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Abstract

This article is concerned with the development of a discrete theory of crystal

elasticity and dislocations in crystals. The theory is founded upon suitable adapta-

tions to crystal lattices of elements of algebraic topology and differential calculus

such as chain complexes and homology groups, differential forms and operators,

and a theory of integration of forms. In particular, we define the lattice complex

of a number of commonly encountered lattices, including body-centered cubic and

face-centered cubic lattices. We show that material frame indifference naturally

leads to discrete notions of stress and strain in lattices. Lattice defects such as dis-

locations are introduced by means of locally lattice-invariant (but globally incom-

patible) eigendeformations. The geometrical framework affords discrete analogs of

fundamental objects and relations of the theory of linear elastic dislocations, such

as the dislocation density tensor, the equation of conservation of Burgers vector,

Kröner’s relation and Mura’s formula for the stored energy. We additionally sup-

ply conditions for the existence of equilibrium displacement fields; we show that

linear elasticity is recovered as the Ŵ-limit of harmonic lattice statics as the lattice

parameter becomes vanishingly small; we compute the Ŵ-limit of dilute dislocation

distributions of dislocations; and we show that the theory of continuously distrib-

uted linear elastic dislocations is recovered as the Ŵ-limit of the stored energy as

the lattice parameter and Burgers vectors become vanishingly small.
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1. Introduction

The work presented in this article is concerned with the development of a dis-

crete theory of crystal elasticity and dislocations in crystals. The classical treatment

of harmonic crystal lattices and their defects, e.g., within the context of lattice statics

(cf., e.g., [4, 45]) and eigendeformations (cf., e.g., [36]), becomes unwieldy when

applied to general boundary value problems and conceals the essential mathemati-

cal structure of the theory, often impairing insight and hindering analysis. Instead,

here we endeavor to develop a theory founded upon suitable adaptations to crystal

lattices of elements of algebraic topology and differential calculus such as chain

complexes and homology groups, differential forms and operators, and a theory

of integration of forms. These elements, and their connection to linear elasticity

and topological defects, are often taken for granted in Rn but need to be carefully

defined and formalized for general crystal lattices. The resulting discrete geomet-

rical framework enables the formulation of a mechanics of lattices in a manner

that parallels closely – and extends in important respects – the classical continuum

theories.

While the theory of linear elastic dislocations in crystals is well known (e.g.,

[19, 3, 36]), it may stand a brief review, especially as a point of reference for the

discrete theory. The classical geometrical theory of linear elastic dislocations (e. g.,

[47, 23, 30, 48, 36, 20–22]) starts by positing the existence of an elastic distortion

field βe with the defining property that

E(βe) =
∫

R3

1

2
cijklβ

e
ijβ

e
kldx (1)
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Fig. 1. Schematic representation of a perfect Volterra dislocation in a linear elastic solid.
The plane S of unit normal m is the slip plane; D is the dislocation loop. The displacement
field jumps discontinuously across the slip area (shown as the shaded region of the slip plane
bounded by D) by one Burgers vector b. The presence of the dislocation may be detected
by linking its elastic deformation field against a Burgers circuit C.

is the strain energy of the crystal. Here, cijkl = cjikl = cij lk = cklij denote the

elastic moduli of the crystal. A Volterra dislocation of Burgers vector b supported

on a closed curve D is a field βe such that

∫

C

βe
ijdxj = −Link(C, D)bi (2)

for all closed curves C (cf., Fig. 1). Here

Link(C1, C2) = 1

8π

∫

C1

∫

C2

(dx1 × dx2) · (x1 − x2)

|x1 − x2|3
(3)

is the Gauss linking number of two loops C1 and C2 in R3 (e.g., [21]). The test

circuits C used in (2) to detect the presence of a dislocation are known as Burgers

circuits. Consider now an element of oriented area A with boundary C. Then, the

total Burgers vector of all dislocations crossing A is

bi(A) = −
∫

C

βe
ijdxj . (4)

By Stoke’s theorem we have

bi(A) =
∫

A

αilnldS, (5)

where n dS is the element of oriented area and

αil = −βe
ij,kekj l (6)

is Nye’s dislocation density tensor [38]. The relation (6) between the elastic distor-

tion field and the dislocation density field was presented by Kröner [26]. It follows

immediately from this relation that

αil,l = 0, (7)

i.e., the divergence of the dislocation density field is zero. This means, in particular,

that the link between the dislocation lines and any closed surface, i.e., the number
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of dislocation signed crossings through the surface, is zero. This property of dislo-

cation lines is sometimes referred to as the conservation of Burgers vector property.

Evidently, α measures the failure of the elastic distortion βe to be a gradient and

completely describes the distribution of dislocations in the crystal. In particular, if

α = 0 it follows that

βe
ij = ui,j , (8)

i.e., βe is the gradient of a displacement field u, and (1) reduces to the strain energy

of a linear elastic solid.

At room temperature, dislocations in metals are predominantly the result of

processes of crystallographic slip that build upon energetically and kinetically

favorable lattice-preserving shears. By its crystallographic nature, slip results in

dislocations that lie on well-characterized crystal planes and has Burgers vectors

coincident with well-characterized crystal directions. Each possible slip plane and

Burgers vector pair defines a slip system. The set of slip systems of a crystal is

closely related to its crystal structure and often is known experimentally [19]. In a

continuum setting, crystallographic slip may be described by identifying the elastic

distortion βe with the Lebesgue-regular part of the distributional gradient of the

displacement field u (as in the Lebesgue decomposition theorem), and requiring

the remaining singular part to be supported on a collection S of crystallographic

slip planes. The extent of crystallographic slip on a plane in S is described by the

displacement jump [[u]] across the plane. This displacement jump is required to

be lattice preserving and, hence, an integer linear combination of Burgers vectors

contained within the slip plane. Thus, the unknown fields of the theory are the

elastic distortion βe, which equals the displacement gradient ∇u in R3\S, and

the displacement jump [[u]] on S. The elastic distortion βe follows directly from

the minimization of the strain energy (1) over R3\S with respect to the displacement

field u, subject to the prescribed [[u]] across S. This problem belongs to a classi-

cal class of problems in linear elasticity know as ‘cut surfaces’ [36]. By contrast,

the evolution of the displacement jump [[u]] on S is governed by kinetics, includ-

ing lattice friction, cross slip, and short-range dislocation-dislocation interactions

resulting in jogs, junctions and other reaction products.

There are several essential shortcomings of the theory of linear-elastic disloca-

tions just outlined which are a direct consequence of the continuum character of the

theory. Firstly, linear-elastic Volterra dislocations as described above have infinite

strain energy. The conventional ‘fix’for this unphysical situation is to exclude in the

computation of the strain energy a small tube of material, or core, around the dis-

location line of radius a0, the ‘cut-off radius’ (cf., e.g., [19, 3]). The resulting strain

energies then diverge logarithmically in a0. The introduction of a core is intended

to account for the discreteness of the crystal lattice and its relaxation in the vicinity

of the dislocation line. The cut-off radius is an ad-hoc parameter extraneous to

linear elasticity which must be determined by fitting to experiment. In addition, the

core cut-off radius is a poor representation of the structure of dislocation cores in

general.

A superior regularization of the theory of linear-elastic dislocations may be

accomplished by relaxing the requirement that the displacement jump [[u]] across
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the singular set S be an integer linear combination of in-plane Burgers vectors,

and instead introducing a Peierls potential φ [40] such that the total energy of the

crystal is

E(u) =
∫

R3\S

1

2
cijklui,juk,ldx +

∫

S

φ([[u]])dS. (9)

The Peierls potential on a slip plane is periodic in shear and exhibits the translation

invariance of the lattice (cf., e.g., [39]). The displacement field then follows by the

minimization of E(u) under the action of applied loads and subject to kinetic or

topological constraints such as lattice friction, dislocation-dislocation and disloca-

tion-obstacle interactions [24, 14, 25]. While the Peierls framework represents a

vast improvement over the cut-off radius regularization, it falls short in a number

of important aspects. Thus, since the crystal is regarded as a continuum, there is no

natural notion of spacing between slip planes. Of course, the potential slip planes

may be placed at the appropriate crystallographic interplanar distance, but then the

assumption of interplanar linear elasticity becomes questionable.

