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Abstract. In many image-processing applications, observed im-
ages are contaminated by a nonstationary noise and no a priori
information on noise dependence on local mean or about local prop-
erties of noise statistics is available. In order to remove such a
noise, a locally adaptive filter has to be applied. We study a locally
adaptive filter based on evaluation of image local activity in a “blind”
manner and on discrete cosine transform computed in overlapping
blocks. Two mechanisms of local adaptation are proposed and ap-
plied. The first mechanism takes into account local estimates of
noise standard deviation while the second one exploits discrimina-
tion of homogeneous and heterogeneous image regions by adaptive
threshold setting. The designed filter performance is tested for simu-
lated data as well as for real-life remote-sensing and maritime radar
images. Recommendations concerning filter parameter setting are
provided. An area of applicability of the proposed filter is defined.
© 2010 SPIE and IS&T. �DOI: 10.1117/1.3421973�

1 Introduction
Nowadays, a great number of image filters intended for
removal of noise of a given type exists �e.g., for additive,1

Poisson,2 speckle,3 and impulse4 noise�. Other filters are
capable to remove different types of mixed noise, such as
additive and impulsive,5,6 multiplicative and impulsive,7

multiplicative and additive,8 etc., under assumption that a
mixed noise type and its basic parameters are known in
advance or preestimated. In order to perform filtering in an
efficient way, one has to have a preliminary knowledge on
noise type and statistics.5,9,10 On the other hand, such a

priori information may not always be available in many
typical practical situations that often arise in remote sens-
ing, hyperspectral imaging, ultrasound medical diagnostics,
cDNA imaging, etc.11–15

For many imaging systems, noise is not a stationary pro-
cess and its statistics and properties could be quite dissimi-
lar in different fragments of a particular image. In practice,
dissimilarities in noise statistics can be due to several basic
reasons. One reason is the change of imaging conditions or
considerably different distances to particular parts of an
observed scene as in side-look radar imaging.16 Another
reason could be uncontrollable influence of several differ-
ent sources of noise. For instance, in maritime radars, in-
terference arises due to sea clutter that depends on wind
speed, direction of sea waves, incidence angle,16 etc. A
third reason could be nonlinear amplification regulations in
input circuits before image digitalization as in ultrasound
medical devices. Finally, for some imaging systems, ad-
equate models of noise present in the acquired or trans-
ferred images have not been established or commonly ac-
cepted yet.17–20

Therefore, there are typical and atypical situations con-
cerning properties of noise present in images. Typical situ-
ations considered thoroughly in image-filtering literature
are characterized by the following: noise type is known or
its characteristics are known a priori or can be estimated
for a given type of noise. On the contrary, less-studied situ-
ations addressed in this paper are the following:

1. Noise is nonstationary in the sense that its basic char-
acteristics �variance, probability density function in
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some limits� vary from one local fragment of an im-
age to another fragment.

2. These variations do not have some predictable depen-
dence on local mean as this takes place for �e.g., film-
grain or Poisson noise; a simple example of such un-
predictable variation could be linear dependence of
noise variance on pixel coordinates for one or both
axes of an image�.

Thus, we deal with a problem of image blind denoising.21

There are several ways to cope with nonstationary noise. A
simple way to follow could be applying nonlinear nonadap-
tive filters that are robust in wide sense9,22 �i.e., they do not
need and do not take into account any information on the
noise statistics�. Examples of such filters are standard me-
dian, �-trimmed mean, central weighted median, Wilcoxon
filters.9,23 Drawbacks of these filters are well known. Along
with noise reduction, these filters can severely distort useful
information contained in images.

These shortcomings led to design locally adaptive filters
�see Refs. 7, 18, and 24–26 and references therein�, includ-
ing several approaches that employ partial differential
equations, anisotropic diffusion, and total variation
minimization.27–29 They have demonstrated considerable
improvement of performance in comparison to nonadaptive
nonlinear filters due to exploiting different mechanisms of
adaptation to image local content. However, some of them
�e.g., Refs. 18, 24, and 25�, require a priori information on
noise type and statistics, other ones are rather complicated.

There are also many techniques that perform adaptive
filtering in the domain of an orthogonal transform. To name
a few, let us mention discrete wavelet transform and dis-
crete cosine transform �DCT�–based filters for the additive
noise case,1,30–32 different filters designed for speckle
removal,3,33,34 and other types of noise.2,35–37 However, for
most of these filters, it is supposed that noise type is known
and its parameters are either known in advance or preesti-
mated with appropriate accuracy by preliminary “global”
analysis of an image at hand.36,38

If noise statistics is unknown and noise is nonstationary,
the following set of questions arises:

1. What can serve as a basis for transform-based locally
adaptive filtering of images corrupted by nonstation-
ary noise?

2. What can be mechanisms of local adaptation?
3. How accurate can be local estimates of noise statis-

tics and how this accuracy can influence a filter per-
formance?

4. What methods of local estimation of noise statistics
are worth applying?

In our opinion, one answer to the first question could be
DCT-based filtering. There are several reasons for this.
First, DCT-based filtering is usually applied locally, in
blocks of fixed24,31,33,37 or adaptively selected shape and
size.36 Second, DCT-based filtering can be easily adapted to
a priori known or preestimated noise statistics. DCT-based
filters have been earlier proposed and successfully tested
for removing multiplicative, Poisson, film-grain, and, in
general, signal-dependent noise.2,24,31,33,37 These filters use
an estimate of a local mean in an image block for determin-

ing noise local variance and setting a local threshold for
hard or soft thresholding of DCT coefficients. Third, DCT-
based filtering provides excellent noise suppression in ho-
mogeneous image regions,31 appropriate texture
preservation,24 and good preservation of edges and fine de-
tails. Thus, the goal of this paper is to design and test DCT
filter modifications applicable to processing images cor-
rupted by nonstationary noise.

The paper is organized as follows. In Section 2, basic
principles of DCT-based filtering are described. Main ad-
vantages of this approach are mentioned and demonstrated.
The ways how to adapt this technique to signal-dependent
noise are shown. Section 3 deals with description of two
proposed modifications of locally adaptive DCT-based fil-
ter. Preliminary testing for simulated images and noise is
carried out in Section 4, which also contains data for com-
parison of the designed methods performance to one of the
state-of-the-art methods. Limitations of the method for spa-
tially correlated noise are demonstrated. Real-life image-
processing examples are given in Section 5. Finally, we
draw conclusions and present possible directions of future
work.

2 Basic Principles of Adaptive DCT-Based
Filtering

All methods of transform-based signal-image-filtering �de-
noising� rely on the same basic assumption that a signal in
transform domain has more sparse representation than
noise.30,33,35–40 Then, if a component in orthogonal trans-
form domain has a rather large absolute value, it most prob-
ably corresponds to information content and should be pre-
served. If a component has amplitude close to zero �less
than a threshold�, then it most probably relates to noise and
has to be removed �suppressed�. Then, filtering can be per-
formed using different orthogonal transforms �wavelets,
discrete cosine, Haar, etc.�. A choice of basis functions as
well as filtering efficiency depend on how high are energy
compaction properties of a transform for a given signal
�image�.

The Karhunen–Loeve transform possesses the best sig-
nal decorrelation property in least-squares terms.41,42 Un-
fortunately, its coefficients are data dependent and, thus, no
fast algorithm of the Karhunen–Loeve transform exists.
DCT is almost as efficient as the Karhunen-Loeve trans-
form in terms of signal decorrelation and energy compac-
tion, especially in the case of signals modeled by Markov
processes.41,42 There are also fast algorithms for calculating
the DCT.42,43 Because of these properties, DCT is widely
used in image and video compression.44,45

Let us recall an operation principle of DCT-based
denoising.31,33,37,42 In general form, the two-dimensional
DCT coefficients of an N1�N2 matrix A may be defined as

D�u,v� = c�u�c�v� �
n1=0

N1−1

�
n2=0

N2−1

A�n1,n2�cos� �2n1 + 1�u�

2N1
�

�cos� �2n2 + 1�v�

2N2
� , �1�

where

� = 0,1, . . . ,N1 − 1, v = 0,1, . . . ,N2 − 1,
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c�u� = �
1

	N1

, u = 0

	 2

N1

1 � u � N1 − 1
 ,

c�v� = �
1

	N2

, v = 0

	 2

N2

1 � v � N2 − 1
 .

The standard scalar �2-D� DCT-based denoising operates in
square-shaped blocks of a fixed size N�N and comprises
the following steps.31,37 At the first step, the DCT is per-
formed for each image block with values �Iqs: q=n ,n
+1, . . . ,n+N−1, s=m ,m+1, . . . ,m+N−1�, to obtain the
local spectrum �D�k , l ,n ,m�: k=1,2 , . . . ,N, l=1,2 , . . . ,N�.
The left upper corner of the image block is located at �n ,m�
and the indices k and l relate to the DCT �spectral� coeffi-
cients. At the second step, a thresholding of the coefficients
�D�k , l ,n ,m�� is carried out for k=1,2 , . . . ,N, l
=1,2 , . . . ,N. It is possible to apply either soft or hard
thresholding.37 In this paper, we have applied the hard
thresholding of DCT coefficients for image filtering. Ac-
cording to that, the spectral coefficient D�k , l ,n ,m� remains
unchanged if its absolute value is larger than a predefined
threshold T�k , l ,n ,m�; otherwise, it is set to zero. The co-
efficient D�1,1 ,n ,m�, which corresponds to the block
mean, is not subjected to the thresholding.

