)k2

4N

= 4yn1,n2
− 2

N−1
∑

k1=0

X̂k1,0cos

(

2π

4N
(4n1 + 1) k1

)

− (4.12)

−2
N−1
∑

k2=0

X̂0,k2
cos

(

2π

4N
(4n2 + 1) k2

)

+ X̂0,0

A simple substitution is used in order to remove additive terms in previous
equation.

Ŷk1,0 = 2X̂k1,0, k1 = 0, 1, ..., N − 1

Ŷk1,k2
= X̂k1,k2

, k1, k2 = 1, 2, ..., N − 1 (4.13)

Ŷ0,k2
= 2X̂0,k2

, k2 = 0, 1, ..., N − 1

CHAPTER 4. PREVIOUS WORK 43

Finally, 2-D IDCT can be written as:

zn1,n2
= 4yn1,n2

=
N−1
∑

k1=0

N−1
∑

k2=0

Ŷk1,k2
W

(4n1+1)k1

4N W
(4n2+1)k2

4N . (4.14)

By using polynomial reduction property (Eq. 3.47 on page 30) above
equation can be expressed modulo complex polynomial.

Ŷk1
(z) =

N−1
∑

k2=0

Ŷk1,k2
zk2 (4.15)

zn1,n2
=

N−1
∑

k1=0

Ŷk1
(z)W

(4n1+1)k1

4N mod
(

z −W 4n2+1
4N

)

(4.16)

Now we can apply the same properties of polynomial reduction to rewrite
previous equations. As

(

z −W 4n2+1
4N

)

is a factor of (zN + j) it follows:

Ŷk1
(z) =

N−1
∑

k2=0

Ŷk1,k2
zk2 (4.17)

Y̆n1
(z) =

N−1
∑

k1=0

Ŷk1
(z)W

(4n1+1)k1

4N mod (zN + j) (4.18)

zn1,n2
= Y̆n1

(z) mod
(

z −W 4n2+1
4N

)

(4.19)

In section 3.3.2 it was shown how to eliminate W factor from equation
by permuting the sequence (Eq. 3.69 on page 33). The same approach can
be used here. As (4n2 + 1) is relatively prime with 4N , exponent in Eq. 4.18
can be replaced with:

4n′
1 + 1 ≡ (4n1 + 1)(4n2 + 1) mod 4N , (4.20)

to obtain:

Y̆n′

1
(z) =

N−1
∑

k1=0

Ŷk1
(z)W

(4n1+1)k1(4n2+1)
4N mod (zN + j). (4.21)

The root of unity W
(4n′

1
+1)k1

4N includes the same factor as that involved in
modulo operation in Eq. 4.19. Therefore, a complete computation of 2-D
IDCT can be expressed as follows.

CHAPTER 4. PREVIOUS WORK 44

Ŷk1
(z) =

N−1
∑

k2=0

Ŷk1,k2
zk2 (4.22)

Y̆n1
(z) =

N−1
∑

k1=0

Ŷk1
(z)z(4n1+1)k1 mod (zN + j) (4.23)

zn′

1
,n2

= Y̆n1
(z) mod

(

z −W 4n2+1
4N

)

(4.24)

First equation does not involve any practical operation, second one is a
polynomial transform that can be computed without multiplications. The
reduction in the last Eq. 4.24 is actually a computation of N IDCTs of length
N .

This algorithm requires NM multiplications, where M is a number of
multiplications for the realization of 1-D DCT. Hence, this algorithm is also
optimal for 2-D DCT if an optimal 1-D DCT is used.

In [28], Prado and Duhamel have refined previous work by discovering
symmetries in different stages of the algorithm. Although they have reduced
the number of additions by approximately 50%, this has made already com-
plex algorithm even more complex and irregular. If Loeffler’s algorithm is
used for computing the first dimension of 8x8 DCT, this algorithm requires
the same number of multiplications (88) and additions (466) as Cho’s algo-
rithm mentioned before. Hence, both algorithms are optimal for the given
dimensions of the transform, but cannot be simply extended to higher di-
mensions.

Correction factors are neglected in both algorithms and therefore their
DCT matrix is not orthonormalized.

Prado and Duhamel have found symmetries at all stages of their algo-
rithm. Input and output symmetries are relatively easy to prove, but prov-
ing symmetries for inner stages of the algorithm is very tedious. Even more,
their notation is extremely complex.

4.4.2 Multidimensional PT algorithm

In [40] a group of authors have described a new algorithm based on poly-
nomial transforms for computing multidimensional DCT transform. It has
significant advantages in front of all other mentioned algorithms because it
can be used for M-dimensional algorithms and symmetries in higher dimen-
sions are easily and elegantly expressible. We will call this algorithm MPT-
DCT. It is also optimal if the first dimension is computed via optimal 1-D
DCT algorithm. As polynomial transform can be computed by only using

CHAPTER 4. PREVIOUS WORK 45

additions, higher-dimensions are implemented with a butterfly-like addition
structure, similar to FFT butterfly. MPTDCT has simpler addition butter-
fly than previously discussed Duhamel’s algorithm. Additional advantage
of MPTDCT is that it does not require permutation of output data, since
values are already in the correct order. At the moment, author is not aware
of any hardware implementation of MPTDCT, so it will be interesting to
compare hardware implementations of MPTDCT and Duhamel’s algorithm.
Also, an analysis of finite register length effects of hardware implementation
will be made. In addition, advantage of MPTDCT over classical row-column
approach will be scrutinized. To understand and appreciate this algorithm,
it is important to give its detailed description, which is taken from [40] in
order to provide the reader with the knowledge needed for understanding the
implementation of the algorithm.

It is a well-known fact that polynomial transforms defined modulo zN +1
can be implemented with a reduced number of additions by using a radix-2
FFT-type algorithm. Symmetry of different stages of algorithm is used in the
derivation of FFT algorithm and that symmetry is easily expressible. Hence,
it was a good idea to find a similar way to map DCT into real polynomials in
such a manner that symmetries can be elegantly written and that addition
butterfly is as regular as possible. It is exactly what MPTDCT does.

We will consider two dimensional NxN case of the algorithm, although
it can be used for M-dimensional case M1xM2x. . .xMn where each Mi is a
power of 2. This will somewhat simplify the presentation.

First, let us use a simple permutation in Eq. 4.8 on page 42 of input
values to obtain 4m in the nominator of cosine function parameter.

X̂k,l =
N−1
∑

n=0

N−1
∑

m=0

yn,m cos

(

π (4n+ 1) k

2N

)

cos

(

π (4m+ 1) l

2N

)

(4.25)

k, l = 0, 1, ..., N − 1

Now, we will split previous equation in two parts defined as follows:

X(k, l) =
1

2
[A(k, l) +B(k, l)] (4.26)

Ak,l =
N−1
∑

p=0

N−1
∑

m=0

yp(m),m cos

[

π (4p(m) + 1) k

2N
+
π (4m+ 1) l

2N

]

(4.27)

Bk,l =
N−1
∑

p=0

N−1
∑

m=0

yp(m),m cos

[

π (4p(m) + 1) k

2N
− π (4m+ 1) l

2N

]

,(4.28)

CHAPTER 4. PREVIOUS WORK 46

where p(m) is defined as:

p(m) = [(4p+ 1)m+ p] mod N . (4.29)

By simple algebraic manipulation preceding equation can be rewritten:

4p(m) + 1 ≡ (4m+ 1)(4p+ 1) mod 4N . (4.30)

Now we substitute p(m) in previous equations and rewrite the cosine of the
sum of two factors.

Ak,l =
N−1
∑

p=0

N−1
∑

m=0

yp(m),m cos

[

π (4m+ 1) (4p+ 1) k + l

2M

]

(4.31)

Bk,l =
N−1
∑

p=0

N−1
∑

m=0

yp(m),m cos

[

π (4m+ 1) (4p+ 1) k − l

2M

]

. (4.32)

Obtained expressions can be simplified by using substitution:

Vp(j) =
N−1
∑

m=0

y (p(m),m) cos

(

π(4m+ 1)j

2N

)

(4.33)

p, j = 0, 1, ..., N − 1.

Finally, Ak,l and Bk,l are defined as:

Ak,l =
N−1
∑

p=0

Vp ((4p+ 1)k + l) (4.34)

Bk,l =
N−1
∑

p=0

Vp ((4p+ 1)k − l) . (4.35)

Although not immediately visible, Eq. 4.33 can be seen as 1-D DCT. This
is clearer after introducing a new permutation that can be incorporated into
previously explained Nussbaumer’s permutation 4.8 on page 42. Hence, no
additional operations have to be performed.