A natural approach to the mechanics of crystal defects which is free of the

pathologies just described is to acknowledge the discrete nature of crystal lattices

from the outset. However, this requires foundational developments in two main

areas: the formulation of a discrete differential calculus on crystal lattices; and the

application of the said discrete differential calculus to the formulation of a discrete

mechanics of lattices, including lattice defects. Thus, the geometrical theory of

crystal defects outlined above relies heavily on the homotopy of closed Burgers

circuits in R3 as a device for characterizing line defects. Homotopy also under-

lies fundamental rules governing dislocation reactions, such as Frank’s rule (e.g.,

[19]) and topological transitions such as dislocation junctions [48]. In addition, the

geometrical theory of crystal defects is tacitly founded on the homology of R3. It

is well known that the singular homology of Rn is Hp(Rn) = Z if p = 0, and

Hp(Rn) = 0 if p ≧ 1 (e.g., [34]). The identity H0(R
n) = Z follows directly from

the path-connectedness of Rn, i.e., the fact that every pair of points in Rn can be

joined by a continuous path. The identities Hp(Rn) = 0, p ≧ 1 imply in particular

that every closed loop in Rn is the boundary of a surface and is contractible to a

point, and that every closed surface is the boundary of a volume and is likewise con-

tractible to a point. These properties of R3, and related topological invariants such

as the Gauss linking number, underlie the definition (2) of a Volterra dislocation.

Finally, the familiar differential operators of R3, such as div, grad and curl, and the

integration of forms of various orders, including Stoke’s theorem, arise frequently

in relations such as (1), (2), (5), (6), (7) and (8).

In laying the groundwork for a discrete theory, these elements of algebraic

topology and differential calculus need to be extended to crystal lattices. At the

most fundamental level, the notions of point, curve, surface and volume and their

boundary and coboundary connections need to be carefully redefined. These objects

supply the natural domains of definition of mechanical fields and forms, as well as

their natural domains of integration. Crystal lattices can be endowed with this req-

uisite structure by regarding them as complexes (not necessarily simplicial). This



154 M. P. Ariza & M. Ortiz

notion of crystal lattice is greatly expanded with respect to traditional representa-

tions of lattices [4, 44], and proves powerful as a foundation for a mechanics of

lattices. The construction of lattice complexes is not entirely trivial, as the complex

must be translation invariant, possess the symmetries of the crystal, and have the

homology of the imbedding space, e.g., Rn. In addition, the lattice complex must

contain all the operative slip systems of the crystal. In Section 2 we define the lattice

complex of a number of commonly encountered lattices, including body-centered

cubic and face-centered cubic lattices.

In Section 3, we introduce the differential complex of a lattice, including fields

and forms of all orders, the differential and codifferential operators, the wedge

product, the Hodge-∗ operator, integrals of forms of all orders, a discrete Stoke’s

theorem, a discrete Helmholtz-Hodge decomposition, and a discrete linking num-

ber. These tools enable the formulation of a discrete mechanics of crystal lattices

and lattice defects that is formally indistinguishable from the continuum theory.

In this approach, all specificity regarding the continuum or discrete nature of the

system – and the structure of the crystal – is subsumed in the definition of the

lattice complex and differential structures, and the physical governing equations

are identical for all systems. In this sense, the present work may be regarded as part

of an ongoing effort to develop mechanical and physical theories of discrete objects

using discrete differential calculus (cf., e.g., [18, 28] and the extensive literature

review therein).

In Section 4, we proceed to develop a mechanics of lattices and lattice defects.

A key step in that regard is the realization that the essential structure of the theory is

dictated by material-frame indifference, i.e., by the invariance of the energy of the

crystal lattice under translations and rotations. Indeed, we show that material-frame

indifference results in a natural discrete version of the Cauchy-Green deformation

tensor field, and upon linearization, of the small-strain tensor field. The corre-

sponding definitions of stress, traction and equilibrium, follow from duality and

stationarity. For harmonic lattices, the theory precisely identifies the form of the

stress-strain relations. It bears emphasis that these relations have a special struc-

ture due to material-frame indifference, and that the force-displacement relations of

the crystal lattice inherit that structure. Conversely, arbitrary force constants violate

material-frame indifference in general, with the unphysical consequence that lattice

rotations may induce strain energy. The restrictions placed on the force constants

of a crystal lattice by material-frame indifference do not appear to have been fully

appreciated in the lattice statics literature (for notable exceptions, cf., [43, 45]).

In all these developments, the discrete differential calculus framework proves

of great value. For instance, within that framework the various mechanical fields

find a clear definition as functions over the lattice complex: the displacement field

is a 0-form; the deformation field is a 1-form; the strain-tensor, metric-tensor and

stress fields are scalar-valued functions over pairs of 1-cells; and so on. It is also

interesting to note the notion of a tensor field which emerges from the theory. Thus,

for instance, the strain and stress tensors, which provide examples of second-order

tensors, are real-valued functions of pairs of cells. Also, the notion of metric that

emerges naturally from the theory is noteworthy: the natural way to define the met-

ric properties of the lattice is to provide the inner products of the differential of the
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position vector for every pair of 1-cells. The availability of an efficient theory of

integration of forms, including a Stoke’s theorem, is also invaluable in deriving the

equations of equilibrium of the crystal and establishing their structure.

In Section 5, we introduce the notion of discrete dislocation by means of the

standard eigendeformation device (cf., [36, 39] for overviews of eigendeforma-

tions in the context of dislocation mechanics). Uniform eigendeformations repre-

sent lattice-invariant that cost no energy. Non-uniform eigendeformations are not

gradients of a displacement field in general and, therefore, introduce dislocations

into the lattice. The structure of the resulting dislocations is particularly revealing.

Thus, it follows that the set of all discrete dislocation loops can be identified with

the group B2 of 2-coboundaries of the lattice; and the set of all Burgers circuits can

be identified with the group Z1 of 1-cycles of the lattice. The Burgers-circuit test (2)

simply reflects the duality between these two groups. In particular, the coboundar-

ies of all 1-cells of the lattice, which constitute a generator of B2, may be regarded

as elementary dislocation loops. All remaining dislocations loops are generated by

the elementary loops in the sense of chains. Likewise, the boundaries of all 2-cells

of the lattice constitute a generator of Z1 and may be regarded as elementary – or

the smallest possible – Burgers circuits. The theory also provides discrete versions

of fundamental relations such as Kröner’s formula (6), the conservation of Burgers

vector relation (7), and others. The geometrical and physical insight into the struc-

ture of discrete dislocations afforded by the geometrical foundations of the theory

can hardly be overemphasized.

While the primary focus of this paper is the formulation of a discrete mechanics

of lattices, we nevertheless delve briefly into some questions of analysis. Thus, for

instance, we give conditions for the existence of equilibrium displacement fields

(Propositions 2 and 3) and discuss the equilibrium problem for slip and dislocation

fields. We also show that linear elasticity is recovered as the Ŵ-limit of the har-

monic lattice statics problem, as the lattice parameter becomes vanishingly small

(Proposition 4). We also investigate two continuum limits of the stored energy of

a dislocation ensemble. The first limit is attained by the application of a scaling

transformation which expands – and rarefies – the dislocation ensemble, while

leaving the lattice parameter unchanged (Proposition 5). The second limit of the

stored energy is obtained by scaling down the lattice size and the Burgers vector

sizes simultaneously, and leads to the classical theory of continuously distributed

dislocations (Proposition 6). In conclusion we note that the investigation of the

continuum limits just described fits within current efforts to understand continuum

models as the limits of discrete systems (cf., [7] and the references therein).