After the thresholding, the set of changed coefficients
�DT�k , l ,n ,m�: k=1,2 , . . . ,N, l=1,2 , . . . ,N� is obtained for
each image block defined by the indices n and m. Next, the
inverse DCT is applied to each block of thresholded coef-
ficients and the preliminary filtered image values
Ipf�q ,s ,n ,m� are obtained for q=n ,n+1, . . . ,n+N−1,
s=m ,m+1, . . . ,m+N−1. Because now almost all image
pixels belong to N�N different image blocks, we have for
each image pixel �qo ,so� usually N�N preliminary filtered
pixel values Ipf�qo ,so ,n ,m�, where n=qo ,qo−1, . . . ,qo−N
+1 and m=so ,so−1, . . . ,so−N+1. Only the pixels near the
image borders are exceptions because, for them, the num-
ber of such output estimates is smaller �minimally, one for
all four image corners�.

Then, at the last step, all output estimates for each pixel
must be combined in order to obtain the final filtered image
If. The simplest way to do this is to average these estimates.
The resulting value for the pixel �qo ,so� is then

If�qo,so� =
1

N � N
�

n=qo−N+1

qo

�
m=so−N+1

so

Ipf�qo,so,n,m� . �2�

Partial overlapping of blocks can be used to accelerate pro-
cessing, but it results in less-efficient filtering.31 For this
reason, we exploit fully overlapping blocks.

A threshold T�k , l ,n ,m� may vary, depending on spatial
coordinates defined by indices n and m, or may be fre-
quency dependent46 in the case when noise is spatially cor-
related with known or preestimated spatial correlation char-
acteristics. We assume that there is no a priori information

about noise spatial correlation. Thus, we consider only
threshold dependence on n and m.

Concerning the potential of DCT-based filtering with
fully overlapping blocks, we would like to recall that it
provides performance �in terms of output MSE or PSNR�
better or comparable to the best wavelet-based denoising
techniques for pure additive and pure multiplicative noise
cases.31,33 Furthermore, the main advantage of DCT-based
filtering for the considered case of nonstationary noise is
that, being carried out blockwise, it can be easily adapted to
local statistical properties of noise.33,47 To show how this
can be done, let us consider the following two image mod-
els. The first one is a the case of film grain noise for which
a general observation model is

Iqs = Iqs
tr + �Iqs

tr �� · nqs, �3�

where Iqs, Iqs
tr , and nqs denote the noisy image sample

�pixel� value, true image value, and signal independent
noise component, which is characterized by the variance
�n

2, respectively, for the qs’th sample, � is a parameter of
film grain noise. Then33 for an nm’th block, the threshold is
set as

T�n,m� = ��Î�n,m�� , �4�

where Î�n ,m� is the estimate of the local mean for the block
and the coefficient � controls the threshold value. Usually,
� is set approximately equal to 2.6;31,33 although for better
preservation of texture, it is expedient to apply �	2.6.24

Let us confirm this fact with two examples. Figure 1
presents the plots of output MSE on � for the DCT filter
described above �8�8 pixel blocks with full overlapping�.
These plots have been obtained for two standard test im-
ages �Lenna and Baboon� corrupted by additive white
Gaussian noise ��=0 in Eq. �3�� with variances �n

2=50 and
�n

2=100, and by Poisson noise. In the former case, T�n ,m�
is set as ��n. In the latter case, T�n ,m�=��Î�n ,m��1/2.

As it is seen, all dependencies have minimums that are
observed for � of 
2.6 for the image Lenna and 
2.3 for
the image Baboon. For other standard test images �Goldhill,
Peppers, Barbara� minimums are observed for � approxi-
mately equal to 2.6. Similar to other filtering algorithms,
noise suppression is less efficient if a processed image has
a more complex structure and/or the noise variance is
smaller. Note that for additive noise with �n

2=100, the val-
ues of output peak signal-to-noise ratio �PSNR� provided
by the DCT filter with �=2.6 are equal to 35.40, 34.42, and
34.61 dB for the images Lenna �512�512�, Barbara �512
�512�, and Peppers �256�256�, respectively. This is bet-
ter than for one of the best state-of-the-art Kervrann’s filter
�see Ref. 26, Table IV, PSNR=35.18, 33.79, and 34.07 dB,
respectively�.

Thus, DCT-based filtering has a high potential. How-
ever, such performance of the DCT filter is observed under
condition of known noise type and statistics. And we are
interested in the case of non-stationary noise with unknown
characteristics.

As is seen from Eq. �4�, the product �n�Î�n ,m�� is, in
fact, an estimate of noise standard deviation �SD� �̂�n ,m�
in a given block. For �=0 �i.e., for pure additive noise�,
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one gets exactly �n. The threshold is fixed and equal to
��n. Similarly, for pure multiplicative case �̂�n ,m�

=���n ,m�Ī̂�n ,m� where �� is the multiplicative noise nor-

malized SD. As an estimate of local mean Ī̂�n ,m�, one can
use the DCT spectral coefficient D�1,1 ,n ,m�.

Thus, generalizing the presented results, the conclusion
is as follows. To set a local threshold, one needs a local
estimate of noise standard deviation �̂�n ,m�. Consider the
following image additive observation model

Iqs = Iqs
tr + nqs

nst, �5�

where Iqs
tr is a true image value and nqs

nst denotes nonstation-
ary noise in a qs’th sample assumed to be zero mean. We
suppose that its SD �qs is a function of pixel coordinates
defined by pixel indices qs. It is also assumed that spatial
variations of �qs are not fast, and for a given block, it is
possible to assume that nonstationary noise SD is almost
constant for all image pixels that belong to a given block.
Then, for each block, one needs to have an estimate
�̂�n ,m�. This estimate can be used for setting a local
threshold proportionally to �̂�n ,m�.39,48

3 Locally Adaptive DCT Filters

3.1 DCT Filter Adaptive to Image Local Statistics
Here, we discuss the fourth question given in Section 1
�i.e., what methods of local estimation of noise statistics
can be used�. Some initial imagination concerning proper-
ties of local estimates of noise variance in blocks or scan-
ning windows with fixed size can be got from earlier
studies.49–52 Generally speaking, noise local SD can be es-
timated in the spatial or spectral domain.49–53 These local
estimates are then aggregated �processed� in a robust man-
ner to provide blind estimation of noise characteristics
based on a model of noise assumed known a priori. Pure
additive or multiplicative noise variances can be blindly
estimated.49–52 More sophisticated methods allow estimat-
ing dependence of local variance on local mean for signal-
dependent noise.36,53

The following are useful conclusions drawn from sev-
eral papers:36,49–53

1. Accuracy of local estimates of noise variance de-
pends on several basic factors, namely, block size,
image content, true values of noise variance, spatial
correlation of noise, a used method for obtaining lo-
cal estimates, and its parameters.

2. Better accuracy �in terms of smaller relative errors� is
provided for simpler content �less textural� images if
noise variance is rather large and noise is spatially
uncorrelated.

3. The appropriate block �scanning window� size is
from 7�7 to 9�9 pixels5 �i.e., 8�8 pixel blocks
used in DCT-based filtering conform well with this
recommendation�.

4. In any case, there are normal local estimates of noise
variance obtained in homogeneous image blocks that
are close to true values of noise variance and abnor-
mal estimates obtained in heterogeneous image
blocks that are considerably larger than the true val-
ues of noise variance.

These conclusions indicate that it is hard to expect good
accuracy of noise variance evaluation for blocks of a lim-
ited size, especially if image content in a given block is
quite complex and noise is not intensive. To prove this,
consider first local estimates of noise variance in spatial
domain

�̂c
2�n,m� = �

q=n

n+7

�
s=m

n+7
�Iqs − Ī̂nm�2

63
, �6�

where Iqs is qs’th pixel value within nm’th image block and

Ī̂nm denotes the nm’th block mean. It is easy to show that

�̂c
2�n,m� � Var�Itr�n,m�� + �n

2�n,m� , �7�

where Var�Itr�n ,m��=�q=n
n+7�s=m

n+7��Iqs
tr − Īnm

tr �2 /63�, Īnm
tr

=�q=n
n+7�s=m

n+7Iqs
tr /64, �n

2�n ,m� denotes the noise variance in
the nm’th block. Thus, conventional estimates of local vari-
ance �Eq. �6�� are sensitive to image content in a block. It is
an inherent property of such estimates, and the question is
how to exploit this sensitivity in a reasonable manner. It
can be a drawback or a positive feature for the considered

(a) (b)

Fig. 1 Output MSE versus � for two standard test images: �a� Lenna and �b� Baboon, corrupted by
additive white Gaussian noise with variances 50 �dotted line� and 100 �dashed line� and by Poisson
noise �solid line�.
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situation of unknown noise variance. The reasons will be
considered next.