ŷp(2m) = y (p(m),m) (4.36)

ŷp(2m+ 1) = y (p(M − 1 −m),M − 1 −m) (4.37)

m = 0, 1, ...,
N

2
− 1

CHAPTER 4. PREVIOUS WORK 47

And the result is 1-D DCT:

Vp(j) =
N−1
∑

m=0

ŷp(m) cos

(

π(2m+ 1)j

2N

)

. (4.38)

The nominator in the parameter of cosine function has been changed to 2m
again. In addition, input symmetries are readily expressible as:

Vp(j + u2M) = (−1)uVp(j) (4.39)

Vp(2M − j) = −Vp(j) (4.40)

Vp(M) = 0, (4.41)

and then by applying them to Ak,l and Bk,l, we obtain:

Ak,0 = Bk,0 (4.42)

A0,l = B0,l (4.43)

Ak,2M−l = −Bk,l. (4.44)

So, 2-D DCT has just been mapped to N 1-D DCTs and it can be com-
puted that way, but a significant savings can be achieved by using polynomial
transform. Let us start by constructing a polynomial:

Bk(z) =
N−1
∑

l=0

Bk,lz
l −

2N−1
∑

l=N

Ak,2N−lz
l (4.45)

Bk(z) =
2N−1
∑

l=0

N−1
∑

p=0

Vp ((4p+ 1)k − l) zl (4.46)

Bk(z) ≡
N−1
∑

p=0

2N−1
∑

l=0

Vp ((4p+ 1)k − l) zl mod (z2N + 1) (4.47)

Further, by the introduction of new substitutions:

Up(z) ≡
2N−1
∑

j=0

Vp(j)z
j mod (z2N + 1) (4.48)

ẑ ≡ z4 mod (z2N + 1) (4.49)

Ck(z) ≡
N−1
∑

p=0

Up(z)ẑ
pk mod (z2N + 1) (4.50)

k = 0, 1, ..., N − 1,

CHAPTER 4. PREVIOUS WORK 48

previous equations can be expressed as:

Bk(z) ≡
N−1
∑

p=0

2N−1
∑

l=0

Vp (l − (4p+ 1)k) zl mod (z2N + 1) (4.51)

≡
N−1
∑

p=0

2N−1
∑

l=0

Vp (l) zl+(4p+1)k mod (z2N + 1) (4.52)

≡
(

N−1
∑

p=0

Up(z)ẑ
pk

)

zk mod (z2N + 1) (4.53)

≡ Ck(z)z
k mod (z2N + 1). (4.54)

Fast polynomial transform is based on the properties of polynomial ring
and can be computed with butterfly-like addition stage. Previous equations
satisfy conditions for application of polynomial transform because it can be
easily shown that:

ẑN ≡ 1 mod (z2N + 1) (4.55)

ẑN/2 ≡ −1 mod (z2N + 1). (4.56)

By using symmetries on different stages of the algorithm, we can halve the
number of additions. Up(z) and Ck(z) symmetric properties follow from the
input symmetries.

Up(z) ≡ Up(z
−1) mod (z2N + 1) (4.57)

CN−k(z) ≡ Ck(z
−1) mod (z2N + 1) (4.58)

By noting that Ck(z) can be decomposed in similar way as DFT:

Ck(z) =

N/2−1
∑

p=0

U2p(z)ẑ
2pk + ẑk

N/2−1
∑

p=0

U2p+1(z)ẑ
2pk (4.59)

Ck+N/2(z) =

N/2−1
∑

p=0

U2p(z)ẑ
2pk − ẑk

N/2−1
∑

p=0

U2p+1(z)ẑ
2pk, (4.60)

we can express existing symmetries as:

CHAPTER 4. PREVIOUS WORK 49

Cj

n̄2j+k̄
(z) ≡ Cj−1

n̄2j+k̄
(z) + (4.61)

Cj−1

n̄2j+k̄+2j−1
(z)ẑq mod (z2N + 1)

Cj

n̄2j+k̄+2j−1
(z) ≡ Cj−1

n̄2j+k̄
(z) − (4.62)

Cj−1

n̄2j+k̄+2j−1
(z)ẑq mod (z2N + 1)

k̄ = kj−2 · · · k0 = 0, 1, ..., 2j−1 − 1

n̄ = n0 · · ·nt−j−1 = 0, 1, ..., 2t−j − 1

k̄ and n̄ are simply an aggregate of bits of binary representation of n and k:

n = nt−12
t−1 + nt−22

t−2 + · · · + n0

k = kt−12
t−1 + kt−22

t−2 + · · · + k0.

j is denoting the stage of algorithm which has log2N stages altogether. q is
computed as shown:

q =

j−2
∑

l=0

kl2
t−j+l. (4.63)

Some Ck(z) polynomials have symmetric property within themselves:

Cj
n̄2j(z

−1) ≡ Cj
n̄2j(z) mod (z2N + 1) (4.64)

Cj
n̄2j+2j−1(z

−1) ≡ Cj
n̄2j+2j−1(z) mod (z2N + 1). (4.65)

Polynomials of type Y (z−1) can be computed simply by noting that such
a polynomial can be expressed as:

Yn1
(z−1) =

P (z)

zx
. (4.66)

Here is a short procedure for computing the inverse. All equations are defined
modulo arbitrary polynomial M(z).

P (z) ≡ Y (z−1)zx

zx ≡ R(z)

P (z) ≡ Y (z−1)R(z)

CHAPTER 4. PREVIOUS WORK 50

Q(z) ≡ P (z)

Y (z−1) ≡ Q(z)

R(z)

Rinv(z) ∗R(z) ≡ 1

Y (z−1) ≡ Q(z)Rinv(z)

The inverse of R(z) can be computed only if (R(z),M(z)) = 1, i.e. if those
two polynomials are relatively prime.

5 Reference DCT

Implementation

5.1 Distributed Arithmetic

Distributed arithmetic is an approach for computing inner products with
look-up tables and accumulators based on the bit-level reformulation of the
algorithm. This approach is particularly suitable for FPGA devices because
of their regular architecture based on configurable logic blocks (CLB). Every
CLB of Virtex-II FPGA device is composed of 2 slices and each of them has
two look-up tables (LUT), storage elements and some other special-purpose
logic. Thus, a distributed arithmetic DCT algorithm is simple and relatively
efficient choice for the hardware implementation and it will be used as a
reference point for the evaluation of polynomial transform algorithm.

The operation made of combined multiplication and additions is often
used in digital signal processing and it is called MAC (multiply-accumulate).
Usually one of the inputs is a constant.

If serial input is acceptable, a parallel MAC can be realized in relatively
small amount of resources, as shown in Fig. 5.1. Input data (A, B, C and
D) are serialized and shifted bit by bit (starting with the least significant
bit) into scaling accumulator. Obtained products are summed with an adder
tree.

As MAC is just a sum of vectors, which is a linear operation, it is clear
that the circuit in Fig. 5.1 can be reorganized as shown in Fig. 5.2. Instead
of individual accumulation of every single partial product and summation of
results, we can postpone the accumulation until all N partial products are
summed together. Such a reorganization eliminates N − 1 scaling accumu-
lators. If Cx, x = 0, 1, · · · , N − 1 are constants, the adder tree becomes a
Boolean logic function of four input variables. The function can be imple-
mented using one LUT in Xilinx family of FPGA devices1. Sign-extended
LUT outputs are further added to the contents of accumulator. An example
of the function table is given in Fig. 5.3.

Although just explained arithmetic manipulations seem intuitive and log-
ical, it is necessary to verify their correctness mathematically. A simple proof

1Each LUT has 4 inputs and can be used as ROM, RAM, one-bit shift register or as
an arbitrary 4-input boolean function circuit.