2. Crystal lattices

The development of a general theory of the mechanics of lattices and lattice

defects is greatly facilitated by a judicious use of elements of algebraic topology and

differential calculus. These elements greatly streamline the notation and, perhaps

more importantly, shed considerable insight into the general structure of the theory,

especially in the presence of lattice defects. We begin by regarding crystal lattices



156 M. P. Ariza & M. Ortiz

as chain complexes, a view that greatly expands previous mathematical models of

lattices. In particular, the lattice complex encodes all information regarding points,

curves, surfaces, volumes of the lattice and their adjacency relations. These alge-

braic elements provide the basis for the subsequent definition of a discrete lattice

calculus. For instance, the boundary and coboundary operators induce differential

and codifferential operators on forms and fields, and the cup product of cochains

induces a wedge product of forms. Provided that it is appropriately defined, the

lattice complex also encodes the geometry of the slip systems and discrete disloca-

tions of the corresponding crystal class. We develop the complexes of commonly

encountered lattices, such as the face-centered cubic lattice and the body-centered

cubic lattice, and provide in tabular form all the fundamental operations required

in applications.

2.1. Elementary properties of crystal lattices

2.1.1. Notation. We denote the group of integers by Z, the real numbers by R and

the complex numbers by C. In indicial expressions involving vectors and tensors

we adopt Einstein’s summation convention unless explicitly stated.

The most elementary view of a crystal lattice is as a discrete subgroup [44]

L = {x(l) = liai, l ∈ Zn} (10)

of Rn, where {a1, . . . , an} are linearly independent vectors defining a lattice basis.

The dual basis {a1, . . . , an} is characterized by the property

ai · aj = δi
j , (11)

where the dot denotes scalar product in Rn. Following common notation, we shall

denote by � the volume of the unit cell of the lattice, or atomic volume. The

dual and reciprocal lattices are the lattices spanned by the dual basis and by

{2πa1, . . . , 2πan}, respectively. We recall that the first Brillouin zone B is the

Voronoi cell of the reciprocal lattice at the origin. The volume of the dual unit cell

is 1/�, whereas the volume |B| of the first Brillouin zone, and of the reciprocal

unit cell, is (2π)n/�.

A complex lattice may be defined as a collection of interpenetrating simple

lattices having the same basis. Thus, the point set of a complex lattice is of the

form:

L = {x(l, α) = liai + rα, l ∈ Zn, α = 1, . . . , N}, (12)

where α labels each constituent simple sublattice, and rα is the relative translation

vector of the α sublattice. Certain crystal lattices and certain sets of objects that

arise naturally in the mechanics of crystals, such as the set of atomic bonds, possess

the translational symmetry of a complex lattice. Even when a crystal lattice can be

described as a simple lattice, it may be convenient to describe it as a complex lattice

for indexing purposes. For instance, a body-centered cubic lattice can variously be

described as a simple lattice or as a complex lattice consisting of two superposed

simple-cubic lattices.
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We recall that a symmetry of the lattice is an orthogonal transformation Q ∈
O(n) that maps the lattice into itself (cf., e.g., [12]). The set S of all symmetry

transformations is a subgroup of O(n) known as the symmetry group of the lattice.

In three dimensions there are 32 possible symmetry groups corresponding to each

of the 32 crystallographic point groups [6]. If the inversion transformation belongs

to S, then the lattice is said to be centrosymmetric. A simple lattice is necessarily

centrosymmetric. We also recall that two lattices L1 and L2 define the same Bravais

lattice if there exists a linear isomorphism φ : Rn → Rn such that L2 = φ(L1)

and S(L2) = φS(L1)φ
−1. For n = 2 there are exactly 5 Bravais lattices, whereas

for n = 3 there are 14 Bravais lattices [44].

A crystallographic plane is conventionally defined by its Miller indices m ∈ Zn,

defined such that the points {a1/m1, . . . , an/mn} are the intercepts of the plane with

the coordinate axes. A family of parallel crystallographic planes may be defined

implicitly by the equation

x · k ∈ Z (13)

for some dual vector k, where the symbol · signifies the duality pairing in Rn. It is

readily shown that the components of the vector k in the dual basis ai coincide with

the Miller indices. The distance between consecutive parallel planes is important

in understanding processes of crystallographic slip. A trite calculation gives the

distance between the two planes as

d−1 = |k|, (14)

where | · | denotes the standard norm in Rn.

The choice of lattice basis is clearly not unique.Any n-tuple (a′
1, . . . , a

′
n) related

linearly to the original basis as a′
i = µ

j
i aj also defines a lattice basis of the same

orientation provided that µ ∈ SP (Zn) [12], i.e., µ
j
i ∈ Z and det(µ) = ±1. A

far-reaching consequence of this fact is that any affine mapping F on Rn of the

form

F = µ
j
i aj ⊗ ai (15)

leaves the lattice invariant. A particularly important class of lattice-invariant defor-

mations of relevance to processes of crystallographic slip is

F = I + (sjaj ) ⊗ (mia
i) (16)

with s, m ∈ Zn and simi = 0. These simple-shear deformations represent uniform

crystallographic slip through a Burgers vector b = sjaj on the plane of normal

mia
i . Energetic considerations, such as the examination of core energies of lin-

ear-elastic dislocations, as well as kinetic considerations, such as those based on

linear-elastic estimates of lattice friction, suggest that crystallographic slip occurs

preferentially on closed-packed planes, i.e., planes for which the interplanar dis-

tance d , equation (14), is maximized. A tabulation of commonly observed slip

planes may be found in the treatise of Hirth & Lothe [19].
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2.2. The chain complex of a crystal lattice

2.2.1. Notation. Throughout this section we follow the notation and nomenclature

of [34], which may be consulted for further details and background. We denote the

interior of a subset A of a topological space by IntA, its boundary by BdA, and its

closure by Ā. We also denote by Bn the unit n-ball, i.e., the set of all points x of Rn

such that |x| ≦ 1, where | · | denotes the standard norm in Rn. The unit sphere Sn−1

is the set of points for which |x| = 1. If f : G → H is a group homomorphism,

we denote by kerf the kernel of f , i.e., the subgroup f −1({0}) of G, and by imf

the image of f , i.e., the subgroup f (G) of H . Given two abelian groups G and H

we denote by Hom(G, H) the abelian group of all homomorphisms of G into H .

In the preceding elementary view, a crystal lattice is regarded merely as a point

set, each site being occupied by an atom. A more complete view of a crystal lattice

includes objects such as atomic bonds, or pairs of atoms, elementary areas and ele-

mentary volumes. We shall refer to these higher-dimensionality objects as p-cells,

where p is the dimension of the cell. p-cells supply the natural support for defining

functions arising in the mechanics of lattices, such as displacement and deforma-

tion fields and dislocation densities. They also supply the natural framework for

defining discrete differential operators and integrals. Naturally, we require the col-

lection of all p-cells to be translation and symmetry invariant. There are a number

of additional restrictions on p-cells that give mathematical expression to the intui-

tive notion of a perfect, or defect-free, crystal lattice. In this section, we proceed to

develop this extended view of crystals.

Recall that a space e is called a cell of dimension p if it is homeomorphic with

Bp, i.e., if there exists a continuous bijective function f : Bp → e such that its

inverse is also continuous. It is called an open cell if it is homeomorphic to Int Bp.

We shall use the notation ep and the term p-cell when we wish to make explicit

the dimension of the cell. We recall that a regular CW complex is a space X and

a collection of disjoint open cells whose union is X such that: (i) X is Hausdorff;

(ii) for each open cell e there exists a homeomorphism f : Bp → X that maps

IntBp onto e and carries BdBp into a finite union of open cells, each of dimension

less than p; (iii) a set A is closed in X if A ∩ ē is closed in ē for each cell e.

X is the underlying space of the complex. By a slight abuse of notation we shall

use the symbol X to refer both to the complex and to the underlying space. In all

subsequent developments the underlying space is always Rn and hence condition

(i) is automatically satisfied. The cells contained in another cell e are the faces of e.