Let us now concentrate on estimation of noise local SD
in the spectral �DCT� domain. For a given block, it is pos-
sible to estimate �̂�n ,m� in a spectral domain as39,48

�̂�n,m� = 1.483 med��D�k,l,m,n��:k = 1, . . . ,8;

l = 1, . . . ,8; except k = l = 1� , �8�

where med� � denotes the median of a data sample. This
estimate is similar to the median of absolute deviations
used as a robust data scale estimator.9 Here �in Eq. �8��, the
noise SD �scale� estimate �̂�n ,m� exploits properties of
transform coefficients when mixed Gaussian–Laplacian or
Gaussian scale mixture models for their description are
used.54 Two properties of orthogonal transforms and robust
estimation are exploited in Eq. �8�. First, noise after an
orthogonal transform spreads between all coefficients, and,
if noise is independent identically distributed �i.i.d�, its
power spreads uniformly where spectral coefficients occur
to be Gaussian random variables. Then, the SD of spectral
coefficients is proportional to the noise SD. Second, the use
of the robust estimate �median� provides less sensitivity to
outliers where the outliers in the considered case are in-
duced by image content.

However, although the used estimator �sample median�
is robust, the image local content �details, texture, edges�
present in a given block leads to the positive bias of the
estimate �̂�n ,m�.52 Note that if noise is spatially correlated,
considerable bias can be observed for estimates obtained
according to Eq. �6�51 �these estimates in homogeneous re-
gions are, on average, smaller than the true value of noise
SD�.

Let us analyze how great the influence of image local
content and other factors could be on accuracy of local
estimates. Consider a test image �e.g., the standard test im-
age Barbara, �Fig. 2�a��� corrupted by white additive noise
with a zero mean and constant variance �n

2=100. The val-
ues of �̂�n ,m� from Eq. �6� are visualized in Fig. 2�b�;
larger values are lighter �magnification by 7 is used for
better visualization�. It is seen that the values �̂�n ,m� for
blocks that correspond to homogeneous image regions vary
a little. They are mostly rather small and approximately
equal to �n of additive noise. The values �̂�n ,m� for the
blocks that correspond to image heterogeneities such as
edges, textures, and details, are commonly slightly larger
due to influence of image content.

Behavior of �̂c�n ,m� is similar �see Fig. 2�c� magnifica-
tion is by 3.5�, but its sensitivity to image heterogeneities in
blocks is considerably larger. This can be also seen from
the comparison of histograms of �̂�n ,m� and �̂c�n ,m� pre-
sented in Figs. 3�a� and 3�b� respectively. In both cases,
normal local estimates �which are obtained in homoge-
neous image blocks� are grouped near the true value equal
to 10. But for the histogram in Fig. 3�b� there are more
abnormal local estimates and they are, on average, larger.

This analysis allows proposing a locally adaptive DCT-
based filter that will be further referred as LA DCT-1. This
filter algorithm is as follows:

1. For each given block, estimate �̂�n ,m� according to
Eq. �8� and set a local threshold as T�n ,m�
=��̂�n ,m�.

2. All other operations �DCT in blocks, thresholding,
inverse DCT, and averaging for overlapping blocks�
are performed as described in Section 2.

We prefer to use �̂�n ,m�, but not �̂c�n ,m�, because �̂�n ,m�
is less sensitive to heterogeneities. Note that the use of a
larger threshold in DCT-based filtering leads to over-
smoothing. As follows from the algorithm description, the
proposed filter LA DCT-1 adapts to noise local characteris-
tics. This is adaptation mechanism 1.

3.2 Improved Locally Adaptive DCT Filter
In this section, we consider one more way �mechanism 2�
to further improve performance of the locally adaptive
DCT-based filter. Our approach is based on the following
general idea and assumptions. Suppose that we have suc-
ceeded in discriminating homogeneous and heterogeneous
regions of an image. Because in homogeneous regions, lo-
cal estimates �̂�n ,m� are quite close to true values of local
SD of noise, then it is a correct decision to set the local
threshold equal to 2.6· �̂�n ,m�. On the contrary, if a given
block corresponds to an image heterogeneous region, then,
most probably, �̂�n ,m� is larger than the local SD of noise.
Then, it is reasonable to set the local threshold less than
2.6· �̂�n ,m� as ��n ,m��̂�n ,m�, where ��n ,m�	2.6. In
general, there are many possible ways to set ��n ,m�. It can
be fixed and equal to some �het�2.6 in a simplest case or it
can be determined in a more complicated manner.

Thus, a primordial task is to design some discriminator
for homogeneous and heterogeneous blocks. It is easy to

(a) (c)(b)

Fig. 2 �a� Noise-free test image Barbara, �b� visualized �̂�n ,m� of
test image Barbara �values have been multiplied by 7� and �c�
�̂c�n ,m� �values have been multiplied by 3.5�.
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(a) (b)

Fig. 3 Histograms of �a� �̂�n ,m� and �b� �̂c�n ,m� for the image Bar-
bara, �n

2=100.
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resolve this task if one knows the local SD of noise in
advance.7 However, it becomes more complicated if the
local SD of nonstationary noise is unknown. To get around
this shortcoming, let us exploit the properties of local esti-
mates �̂�n ,m� �in spectral domain� and �̂c�n ,m� �in spatial
domain� established in Section 3.1.

Note that usually7 �̂c�n ,m� is defined in square-shaped
scanning windows, where window side size is odd �e.g., 5
or 7�.7,23 Because here we deal with DCT-based filtering in
8�8 blocks, it is possible to calculate �̂c�n ,m� either ac-
cording to Eq. �6� or as follows:

�̂c
2�n,m� = �

q=n+1

n+Q

�
s=m+1

n+S
�Iqs − Ī̂qs�2

QS − 1
,

Ī̂qs = �
q=n+1

n+Q

�
s=m+1

n+S
Iqs

QS
, Q = S = 6. �9�

The map of the estimates �̂c�n ,m� for Q=S=6 is visualized
in Fig. 2�c� for the test image Barbara corrupted by zero
mean additive noise with the constant variance �2=100.
Because the estimate �̂c�n ,m� is much more sensitive to
image heterogeneities in a block than the estimate �̂�n ,m�,
let us exploit this difference for discriminating homoge-
neous and heterogeneous image blocks. For this purpose,
consider a ratio R�n ,m�= ��̂c�n ,m� /��n ,m��. Its example
for the test image Barbara and additive Gaussian noise with
�n

2=100 is visualized in Fig. 4�a�. We represent the ratio
map as an image Rvis�n ,m�= �40R�n ,m��, n=1, . . . ,Nim−7,
m=1, . . . ,Mim−7, where �•� means rounding to the nearest
positive integer not larger than 255, Nim�Mim is the image
size, 40 is a magnification coefficient used to visualize bet-
ter the maps R�n ,m�.

Joint visual analysis of the test image Barbara �Fig. 2�a��
and the ratio map �Fig. 4�a�� shows that quite large ratios
�essentially larger than unity, indicated by brighter color
pixels� are observed for blocks located in the heterogeneous
image regions. Figure 4�b� presents the ratio map for the
same test image but corrupted by Poisson noise. The ob-
tained maps are rather similar. This indicates that the
method of analyzing local activity �heterogeneity� based on
R�n ,m� is applicable to different types of noise. This ob-

servation allows expectation that the proposed principle
will also work well enough for any nonstationary noise.

There are several possible ways to exploit the aforemen-
tioned property. The simplest one is to adaptively set the
local threshold

T�n,m� = � ��̂�n,m� , if R�n,m� 	 TR

�het�̂�n,m� , if R�n,m� 
 TR
� , �10�

where �=2.6 as in LA DCT-1, TR is a preset threshold,
�het	2.6 is a factor that determines the hard threshold for
DCT coefficients in edge/detail neighborhoods and in tex-
tural regions. The DCT-based filter described by Eqs. �5�,
�9�, and �10� �further referred as to LA DCT-2� belongs to
the class of locally adaptive hard-switching filters,7 where
hard switching relates to the parameter �. This filter implies
both adaptions to noise characteristics �mechanism 1� and
to image content �mechanism 2�.