51

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 52

�✂✁☎✄✝✆✟✞ ✠☛✡✌☞✍✁✎✁✑✏☎✒✓✏☎✆✔✄✝✕✗✖✙✘

�✚✁✎✄☛✆ ✞ ✠✛✡✌☞✍✁☎✁✙✏✝✒✜✏✙✆✔✄✝✕✢✖✑✘

✣✤✣✦✥

�✚✁✎✄☛✆ ✞ ✠✛✡✌☞✍✁☎✁✙✏✝✒✜✏✙✆✔✄✝✕✢✖✑✘

�✚✁✎✄☛✆ ✞ ✠✛✡✌☞✍✁☎✁✙✏✝✒✜✏✙✆✔✄✝✕✢✖✑✘
✧

★

✩

★

✪

★

✫

★

✬✚✭✯✮☛✰✲✱✚✳✂✭✯✮✵✴✚✱✶✮✵✭✗✮✸✷✹✱✚✺✂✭✯✮✝✻

★

★

★

Figure 5.1: Final products summation

�✂✁☎✄✝✆✟✞✡✠☛✁☞✄✍✌✡✞✎✄✏✁☎✄✒✑✎✞✡✓☛✁☞✄✕✔

✖✂✗✙✘✛✚ ✜ ✢✤✣✦✥✧✗★✗✛✩✙✪✫✩★✚ ✘✒✬✮✭✕✯

✰✱✰✳✲

✴
✵✝✶

✴

✷

✴
✵✹✸

✺

✵✹✻
✼

✴
✵ ✲

✽

✴

✴

✴

✴

Figure 5.2: Summation of partial products

�✂✁

✄

☎

✄
�✂✆

✝

�✂✞
✟

✄
�✡✠

☛

✄
✄

✄

✄

Address Data

0000 0

0001 C0

0010 C1

0011 C0 + C1

* *

* *

* *

1110 C3 + C2 + C1

1111 C3 + C2 + C1 + C0

Figure 5.3: Implementation of partial product addition table

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 53

will be given. Equation 5.1 is an example of inner product with fixed coeffi-
cients Ak and input data xk.

y =
K
∑

k=1

Akxk (5.1)

If every xk is a binary number in two’s complement representation scaled
so that |xk| < 1 (this is not a necessary condition, but it does simplify the
proof), then xk can be expressed at the bit level:

xk = −bk0
+

N−1
∑

n=1

bkn2−n, (5.2)

where bkn
are bits (0 or 1). Bit bk0

is a sign bit. Previous two equations can
be combined.

y =
K
∑

k=1

Ak

[

−bk0
+

N−1
∑

n=1

bkn
2−n

]

(5.3)

The equation for computing inner product in distributed arithmetic is ob-
tained by changing the order of summation:

y =
N−1
∑

n=1

[

K
∑

k=1

Akbkn

]

2−n +
K
∑

k=1

Ak(−bk0
). (5.4)

As bk0
can have only values of 0 and 1, expression

∑K
k=1Akbkn

can have only
2K possible values. Those values can be precomputed and stored in read-
only memory (ROM). Input data are shifted out bit by bit. All bits that are
shifted out in one cycle are concatenated together and used as ROM address
vectors. Depending on the implementation, we can shift the last significant
or the most significant bit first. The result is then stored in the accumulator,
which contains the final result after N cycles. It should be noted that in the
second part of equation 5.4 the sign has to be changed in the last cycle (if
the most significant sign bit is shifted-out as the last one). This last cycle is
called sign-bit time (SBT).

Another way to implement the sign change in the last cycle is to fill
ROM with both positive and negative values. Negative values are then used
in the last cycle. This approach means that 2K+1 words have to be stored
in the ROM. The sign change in SBT cycle is used for the simulation and
implementation of DADCT in the thesis.

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 54

5.2 Algorithm Realization

Two-dimensional DCT equation:

Xk1,k2
=

N1−1
∑

n1=0

N2−1
∑

n2=0

xn1,n2
cos

[

2π(2n1 + 1)k1

4N1

]

cos

[

2π(2n2 + 1)k2

4N2

]

(5.5)

is isomorphic to the product of coefficient matrix and input signal vector.
Coefficients are A = cos(π

4
), B = cos(π

8
), C = cos(3π

8
), D = cos(π

16
), E =

cos(3π
16

), F = cos(5π
16

), G = cos(7π
16

).

























X0

X1

X2

X3

X4

X5

X6

X7

























=

























A A A A A A A A
D E F G −G −F −E −D
B C −C −B −B −C C B
E −G −D −F F D G −E
A −A −A A A −A −A A
F −D G E −E −G D −F
C −B B −C −C B −B C
G −F E −D D −E F −G

















































x0

x1

x2

x3

x4

x5

x6

x7

























(5.6)

If we compute 1-D DCT directly as a product of a matrix and a vec-
tor as shown in Eq. 5.6, it would take 8 MAC circuits similar to the one
shown in Fig. 5.2. Every circuit would compute 8 products (one matrix row
dotted with an input data vector) and 7 additions. Such a circuit can be
implemented with 8-bit input Boolean function that can be implemented in
3 FPGA LUTs. A better solution is to factorize DCT matrix [15] into two
4x4 matrices.









X0

X2

X4

X6









=









A A A A
B C −C −B
A −A −A A
C −B B −C

















x0 + x7

x1 + x6

x2 + x5

x3 + x4









(5.7)









X1

X3

X5

X7









=









D E F G
E −G −D −F
F −D G E
G −F E −D

















x0 − x7

x1 − x6

x2 − x5

x3 − x4









(5.8)

The algorithm then requires an addition butterfly and a number of 4-input
MACs that can be realized with only one LUT per MAC. The data flow

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 55

�✂✁☎✄

�✂✁☎✄

�✂✁☎✄

�✂✁☎✄

✆

✆

✆

✆

+

�✂✁☎✄

�✂✁☎✄

�✂✁☎✄

�✂✁☎✄

✆

✆

✆

✆

+

+

+

-

-

-

-

✝✟✞

✝✡✠

✝✟☛

✝✟☞

✝✟✌

✝✟✍

✝✏✎

✝✒✑

✓

✓

✓

✓

✓

✓

✓

✓

✔ ✞

✔ ✠

✔ ☛

✔ ☞

✔ ✌

✔ ✍

✔ ✎

✔ ✑

Figure 5.4: Data flow diagram of 8-point DADCT algorithm

diagram in Fiq. 5.4 is the implementation of 1-D DCT using partially factor-
ized DCT matrix. Combined ROM-accumulate blocks (RAC) compute the
result in nine cycles for eight-bit input data. Upper half of the circuit can
be factorized further, but it might not be worth the effort for 8-point DCT
since only marginal savings can be achieved.

ROM coefficients are fractional numbers in two’s complement represen-
tation. Correction factors can also be easily computed into ROM coefficients
and it can be shown that these corrected coefficients are in the range from
-1.73145 to 2.82843. Hence, 3 bits are needed for the representation of the
coefficient in front of the virtual floating point and an arbitrary number of
precision bits.

The reference DADCT implementation for comparison with MPTDCT
algorithm will be implemented by using row-column decomposition. Every
dimension requires 8 1-D DADCT circuits, like the one shown in 5.4.

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 56

5.3 Accuracy Analysis

As mentioned before, accuracy of the forward-inverse DCT transformation
process influences significantly the quality of multimedia content. The rec-
ommendations for the accuracy of 2-D NxN IDCT implementations are stan-
dardized by IEEE [1] and are given in Table 5.1. These recommendations
will be considered as the highest error allowed for DCT implementations.

Metric Recommended maximum value

Pixel Peak Error (PPE) 1
Peak Mean Square Error (PMSE) 0.06
Overall Mean Square Error (OMSE) 0.02
Peak Mean Error (PME) 0.015
Overall Mean Error (OME) 0.0015

Table 5.1: Maximal allowed errors for 2-D DCT implementations

Another important metric for the measurement of accuracy is peak signal
to noise ratio (PSNR). Assume we are given a source image f(i, j) that con-
tains NxN pixels and a reconstructed image F (i, j) where F is reconstructed
by IDCT of the discrete cosine transform of the source image. OMSE is
computed as the summation over all pixels of squared error. And PSNR is
computed as shown in Eq. 5.10.

OMSE =

∑∑

[f(i, j) − F (i, j)]

N2
(5.9)

PSNR = 10log10

(

255√
OMSE

)

(5.10)

A block diagram of accuracy measurement is depicted in Fig. 5.5. Tested
implementation of DCT is used to transform original image to DCT frequency
domain. IDCT is computed by an ideal IDCT (64 bit floating point) and the
error is represented by the difference between IDCT output and the original
image.