The faces of e different from e itself are called the proper faces of e. The notation

e′ � e or e 	 e′ signifies that e′ is a face of e, whereas the notation e′ ≺ e or e ≻ e′

signifies that e′ is a proper face of e. The subspace Xp of X that is the union of the

open cells of X of dimension at most p is a subcomplex of X called the p-skeleton

of X. In particular, X0 is the set of 0-cells or vertex set. The dimension of a complex

is the largest dimension of a cell of X.

We define an n-dimensional lattice complex to be a CW complex such that:

(A1) The underlying space is all of Rn.

(A2) The vertex set defines an n-dimensional lattice.

(A3) The cell set is translation and symmetry invariant.
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For n ≦ 3, we shall refer to the 1-cells of a lattice complex as elementary segments,

to the 2-cells as elementary areas, and to the 3-cells as elementary volumes. The

requirement that these elements form a CW complex gives mathematical expression

to the intuitive notions that p-cells should be non-intersecting, and their boundaries

the union of cells of lower dimension. Implied in axiom A1 is the requirement that

the union of all cells in the complex be Rn. Translation and symmetry invariance

require that if a cell is in X, so must be all translates of the cell by translation vec-

tors of the lattice, and all symmetry-related cells. The symmetry and CW complex

requirements just stated place fundamental restrictions on the choice of elementary

segment, elementary area and elementary volume sets.

There are additional restrictions on a lattice complex that are of a homological

nature and that give mathematical expression to the intuitive notion of a perfect,

defect-free lattice. As noted in the introduction, the geometrical theory of linear-

elastic point and line defects is (tacitly or explicitly) built around the homology of

R3, specifically on the fact that every closed loop in R3 is the boundary of a surface

and is contractible to a point, and that every closed surface is the boundary of a

volume and is likewise contractible to a point. Non-trivial homology groups are

then associated with distributions of point and line defects in the continuum (e g.,

[47, 23, 30, 48, 36, 20–22]).

In order to carry these tools over to the discrete setting, we proceed to formu-

late a homology of crystal lattices. We begin by defining the chain complex of the

lattice. By convention, vertices have one orientation only. Elementary segments,

or 1-cells, are oriented by ordering their vertices. We shall use the symbol [v, v′]
to denote the elementary segment defined by the vertices {v, v′} together with the

orientation determined by the ordering (v, v′). Two adjacent oriented elementary

segments of the form [v, v′] and [v′, v′′] are said to be oriented consistently. An

elementary area, or 2-cell, is oriented by assigning consistent orientations to each

of its elementary segments. An elementary volume, or 3-cell, has two possible

orientations, inward and outward. Thus, a 2-cell is consistently oriented with an

outwardly (or inwardly) oriented 3-cell if the boundary of the 2-cell is oriented

clockwise (respectively, counter-clockwise) when seen from inside the 3-cell. We

shall denote by [v0, . . . , vp] the p-simplex defined by the vertices {v0, . . . , vp}
together with the orientation determined by the ordering (v0, . . . , vp) (cf., e.g.,

[34], § 39, for a general definition of the orientation of a cell).

We recall that a p-chain in a CW complex X is a function c from the set of

oriented p-cells of X to the integers such that: (i) c(e) = −c(e′) if e and e′ are

opposite orientations of the same cell; and (ii) c(e) = 0 for all but finitely-many

oriented p-cells e. Note that p-chains are added by adding their values. We shall

use the notation cp when we wish to make explicit the dimension of the chain. The

resulting group of oriented p-chains is denoted Cp. In an n-dimensional complex,

Cp is the trivial group if p < 0 or p > n. If e is an oriented cell, the elementary

chain corresponding to e is defined by: (i) c(e) = 1; (ii) c(e′) = −c(e) if e′ is the

opposite orientation of e; and (iii) c = 0 otherwise. By an abuse of notation we

shall use the same symbol to denote a cell and the corresponding elementary chain.

It is straightforward to show (cf., e.g., [34], Lemma 5.1) that Cp is free-abelian, i.e.,

it is abelian and it has a basis. Indeed, once all cells are oriented, each p-chain cp
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can be written uniquely as a finite linear combination cp =
∑

niei of elementary

p-chains ei with integer coefficients ni . Thus, the chain c assigns the integer value

ni to ei , −ni to −ei and 0 to all oriented p-cells not appearing in the sum.

Any function f from the oriented p-cells of X to an abelian group G extends

uniquely to a homomorphism Cp → G provided that f (−ep) = −f (ep) for all

oriented p-cells ep. The boundary operator is a homomorphism ∂p : Cp → Cp−1

that can be defined in this manner by setting

∂pep =
∑

ep−1≺ep

±ep−1, (17)

where the sign is chosen as + (or −) if the orientation of ep−1 coincides with

(respectively, is the opposite of) that induced by ep. For instance, if e = [v, v′]
is an oriented elementary segment, then ∂1e = v′ − v. It is readily verified that

∂p−1 ◦∂p = 0. Indeed, ∂p−1 ◦∂pep =
∑

ep−1≺ep

∑
ep−2≺ep−1

±ep−2, and the terms

in these two sums cancel in pairs. Then, ker∂p is called the group of p-cycles and

denoted Zp, while im∂p+1 is called the group of p-boundaries and denoted Bp.

Also Hp = Zp/Bp is the pth homology group of the lattice complex. Henceforth

we shall omit the dimensional subscript from ∂p whenever it can be deduced from

the context.

We shall say that a lattice complex X is perfect, or defect-free, if its homology

is identical to the homology of the underlying space. For instance, a lattice in Rn

is perfect if Hp = Z for p = 0 for Hp = 0, if p ≧ 1, i.e., if the homology of

the complex is identical to the singular homology of Rn (cf., e.g., [34], § 29, for

a general discussion of singular homology). The identity H0 = Z follows simply

by ensuring that X is path connected (cf., e.g., [34], Theorem 7.2), i.e., that every

pair of points in X is joined by a continuous path of elementary segments. This

requires all lattice sites to be connected by elementary segments, without ‘hanging’

sites. The identities Hp = 0, p ≧ 1, imply in particular that every 1-cycle in X

is the boundary of a 2-chain, and that every 2-cycle is the boundary of a 3-chain.

In the applications of interest here, it is important that a lattice complex possess

a reference configuration that is defect-free. In order to ensure this property we

append the following axiom:

(A4) The lattice complex is perfect.

This requirement places fundamental restrictions on the choice of cell set. In appli-

cations, it also provides a useful screening test of the admissibility of a lattice

complex, especially in three dimensions.

We note that, for a given lattice, the choice of lattice complex is not uniquely

determined by axioms (A1)–(A4) in general. Consider for instance an n-dimen-

sional simple lattice having the trivial symmetry group {E, I }, where E and I are

the identity and inversion transformations, respectively. Then, for any lattice basis

we can construct a complex in which the n-cells are the parallelepiped defined by

the basis vectors and its translates, and the remaining cells are chosen so that the

complex is homeomorphic to the simple-cubic complex described in Section 2.3.4.

Clearly, each lattice basis determines a lattice complex, and the choice of complex

is not unique. In applications, the lattice complex must be carefully constructed
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so that it contains all the crystallographic elements of interest, including the full

complement of slip planes, Burgers vectors, dislocation loops, Burgers circuits,

interstitial sites, and others. These additional requirements tend to reduce the lati-

tude–or eliminate it completely–in the choice of lattice complex.

We additionally define the group Cp of p-cochains as the group Hom(Cp, Z) of

all homomorphisms of Cp into Z. If cp is a p-cochain and cp is a p-chain, we denote

by 〈cp, cp〉 the value of cp on cp. The coboundary operator δp : Cp → Cp+1 is

then defined by the identity

〈δpcp, cp+1〉 = 〈cp, ∂p+1cp+1〉. (18)

From the identity ∂p−1 ◦ ∂p = 0, it follows immediately that δp+1 ◦ δp = 0. Let

e∗ be the elementary cochain whose value is 1 on a cell e and 0 on all other cells.