LA DCT-2 uses two new parameters, TR and �het. Con-
sider distributions of the ratio R�n ,m�, which is a random
variable. Suppose that the estimates �̂c�n ,m� and �̂�n ,m�
are obtained in a homogeneous image region. Then, their
means under condition of i.i.d. Gaussian noise are the
same. Thus, it is possible to expect that the distribution of
the ratio R�n ,m� should have a mode in the neighborhood
of unity. As follows from the ratio maps in Figs. 4�a� and
4�b�, �̂c�n ,m� is usually larger than �̂�n ,m� in image het-
erogeneous regions. Therefore, the distribution of the ratio
R�n ,m� may have a heavy “right-hand” tail. The histogram
of the obtained R�n ,m� values for the test image Barbara
�pure additive Gaussian noise, �n

2=100� is presented in Fig.
5�a�. The histogram for the image Lenna corrupted by Pois-
son noise is shown in Fig. 5�b�. Both distributions, as ex-
pected, have modes in the neighborhoods of unity, and they
possess a heavy right-hand tail. Similar shapes of R�n ,m�
value distributions have been observed for other conven-
tional test images as Peppers, Goldhill, etc. The detailed
analysis of values of these histograms shows that the dis-
tribution mode, which corresponds to homogeneous image
regions, is about unity. Being random, the values R�n ,m�
form the quasi-Gaussian part of this distribution. As in any
discrimination or detection task, a larger preset discrimina-
tion threshold provides better correct detection of homoge-
neous regions but larger probability of recognizing hetero-
geneous region as homogeneous. Thus, threshold setting is

(a) (b)

Fig. 4 Magnified ratio image Rvis�n ,m�= �40R�n ,m�� for the test im-
age Barbara �a� corrupted by additive noise and �b� corrupted by
Poisson noise.
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Fig. 5 Histograms of the ratio R�n ,m� for the test images: �a� Bar-
bara corrupted by zero mean pure additive Gaussian noise with �n

2

=100 and �b� Lenna corrupted by Poisson noise.
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a compromise. Analysis of histogram data shows that a
trade-off in discriminating blocks that correspond to homo-
geneous and heterogeneous regions can be provided by set-
ting TR�1.35.

4 Local Adaptive DCT Filter Performance
Analysis

4.1 Performance Analysis for Test Images in Case
of Spatially Uncorrelated Noise

Let us carry experiments with different types of noise and
test images. Recall that if noise type and characteristics are
a priori known, it is possible to carry out filtering in a
priori adjusted or “ideal” manner. For example, if one
knows that noise is additive with fixed �n

2, then it is pos-
sible to apply the standard DCT-based filter31 with the fixed
T�n ,m�=2.6�n. Similarly, if, e.g., noise is Poissonian, fil-

tering can be done with T�n ,m�=�	Ī̂�n ,m� �see Section
2�. Quantitative performance characteristics for such filters
that presume availability of full a priori information and its
use, IdDCT, can serve as benchmarks of what can be
reached if a priori information is available and is exploited
in the DCT-based filtering.

Let us analyze the filter performance in conventional
terms of output MSEout= �1 /NimMim��n=1

Nim�m=1
Mim�Inm

f − Inm
tr �2

where MSE is mean square error, Nim�Mim is the image
size, Inm

f is the nm’th pixel value for the processed �filtered�
image. The simulation results have been obtained for the
traditional set of test gray-scale images �512�512 pixels�,
for Gaussian additive ��n

2=100� and Poisson noises. These
simulation results are collected in Table 1. Two values of �
have been used, namely, �=2.6 and 2.3 as motivated by
dependences in Fig. 1 and analysis performed in Sections 2
and 3.

Table 1 also contains the values of MSEout for four non-
adaptive nonlinear filters: the standard median with the
scanning window sizes 5�5 and 3�3 pixels, the 3�3
�-trimmed mean �ATM� filter with trimmed two largest and
two smallest values in the scanning window, and the
3�3 center-weighted median �CWM� filter with the central
pixel weight equal to 3.23

Analysis of data in Table 1 shows the following:

1. The IdDCT-based filters always perform better �pro-
duces smaller MSEout� than the proposed LA DCT-1;
worse performance of LA DCT-1 is explained by in-
accuracies of the used local estimates of noise SD.

2. The IdDCT-based filter with �=2.6 performs better
than for �=2.3 for four considered test images; the
only exception is the test image Baboon which is the
most textural.

3. The difference of MSEout for the IdDCT-based filter
and LA DCT-1 for the same � is not large; the only
exception is again the image Baboon. The reason is
that for this image the estimates �̂�n ,m� are mostly
considerably larger than the true values of local SD
of noise, and this leads to oversmoothing.

4. The results for Gaussian and Poisson noise are in
good agreement with each other, which is evidence
that the proposed LA DCT-1 is able to carry out de-
noising well enough, except in the case of highly tex-
tural images.

5. The fact that for the test image Baboon both IdDCT-
based filter and LA DCT-1 produce smaller MSEout
for smaller � shows that one way to improve filtering
performance is to detect textural regions in images
and to set smaller � for them. This idea has been put
behind the method LA DCT-2 �see Section 3.2�.

6. The values MSEout for all considered nonadaptive

Table 1 Output MSE for “ideal” DCT-based �IdDCT� filter, LA DCT-1, and nonlinear nonadaptive filters.

Image Lenna Barbara Baboon Peppers Goldhill

Noise type Gauss Possion Gauss Poisson Gauss Poisson Gauss Poisson Gauss Poisson

IdDCT,
�=2.6

19.2 19.8 23.9 25.6 59.0 67.5 22.2 23.4 30.7 31.0

LA DCT-1,
�=2.6

23.7 24.1 34.0 36.1 179.5 187.5 27.2 28.2 42.5 43.4

IdDCT,
�=2.3

20.6 21.3 26.0 28.0 57.9 66.5 23.3 24.8 30.9 31.6

LA DCT-1,
�=2.3

21.9 23.3 29.4 31.4 147.0 155.5 25.5 26.9 37.9 38.7

Median 5�5 58.2 60.1 318.9 318.4 478.6 481.3 46.2 47.6 94.6 96.0

Median 3�3 39.7 43.6 219.5 222.8 294.5 300.6 39.4 43.4 64.9 67.1

ATM 3�3�2� 41.6 45.7 216.4 220.6 304.6 311.0 42.7 46.7 66.7 69.4

CWM 3�3�3� 38.9 44.7 127.1 112.9 169.2 177.6 38.6 43.5 52.5 56.0
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Table 2 Values of MSEout for several �het and TR for the considered test images.

Image Lenna Barbara Baboon Peppers Goldhill

�het

Noise type

Gauss Poisson Gauss Poisson Gauss Poisson Gauss Poisson Gauss Poisson

TR=1.37 2.6 23.7 24.1 34.0 36.1 179.5 187.8 27.2 28.2 42.5 43.4

2.3 22.4 23.2 30.9 33.0 167.9 176.7 26.0 27.1 40.5 41.4

2.0 21.4 22.2 28.6 30.6 156.5 165.9 24.9 26.0 38.6 39.5

1.7 20.8 21.7 27.2 29.3 145.5 155.5 24.0 25.1 37.1 37.9

1.4 20.9 21.8 27.3 29.4 135.5 146.1 23.5 24.6 36.0 36.9

1.1 22.0 22.9 29.2 31.6 127.3 138.5 23.8 24.8 36.0 36.9

TR=1.35 2.3 22.4 23.2 30.8 32.9 167.3 175.9 26.0 27.1 40.4 41.3

2.0 21.4 22.2 28.4 30.4 155.1 164.2 24.8 25.9 38.5 39.3

1.7 20.8 21.6 27.1 29.1 143.4 153.1 23.9 25.0 36.8 37.6

1.4 20.9 21.8 27.1 29.3 132.8 143.1 23.5 24.5 35.8 36.6

1.1 22.1 22.9 29.2 31.6 124.2 134.9 23.8 24.8 35.7 36.6

0.8 24.2 25.1 33.3 36.2 118.8 129.9 25.0 26.0 36.7 37.6

TR=1.33 2.3 22.3 23.1 30.7 32.8 166.5 175.0 26.0 27.0 40.3 41.2

2.0 21.3 22.2 28.3 30.3 153.5 162.5 24.8 25.9 38.3 39.1

1.7 20.7 21.6 26.9 28.9 141.0 150.6 23.8 24.9 36.6 37.4

1.4 20.9 21.8 27.0 29.2 129.8 139.9 23.4 24.5 35.5 36.3

1.1 22.1 23.1 29.2 31.6 120.8 131.3 23.8 24.9 35.5 36.4

0.8 24.3 25.3 33.4 36.4 115.1 126.0 25.0 26.0 36.6 37.5

TR=1.31 2.3 22.3 23.1 30.6 32.7 165.5 174.1 25.9 27.0 40.2 41.1

2.0 21.3 22.1 28.1 30.2 151.6 160.7 24.7 25.8 38.1 38.9

1.7 20.7 21.6 26.7 28.7 138.3 148.0 23.8 24.9 36.3 37.1

1.4 20.9 21.8 26.9 29.1 126.5 136.6 23.4 24.4 35.2 36.0

1.1 22.2 23.2 29.2 31.7 117.0 127.6 23.8 24.9 35.3 36.2

0.8 24.6 25.6 33.6 36.7 111.1 122.1 25.1 26.1 36.5 37.4

TR=1.29 2.3 22.3 23.1 30.6 32.6 164.6 173.1 25.9 27.0 40.1 41.0

2.0 21.2 22.1 28.0 30.0 149.9 158.8 24.7 25.8 37.9 38.7

1.7 20.7 21.6 26.6 28.6 135.8 145.3 23.7 24.8 36.0 36.9

1.4 20.9 21.9 26.8 29.0 123.3 133.2 23.3 24.4 35.0 35.8

1.1 22.3 23.3 29.2 31.7 113.3 123.7 23.8 24.9 35.1 36.0

0.8 24.8 25.8 33.9 37.0 107.3 118.0 25.2 26.3 36.4 37.4
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nonlinear filters are considerably larger than for LA
DCT-1 in almost all cases; this additional time dem-
onstrates drawbacks of these nonadaptive filters.

