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1. INTRODUCTION

Multi-sensor image fusion (MIF) is a technique that

combines two or more registered images to increase the

spatial resolution of acquired low detail multi-sensor images

and preserving their spectral information. Of late MIF has

emerged as an innovative and promising research area in

image processing. The benefiting fields from MIF are viz.

military, remote sensing, machine vision, robotic, surveillance,

enhanced vision system, and medical imaging, etc. The

problem that MIF tries to solve is to merge the information

content from several images (or acquired from different

imaging sensor modalities) taken from the same scene in

order to accomplish a fused image that contains the finest

information coming from the different original source images1.

Hence, the fused image would provide enhanced superiority

image than any of the original source images. Depending

on the merging stage, MIF could be performed at three

different levels viz. pixel level, feature level, and decision

level2,3.  In this paper, pixel-level based MIF is presented

that represents a fusion process generating a single combined

image containing an additional truthful description than

individual source image.

The simplest MIF is to take the average of the grey

level source images pixel by pixel. This technique would

produce several undesired effects and reduced feature

contrast in the fused image. To overcome these problems,

multi-scale transforms, such as wavelets1,4-12, image

pyramids3,13-16, spatial frequency17, statistical signal processing18-

21 and fuzzy set theory22 have been proposed. Multi-resolution

wavelet transforms could provide good localisation in

both spatial and frequency domains. Discrete wavelet transform

would provide directional information in decomposition

levels and contain unique information at different resolutions4, 5.

In this paper, the multi-resolution discrete cosine transform

(MDCT) is applied to fuse the source images.
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One of the important prerequisites to be able to apply

fusion techniques to source images is the image registration

i.e., the information in the source images needed to be

adequately aligned and registered prior to fusion of the

images. In this paper, it is assumed that the images to be

fused are already registered.

2. DISCRETE COSINE TRANSFORM

Discrete cosine transform (DCT) is an important transform

in image processing. Large DCT coefficients are concentrated

in the low frequency region; hence, it is known to have

excellent energy compaction properties.

The 1D discrete cosine transform X(k) of a sequence

x(n) of length N is defined as23-28:
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One can observe that for k=0, the Eqn (1) becomes
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= å . The first transform coefficient is the average

of all samples in the sequence and is known as DC coefficient,

and other transform coefficients are known as AC coefficients.

The inverse discrete cosine transform is defined as:
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Eqn (1) is generally called as analysis formula or forward

transform and Eqn (3) is called as synthesis formula or
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The 2D DCT is a direct extension of 1D DCT. The

2D discrete cosine transform X(k
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where 
1

( )ka and 
2

( )ka  are similar to Eqn (2).

Similarly, the 2D inverse discrete cosine transform is

defined as: 1 2
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Both DCT and IDCT are separable transformation and

the advantage of this property is that 2D DCT or 2D IDCT

can be computed in two steps by successive 1D DCT or

1D IDCT operations on columns and then on rows of an

image x(n
1
,n

2
) as shown in Fig. 1.

3. MULTI-RESOLUTION DCT

Multi-resolution DCT (MDCT) is very similar to wavelets

transform, where signal is filtered separately by low-pass

and high-pass finite impulse response (FIR) filters and the

output of each filter is decimated by a factor of two to

achieve first level of decomposition. The decimated low

pass filtered output is filtered separately by low-pass and

high-pass filter followed by decimation by a factor of two

provides second level of decomposition. The successive

levels of decomposition can be achieved by repeating this

procedure. The idea behind the MDCT is to replace the

FIR filters with DCT21.

The information flow diagram of MDCT (one level of

decomposition) is shown in Fig. 2.  The image to be decomposed

is transformed into frequency domain by applying DCT

in column-wise. Take the IDCT on first 50 % of points

(0 to 0.5p) to get the low passed image L. Similarly, take

the IDCT on second 50 % of points (0.5p to p) to get the

high passed image H. The low passed image L is transformed

into frequency domain by applying DCT in row wise. Take

the IDCT on first 50 % of points   (in row wise) to get

low passed image LL and similarly take IDCT on the remaining

50% to get the high passed image LH.  The high passed

image H is transformed into frequency domain by applying

DCT in row wise. Take the IDCT on first 50 % of points

(in row wise) to get low passed image HL and similarly

take IDCT on the remaining 50% to get the high passed

image HH. The LL contains the average image information

corresponding to low frequency band of multi scale

decomposition. It could be considered as smoothed and

sub sampled version of the source image. It represents

the approximation of source image. LH, HL and HH are

detailed sub images which contain directional (horizontal,

vertical and diagonal) information of the source image due

to spatial orientation. Multi resolution could be achieved

by recursively applying the same algorithm to low pass

coefficients (LL) from the previous decomposition.

Figure 1. Computation of 2-D DCT using separability property.

Figure 2. Multi-resolution image decomposition structure using DCT.
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3. FUSION

The schematic diagram for the MDCT based pixel

level image fusion scheme is shown in Fig. 4. One can

observe that the modification of the present scheme is

the use MDCT instead of wavelets or pyramids. The

images to be fused  I
1
 and I

2
 are decomposed into

( 1, 2,..., )D d D=  levels using MDCT. The resultant

decomposed images from I
1 

are

 { }{ }1 1 1 1

1
1,2,...,

, , ,D d d d
d D

I LL LH HH HL
=

® and from
 
I

2
 are

 { }{ }2 2 2 2

2
1,2,...,

, , ,D d d d
d D

I LL LH HH HL
=

® .  At each

decomposition level  ( 1, 2,..., )d D= , the fusion rule will

select the larger absolute value of the two MDCT detailed

coefficients, since the detailed coefficients are corresponds

to sharper brightness changes in the images such as

edges and object boundaries etc. These coefficients

are fluctuating around zero. At the coarest level (d =

D), the fusion rule take average of the MDCT approximation

coeficients since the approximation coeficents at coarser

level are the smoothed and subsampled verion of the

original image. The fused image I
f
 can be obtained using:

 { }{ }1,2,...,
, , ,

f f f f

f D d d d
d D

I LL LH HH HL
=

¬              (6)

4. PERFORMANCE EVALUATION

4.1 With Reference Image

When the reference image is available, the performance

of image fusion algorithms can be evaluated using the

following metrics:

1. Percentage fit error29 (PFE)
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where, norm is the operator to compute the largest singular

value.