The mapping (∗) extends to an isomorphism from Cp to the subgroup of Cp of

cochains of finite support, whose inverse will also be denoted by (∗). We shall also

simply write ep = (ep)∗ and ep = (ep)∗ and leave the operator ∗ implied. With

this notation, an arbitrary cochain can be expressed as the formal (possibly infinite)

sum cp =
∑

nie
∗
i , where ni ∈ Z, and we have the identity δpcp =

∑
niδ

pe∗
i .

Thus, the coboundary operator can be defined by specifying δpep on each oriented

p-cell ep, namely,

δpep =
∑

ep+1≻ep

±ep+1, (19)

where the sign is chosen as + (or −) if the orientation of ep coincides with (respec-

tively, is the opposite of) that induced by ep+1. Then, kerδp is called the group

of cocycles and denoted Zp, while imδp−1 is called the group of coboundaries

and denoted Bp. Also Hp = Zp/Bp is the pth cohomology group of the lattice

complex. As before, we shall henceforth omit the dimensional subscript from δp

whenever it can be deduced from the context.

As subsequent developments will demonstrate (cf. Sections 5.1 and 5.2), the

cycle group Z1 of a crystal lattice is the group of all Burgers circuits. The generators

of Z1 may be interpreted as elementary Burgers circuits. The coboundary group

B2 of a crystal lattice is the group of all dislocation loops. This makes precise the

sense in which Burgers circuits and dislocation loops are dual to each other. The

generators of B2 may be interpreted as a set of elementary dislocation loops.

In addition, as we shall see in Section 3, the boundary and coboundary operators

just defined induce a discrete lattice analog of the de Rham differential complex in

Rn. In particular, the cup product of cochains provides the basis for the introduction

of a wedge product of discrete forms. Recall that in a simplicial complex X, the

cup product of cp ∈ Cp and cq ∈ Cq is defined by the identity

〈cp ∪ cq , [v0, . . . , vp+q ]〉 = 〈cp, [v0, . . . , vp]〉 〈cq , [vp, . . . , vp+q ]〉 (20)

if [v0, . . . , vp+q ] is a simplex such that v0 < · · · < vp+q in some partial ordering

of the vertices of X which linearly orders the vertices of each of its simplices. The

cup product is bilinear and associative, and satisfies the coboundary formula

δ(cp ∪ cq) = (δcp) ∪ cq + (−1)pcp ∪ (δcq) (21)
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(cf., e.g., [34]). It is clear from its definition that the cup product depends on the

choice of ordering of the vertices. For crystal lattices, the natural partial ordering

of the vertices is obtained by introducing a translation-invariant orientation of the

1-cells such that {e1(l, 1), . . . , e1(l, N1)} have e0(l) as their first vertex, and then

letting v1 < v2 if v1 �= v2 and v2 can be reached from v1 by a path consisting of the

1-cells {e1(l, 1), . . . , e1(l, N1)}. However, the cup product does induce an operation

∪ : Hp × H q → Hp+q among cohomology classes which is independent of the

ordering of the vertices, bilinear, associative and satisfies the coboundary formula.

In addition, it is anticommutative in the sense

[zp] ∪ [zq ] = (−1)pq [zq ] ∪ [zp], (22)

where zp ∈ Zp and zq ∈ Zq are cocycles and [zp] and [zq ] are the corresponding

cosets. Recall in addition that a CW complex X is triangulable if there is a simpli-

cial complex K such that each skeleton Xp of X is triangulated by a subcomplex

of K of dimension at most p, which we denote Kp. The cup product then follows

from the identity

〈cp ∪ cq , ep+q〉 =
∑

σp+q�ep+q

〈cp ∪ cq , σp+q〉, (23)

where the sum extends over the (p + q)-simplices in a triangulation of ep+q , the

cup product on the right had side is the simplicial cup product (20), and the cochains

on the right-hand side are inclusions into K of the cochains on the left-hand side. It

is immediate from this definition that bilinearity, associativity and the coboundary

formula extend to triangulable CW complexes. A cap product can also be defined

as a homomorphism ∩ : Cp ⊗ Cp+q → Cq such that ep ∩ ep+q is the unique cell

eq such that ep ∪ eq = ep+q . The boundary formula

∂(cp ∩ cp+q) = (−1)q(δcp ∩ cp+q) + cp ∩ ∂cp+q (24)

and the associativity property

cp ∩ (cq ∩ cp+q+r) = (cp ∪ cq) ∩ cp+q+r (25)

follow readily from the definition (cf., e.g., [34], §66).

Matrix representations of the boundary and coboundary operators are often

useful in applications. Let Ep be the set of all oriented p-cells of X. In general we

shall have a linear relation of the form

(∂pcp)(ep−1) =
∑

ep∈Ep

Lp(ep−1, ep)cp(ep), (26)

where the function Lp : Ep−1 × Ep → Z is banded. In particular Lp(ep−1, ep)

is the value at ep−1 of the chain obtained by applying the boundary operator to the

elementary chain ep. By duality, the coboundary operator follows simply as

(δp−1cp−1)(ep) =
∑

ep−1∈Ep−1

Lp(ep−1, ep)cp−1(ep−1). (27)
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Hence, Lp(ep−1, ep) is also the value at ep of the cochain obtained by applying the

coboundary operator to the elementary cochain ep−1.As in the case of the boundary

and coboundary operators, in the sequel we shall omit the dimensional label from

the matrices Lp whenever it can be deduced from the context.

In the special case of lattice complexes, the functions L can be given more

explicit indexed representations. Start by giving the cells of the lattice complex

translation-invariant orientations. Introduce an equivalence relation T in Cp that

identifies two chains when one can be obtained from the other by a translation.

Denote by [cp] the equivalence class of cp and by Cp/T the quotient set of equiv-

alence classes. By translation invariance, the equivalence class [ep] of a p-cell can

be indexed as a Bravais lattice, and the lattices of all p-cell classes jointly define

a complex Bravais lattice. Thus, a p-cell in an n-dimensional lattice complex can

be indexed as ep(l, α), where l ∈ Zn, α ∈ {1, . . . , Np}, and Np is the number of

simple p-cell sublattices. Using this indexing, lattice chains and cochains have the

representation

cp =
∑

l∈Zn

Np∑

α=1

cp(l, α)ep(l, α), (28a)

cp =
∑

l∈Zn

Np∑

α=1

cp(l, α)ep(l, α), (28b)

where we write cp(l, α) ≡ cp

(
ep(l, α)

)
and cp(l, α) ≡ 〈cp, ep(l, α)〉, respectively.

An application of the boundary operator to (28a) yields

∂cp =
∑

l∈Zn

Np∑

α=1

cp(l, α)∂ep(l, α). (29)

In addition, by translation invariance,

∂ep(l, α) =
∑

l′∈Zn

Np−1∑

β=1

Lαβ(l − l′)ep−1(l
′, β), (30)

where the function Lαβ(·) takes integer values and has finite support. Inserting (30)

into (29) yields

(∂cp)(l′, β) =
∑

l∈Zn

Np∑

α=1

Lαβ(l − l′)cp(l, α). (31)

By duality, the coboundary operator follows likewise as

(δcp−1)(l, α) =
∑

l′∈Zn

Np−1∑

β=1

Lαβ(l − l′)cp−1(l′, β). (32)

It therefore follows that the matrix representation of the boundary and coboundary

operators is completely determined by the coefficients Lαβ(l) in (30).
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The discrete Fourier transform provides an additional means of exploiting the

translation invariance of lattice complexes. Thus, the discrete Fourier transform of

the p-chain cp is (cf., Appendix A)

ĉp(θ, α) =
∑

l∈Zn

cp(l, α)e−iθ ·l, (33)

and its inverse is

cp(l, α) = 1

(2π)n

∫

[−π,π ]n
ĉp(θ, α)eiθ ·ldθ. (34)