Concerning LA DCT-2, we have carried out numerical
simulations for a set of values TR �close to 1.35� and a set
of �het varied in rather wide limits. The simulation data are
presented in Table 2 for the five test images corrupted by
additive Gaussian noise with variance equal to 100 and
Poisson noise.

As follows from analysis of the obtained results, for
most images it is reasonable to set TR�1.3, �het�1.5. This
choice produces falling into the neighborhood of minimal
MSEout for both noise models and for the four considered
test images. The only exception is the test image Baboon,
for which it is reasonable to use smaller �het.

Reduction of MSEout by approximately 10–30% is ob-
served for LA DCT-2 in comparison to LA DCT-1 with
fixed � �compare the data in Tables 1 and 2�. Improvement
in comparison to LA DCT-1 with fixed � is larger for more
complex images. The values of MSEout are almost the same
as were observed for the IdDCT filter. Only for test image
Baboon are the results not good enough.

We have examined the a reason for this. It occurred that
the values �̂�n ,m� in image texture regions are about four
times larger than the true values of local SD of noise
�̂�n ,m�. Thus, even if �het is set to 
0.8, the local thresh-
old is larger than 3· �̂�n ,m�. Because of this, some over-
smoothing takes place even for LA DCT-2.

In addition to hard switching of � according to Eq. �10�,
we have also analyzed another �soft� algorithm of threshold
adaptation as follows:

T�n,m� =
2.6�̂�n,m�

R�n,m�
=

2.6�̂�n,m�
�̂c�n,m�/�̂�n,m�

=
2.6�̂2�n,m�

�̂c�n,m�
.

�11�

We have tested this method for the same test images and
noise models as presented in Table 2. Very similar results as
for the LA DCT-2 with optimally set TR�1.3, �het�1.5
have been obtained. One reason why it is difficult to im-
prove performance of the locally adaptive DCT-based fil-
ters is that there are many blocks for which the ratio
R�n ,m�= ��̂c�n ,m� /��n ,m�� is close to unity although
these blocks are, in fact, heterogeneous. This means that, in
the future, it is worth studying other local parameters than
R�n ,m� that should be able to better discriminate homoge-
neous and heterogeneous image blocks. In particular, gaus-
sianity tests in spatial or spectral domain are worth
studying.55

Let us compare the data obtained for LA DCT-2 to other
locally adaptive filters. The best known results of removing
noise with a priori unknown characteristics are presented in
the paper of Kervrann and Boulanger,26 who perform a
thorough comparison of their method to other filtering
methods and demonstrate superior performance of their ap-
proach. Thus, we present our results obtained for the rec-
ommended TR�1.3, �het�1.5 and Kervrann and Bou-
langer’s data for the same test images and noise variances
�Table 3�. Noise is additive white Gaussian. Filter perfor-
mance is characterized by output PSNR.

As is seen, the method26 produces slightly better results
for larger noise variance and simpler test images. In turn,
our method LA DCT-2 provides larger PSNR for smaller
SD of noise and more textural images. The advantage of the
proposed method LA DCT-2 is that image processing is
quite fast. This is due to the fact that two basic operations
used in the proposed techniques are DCT and data sorting
where both can be realized using fast algorithms.42

4.2 Filter Performance in Spatially Correlated Noise
Environment

The case of spatially uncorrelated �i.i.d.� noise has been
studied. However, in practice, it is possible that noise can
be spatially correlated. Furthermore, 2-D autocorrelation
function of spatially correlated noise can be unknown in
advance.7,51

We have analyzed how the proposed LA DCT-2 filter
performs in the situation of spatially correlated noise. For
this purpose, we have simulated additive Gaussian zero
mean spatially correlated noise with variance 100. Spatially
correlated noise has been modeled by applying the 3�3
window mean filter to originally i.i.d. zero mean Gaussian
2-D noise and adjusting a desired variance. The results are
presented in Table 4 for three values of TR and several
values of �het. The test images are the same as earlier.

Analysis of the data presented in Table 4 shows the fol-
lowing:

1. For rather simple images �Lenna, Peppers, Barbara,
Goldhill�, there is some reduction of noise, but it is
considerably smaller than in the earlier considered
case of i.i.d. noise. For the image Baboon, it is still
difficult to provide appropriate performance of the
filter.

2. For the case of spatially correlated noise, the recom-
mendation to set TR�1.3, �het�1.5 is incorrect. The
results obtained for TR=1.37 and �het=2.6 occurred

Table 3 PSNR for the compared LA-DCT-2 and Kervrann’s filters.

Test image Noise SD LA-DCT-2
Kervrann’s

filter Provided PSNR

Lenna
512�512

10 35.01 Table IV in
Ref. 26

35.18

Barbara
512�512

10 33.79 Table IV in
Ref. 26

33.79

Peppers
256�256

10 34.32 Table IV in
Ref. 26

34.07

Lenna
512�512

20 31.71 Table II in
Ref. 26

32.64

Barbara
512�512

20 29.58 Table II in
Ref. 26

30.37

Peppers
256�256

20 30.32 Table II in
Ref. 26

30.59

Baboon
512�512

20 24.50 Figure 10 in
Ref. 26

23.34
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to be better than for TR�1.3, �het�1.5 for four test
images.

Thus, additional analysis of why it happens is needed.
Some reasons are clear; they come from studies done
recently.44,56 In particular, it has been demonstrated that
frequency-dependent thresholds should be used in DCT-
based filter if noise is spatially correlated. Denoising with
frequency-dependent thresholding can be carried out if ei-
ther spatial correlation properties of noise are known in
advance or preestimated. Thus, it becomes necessary to
adapt not only to local statistics of noise and image local
content, but also to spatial correlation characteristics of
noise.

Another reason is that statistical characteristics of
�̂c�n ,m� and �̂�n ,m� as well as their ratio R�n ,m� change if
noise is spatially correlated with respect to the i.i.d. noise
case. Let us analyze histograms of R�n ,m� for spatially
correlated noise. Two typical histograms are presented in
Fig. 6. Their shapes are similar to the shapes of the histo-

grams represented in Fig. 5. However, there is an obvious
difference. The modes of the histograms in Fig. 6 occur not
in the neighborhood of unity but for larger values.

This phenomenon has its explanation. For spatially cor-
related noise, both estimates �̂c�n ,m� and �̂�n ,m� in homo-

Table 4 Values of MSEout for several �het and TR for the considered test images corrupted by spatially
correlated noise.

Image

Lenna Barbara Baboon Peppers GoldhillTR �het

1.37 2.6 54.2 74.7 189.5 74.0 82.3

2.3 76.8 76.5 178.5 75.6 83.3

2.0 79.1 78.7 167.8 77.0 84.2

1.7 81.4 81.3 157.6 78.2 85.2

1.4 83.8 84.1 147.7 79.3 86.2

1.1 86.1 87.1 138.7 80.2 87.1

0.8 88.1 89.7 131.4 81.0 88.1

1.33 2.3 76.9 76.6 177.3 75.8 83.3

2.0 79.4 78.6 165.7 77.7 84.4

1.7 81.9 81.6 154.6 78.8 85.5

1.4 84.4 84.6 143.9 80.1 86.6

1.1 86.9 87.6 134.3 81.1 87.8

0.8 89.1 90.5 126.6 82.2 88.9

1.29 2.3 77.1 76.6 176.3 75.9 83.4

2.0 79.7 79.1 163.6 77.7 84.6

1.7 82.3 81.9 151.6 79.4 85.8

1.4 85.1 85.0 140.2 80.8 87.1

1.1 87.7 88.2 130.0 82.2 88.4

0.8 90.1 91.2 122.0 83.4 89.7
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Fig. 6 Histograms of the ratio R�n ,m� for the test images: �a� Lenna
and �b� Barbara corrupted by zero mean spatially correlated additive
Gaussian noise with �n

2=100.
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geneous blocks �that form histogram maximum� become
biased, smaller than the true value of noise SD.51 But the
bias �c of the estimates �̂c�n ,m� can be about
�0.1. . .0.2��n

2, whereas for the estimates �̂�n ,m� the bias �

can reach �0.7. . .0.8��n
2.51 Thus, the estimates �̂c�n ,m� in

image homogeneous blocks are, on average, larger than the
estimates �̂�n ,m�. This leads to mode shifting to values
larger than unity.

Let us analyze the mode estimates r̂ for distributions of
R�n ,m�. The obtained data are presented in Table 5. The
method49 has been applied for mode estimation.

As is seen, for spatially uncorrelated noise the estimates
r̂ are quite close to unity for all test images for both addi-
tive i.i.d. Gaussian and Poissonian noise. One interesting
observation is that, for images with more complicated
structure �e.g., Baboon�, the estimates r̂ are larger. Simi-
larly, if noise is spatially correlated, the estimates r̂ are
considerably larger than 1.0 for all five considered test im-
ages.