Both DADCT and MPTDCT algorithms have been simulated in Sys-
temC2, a C++ library made for system level design and verification. It
provides an abundance of fixed point types for the simulation of finite reg-
ister length effects. This approach seems to be very practical for functional

2http://www.systemc.org/

http://www.systemc.org/

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 57

� ✁

✂☎✄✆✄✞✝✟✄✡✠☞☛ ✂☎✄✆✄✞✝✆✄✡✠☞☛☛✍✌✏✎✒✑✔✓✖✕✘✗✙✓✛✚ ✜✢✚✣✗✤✑

✥✦✌✧✌✏✗★✌

✩ ✪✤✫ ✪✬✫ ✪☎✭

✂☎✄✆✮✰✯✲✱✬✎✤✳✤✄✡✠☞☛ ✂☎✄✆✮✰✯✬✱✲✎✤✳✴✄✡✠☞☛☛✍✌✏✎✒✑✔✓✖✕✘✗✙✓✛✚ ✜✢✚✣✗✤✑

✵✷✶✹✸✻✺✼✸✢✽✼✾❀✿✞❁❃❂✆✾✞✺❅❄

Figure 5.5: DCT accuracy measurement

verification and accuracy measurement. It makes register pruning simple be-
cause register widths can be changed easily and simulation rerun to analyze
accuracy of the new circuit with pruned register.

For DADCT algorithm simulation three parameters have been varied and
simulation was rerun each time to obtain new accuracy measurement data:

• ROMwidth ∼ bit-width of coefficient word in ROM,
• 1DIMprec ∼ number of precision bits of the first dimension DCT result,
• 2DIMprec ∼ number of precision bits of the final result.

Other parameters can be computed from those three. It can be formally
proved that the output from the first dimension (n1 in Fig. 5.5) cannot have
more than 12 accurate bits in front of the virtual floating point for an eight
bit input. Alternatively, ROM words need to have 3 integer bits for the
representation of DCT coefficients and since 9 addition cycles are needed
(two 8-bit values are added in the butterfly prior to MACs), we can get at
most 12 accurate bits. Therefore, the width of ROM words is:

ROMwidth = 3 +ROMprec, (5.11)

where ROMprec is an arbitrary number of precision bits. The result in ac-
cumulator can be truncated in order to decrease the number of n1 bits. In
the simulation and implementation another kind of quantization was used
- rounding towards infinity, implemented by adding the most significant
deleted bit to the left bits. Accordingly, n1 output can be expressed as:

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 58

n1 = 12 + 1DIMprec. (5.12)

It has been empirically established that increasing the number of necessary
output integer bits from the second dimension above n1 bits does not result
in any significant accuracy improvement, so equation 5.13 has been used
for the width of output from the second dimension, where 2DIMprec is an
arbitrary number of precision bits. The same ROMwidth parameter has been
used for both dimensions. This simplification, together with parameter range
constraints and simplifications introduced by equations 5.11, 5.12 and 5.13,
was necessary to limit the number of combinations that have to be simulated.

n2 = n1 + 2DIMprec (5.13)

Three input stimulus files have been used; Lena 5.6(a) and boats 5.6(b)
pictures and a random picture generated by the C program listed the in
appendix of IEEE standard [1].

(a) Lena (b) Boats

Figure 5.6: Simulation stimulus pictures

According to simulation results in Fig. 5.7, ROMwidth has the largest
impact on accuracy. Parameters 1DIMprec and 2DIMprec have been fixed to
2. The results for both pictures are almost the same, while the accuracy of
noise stimulus file is significantly worse because of higher frequencies in the
picture. If ROMwidth is increased above certain number, error drops to zero
and PSNR is infinite. For example, for both test pictures, error drops to zero
when 11 or more bits are used for ROM words.

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 59

6 7 8 9 10 11 12 13 14
10

20

30

40

50

60

70

80

90

100

ROM width

d
B

PSNR , 1DIM=2DIM prec = 2

Lena

noise

Boats

Figure 5.7: DADCT simulation results for various ROM word-lengths

Figure 5.8(a) supports the claim that ROM word length is the most in-
fluential paramter. The same claim is also valid for noise stimulus, according
to 5.8(b).

0 1 2 3 4 5
30

40

50

60

70

80

90

100

1DIM prec

d
B

PSNR , 2DIM = 0 , ROM width 6−14

6

8

10

11

12

14

(a) Lena

0 1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

1DIM prec

d
B

PSNR , 2DIM = 0 , ROM width 6−14

6

8

10

11

12

14

(b) Noise

Figure 5.8: DADCT simulation results for different ROMwidth and 1DIMprec

values

Much better insight in interdependencies of different parameters can be
gained by considering PSNR while changing two variables. Simulation re-
sults, shown in graphs 5.9, clearly mean that the ROM word length is the
most important factor, followed by the precision of the first dimension output.
The precision of the output from second dimension has almost no influence

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 60

on PSNR.

6

8

10

12

14

0

1

2

3

4

5

20

30

40

50

60

70

80

90

100

ROM width

PSNR , 2DIM prec = 0

1DIM prec

(a)

6

8

10

12

14

0

1

2

3

4

5

30

40

50

60

70

80

90

ROM width

PSNR , 2DIM prec = 2

1DIM prec

(b)

0

1

2

3

4

5

0

1

2

3

4

5

44.95

45

45.05

45.1

45.15

45.2

45.25

45.3

45.35

1DIM prec

PSNR , ROM width = 8

2DIM prec

(c)

0

1

2

3

4

5

0

1

2

3

4

5

54

56

58

60

62

64

66

68

70

1DIM prec

PSNR , ROM width = 10

2DIM prec

(d)

Figure 5.9: Simulation results for picture Lena

Noise stimulus yields similar results with somewhat steeper surfaces (Fig. 5.10
on the next page).

5.4 FPGA Implementation

The following parameter values have been chosen for the implementation,
according to the simulation results in previous section: ROMwidth = 10,
1DIMprec = 2 and 2DIMprec = 2. The implementation completely satisfies
the standard as shown in Table 5.2, except for the PME metric which is
slightly above the recommended value. This has no visible impact on the

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 61

6

8

10

12

14

0

1

2

3

4

5

10

20

30

40

50

60

70

80

ROM width

1DIM prec

PSNR , 2DIM prec = 0

(a)

0

1

2

3

4

5

0

1

2

3

4

5

20

30

40

50

60

70

80

1DIM prec

PSNR , ROM width = 11

2DIM prec

(b)

Figure 5.10: Simulation results for noise stimulus

picture quality. If deviations from the standard are allowed, significant hard-
ware resources can be saved by register truncation and shorter ROM words.

Metric Value obtained by simulation

PPE 1
PMSE 0.03256
OMSE 0.01661
PME 0.01637
OME 0.0

PSNR 65.9255 dB

Table 5.2: DADCT implementation accuracy

The design has been synthesized in Xilinx Virtex-II FPGA device, speed
grade -6 by using reentrant route with the guide file from the multi-pass
place and route process. Input-output pin insertion was disabled during the
synthesis. This implementation requires 6401 Virtex-II LUTs, what is less
then reported by Dick in [9] for the same algorithm. His implementation
requires 3328 Xilinx 4000 CLBs. Each 4000 series CLB has 2 LUTs, so it
totals to 6656 LUTs. But it is hard to make direct comparison because
he hasn’t reported the accuracy of his implementation. In addition, our
Virtex-II implementation has three-state buffers instead of relatively large
multiplexor that would be needed at the output and three-state buffers are
not available in 4000 series.

Implementation area group summary:

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 62

AREA_GROUP AG_DADCT

RANGE: SLICE_X0Y111:SLICE_X95Y72

Number of Slices: 3,840 out of 3,840 100%

Number of Slices containing

unrelated logic: 526 out of 3,840 13%

Number of Slice Flip Flops: 4,941 out of 7,680 64%

Total Number 4 input LUTs: 6,401 out of 7,680 83%

Number used as 4 input LUTs: 5,185

Number used as route-thru: 16

Number used as 16x1 ROMs: 1,200

Number of Tbufs: 960 out of 0 0%

According to the chosen implementation parameters, first dimension out-
put is 14 bits wide, while the output from second dimension is 15-bit wide.
Nine cycles would do for computing the first dimension as its input is 8-bit,
but for computing second dimension we need 15 cycles, hence the complete
core can produce a new results every 15 cycles. The part of core for computing
second dimension is somewhat larger and it limits the maximum achievable
working frequency because of longer carry chains.

Important property of hard macros3 is porosity. It is the degree to which
the macro forces the signals of other macros to be routed around it rather
than through it. As DADCT core is tightly packed (fills 83% of available
LUTs of designated area group), porosity might be a problem, but it can be
simply solved by relaxing placement constraints.