Since chains take nonzero values over finitely many cells, the sum (33) also con-

tains finitely many terms and ĉp(·, α) ∈ C∞([−π, π ]n). As noted in Appendix A,

cp(−l, α) is the Fourier-series coefficient of ĉp(θ, α), and hence the discrete Fou-

rier transform defines an isomorphism φp between Cp and the group Ĉp of func-

tions from [−π, π ]n to CNp that have finitely-many nonzero integer Fourier-series

coefficients. Let Ĉp = Hom(Ĉp, Z). We define the discrete Fourier transform of

co-chains φp : Cp → Ĉp as the dual isomorphism of φ−1
p , i.e., by the relation

φp(cp) = cp ◦ φ−1
p , or, equivalently, by the identity

〈cp, cp〉 = 〈ĉp, ĉp〉, (35)

Parseval’s identity then yields the representation of φp:

ĉp(θ, α) =
∑

l∈Zn

cp(l, α)e−iθ ·l, (36)

and the representation of its inverse:

cp(l, α) = 1

(2π)n

∫

[−π,π ]n
ĉp(θ, α)eiθ ·ldθ. (37)

Thus, cp(−l, α) is the Fourier-series coefficient of ĉp(θ, α), and hence Ĉp can

be identified with the group of functions from [−π, π ]n to CNp that have (pos-

sibly infinitely-many nonzero) integer Fourier-series coefficients. We define the

boundary operator ∂̂p : Ĉp → Ĉp−1 so that φp defines a chain map between the

chain complexes C = {Cp, ∂p} and Ĉ = {Ĉp, ∂̂p}, i.e., by enforcing the identity:

∂̂p ◦ φp = φp−1 ◦ ∂p for all p ≧ 1 (cf., e.g., [34], § 13, for a general for the

definition of a chain map). The group Ĥp = ker∂̂p/im∂̂p+1 is the pth homology

group of the chain complex Ĉ. Since φp is the dual of φp, it is a cochain map, and

the coboundary operator follows equivalently as the dual of ∂̂p or from the identity

δ̂p ◦ φp = φp+1 ◦ δp. The group Ĥp = kerδ̂p/imδ̂p−1 is the pth cohomology

group of the chain complex Ĉ.

Since φ is an isomorphism, it defines a chain equivalence and induces a homol-

ogy isomorphism between C and Ĉ. It therefore follows that Ĉ can be used inter-

changeably in place of C in order to compute the homology of X. This is significant

in practice, since the operators ∂̂ and δ̂ are pointwise algebraic operators. Thus,
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applying the discrete Fourier transform to both sides of (31) and invoking the con-

volution theorem (cf., Appendix A) we obtain

∂̂ ĉp(θ, β) =
Np∑

α=1

Pβα(θ)ĉp(θ, α), (38)

where we write

Pβα(θ) =
∑

l∈Zn

Lαβ(l)eiθ ·l . (39)

By duality we immediately have

δ̂ĉp−1(θ, α) =
Np−1∑

β=1

Qαβ(θ)ĉp−1(θ, β), (40)

where we write

Qαβ(θ) = P ∗
βα(θ). (41)

Thus, the matrices Pp(θ) represent the boundary operators ∂̂p, whereas their her-

mitian transpose Qp(θ) represent the coboundary operators δ̂p−1. In particular, the

verification that the lattice complex is perfect reduces to the investigation of the

kernels and images of the matrices Pp, namely, for fixed θ �= 0 and p ≧ 1, we must

have kerPp = imPp+1. Then it follows that Bp = Zp and Hp = 0, as required.

2.3. Examples of lattice complexes

In this section we collect the chain complex representations of: the monatomic

chain, the square lattice, the hexagonal lattice, the simple cubic (SC) lattice, the

face-centered cubic (FCC) lattice and the body-centered cubic (BCC) lattice. The

monatomic chain, the square lattice, the hexagonal lattice, and the SC lattice are

discussed mainly for purposes of illustration. The square, SC and FCC lattices fur-

nish examples of lattice complexes which are not simplicial. α-Polonium has the

SC structure, which is otherwise rare. Metals which crystallize in the FCC class

at room temperature include: Aluminum, copper, gold, lead, nickel, platinum, rho-

dium, silver and thorium; whereas metals which crystallize in the BCC class at room

temperature include: Chromium, iron, lithium, molybdenum, niobium, potassium,

rubidium, sodium, tantalum, tungsten and vanadium. We recall that the symmetry

group of cubic crystals is the octahedral group O, which is of order 24 and is gen-

erated by the transformations {E, C2(6), C3, C2
3 (8), C4, C3

4(6), C2
4 (3)}, where E

is the identity and C2, C3 and C4 are the abelian groups of rotations about 2, 3 and

4-fold axes [16].

The homology of these lattices is most readily analyzed with the aid of the

matrix representations Pp(θ) and Qp(θ) of the operators ∂̂p and δ̂p−1, respec-

tively. In all of the examples collected below, the following properties are readily

verified, e.g., with the aid of the singular-value decomposition of Pp:
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(i) PpPp+1 = 0, 1 ≦ p < n, as required by the identity ∂p ◦ ∂p+1 = 0.

(ii) Qp+1Qp = 0, 1 ≦ p < n, as required by the identity δp ◦ δp−1 = 0.

(iii) The complexes are connected, and hence H0 = Z.

(iv) Ẑp = kerPp = imPp+1 = B̂p, 1 ≦ p < n, and hence Ĥp = 0.

(v) Ẑn = kerPn = 0, and hence Ĥn = 0.

(vi) Ẑ0 = kerQ1 = 0, and hence Ĥ 0 = 0.

(vii) Ẑp = kerQp+1 = imQp = B̂p, 1 ≦ p < n, and hence Ĥp = 0.

In particular, properties (iii)–(v) imply that the lattices are perfect, as required.

2.3.1. The monatomic chain. The most elementary example of a Bravais com-

plex is the monatomic chain, whose simplicial complex representation is shown in

Fig. 2. It is clear that the union of the cells in the complex is R, as required. In

addition, the symmetry group S reduces to {E, I }, where E is the identity and I

the inversion, and the lattice complex is clearly translation and symmetry invari-

ant. In this simple case, both the 0 and 1-cells can be indexed as Bravais lattices.

The obvious indexing scheme is that which is shown in Fig. 2. The boundary and

coboundary operators are determined by the identities

∂e1(l) = e0(l + 1) − e0(l), (42a)

δe0(l) = e1(l − 1) − e1(l), (42b)

and their DFT representation (39) reduces to

Q = eiθ − 1. (43)

The monatomic lattice provides a simple illustration of the properties of the sim-

plicial cup product (20). Thus, ordering the vertices from left to right, the resulting

non-zero products are

e0(l) ∪ e0(l) = e0(l), (44a)

e0(l) ∪ e1(l) = e1(l), (44b)

e1(l) ∪ e0(l + 1) = e1(l). (44c)

Associativity and the coboundary formula are readily verified from this table. How-

ever, e1(l)∪ e0(l) = 0 and e0(l + 1)∪ e1(l) = 0, which spoils anti-commutativity.