Two conclusions follow from this analysis:

1. Practical cases when an image is either corrupted by
spatially correlated noise or is textural can be dis-
criminated from cases when an image is rather simple
and corrupted by i.i.d. noise. This can be done by
comparing r̂ to some threshold Tspc �e.g., approxi-
mately equal to 1.15: if r̂	Tspc�, image filtering by
LA DCT-2 can be efficient �see data in Section 4.1�,
whereas in the opposite case, a more complicated fil-
tering should be applied.

2. If noise is spatially correlated, it seems reasonable to
use TR�1.3; adaptation to noise spatial correlation is
needed.

Thus, we have determined practical situations for
which the designed filter LA DCT-2 is worth apply-
ing. A decision of whether or not filtering has to be
applied can be undertaken automatically by analyzing
r̂ for an image at hand. Design of adaptive DCT-
based filters for complex-structure images corrupted
by spatially correlated noise is a topic of future re-
search.

5 Performance Analysis for Real-Life Images
Let us present two examples of applying the proposed fil-
ters to real-life data. One example is a set of polarimetric
radar data, presented as real valued �floating point� data

arrays. These data have been obtained by a maritime
coastal radar. The images are presented in Fig. 7. HH
means that a horizontally polarized signal is transmitted
and then received; VH relates to a vertically polarized emit-
ted and horizontally polarized received signal.

A sensed area mainly corresponds to sea surface �that
occupies basic part of images and form background�, one
large rock �small rocky island placed in the image central
part, very bright pixels�, several small ones �left lower cor-
ner, groups of bright pixels�, and a shadowed zone behind
the large rock. The horizontal axis of images corresponds to
range and vertical axis relates to azimuth of the radar. Dur-
ing data acquisition, internal gain control was used to partly
compensate dependence of backscattered signal mean on
distance.

Visual analysis of these images allows concluding that
background intensity varies depending on range. More de-
tailed analysis has been done to confirm this conclusion.
First, histograms �Fig. 8� have been obtained for manually
selected six “homogeneous” regions �marked by frames in
images in Fig. 7� for two different sectors and three differ-
ent mean distances. Analysis of sample histograms in Fig. 8
shows that the histogram shape changes with range. The
distributions are asymmetric with respect to their means.
There is a heavy tail to the right side from the distribution
mode. Distribution modes are also different for different
ranges. Outliers are seldom �occur with quite small prob-
abilities�, their values differ from the mode values by ap-
proximately ten times.

To carry out more thorough analysis, we have deter-
mined the following parameters for each image homoge-
neous region:

1. Minimal, maximal, and mean mi values for each i’th
fragment, i=1, . . . ,6

2. Variance �i
2 and relative variance �reli

2 calculated as
variance divided by squared mean

Table 5 Estimates r̂ for the test images corrupted by different types of noise.

Noise type

Test image

Lenna Barbara Baboon peppers Goldhill

Additive white 1.006 1.034 1.141 1.000 1.047

Poisson 1.005 1.034 1.122 0.997 1.049

Additive spatially correlated 1.646 1.779 1.432 1.434 1.602

1

2

3

4

5

6

1

2

3

4

5

6

(a) (b)

Fig. 7 Data registered for �a� HH and �b� VH polarization of radar
signal.
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3. Interquantile estimate of relative variance �IQi
2 49 �this

estimate is practically insensitive to the presence of
outliers, trend, and heterogeneities in data�

The results obtained for the image in Fig. 7�a� are given
in Table 6. For more distant fragments �5 and 6�, the values
mi and �i

2 are larger than for less distant fragments, espe-
cially for the fragments 1 and 2. In turn, the standard and
robust �interquantile� estimates of relative variance for
more distant fragments are smaller. This shows that noise is
neither pure additive nor pure multiplicative. A specific
“distance-dependent” noise is observed. This conclusion
has been confirmed by results of analysis carried out for the
image in Fig. 7�b�. The observed nonstationarity results
from joint influence of several factors, namely, specific fea-
tures of the receiver amplifier gain control used, varying
incidence �grazing� angle of backscattering from wavy sea
surface, different mutual geometry of sea wave direction
and radar azimuth, etc. This is the case when it is difficult
to separate the influence of these factors. We assume that
nonstationary noise local statistics does not change abruptly

�i.e., it is possible to consider it practically constant for
fragments �blocks� of relatively small size, let us say 8
�8 blocks commonly used in DCT-based filtering�.

Figure 9 presents the processed images for the maritime
radar data carlier given in Fig. 8. Note that in this case, a
two-stage procedure has been applied. At the first stage, the
CW Median filter23 with the 3�3 scanning window and the
center element weight Wc=5 has been used to remove out-
liers. Then, at the second stage, the LA DCT-1 has been
used. Comparing images in Figs. 7 and 9, one can conclude
that noise is well suppressed and useful information in im-
ages is preserved well enough, although some oversmooth-
ing of fine details is observed.

Let us give another example of a real-life image process-
ing. The 224th subband image of the Lunar Lake
AVIRIS57–59 image is presented in Fig. 10�a�. Noise present
in this image is visually seen. The output image for LA
DCT-1 is shown in Fig. 10�b�. Noise is well suppressed,
although sharp edges are slightly smeared. The ratio image
Rvis�n ,m�= �40R�n ,m�� is visualized in Fig. 10�c�. The
most sharp edges and details are marked by brighter color
pixels in this map. This allows better preservation of sharp
edges and details in the output image by the designed LA
DCT-2 �see Fig. 10�d� TR=1.35, �het=1.7, r̂=1.03�.

6 Conclusions and Future Work
It is shown that there are practical situations where noise is
nonstationary and limited a priori information on its statis-
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Fig. 8 Sample histograms for the image in Fig. 7�b� �a� for small distance fragment 1 and �b� for
middle distance fragment 3.

Table 6 Statistical characteristics of the selected “homogeneous”
regions for the image in Fig. 7�a�.

Fragment
index Mean Variance

Relative
variance

Interquantile
estimate

1 0.056 0.0076 2.40 0.115

2 0.061 0.0094 2.54 0.152

3 0.53 0.116 0.41 0.134

4 0.52 0.067 0.24 0.126

5 0.79 0.24 0.39 0.067

6 0.77 0.13 0.23 0.081

(a) (b)

Fig. 9 Output images for �a� HH and �b� VH polarization of radar
signal.
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tics is available. To filter images effectively under these
conditions, two DCT-based filtering techniques to suppress
nonstationary spatially uncorrelated noise have been pro-
posed and studied.

The first technique is a locally adaptive filter based on
local estimation of noise variance in blocks and setting the
corresponding threshold proportionally to the obtained es-
timate of noise SD. It performs well enough for rather
simple images. The second locally adaptive filter employs,
in addition, the analysis of the ratio R�n ,m� and adapts to
image content in a block. This leads to decreasing MSEout
and improving edge/detail/texture preservation in processed
images. As a result, the performance of this filter is com-
parable to performance of the best state-of-the-art methods.

The recommendations concerning proper selection of
the filter adaptation parameters are given. The designed fil-
ters have been applied to real-life images and have demon-
strated excellent results. The spatially correlated noise case
has been studied as well. The proposed methods do not
perform well enough for this case and should be further
modified. A way to discriminate the cases of spatially un-
correlated and correlated noise has been proposed. The de-
sign of locally adaptive filters for spatially correlated noise
case may be a subject of our future work.

Acknowledgments
We are thankful to anonymous reviewers for their valuable
comments and propositions. The work of O. Pogrebnyak
was partially supported by Instituto Politecnico Nacional as
a part of the research project SIP No. 20101090. Images
have been kindly provided by Dr. A.V. Popov, of National
Aerospace University, Kharkov, Ukraine.

References
1. P.-L. Shui, “Image denoising algorithm via doubly local wiener fil-

tering with directional windows in wavelet domain,” IEEE Signal
Process. Lett. 12�10�, 681–684 �Oct. 2005�.

2. A. Foi, V. Katkovnik, and K. Egiazarian, “Signal-dependent noise
removal in point-wise shape-adaptive DCT domain with locally adap-
tive variance,” in Proc. of European Signal Processing Conf. (EU-
SIPCO 2007), CD-ROM, EURASIP, Poznan, Poland �2007�.

3. S. Solbo and T. Eltoft, “Homomorphic wavelet-based statistical
despeckling of SAR images,” IEEE Trans. Geosci. Remote Sens.
42�4�, 711–721 �2004�.

4. H.-L. Eng and K.-K. Ma, “Noise adaptive soft switching median
filter,” IEEE Trans. Image Process. 10�2�, 242–251 �2001�.

5. K. Barner and G. Arce, Eds., Nonlinear Signal and Image Process-
ing: Theory, Methods, and Applications, CRC Press, Boca Raton
�2003�.

6. K. N. Plataniotis and A. N. Venetsanopoulos, Color Image Process-
ing and Applications, Springer-Verlag, New York �2000�.

7. V. Melnik, “Nonlinear locally adaptive techniques for image filtering
and restoration in mixed noise environments,” PhD Thesis, Tampere
University of Technology, Tampere, Finland �2000�, �http://
www.atilim.edu.tr/~roktem/Research/interests.htm�.

8. V. V. Lukin, N. N. Ponomarenko, S. K. Abramov, B. Vozel, K. Che-
hdi, and J. Astola, “Filtering of radar images based on blind evalua-
tion of noise characteristics,” Proc. SPIE 7109, 71090R �Sept. 2008�.