Frame size Frame rate

1600x1200 277
1920x1080 257
1024x1024 508
2048x2048 127
4096x4096 31
6000x6000 14

Table 5.3: Parallel DADCT processor frame rates

Input data 8x8 block of 8-bit data is shifted in parallel DADCT core in
8 cycles, latency is 30 cycles and new results are available every 15 cycles.
Minimum period is 7.998ns (∼125MHz).

Let us denote the number of cycles needed to transform data matrix as
C, operating frequency as f , frame size as FixFj, and DCT size as NxN ,

3Compiled, mapped, placed and routed digital design block.

CHAPTER 5. REFERENCE DCT IMPLEMENTATION 63

then the time needed to compute the DCT transform of the frame can be
expressed as:

tframe =
FiFj

N2
C

1

f
, (5.14)

and frame rate is equal to R = 1/tframe. Frame rates for some frame sizes
are given in Table 5.3.

6 MPTDCT Implementation

The first dimension in the MPTDCT algorithm is equivalent to the first
dimension of DADCT implementation, while the second one is implemented
via a number of adders and shifters. Implementation parameters for the first
dimension were ROMwidth = 11, 1DIMprec = 2 and for the second the only
parameter is 2DIMprec = 0. The extension of the ROM word length for one
bit will be explained later. Result in the accumulator in the first dimen-
sion was simply truncated before proceeding with computation. This simple
round-off scheme produced better results in combination with polynomial
transform than rounding towards infinity when second dimension is imple-
mented using distributed arithmetic. In addition, less hardware resources
were used for accumulator implementation.

6.1 Accuracy Analysis

In DADCT implementation there are two major sources of errors, namely
the finite register length of ROM memory for storing DCT coefficients and
accumulator truncation. As explained before, for DADCT it was necessary
to implement rounding towards infinity to reduce the error in order to comply
with the IEEE standard. Simple rounding scheme was more efficient, in the
terms of usage of the FPGA resources, than increasing ROM word length.
The computation of both dimensions introduced noise in transformed data.

Polynomial transform implementation of DCT, on the other hand, does
not introduce any error in second dimension because all operations are simple
additions or subtractions. From accuracy measurement results in Table 6.1,
it follows that much better results have been achieved.

Metric Value obtained by simulation

PPE 1
PMSE 0.00138889
OMSE 0.000477431
PME 0
OME 0.0000385802

PSNR 81.3417 dB

Table 6.1: MPTDCT implementation accuracy

64

CHAPTER 6. MPTDCT IMPLEMENTATION 65

The correction factors for DADCT were incorporated into DCT coeffi-
cients in ROM in both dimensions. Polynomial transform algorithm is de-
fined without these factors, and the result has to be scaled after computing
the second dimension. This can be implemented with simple truncations and
bit serial multiplications with correction factors in the last stage of computa-
tion with relatively insignificant hardware resources. As DADCT coefficients
have been scaled, their range and distribution is somewhat different from
those of MPTDCT, as shown in histograms 6.1. As correction factors are
smaller then one, DADCT has narrower ROM word range. According to the
given histograms, 3 bits for the integer part is not enough for MPTDCT,
and 4 bits have to be used instead. As only a small percentage of words
has extreme values, HDL (Hardware Description Language) compilers tend
to optimize ROMs pretty well, and this single bit extension has not resulted
in significantly larger circuit. Hence, it seems to be fair to compare DADCT
with 10 bit ROM word length against 11-bit MPTDCT, especially because
the precision is the same.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

DA ALG coefficient distribution

(a) With correction factors

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

PT ALG coefficient distribution

(b) Without correction factors

Figure 6.1: Coefficients distribution histograms

The most influential parameter is ROM word length, the same as was the
case for distributed arithmetic implementation. Even if we compare the two
implementations with the same ROM word length (equivalent to decreasing
MPTDCT precision for one bit), polynomial transform based approach is
still slightly better in the terms of accuracy.

The precision of output from second dimension had almost no influence
on the accuracy. Hence, it was interesting only to simulate the influence
of variations of 1DIMprec and ROMwidth parameters. Results are shown in

CHAPTER 6. MPTDCT IMPLEMENTATION 66

7 8 9 10 11 12 13
20

30

40

50

60

70

80

90

100

PSNR, 1DIM=2DIM prec=2

ROM width

d
B

Lena

noise

Boats

Figure 6.2: MPTDCT simulation results for various ROM word lengths

Fig. 6.3.

7

8

9

10

11

12

13

0

1

2

3

4

5

0

10

20

30

40

50

60

70

80

90

ROM width

1DIM prec

PSNR, 2DIM prec=0

Figure 6.3: MPTDCT accuracy simulation results

CHAPTER 6. MPTDCT IMPLEMENTATION 67

6.2 FPGA Implementation

Input data matrix has to be permuted first, according to Fig. 6.4. The
shaded elements in the first matrix represent the first row, the second matrix
the second row, and so on. Elements remain in the same column as shown.
Hence, the first row of permuted matrix would contain elements E0,0, E1,1,
E2,2 and so on. Input data are shifted in the circuit in 8 cycles (64-bit
bus) and sorted according to permutation matrix to proper registers. Wide
multiplexors have been implemented by using three-state buffers.

Second problem in the implementation was to analyze algorithm symme-
tries. Mathematica code listing in Appendix A.1 was used for that purpose.
The code first constructs symbolic functions V that are used in the analysis.
Second, basic functions needed for the construction of polynomial transform
are defined and the function for computation of X(k, l) in equation 4.26 on
page 45 is given.

The rest of the listing constructs polynomial transform matrix that is
used for the analysis of possible introduction of correction factors in the first
dimension ROMs. If it were possible to efficiently incorporate this correc-
tion coefficient into ROM, final scaling would be avoided cheaply. So it is
interesting to investigate this possibility.

Assume that the one-dimensional DCT without correction factors is com-
puted on the result of permuted 8x8 input data matrix, and that the result
can be represented as 64x1 input vector Xi. Polynomial transform is in that
case 64x64 linear operator matrix Pt. Let us denote the result of 2D DCT
(without correction) as 64x1 vector X0 and correction factor matrix as 64x64
matrix K. Hence, the computation of MPTDCT can be expressed as:

PtXi = X0. (6.1)

DCT matrix can be orthonormalized by multiplication with K. Now, an
interesting question is whether there exists a simple regular matrix C that
satisfies:

PtCXi = KX0. (6.2)

Simple calculation yields that matrix C can be computed as:

C = P−1
t KPt. (6.3)

Ideal C matrix would have all rows the same, meaning that every element
of input data matrix can be scaled by certain value in the first dimension

CHAPTER 6. MPTDCT IMPLEMENTATION 68

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7

3,0 3,1 3,2 3,3 3,4 3,5 3,6 3,7

4,0 4,1 4,2 4,3 4,4 4,5 4,6 4,7

5,0 5,1 5,2 5,3 5,4 5,5 5,6 5,7

6,0 6,1 6,2 6,3 6,4 6,5 6,6 6,7

7,0 7,1 7,2 7,3 7,4 7,5 7,6 7,7

Figure 6.4: Input matrix permutation

CHAPTER 6. MPTDCT IMPLEMENTATION 69

stage and the result would be a complete DCT. But, as polynomial trans-
form is doing computation on the complete 8x8 matrix (that’s why it has to
be represented as 64x64 operator), C matrix is irregular and therefore not
practical. Thus, the only solution is to scale the result.

After profound symmetry analysis, it became clear that computation
stages can be reorganized in such a way that only a very simple output
reordering has to be done. Therefore it can be said that this implementation
does not need output permutation processor, as the one in [8]. But some
reordering also has to be done after first dimension in order to obtain more
regular butterfly stage. The first stage of butterfly is a regular addition and
subtraction stage, where values can be processed in any order that is most
suitable for later computation. Second stage, denoted simply as S, is more
interesting and it is given in the Appendix A.2. The code for other stages
can also be found in the Appendix.

Although the code for second stage seems quite irregular, it is possible to
organize the computation in an efficient way by reordering the computation
of first stage. The most problematic are stages S5 and S7. Their implemen-
tation is based on the fact that 3 out of 8 values are mirrored in the sequence,
so they can be precomputed during computation of first four values, stored
in a buffer and simply multiplexed into later stages a few cycles later. Al-
though it might seem a good idea to start the organization of computation
from the first stage, every later stage is more irregular, so we have used the
scheduling of computation from the last and the most irregular stage in the
algorithm. Stages are denoted as follows; F-first, S-second, C-third (accord-
ing to the symbol for C polynomial in the algorithm equations) and X is the
final result. The cycle of polynomial is denoted by the number next to the
stage symbol, so for example, the fifth cycle in the final stage would be X5.