If, by way of contrast, we order the vertices from right to left, then the resulting

non-zero products are

e0(l) ∪ e0(l) = e0(l), (45a)

e0(l + 1) ∪ e1(l) = e1(l), (45b)

e1(l) ∪ e0(l) = e1(l), (45c)

which illustrates the dependence of the cup product on the ordering of the vertices.

l

l

l+1

Fig. 2. Lattice complex representation of the monatomic chain and indexing scheme.
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2.3.2. The square lattice. The square Bravais lattice is generated by the basis

{(a, 0), (0, a)} and its symmetry group is C4, the abelian group of two-dimen-

sional rotations by π/2. The lattice complex representation of the square lattice

is shown in Fig. 3. The square lattice furnishes an example of a lattice complex

that is not simplicial. The connectedness, and translation and symmetry invariance

requirements are satisfied by choosing the elementary areas to be squares, as shown

in Fig. 3. It is evident from this figure that the vertex and elementary area sets can

be indexed as two-dimensional Bravais lattices. By contrast, there are two types of

elementary segments, namely, horizontal segments and vertical segments. Hence,

the segment set has the structure of a complex Bravais lattice comprising two sim-

ple sublattices. We choose the indexing scheme shown in Fig. 3, where ε1 = (1, 0)

and ε2 = (0, 1). The boundary and coboundary operators are determined by the

rules

∂e1(l, 1) = e0(l + ε1) − e0(l), (46a)

∂e2(l) = e1(l, 1) + e1(l + ε1, 2) − e1(l + ε2, 1) − e1(l, 2), (46b)

δe0(l) = −e1(l, 1) − e1(l, 2) + e1(l − ε1, 1) + e1(l − ε2, 2), (46c)

δe1(l, 1) = e2(l) − e2(l − ε2), (46d)

and all the symmetry-related identities. The corresponding DFT representation

(39) is

Q1 =
(
eiθ1 − 1, eiθ2 − 1

)
, (47a)

Q2 =
(

1 − eiθ2

eiθ1 − 1

)
. (47b)

A cup product can be defined by multiplying cells in the 1-skeleton, as in the

monatomic chain, and appending the following non-zero products:

e1(l, 1) ∪ e1(l + ε1, 2) = e2(l), (48a)

e1(l, 2) ∪ e1(l + ε2, 1) = −e2(l), (48b)

e0(l) ∪ e2(l) = e2(l), (48c)

e2(l) ∪ e0(l + ε1 + ε2) = e2(l). (48d)

l

l (l,1)

(l+�2,1) l+�1+�2l+�2

l+�1

(l+�1,2)(l,2)

Fig. 3. Lattice complex representation of the square lattice and indexing scheme.
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It is straightforward to verify that this product is associative and satisfies the co-

boundary formula (21). It is also interesting to note that every 2-cell is generated

in two different ways by the multiplication of two pairs of 1-cells. In addition there

are exactly two vertices which act on a 2-cell, one on the left and the other on the

right.

2.3.3. The hexagonal lattice. The hexagonal lattice is generated by the basis

{(a, 0), (a/2,
√

3a/2)} and its symmetry group is C6, the abelian group of two-

dimensional rotations by π/3. The lattice complex representation of the hexagonal

lattice is shown in Fig. 4. It is evident from this figure that there are three types

of elementary segments and two types of elementary areas. Hence, the elemen-

tary segment and area sets have the structure of complex lattices comprising three

and two simple sublattices, respectively. We choose the indexing scheme shown in

Fig. 4, where ε1 = (1, 0), ε2 = (0, 1) and ε3 = ε2 − ε1 = (−1, 1). The boundary

and coboundary operators are determined by the rules

∂e1(l, 1) = e0(l + ε1) − e0(l), (49a)

∂e2(l, 1) = e1(l, 1) + e1(l + ε1, 3) − e1(l, 2), (49b)

δe0(l) = −e1(l, 1) − e1(l, 2) − e1(l, 3)

+e1(l − ε1, 1) + e1(l − ε2, 2) + e1(l − ε3, 3), (49c)

δe1(l, 1) = e2(l, 1) − e2(l − ε3, 2), (49d)

and all symmetry-related identities. The corresponding DFT representation (39) is

Q1 = (eiθ1 − 1, eiθ2 − 1, eiθ3 − 1), (50a)

Q2 =




1 −eiθ3

−1 1

eiθ1 −1


 , (50b)

where θ3 = θ2 − θ1. A cup product can be defined by adopting the partial ordering

of the vertices implied by the orientation of the 1-cells. Cells in the 1-skeleton are

Fig. 4. Lattice complex representation of a hexagonal lattice and indexing scheme.
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Fig. 5. Lattice complex representation of the simple-cubic lattice and indexing scheme. (a)
Vertex set. (b) Elementary segment set. (c) Elementary area set. (d) Elementary volume set.

multiplied as in the monatomic chain. The remaining non-zero products are

e0(l) ∪ e2(l, 1) = e2(l, 1), (51a)

e2(l, 1) ∪ e0(l + ε2) = e2(l, 1), (51b)

e0(l) ∪ e2(l, 2) = −e2(l, 2), (51c)

e2(l, 2) ∪ e0(l + ε2) = −e2(l, 2), (51d)

e1(l, 1) ∪ e1(l + ε1, 3) = e2(l, 1), (51e)

e1(l, 3) ∪ e1(l + ε3, 1) = −e2(l, 2). (51f)

It is interesting to note that there is exactly one pair of 1-cells which generates each

1-cell by multiplication. Likewise, there is one vertex which operates on each 1-cell

from the left, and another which operates from the right.

2.3.4. The simple cubic lattice. The simple-cubic (SC) Bravais lattice is gener-

ated by the basis {(a, 0, 0), (0, a, 0), (0, 0, a)}. The lattice complex representation
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of the SC lattice is shown in Fig. 5. The cubic lattice furnishes an example of a

three-dimensional lattice complex that is CW but not simplicial. The connectedness,

and translation and symmetry invariance requirements are satisfied by choosing the

elementary volumes to be cubes, as shown in Fig. 5c. It is evident from this figure

that the vertex and elementary volume sets can be indexed as three-dimensional

Bravais lattices. We also note that there are three types of elementary segments,

along each of the cube directions, and three types of elementary areas. Hence, the

segment and area sets have the structure of complex lattices comprising of three

simple sublattices each. We choose the indexing scheme shown in Fig. 5, where

ε1 = (1, 0, 0), ε2 = (0, 1, 0), and ε3 = (0, 0, 1). The boundary and coboundary

operators are determined by the rules

∂e1(l, 1) = e0(l + ε1) − e0(l), (52a)

∂e2(l, 1) = e1(l, 2) + e1(l + ε2, 3) − e1(l + ε3, 2) − e1(l, 3), (52b)

∂e3(l) = e2(l + ε1, 1) − e2(l, 1) + e2(l + ε2, 2) − e2(l, 2)

+e2(l + ε3, 3) − e2(l, 3), (52c)

δe0(l) = −e1(l, 1) − e1(l, 2) − e1(l, 3) + e1(l − ε1, 1)

+e1(l − ε2, 2) + e1(l − ε3, 3), (52d)

δe1(l, 1) = −e2(l, 2) + e2(l − ε3, 2) + e2(l, 3) − e2(l − ε2, 3), (52e)

δe2(l, 1) = −e3(l) + e3(l − ε1), (52f)

and all the symmetry-related identities. The corresponding DFT representation (39)

is

Q1 =
(
eiθ1 − 1, eiθ2 − 1, eiθ3 − 1

)
, (53a)

Q2 =




0, eiθ3 − 1, 1 − eiθ2

1 − eiθ3 , 0, eiθ1 − 1

eiθ2 − 1, 1 − eiθ1 , 0


 , (53b)

Q3 =




eiθ1 − 1

eiθ2 − 1

eiθ3 − 1


 . (53c)

A cup product can be defined by multiplying cells in the 2-skeleton, as in the square

lattice, and appending the following non-zero products:

e2(l, 1) ∪ e1(l + ε2 + ε3, 1) = e3(l), (54a)

e1(l, 1) ∪ e2(l + ε1, 1) = e3(l), (54b)

e2(l, 2) ∪ e1(l + ε1 + ε3, 2) = e3(l), (54c)

e1(l, 2) ∪ e2(l + ε2, 2) = e3(l), (54d)

e0(l) ∪ e3(l) = e3(l), (54e)

e3(l) ∪ e0(l + ε1 + ε2 + ε3) = e3(l). (54f)

It is straightforward to verify that this product is associative and satisfies the

coboundary formula (21). As in the case of the square lattice, it is also interesting
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Fig. 6. Lattice complex representation of the face-centered cubic lattice and indexing
scheme. (a) Vextex set. (b) Elementary segment set.

to note that every 3-cell is generated in four different ways by the multiplication of

certain pairs of 1 and 2-cells. In addition there are exactly two vertices which act

on a 3-cell, one on the left and the other on the right.