9. J. Astola and P. Kuosmanen, Fundamentals of Nonlinear Digital Fil-
tering, CRC Press, Boca Raton, FL �1997�.

10. R. Touzi, “A review of speckle filtering in the context of estimation
theory,” IEEE Trans. Geosci. Remote Sens. 40�11�, 2392–2404
�2002�.

11. D. K. Barton, Radar System Analysis and Modeling, Artech House,
Boston �2005�.

12. G. P. Kulemin, A. A. Zelensky, J. T. Astola, V. V. Lukin, K. O.
Egiazarian, A. A. Kurekin, N. N. Ponomarenko, S. K. Abramov, O.
V. Tsymbal, Y. A. Goroshko, and Y. V. Tarnavsky, Methods and Al-
gorithms for Pre-processing and Classification of Multichannel Ra-
dar Remote Sensing Images, TTY Monistamo, Tampere, Finland
�Dec. 2004�.

13. C. Lopez-Martinez and E. Pottier, “On the extension of multidimen-
sional speckle noise model from single-look to multilook SAR imag-
ery,” IEEE Trans. Geosci. Remote Sens. 45�2�, 305–320 �2007�.

14. C.-I. Chang, Ed., Hyperspectral Data Exploitation: Theory and Ap-
plications, Wiley, Hoboken, NJ �2007�.

15. R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venetsanopoulos,
“cDNA microarray image processing using fuzzy vector filtering
framework,” J. Fuzzy Sets Syst. 152�1�, 17–35 �May 2005�.

16. G. P. Kulemin, Millimeter-Wave Radar Targets and Clutter, Artech
House, Boston �2003�.

17. C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar
Images, SciTech Publishing, Raleigh, NC �2004�.

18. J. S. Lee, J. H. Wen, T. I. Ainsworth, K. S. Chen, and A. J. Chen,
“Improved sigma filter for speckle filtering of SAR imagery,” IEEE
Trans. Geosci. Remote Sens. 47�1�, 202–213 �Jan. 2009�.

19. A. Barducci, D. Guzzi, P. Marcoionni, and I. Pippi, “CHRIS-Proba
performance evaluation: signal-to-noise ratio, instrument efficiency
and data quality from acquisitions over San Rossore �Italy� test site,”
in Proc. 3rd ESA CHRIS/Proba Workshop, CD-ROM, ESA-ESRIN,
Frascati, Italy �2005�.

20. P. Koivisto, J. Astola, V. Lukin, V. Melnik, and O. Tsymbal, “Remov-
ing impulse bursts from images by training based filtering,” EUR-
ASIP J. Appl. Signal Process. 2003�3�, 223–237 �2003�.

21. T. Rabic, “Robust estimation approach to blind denoising,” IEEE
Trans. Image Process. 14�11�, 1755–1766 �Nov. 2005�.

22. P. Huber, Robust Statistics, Wiley, Hoboken, NJ �1981�.
23. T. Sun, M. Gabbouj, and Y. Neuvo, “Center weighted median filters:

some properties and their applications in image processing,” Signal
Process. 35�3�, 213–229 �1994�.

24. O. V. Tsymbal, V. V. Lukin, N. N. Ponomarenko, A. A. Zelensky, K.
O. Egiazarian, and J. T. Astola, “Three-state locally adaptive texture
preserving filter for radar and optical image processing,” EURASIP J.
Appl. Signal Process. 8, 1185–1204 �May 2005�.

25. L. P. Yaroslavsky, “Local criteria and local adaptive filtering in image
processing: a retrospective view,” in Proc. Int. Workshop on Local
and Non-Local Approximation in Image Processing (LNLA 2008),
CD-ROM, EURASIP, Lausanne, Switzerland �2008�.

26. C. Kervrann and J. Boulanger, “Local adaptivity to variable smooth-
ness for exemplar-based image regularization and representation,”
Int. J. Comput. Vis. 79�1�, 45–69 �2008�.

27. P. Perona and J. Malik, “Scale space and edge detection using aniso-
tropic diffusion,” IEEE Trans. Pattern Anal. Mach. Intell. 12�7�, 629–
639 �1990�.

28. L. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based
noise removal algorithms,” Physica D 60, 259–268 �1992�.

29. V. G. Spokoiny, “Estimation of a function with discontinuities via
local polynomial fit with an adaptive window choice,” Ann. Stat.
26�4�, 141–170 �1998�.

30. S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San
Diego �1998�.

31. V. V. Lukin, R. Oktem, N. Ponomarenko, and K. Egiazarian, “Image

(a)

(c) (d)

(b)

Fig. 10 �a� Original one-channel image of AVIRIS hyperspectral
data, �b� the output of LA DCT-1 filter, �c� the ratio Rvis�n ,m� image,
and �d� the output of the hard switching LA DCT-2 filter.

Lukin et al.: Discrete cosine transform–based local adaptive filtering…

Journal of Electronic Imaging Apr–Jun 2010/Vol. 19(2)023007-13

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://dx.doi.org/10.1109/LSP.2005.855555
http://dx.doi.org/10.1109/LSP.2005.855555
http://dx.doi.org/10.1109/TGRS.2003.821885
http://dx.doi.org/10.1109/83.902289
http://dx.doi.org/10.1117/12.799396
http://dx.doi.org/10.1109/TGRS.2002.803727
http://dx.doi.org/10.1109/TGRS.2006.887012
http://dx.doi.org/10.1016/j.fss.2004.10.012
http://dx.doi.org/10.1109/TGRS.2008.2002881
http://dx.doi.org/10.1109/TGRS.2008.2002881
http://dx.doi.org/10.1155/S1110865703211045
http://dx.doi.org/10.1155/S1110865703211045
http://dx.doi.org/10.1109/TIP.2005.857276
http://dx.doi.org/10.1109/TIP.2005.857276
http://dx.doi.org/10.1016/0165-1684(94)90212-7
http://dx.doi.org/10.1016/0165-1684(94)90212-7
http://dx.doi.org/10.1007/s11263-007-0096-2
http://dx.doi.org/10.1109/34.56205
http://dx.doi.org/10.1016/0167-2789(92)90242-F


filtering based on discrete cosine transform,” Telecommun. Radio
Eng. 66�18�, 1685–1701 �2007�.

32. M. C. Motwani, M. C. Gadiya, R. C. Motwani, and F. C. Harris,
“Survey of image denoising techniques,” in Proc. Global Signal Pro-
cessing Expo and Conf. (GSPx 2004), CR-ROM, Global Technology
Conferences, Inc., Santa Clara, CA �2004�.

33. R. Oktem, K. Egiazarian, V. Lukin, N. Ponomarenko, and O. Tsym-
bal, “Locally adaptive DCT filtering for signal-dependent noise re-
moval,” EURASIP J. Adv. Signal Process. 2007, 42472 �2007�.

34. L. Klaine, B. Vozel, and K. Chehdi, “An integro differential method
for adaptive filtering of additive or multiplicative noise,” in Proc. Int.
Conf. on Acoustics, Speech, and Signal Processing (ICASSP 2005),
pp. 1001–1004, IEEE, Piscataway, NJ �2005�.

35. F. Argenti, G. Torricelli, and L. Alparone, “Signal dependent noise
removal in the undecimated wavelet domain,” in Proc. Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP 2002), pp. 3293–
3296, IEEE, Piscataway, NJ �2002�.

36. A. Foi, “Pointwise shape-adaptive DCT image filtering and signal-
dependent noise estimation,” PhD Thesis, Tampere University of
Technology, Tampere, Finland �Dec. 2007�.

37. R. Oktem, “Transform domain algorithms for image compression and
denoising,” PhD Thesis, Tampere University of Technology, Tam-
pere, Finland �2000�.

38. L. Sendur and I. W. Selesnick, “Bivariate shrinkage with local vari-
ance estimation,” IEEE Signal Process. Lett. 9�12�, 438–441 �2002�;
see also �http://taco.poly.edu/WaveletSoftware/index.html�.

39. D. V. Fevralev, V. V. Lukin, A. V. Totsky, K. Egiazarian, and J.
Astola, “Combined bispectrum filtering technique for signal shape
estimation with DCT based adaptive filter,” in Proc. of Int. Workshop
on Spectral Methods and Multirate Signal Processing (SMMSM
2006), CD-ROM, pp. 133–140, TICSP, Florence, Italy �2006�.

40. R. Coifman and D. L. Donoho, “Translation invariant denoising,” in
Wavelets and Statistics, A. Antoniadis, Ed., Springer-Verlag, Berlin
�1995�.

41. D. Salomon, Data Compression: The Complete Reference, Springer,
New York �2007�.

42. L. P. Yaroslavsky, Digital Holography and Digital Image Processing:
Principles, Methods, Algorithms, Kluwer, Dordrecht �2004�.

43. H. Huang, X. Lin, S. Rahardja, and R. Yu, “A method for realizing
reversible type-IV discrete cosine transform �IntDCT-IV�,” in Proc.
of 7th Int. Conf. on Signal Processing (ICSP’04), Vol. 1, pp. 101–
104, IEEE, Piscataway, NJ �2004�.