The design has been synthesized in Virtex-II FPGA device, speed grade
-6. Input-output pin insertion was disabled. Although not yet fully opti-
mized, MPTDCT implementation of 8x8 DCT required 3949 LUTs, what
is less then reported by Dick in [8] for Duhamel’s algorithm. His algorithm
requires 4496 XC4000 LUTs. The direct comparison is hard because Virtex-
II devices have some features that are not available in XC4000 family. In
addition, our MPTDCT algorithm implementation is not yet fully optimized
and control logic is implemented in a very naive manner. Therefore we
have implemented classical 2D DADCT algorithm in Virtex-II in 6400 LUTs
in order to obtain a referent implementation for a comparison. Our MPT-
DCT requires 37,5% less logic resources than highly optimized DADCT while
maintaining the same throughput and working frequency. Even better results
can be achieved by optimizing the implementation and redesigning the con-

CHAPTER 6. MPTDCT IMPLEMENTATION 70

trol logic. An implementation of Duhamel’s 8x8 DCT algorithm in XC4000
saved 33% of resources comparing to DADCT implementation in XC4000.
Main reasons for lower resource requirements of MPTDCT algorithm that
are simpler butterfly addition stage and the absence of complex output per-
mutation processor. Additionally, some savings have been achieved by using
three-state buses as a part of input permutation processor.

According to static timing analysis, design should be working on the
frequency of 201.7 Mhz (4.957ns period). A new result can be obtained
every 10 cycles, while the total latency is 60 cycles. For HDTV resolution
frame (1920x1080) it means a throughput of 622 frames per second. Although
latency is larger then in DADCT implementation, this is usually not an issue
for multimedia applications and throughput is considered more important.

The significant effort to realize an implementation of such a complex al-
gorithm seems to be justified for high-performance multimedia applications
that require block processing in the real time. As DCT is separable trans-
form, higher-dimensional DCT could be computed by using two-dimensional
implementation presented here. Therefore this very high throughput design
could be especially interesting for emerging applications like mentioned in
[7].

Summary

Polynomial transform was presented as an efficient way to map mul-
tidimensional transforms (like DCT and DFT) and convolutions to one-
dimensional ones. Resulting algorithms have significantly lower computa-
tional complexity, especially for convolutions and DCT. If optimal one-di-
mensional DCT would be available, it would be possible to obtain optimal
multidimensional algorithms by using polynomial transforms.

As demonstrated in the thesis, polynomial transform based DCT can be
implemented in significantly less logic resources than row-column distributed
arithmetic algorithm. Polynomial transform computation is performed as the
series of additions and subtractions, so the finite-register length effects can
be avoided resulting in higher accuracy.

Second dimension of distributed arithmetic DCT implementation was
more problematic due to larger input word length. The resulting longer
carry chain, especially the one in the large accumulators at the output, was
the major obstacle to achieving higher operating frequency. The implemen-
tation of polynomial transform DCT avoids this obstacle by using a butterfly
of adders and no accumulators are needed at the output.

The accuracy of both implementations has been extensively measured and
detailed results were reported, more detailed then available in the previous
work. Once the strong foundations for comparison were built, other factors,
like resource usage, maximum achievable frequency, latency and throughput
have been compared.

Another contribution of the thesis is the proposal of designing the butter-
fly stage of such highly complex algorithms by scheduling the computation
from the last stage, where the designer has no flexibility. This approach has
yielded a very efficient FPGA implementation, superior to others reported.

Keywords: discrete cosine transform, polynomial transform, FPGA

71

Sažetak

Polinomijalna transformacija je predstavljena kao efikasan način mapi-
ranja vǐsedimenzionalnih transformacija (kao što su DCT i DFT) i kon-
volucija u jedno-dimenzionalne. Algoritmi koji nastaju takvim mapiran-
jem zahtjevaju znatno manji broj računskih operacija, posebno u slučaju
konvolucija i DCT-a. Ako se koristi optimalan DCT algoritam za prvu
dimenziju, korǐstenjem polinomijalnih transformacija se mogu konstruirati
vǐsedimenzionalni algoritmi koji dostižu teoretski minimum broja operacija.

Kao što je pokazano u magistarskom radu, DCT baziran na polinomi-
jalnim transformacijama se može implementirati tako da zauzima znatno
manje logičkih resursa nego algoritam baziran na distribuiranoj aritmetici.
Polinomijalne transformacije se računaju nizom zbrajanja i oduzimanja, tako
da se mogu izbjeći efekti konačne dužine registara i prema tome dobiti vǐsa
preciznost.

Druga dimenzija implementacije bazirane na distribuiranoj aritmetici je
znatno problematičnija od prve zbog veće širine ulazne riječi. Glavna prepreka
većoj brzini rada je dugački lanac prijenosa u akumulatoru na izlazu druge di-
menzije. Implementacija bazirana na polinomijalnim transformacijama nema
takvih nedostataka jer se izvodi nizom zbrajala i oduzimanja bez akumula-
tora na izlazu.

Izmjerena je preciznost obje implementacije i prikazani su rezultati koji
su detaljniji od predhodno objavljenih. Jednom kad su položeni jaki temelji
za usporedbu, obje implementacije su usporedene i po drugim faktorima kao
što su zauzeće logičkih resursa, maksimalna radna frekvencija, latencija i
količina podataka koja se može obraditi u jedinici vremena.

Dodatni doprinos rada je prijedlog za dizajniranje izlaznog stupnja koji
je baziran na organizaciji operacija počevši od zadnjeg stupnja, gdje dizajner
ima najmanje slobode. Takav pristup je rezultirao u vrlo efikasnoj FPGA im-
plementaciji koja je superiorna drugim implementacijama koje su objašnjene
u literaturi.

Ključne riječi: diskretna kosinusna transformacija, polinomijalna transfor-
macija, FPGA

72

Resume

Domagoj Babić was born 24th September 1977. in Sisak, Croatia. He has
received Dipl.ing. title form the Faculty of Electrical Engineering and Com-
puting in Zagreb 2001. His major was industrial electronics. From 2001. he is
employed as a research assistant on the Faculty of Electrical Engineering and
Computing where he has enrolled in the postgraduate programme of Core
Computer Science. His research interests include design and verification of
digital circuits and digital signal processing algorithms.

Životopis

Domagoj Babić je roden 24. rujna 1977. u Sisku. Studirao je na Fakultetu
elektrotehnike i računarstva u Zagrebu i diplomirao 2001. godine na smjeru
Industrijska elektronika. Od 2001. godine je zaposlen kao znanstveni novak
na Fakultetu elektrotehnike i računarstva kada je upisao i poslijediplomski
studij, smjer Jezgra računarskih znanosti. Bavi se dizajnom i verifikacijom
digitalnih sklopova i algoritmima za obradu digitalnih signala.

Appendix A

(∗ Transform s i z e ∗)
DN = 8 ;

(∗ V p symbo l i c f unc t i on d e f i n i t i o n ∗)
Ve [p Integer , j I n t e g e r] := V[p , j] / ; 0 = j < DN / ; 0 = p < DN
Ve [p Integer , DN] := V[p , DN] ;
Ve [p Integer , j I n t e g e r] := −V[p , 2∗DN − j] / ; DN = j < 2∗DN / ;

0 = p < DN
V[p Integer , DN] := 0 ;

(∗ U p symbo l i c po lynomia l d e f i n i t i o n ∗)
U[p In t eg e r] := Collect [Sum[(zˆ j)∗Ve [p , j] , { j , 0 , 2∗DN − 1}] , z] ;

(∗ Converts l i s t to po lynomia l o f v a r i a b l e var ∗)
Lis t2Po ly [l s t L i s t , var] := Module [{ r e s = 0 , l en = Length [l s t]} ,

For [idx = 1 , idx = len , idx++, r e s = r e s + var ˆ(idx − 1)∗
l s t [[idx]]] ;
r e s

] ;

(∗ C k symbo l ic po lynomia l d e f i n i t i o n ∗)
Cfun [k In t e g e r] := Collect [

PolynomialRemainder [
Sum[(z ˆ(4∗k∗p))∗U[p] , {p , 0 , DN − 1}] , z ˆ(2∗DN) + 1 , z

] , z
]
(∗ B k symbo l ic po lynomia l d e f i n i t i o n ∗)
Bk [k In t e g e r] := Collect [