It is computed as the norm of the difference between

the corresponding pixels of reference and fused image to

the norm of the reference image. This will be zero when

both reference and fused images are exactly alike and it

will be increased when the fused image is deviated from

the reference image.

  

 

Figure 3. (a) Ground truth image; (b) Multi-resolution image decomposition; (c) Reconstructed image from 2nd level of decomposition

and the error image.

(i) Reconstructed image                           (ii) Error image

(i) First level of decomposition              (ii) Second level of

decomposition

(a) (b)

(c)
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2. Peak signal to noise ratio30 (PSNR)
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where, L in the number of gray levels in the image.

Its value will be high when the fused and reference

images are similar. Higher value implies better fusion.

3. Measure of structural similarity31, 32 (SSIM)
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Natural image signals would be highly structured and

their pixels reveal strong dependencies. These dependencies

would carry vital information about the structure of the

object. It compares local patterns of pixel intensities that

have been normalized for luminance and contrast.

4.2 Without Reference Image

When the reference image is not available, the following

metrics could be used to test the performance of the fused

algorithms.

1. Standard deviation33 (SD)
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where,  ( )
fI

h i is the normalized histogram of the fused

image  ( , )
f

I x y  and L number of frequency bins in the

histogram.

It is known that standard deviation is composed of

the signal and noise parts. This metric would be more

efficient in the absence of noise. It measures the contrast

in the fused image. An image with high contrast would

have a high standard deviation.

2. Cross entropy34 (CE)

Overall cross entropy of the source images I
1
, I

2
 ,and

the fused image I
f
 is:
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3. Spatial frequency35-36 (SF)

Spatial frequency criterion is:

 2 2SF RF CF= +                                (12)

where, the row frequency of the image is:
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and column frequency of the image is:

Figure 4. Schematic diagram for the MDCT based pixel level image fusion scheme.
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This frequency in spatial domain indicates the overall

activity level in the fused image. (x, y) is the pixel index.

The fused image with high SF would be considered.

 

5. RESULTS AND DISCUSSION

The National Aerospace Laboratories� indigenous

aircraft SARAS, shown in (Fig. 5(a)), is considered as

a reference image I
r
 to evaluate the performance of the

proposed fusion algorithm. The complimentary pair input

images I
1
 and I

2
 are taken to evaluate the fusion algorithm

 

Figure 5. Reference and source images.

(a) Reference image I
r

(b) First source image I
r

(c) Second source image

 

 

Figure 6. Fused and error image with one level D=1 of decomposition using MDCT.

Figure 7. Fused and error image with one level D=1 of decomposition using wavelets.
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and these images are shown in Figs. 5(b)-5(c). The

complementary pair has been created by blurring the

reference image of size 512 x 512 with a Gaussian mask

using diameter of 12 pixels. The images are complementary

in the sense that the blurring occurs at the top half and

the bottom half respectively. The first column in Figs.

6 - 9. shows fused images and the second column shows

the error images. The error (difference) image is computed

by taking the corresponding pixel difference of reference

image and fused image, i.e., ( , ) ( , ) ( , )e r fI x y I x y I x y= - .

The fused and error images by one level of decomposition

using MDCT and wavelet fusion algorithms are shown

in Fig. 6 and Fig. 7 respectively. Similarly the fused and

error images by two levels of decomposition using MDCT

and wavelet are shown in Fig. 8 and Fig. 9 respectively.

It is observed that the fused images of both MDCT and

wavelet are almost similar for these images. The reason

could be because of taking the complementary pairs.

The performance metrics for evaluating the image fusion

algorithms are shown in Table 1. The metrics shown in

table with asterisk (*) mark, are better among others.

The performance of MDCT is almost similar to that of

wavelets. Higher level of decomposition performs superior

fusion.

6.  CONCLUSION

Pixel level image fusion by MDCT algorithm has been

implemented and evaluated. The performance of this algorithm

is compared with well known image fusion technique by

wavelets. It is concluded that image fusion by MDCT is

almost similar to that of wavelets. It is computationally

very simple and it could be well suited for real-time applications.

Image fusion by higher level of decomposition provides

better fusion results.

 

Figure 9. Fused and error image with two levels D=2 of decomposition using wavelets.

 

Figure 8. Fused and error image with two levels D=2 of decomposition using MDCT.

With  reference image Without reference image Levels of  

decomposition 

Algorithm 

PFE PSNR SSIM CE SD SF 

D = 1 MDCT 3.8772 38.6038 0.9673 8.8438 46.1094 12.4658 

D = 1 Wavelets 3.7899 38.7026 0.9736 10.6944 46.2320 13.0840 

D = 2 MDCT 3.3175 39.2808 0.9635 10.3484 46.8292 15.4992 

D = 2 Wavelets 3.2027* 39.4338* 0.9764* 11.3181* 46.9953* 15.6984* 

Table 1. Performance evaluation metrics
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