44. G. Wallace, “JPEG still image compression standard,” Commun.
ACM 34�4�, 30–44 �1991�.

45. A. Bovik, Handbook on Image and Video Processing, Academic
Press, New York �2000�.

46. N. Ponomarenko, V. Lukin, A. A. Zelensky, J. Astola, and K. Egiaz-
arian, “Adaptive DCT-based filtering of images corrupted by spatially
correlated noise,” Proc. SPIE 6812, 68120W �2008�.

47. V. V. Lukin, D. V. Fevralev, S. K. Abramov, S. Peltonen, and J.
Astola, “Adaptive DCT-based 1-D filtering of Poisson and mixed
Poisson and impulsive noise,” in Proc. Int. Workshop on Local and
Non-Local Approximation in Image Processing (LNLA 2008), CD-
ROM, EURASIP, Lausanne, Switzerland �2008�.

48. V. V. Lukin, D. V. Fevralev, N. N. Ponomarenko, O. B. Pogrebnyak,
K. O. Egiazarian, and J. T. Astola, “Local adaptive filtering of images
corrupted by nonstationary noise,” Proc. SPIE 7245, 724506 �2009�.

49. V. V. Lukin, S. K. Abramov, A. A. Zelensky, J. Astola, B. Vozel, and
B. Chehdi, “Improved minimal interquantile distance method for
blind estimation of noise variance in images,” Proc. SPIE 6748,
67481I �2007�.

50. V. V. Lukin, P. T. Koivisto, N. N. Ponomarenko, S. K. Abramov, and
J. T. Astola, “Two-stage methods for mixed noise removal,” in Proc.
EURASIP Workshop on Nonlinear Signal and Image Processing
(NSIP), CD-ROM, EURASIP, Sapporo, Japan �2005�.

51. S. Abramov, V. Lukin, B. Vozel, K. Chehdi, and J. Astola,
“Segmentation-based method for blind evaluation of noise variance
in images,” J. Appl. Remote Sens. 2, 023533 �Aug. 2008�.

52. N. N. Ponomarenko, V. V. Lukin, S. K. Abramov, K. O. Egiazarian,
and J. T. Astola, “Blind evaluation of additive noise variance in tex-
tured images by nonlinear processing of block DCT coefficients,”
Proc. SPIE 5014, 178–189 �2003�.

53. C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman,
“Automatic estimation and removal of noise from a single image,”
IEEE Trans. Pattern Anal. Mach. Intell. 30�2�, 299–314 �2008�.

54. J. Portilla, V. Strela, M. Wainwright, and E. P. Simoncelli, “Image
denoising using Gaussian scale mixtures in the wavelet domain,”
IEEE Trans. Image Process. 12�11�, 1338–1351 �2003�.

55. N. Ponomarenko, D. Fevralev, A. Roenko, S. Krivenko, V. Lukin,
and I. Djurovic, “Edge detection and filtering of images corrupted by
nonstationary noise using robust statistics,” Proc. 10th Int. Conf. on
the Experience of Designing and Application of CAD Systems in Mi-
croelectronics (CADSM 2009), Polyana-Svalyava, Ukraine, pp. 129–
136, IEEE �2009�.

56. N. Ponomarenko, V. Lukin, I. Djurovic, and M. Simeunovic, “Pre-
filtering of multichannel remote sensing data for agricultural bare soil

field parameter estimation,” Proc. Int. Conf. BioSense 2009, Univer-
sity of Novi Sad, Novi Sad, Serbia �Oct. 2009�.

57. AVIRIS Home page, �http://aviris.jpl.nasa.gov/� �accessed Jan 6,
2007�.

58. N. Ponomarenko, V. Lukin, M. Zriakhov, and A. Kaarna, “Prelimi-
nary automatic analysis of characteristics of hyperspectral AVIRIS
images,” Proc. 11th Int. Conf. on Mathematical Methods in Electro-
magnetic Theory (MMET 2006), Kharkiv, Ukraine, pp. 158–160
�2006�.

59. E. Christophe, D. Leger, and C. Mailhes, “Quality criteria benchmark
for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 43�9�,
2103–2114 �Sept. 2005�.

Vladimir V. Lukin graduated from Kharkov
Aviation Institute �now National Aerospace
University� in 1983, with his Diploma with
honor in radio engineering. Since then he
has been with the Department of Transmit-
ters, Receivers and Signal Processing at
National Aerospace University. He de-
fended the thesis of Candidate of Technical
Science in 1988 and Doctor of Technical
Science in 2002 in DSP for remote sens-
ing. Since 1995, he has been in coopera-

tion with Tampere University of Technology. Currently, he is depart-
ment vice-chairman and professor. His research interests include
digital signal/image processing, remote sensing data processing,
image filtering, and compression.

Dmitriy V. Fevralev graduated from Na-
tional Aerospace University in 2002 with a
Diploma in radio engineering. Since then
he has been with the Department of Trans-
mitters, Receivers and Signal Processing
at National Aerospace University. He de-
fended his thesis of Candidate of Technical
Science in 2008 in DSP for bispectral
analysis in radar systems. Currently, he is
research fellow and part-time assistant with
the Department of Transmitters, Receivers

and Signal Processing. His research interests include digital signal/
image processing, bispectral analysis of radar signals, and image
filtering.

Nikolay N. Ponomarenko graduated from
National Aerospace University in 1995 and
received his Diploma with honor in com-
puter science. Since then he has been with
the Department of Transmitters, Receivers
and Signal Processing at National Aero-
space University. He defended his thesis of
Candidate of Technical Science in 2004 in
DSP for remote sensing. He also defended
his thesis of Doctor of Technology at Tam-
pere University of Technology, Finland, in

2005, on image compression. Currently, he is senior researcher and
part-time associate professor with the Department of Transmitters,
Receivers and Signal Processing. His research interests include
digital signal/image processing, remote sensing data processing,
image filtering, and compression.

Sergey K. Abramov graduated from Na-
tional Aerospace University in 2000 with a
Diploma with honor in radio engineering.
Since then, he has been with the Depart-
ment of Transmitters, Receivers and Signal
Processing at National Aerospace Univer-
sity. He defended his thesis of Candidate of
Technical Science in 2003 in DSP for re-
mote sensing. Currently, he is associate
professor and part-time senior researcher
with the Department of Transmitters, Re-

ceivers and Signal Processing. His research interests include digital
signal/image processing, blind estimation of noise characteristics,
and image filtering.

Lukin et al.: Discrete cosine transform–based local adaptive filtering…

Journal of Electronic Imaging Apr–Jun 2010/Vol. 19(2)023007-14

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

http://dx.doi.org/10.1615/TelecomRadEng.v66.i18.70
http://dx.doi.org/10.1615/TelecomRadEng.v66.i18.70
http://dx.doi.org/10.1155/2007/42472
http://dx.doi.org/10.1109/LSP.2002.806054
http://dx.doi.org/10.1145/103085.103089
http://dx.doi.org/10.1145/103085.103089
http://dx.doi.org/10.1117/12.764893
http://dx.doi.org/10.1117/12.805298
http://dx.doi.org/10.1117/12.738006
http://dx.doi.org/10.1117/1.2977788
http://dx.doi.org/10.1117/12.477717
http://dx.doi.org/10.1109/TPAMI.2007.1176
http://dx.doi.org/10.1109/TIP.2003.818640
http://dx.doi.org/10.1109/TGRS.2005.853931


Oleksiy Pogrebnyak received his Ph.D.
degree from Kharkov Aviation Institute
�now National Aerospace University�,
Ukraine, in 1991. Currently, he is with The
Center for Computing Research of National
Polytechnic Institute, Mexico. His research
interests include digital signal/image filter-
ing and compression and remote sensing.

Karen O. Egiazarian received her PhD
from Moscow M. V. Lomonosov State Uni-
versity, Russia, in 1986, and Doctor of
Technology degree from Tampere Univer-
sity of Technology, Finland, in 1994. He is a
leading scientist in signal, image, and
video processing, with about 300 refereed
journal and conference articles, three book
chapters, and a book published by Marcel
Dekker. His main interests are in the field
of multirate signal processing, image and

video denoising and compression, and digital logic. He is a member
of the DSP Technical Committee of the IEEE Circuits and Systems
Society.

Jaakko Astola received his BS, MS, Li-
centiate, and PhD in mathematics from
Turku University, Finland, in 1972, 1973,
1975, and 1978, respectively. From 1976
to 1977, he was with the Research Institute
for Mathematical Sciences of Kyoto Univer-
sity, Kyoto, Japan. Since 1979 to 1987, he
was with Lappeenranta University of
Tecvhnology �Finland�. From 1987, he is
with Tampere University of Technology,
Tampere, Finland. Currently, he is profes-

sor of signal processing and director of Tampere International Cen-
ter for Signal Processing, academy professor by the Academy of
Finland, and IEEE fellow. His research interests include signal/
image processing, statistics, and image coding.

Lukin et al.: Discrete cosine transform–based local adaptive filtering…

Journal of Electronic Imaging Apr–Jun 2010/Vol. 19(2)023007-15

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 16 Aug 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