PolynomialRemainder [(zˆk)∗Cfun [k] , z ˆ(2∗DN) + 1 , z] , z
]

(∗ X k polynomia l r e con s t ru c t i on − symbo l i c s o l u t i o n
o f po lynomia l transform ∗)

bkHelper [bk l L i s t , i d x I n t e g e r] := −bkl [[1]] / ; idx == 17
bkHelper [bk l L i s t , i d x I n t e g e r] := bkl [[idx]] / ; 1 = idx < 17
Xk [k In t e g e r] := Module [{

l s t = List {} , bk = CoefficientList [Bk [k] , z]} ,{
For [i = 0 , i < DN, i++, {

AppendTo [l s t , (bkHelper [bk , i + 1] −
bkHelper [bk , 17 − i]) / 2]

}] ,
L i s t2Po ly [l s t , z]

}
]

75

APPENDIX A. APPENDIX A 76

(∗ Convert X k to l i s t ∗)
XkList [k In t e g e r] := CoefficientList [Xk [k] [[2]] , z]
(∗ Create a l i s t o f l i s t s , y conta ins

a l l s ymbo l i c a l s o l u t i o n s ∗)
y = {

XkList [0] , XkList [1] , XkList [2] , XkList [3] ,
XkList [4] , XkList [5] , XkList [6] , XkList [7]

} ;

(∗ Convert symbo l ic s o l u t i o n s to matrix ∗)
ymat = Partition [Sort [y] , 8] ;

(∗ I n i t i a l i z e an empty 64x64 t a b l e ∗)
TableForm [PT = Table [0 , {64} , { 6 4 }]] ;

(∗ Create PT opera tor matrix , dimension Nˆ2 x Nˆ2 ∗)
For [i = 1 , i = DN, i++, For [j = 1 , j = DN, j++,

For [k = 1 , k <= Length [Level [Expand [ymat [[1]] [[i]] [[j]]] ,
{ 1 }]] , k++,
Module [{ dpt = Depth [tmp = Part [Expand [ymat [[1]] [[i]] [[j]]] ,

k]] } , {
l v l = Level [tmp , {1}] ,
elem = 0 ,
c o e f = 0 ,
I f [

dpt == 3 , {elem = l v l [[2]] ,
c o e f = l v l [[1]] } , {elem = tmp , co e f = 1}

] ,
tmpl = {ToExpression [ToBoxes [elem] [[1]] [[3]] [[1]] [[1]]] ,

ToExpression [ToBoxes [elem] [[1]] [[3]] [[1]] [[3]]]
} ,
i n r = (i − 1)∗8 + j , inc = tmpl [[1]] ∗ 8 + tmpl [[2]] + 1 ,
PT [[inr , inc]] = coe f

}
]

]]]

(∗ Compute in v e r s e PT opera tor ∗)
IPT = Inverse [PT] ;

Listing A.1: Mathematica code for symmetry analysis and computing PT
transform matrix

APPENDIX A. APPENDIX A 77

for (c=0; c < 8 ; c++) {
S [0] [c] = F [0] [c] + F [2] [c] ;
i f (c==0) {

S [1] [c] = F [1] [c] ;
} else {

S [1] [c] = F [1] [c] + F[3] [8 − c] ;
}
S [2] [c] = F [0] [c] − F [2] [c] ;
i f (c < 7) {

S [3] [c] = F [1] [c+1] − F[3] [7 − c] ;
} else {

S [3] [c] = −F [3] [0] ;
}
S [4] [c] = F [4] [c] + F [6] [c] ;
i f (c==0) {

S [5] [c] = F [5] [c] ;
} else {

S [5] [c] = F [5] [c] + F[7] [8 − c] ;
}
S [6] [c] = F [4] [c] − F [6] [c] ;

i f (c < 7) {
S [7] [c] = F [5] [c+1] − F[7] [7 − c] ;

} else {
S [7] [c] = −F [7] [0] ;

}
}

Listing A.2: Second stage of MPTDCT algorithm

APPENDIX A. APPENDIX A 78

for (c=0; c < 8 ; c++) {
C [0] [c] = S [0] [c] + S [4] [c] ;
i f (c < 4) {

C [1] [c] = S [1] [c] + S [7] [3 − c] ;
} else {

C [1] [c] = S [1] [c] + S [5] [c −4] ;
}
i f (c==0) {

C [2] [c] = S [2] [c] . dbl () ;
} else {

C [2] [c] = S [2] [c] + S [6] [8 − c] ;
}
i f (c == 0) {

C [3] [c] = S [1] [0] + (−S [7] [3]) ;
} else i f (c > 0 && c < 5) {

C [3] [c] = S [3] [c−1] + (−S [7] [3+ c]) ;
} else {

C [3] [c] = S [3] [c−1] + S [5] [12 − c] ;
}
C [4] [c] = S [0] [c] − S [4] [c] ;
i f (c < 3) {

C [5] [c] = S [1] [c+1] − S [7] [2 − c] ;
} else i f (c >= 3 && c < 7) {

C [5] [c] = S [1] [c+1] − S [5] [c −3] ;
} else {

C [5] [c] = −S [3] [7] − S [5] [c −3] ;
}
i f (c < 7) {

C [6] [c] = S [2] [c+1] − S [6] [7 − c] ;
} else {

C [6] [c] = −S [6] [0] . dbl () ;
}
i f (c < 4) {

C [7] [c] = S [3] [c] − (−S [7] [4+ c]) ;
} else {

C [7] [c] = S [3] [c] − S [5] [11 − c] ;
}

}
Listing A.3: Third stage of MPTDCT algorithm

APPENDIX A. APPENDIX A 79

X [0] [0] = C [0] [0] ;
X [1] [0] = C [7] [0] ;
X [2] [0] = C [6] [1] ;
X [3] [0] = C [5] [2] ;
X [4] [0] = C [4] [4] ;
X [5] [0] = C [3] [5] ;
X [6] [0] = C [2] [6] ;
X [7] [0] = C [1] [7] ;

for (c=1; c < 8 ; c++) {
X[0] [c] = C [0] [c] ;
X [1] [c] = (C [1] [c−1] − (−C [7] [c])) ;
i f (c == 1) {

X[2] [c] = (C [6] [0] − (−C [6] [2])) ;
} else i f (c > 1 && c < 7) {

X[2] [c] = (C [2] [c−2] − (−C [6] [c +1])) ;
} else {

X[2] [c] = (C [2] [c−2] − C [2] [7]) ;
}
i f (c < 3) {

X[3] [c] = (C[5] [2 − c] − (−C[5] [2+ c])) ;
} else i f (c >= 3 && c < 6) {

X[3] [c] = (C [3] [c−3] − (−C [5] [c +2])) ;
} else {

X[3] [c] = (C [3] [c−3] − C[3] [13 − c]) ;
}
i f (c < 4) {

X[4] [c] = (C[4] [4 − c] − (−C[4] [4+ c])) ;
} else i f (c == 4) {

X[4] [c] = C [4] [c−4] ;
} else {

X[4] [c] = (C [4] [c−4] − C[4] [12 − c]) ;
}
i f (c < 3) {

X[5] [c] = (C[3] [5 − c] − (−C [3] [c +5])) ;
} else i f (c >= 3 && c < 6) {

X[5] [c] = (C[3] [5 − c] − C[5] [10 − c]) ;
} else {

X[5] [c] = (C [5] [c−6] − C[5] [10 − c]) ;
}
i f (c == 1) {

APPENDIX A. APPENDIX A 80

X [6] [c] = (C[2] [6 − c] − (−C [2] [7])) ;
} else i f (c > 1 && c < 7) {

X[6] [c] = (C[2] [6 − c] − C[6] [9 − c]) ;
} else {

X[6] [c] = (C [6] [0] − C [6] [2]) ;
}
X[7] [c] = (C[1] [7 − c] − C[7] [8 − c]) ;

}
Listing A.4: Fourth stage of MPTDCT algorithm

Bibliography

[1] IEEE Standard Specifications for the Implementations of 8x8 Inverse
Discrete Cosine Transform, December 1990.

[2] N. Ahmed, T. Natarajan, and K. R. Rao. Discrete Cosine Transform.
IEEE Trans. Computer, 23(1):90–93, January 1974.

[3] James F. Blinn. What’s the Deal with the DCT ? IEEE Computer
Graphics and Applications, 13(4):78–83, July/August 1993.

[4] Wen-Hsiung Chen, C. Harrison Smith, and S. C. Fralick. A Fast Com-
putational Algorithm for the Discrete Cosine Transform. IEEE Trans-
actions On Communications, COM-25(9):1004–1009, September 1977.

[5] Nam Ik Cho and Sang Uk Lee. Fast algorithm and implementation of
2-D discrete cosine transform. IEEE Trans. on Circuits and Systems,
38(3):297–306, March 1991.

[6] C.M.Rader. Discrete Fourier transforms when the number of data sam-
ples is prime. In Proceedings of the IEEE, volume 56, June 1968.

[7] Forman Aggoun De. Quantisation Strategies For 3d-Dct-Based Com-
pression Of Full Parallax 3d Images.

[8] Chris Dick. Computing Multidimensional DFTs Using Xilinx FPGAs.
In The 8th International Conference on Signal Processing Applications
and Technology, Toronto Canada, September 1998.

[9] Chris Dick. Minimum multiplicative complexity implementation of the
2-D DCT using Xilinx FPGAs. In Configurable Computing: Technology
and Applications, Proc. SPIE 3526, Bellingham, WA, pages 190–201,
November 1998.

[10] James R. Driscoll, Dennis M. Healy Jr., and Daniel N. Rockmore. Fast
discrete polynomial transforms with applications to data analysis for
distance transitive graphs. SIAM J. Comput., 26(4):1066–1099, 1997.

[11] Dan E. Dudgeon, Russell M. Mersereau, and Russell M. Merser. Multi-
dimensional Digital Signal Processing. Prentice Hall, 1995.

[12] Pierre Duhamel and C. Guillemot. Polynomial Transform Computa-
tion of the 2-D DCT. In Proceedings IEEE International Conference
Acoustics, Speech and Signal Processing, pages 1515–1518, April 1990.

81

BIBLIOGRAPHY 82

[13] Pierre Duhamel and H. H’Mida. New 2n DCT Algorithms suitable for
VLSI Implementation. In Proceedings IEEE International Conference
Acoustics, Speech and Signal Processing ICASSP-87, Dallas, page 1805,
April 1987.

[14] E. Feig and S. Winograd. On the multiplicative complexity of discrete
cosine transform. IEEE Trans. Inf. Theory, 38(4):1387–1391, July 1992.

[15] Ephraim Feig and Shmuel Winograd. Fast algorithms for the discrete
cosine transform. IEEE Trans. on Signal Processing, 40(9).

[16] Alan Goluban. Prikaz volumnih objekata korǐstenjem njihovog opisa u
frekvencijskoj domeni. Master’s thesis, Faculty of Electrical Engineering
and Computing, Zagreb, 1998.

[17] James H. and C. McClellan Rader. Number Theory in Digital Signal
Processing. Prentice Hall, 1979.

[18] Israel Koren. Computer Arithmetic Algorithms. A K Peters, Ltd., second
edition, 2002.

[19] Christoph Loeffler, Adriaan Ligtenberg, and George S. Moschytz. Prac-
tical Fast 1-D DCT Algorithms with 11 Multiplications. In Proceedings
of the International Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 988–991, 1989.

[20] Yoshitaka Morikawa, Hiroshi Hamada, and Nobumoto Yamane. A Fast
Algorithm for the Cosine Transform Based on Successive Order Reduc-
tion of the Chebyshev Polynomial. Electronics and Communications in
Japan, Part 1, 69(3):45–54, 1986.

[21] Madihally J. Narasimha and Allen M. Peterson. On the Computation of
the Discrete Cosine Transform. IEEE Transaction on Communication,
COM-26(6):934–936, June 1978.

[22] Henri J. Nussbaumer. Digital filtering using polynomial transforms.
Electron. Lett., 13:386–387, June 1977.

[23] Henri J. Nussbaumer. Fast polynomial transform algorithms for digital
convolution. IEEE Trans. on ASSP, 28(2):205–215, April 1980.

[24] Henri J. Nussbaumer. Fast polynomial transform computation of the 2-D
DCT. In International Conference on Signal Processing, pages 276–283,
1981.

BIBLIOGRAPHY 83

[25] Henri J. Nussbaumer. Fast Fourier Transform and Convolution Algo-
rithms. Springer Verlag, second edition, 1982.

[26] Henri J. Nussbaumer and Philippe Quandalle. Fast computation of
discrete Fourier transforms. IEEE Trans. on ASSP, 27(2):169–181, April
1979.

[27] Alexander D. Poularikas. The Transforms and Applications Handbook.
CRC Press, second edition, 2000.

[28] Jacques Prado and Pierre Duhamel. A polynomial-transform based com-
putation of the 2-D DCT with minimum multiplicative complexity. In
Proceedings IEEE International Conference Acoustics, Speech and Sig-
nal Processing, pages 1347–1350, April 1996.

[29] John G. Proakis and Dimitris G. Manolakis. Digital Signal Processing:
Principles, Algorithms and Applications. Prentice Hall, third edition,
1996.

[30] Ming-Ting Sun, Ting-Chung Chen, and Albert M. Gottlieb. VLSI Imple-
mentation of a 16 X 16 Discrete Cosine Transform. IEEE Transactions
on Circuits and Systems, 36(4):610–617, April 1989.

[31] S. Uramoto, Y. Inoue, A. Takabatke, J. Takeda, Y. Yamashita, and
M. Toshimoto. A 100 MHz 2-D Discrete Cosine Transform Core Proces-
sor. IEEE Journal of Solid State Circuits, 27(4):492–498, April 1992.

[32] Martin Vetterli and Henri J. Nussbaumer. Simple FFT and DCT algo-
rithms with reduced number of operations. Signal Processing, 6:267–278,
1984.

[33] S. White. Applications of Distributed Arithmetic to Digital Signal Pro-
cessing: A Tutorial Review. IEEE ASSP Magazine, pages 4–19, July
1989.

[34] Hong Ren Wu and Zhihong Man. Comments on ”Fast algorithms and
implementation of 2-D discrete cosine transform”. Circuits and Sys-
tems for Video Technology, IEEE Transactions on Volume, 8(2):128–
129, April 1998.

[35] Yinghui Wu, Xin Guan, Mohan S. Kankanhalli, and Zhiyong Huang.
Robust Invisible Watermarking of Volume Data Using the 3D DCT. In
Computer Graphics International 2001 (CGI’01), Hong Kong, China,
Proceedings. IEEE Computer Society, July 2001.

BIBLIOGRAPHY 84

[36] Xilinx. The Programmable Logic Data Book, 1999.

[37] P. P. N. Yang, M. J. Narasimha, and B. G. Lee. A prime factor de-
composition algorithm for the computation of discrete cosine transform.
International Conference on Computers, Systems & Signal Processing,
Bangalore, India, December 1984.

[38] P. Yip and Kamisetty Ramamohan Rao. Discrete Cosine Transform:
Algorithms, Advantages, and Applications. Academic Press, 1990.

[39] Sungwook Yu and Earl E. Swartzlander. DCT Implementation with
Distributed Arithmetic. IEEE Transactions on Computers, 50(9):985–
991, September 2001.

[40] Yonghong Zeng, Guoan Bi, and A. R. Leyman. New polynomial trans-
form algorithm for multidimensional DCT. IEEE Trans. Signal Process-
ing, 48(10):2814–2821, 2000.

[41] Feng Zhou and P. Kornerup. A High Speed DCT/IDCT Using a
Pipelined CORDIC Algorithm. In Proc. 12th IEEE Symposium on Com-
puter Arithmetic. IEEE Press, July 1995.

	Motivation
	Discrete Cosine Transform
	Transforms
	Fourier Transform
	Discrete Fourier Transform
	Multidimensional Transforms
	Discrete Cosine Transform
	Fourier cosine transform
	Basis vectors
	Karhunen-Loéve transform
	Discrete cosine transform types

	Polynomial Transform
	Chinese Remainder Theorem
	Greatest common divisor
	Euler's function
	Chinese remainder theorem
	Polynomial CRT

	Polynomial Transforms
	Basic definition
	Computation

	Application of PTs
	Convolution
	DFT

	Previous Work
	Computational Complexity
	One-dimensional Algorithms
	Early Multidimensional Algorithms
	Advanced Multidimensional Algorithms
	Duhamel's 2D algorithm
	Multidimensional PT algorithm

	Reference DCT Implementation
	Distributed Arithmetic
	Algorithm Realization
	Accuracy Analysis
	FPGA Implementation

	MPTDCT Implementation
	Accuracy Analysis
	FPGA Implementation

	Summary
	Sazetak
	Resume
	Zivotopis
	Appendix A