2.3.5. The face-centered cubic lattice. The face-centered cubic (FCC) Bravais

lattice is generated by the basis {(0, a/2, a/2), (a/2, 0, a/2), (a/2, a/2, 0)}. A

lattice complex representation of the FCC lattice is shown in Figs. 6, 7 and 8. The

complex is chosen so as to contain the commonly observed 1
2
〈110〉 slip directions

and {111} slip planes. It is evident from the figures that the vertex set can be indexed

as a simple lattice; the elementary segment set as a complex lattice comprising six

simple sublattices; the elementary area set as a complex lattice comprising eight

simple sublattices; and the elementary volume set as a complex lattice comprising

of three sublattices. We choose the indexing scheme, shown in Figs. 6, 7 and 8,

where ε1 = (1, 0, 0), ε2 = (0, 1, 0), ε3 = (0, 0, 1), ε4 = ε2 − ε1 = (−1, 1, 0),

ε5 = ε3 − ε1 = (−1, 0, 1) and ε6 = ε3 − ε2 = (0, −1, 1). The boundary and

coboundary operators are determined by the rules

∂e1(l, 1) = e0(l + ε1) − e0(l), (55a)

∂e2(l, 1) = e1(l, 5) − e1(l + ε6, 4) − e1(l, 6), (55b)

∂e3(l, 1) = e2(l + ε2, 1) + e2(l + ε2, 4) + e2(l + ε2, 6) + e2(l + ε2, 8)

−e2(l + ε5, 5)− e2(l + ε5, 7)− e2(l + ε5, 2)−e2(l + ε5, 3), (55c)

∂e3(l, 2) = e2(l + ε6, 3) − e2(l + ε3, 6) + e2(l + ε5, 7) − e2(l, 1), (55d)

δe0(l) = −e1(l, 1) − e1(l, 2) − e1(l, 3) − e1(l, 4)

−e1(l, 5) − e1(l, 6), +e1(l − ε1, 1)+e1(l − ε2, 2)

+e1(l − ε3, 3)+e1(l − ε4, 4)+ e1(l − ε5, 5)+e1(l − ε6, 6), (55e)



172 M. P. Ariza & M. Ortiz

2

1

(a)

4

3

(b)

5

6

(c)

7

8

(d)

Fig. 7. Lattice complex representation of the face-centered cubic lattice and indexing
scheme. Elementary area set.

δe1(l, 1) = e2(l, 7) − e2(l + ε1, 8) − e2(l, 5) + e2(l + ε1, 6), (55f)

δe2(l, 1) = e3(l − ε2, 1) − e3(l, 2), (55g)

and all symmetry-related identities. The corresponding DFT representation (39) is

Q1 = (eiθ1 − 1, eiθ2 − 1, eiθ3 − 1, eiθ4 − 1, eiθ5 − 1, eiθ6 − 1), (56a)

Q2 =




0 0 0 0 −1 e−iθ1 1 −e−iθ1

0 0 −1 e−iθ2 1 −e−iθ2 0 0

0 0 e−iθ6 −e−iθ2 0 0 −e−iθ5 e−iθ1

−eiθ6 e−iθ5 0 0 −eiθ1 e−iθ2 0 0

1 −e−iθ5 0 0 0 0 e−iθ5 −1

−1 e−iθ6 −e−iθ6 1 0 0 0 0




, (56b)
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1

(a)

2

(b)

3

(c)

Fig. 8. Lattice complex representation of the face-centered cubic lattice and indexing
scheme. Elementary volume set.

Q3 =




eiθ2 −1 0

−eiθ5 0 eiθ3

−eiθ5 eiθ6 0

eiθ2 0 −eiθ2

−eiθ5 0 1

eiθ2 −eiθ3 0

−eiθ5 eiθ5 0

eiθ2 0 −eiθ1




. (56c)

A cup product can be defined by multiplying cells in the 2-skeleton, as in the

hexagonal lattice, and appending the following non-zero products:
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e2(l + ε2, 6) ∪ e1(l + ε2, 5) = e3(l, 1), (57a)

e2(l + ε2, 4) ∪ e1(l + ε3, 4) = e3(l, 1), (57b)

e2(l + ε5, 2) ∪ e1(l + ε5, 2) = e3(l, 1), (57c)

e2(l + ε5, 7) ∪ e1(l + ε3, 4) = e3(l, 1), (57d)

e2(l, 1) ∪ e1(l + ε5, 1) = e3(l, 2), (57e)

e0(l) ∪ e3(l, 1) = e3(l, 1), (57f)

e3(l, 1) ∪ e0(l + ε3 + ε4) = e3(l, 1), (57g)

e0(l) ∪ e3(l, 2) = e3(l, 2), (57h)

e3(l, 2) ∪ e0(l + ε3) = e3(l, 2), (57i)

and others related to these by symmetry. A straightforward calculation shows

that this product is associative and satisfies the coboundary formula (21). The

non-simplicial cell is obtained by the multiplication of four pairs of 1 and 2-cells,

whereas the two simplicial cells are generated by one pair each. All 3-cells are acted

upon by exactly two vertices, one acting on the left and another on the right.

2.3.6. The body-centered cubic lattice. The body-centered cubic (BCC) Bravais

lattice is generated by the basis {(−a/2, a/2, a/2), (a/2, −a/2, a/2),

(a/2, a/2, −a/2)}. A lattice complex representation of the BCC lattice is shown

in Figs. 9, 10 and 11. The complex is chosen so as to contain the 1
2
〈111〉 slip direc-

tions and {110} slip planes. Complexes containing other commonly observed slip

planes, such as {112}, may be constructed likewise. It is evident from the figures

that the vertex set can be indexed as a simple lattice; the elementary segment set as

a complex lattice comprising of seven simple sublattices; the elementary area set
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Fig. 9. Lattice complex representation of the body-centered cubic lattice and complex lattice
indexing scheme. (a) Vextex set. (b) Elementary segment set.
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Fig. 10. Lattice complex representation of the body-centered cubic lattice and complex
lattice indexing scheme. Elementary area set.

as a complex lattice comprising of twelve simple sublattices; and the elementary

volume set as a complex lattice comprising of twelve sublattices. We choose the

indexing scheme shown in Figs. 9, 10 and 11, where ε1 = (1, 0, 0), ε2 = (0, 1, 0),

ε3 = (0, 0, 1), ε4 = (1, 1, 1), ε5 = (0, 1, 1), ε6 = (1, 0, 1) and ε7 = (1, 1, 0). The

boundary and coboundary operators are determined by the rules

∂e1(l, 1) = e0(l + ε1) − e0(l), (58a)

∂e1(l, 5) = e0(l + ε5) − e0(l), (58b)

∂e2(l, 1) = −e1(l − ε2, 5) + e1(l − ε2, 2) + e1(l, 3), (58c)

∂e3(l, 1) = −e2(l + ε2, 1) + e2(l + ε5, 7) + e2(l, 8) − e2(l + ε4, 4), (58d)
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Fig. 11. Lattice complex representation of the body-centered cubic lattice and complex
lattice indexing scheme. Elementary volume set.
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δe0(l) = −e1(l, 1) − e1(l, 2) − e1(l, 3) − e1(l, 4)

−e1(l, 5) − e1(l, 6) − e1(l, 7) + e1(l − ε1, 1)

+e1(l − ε2, 2) + e1(l − ε3, 3) + e1(l − ε4, 4)

+e1(l − ε5, 5) + e1(l − ε6, 6) + e1(l − ε7, 7), (58e)

δe1(l, 1) = −e2(l, 2) + e2(l + ε1, 4) − e2(l + ε1, 5)

+e2(l, 7) − e2(l, 10) + e2(l + ε1, 12), (58f)

δe1(l, 5) = −e2(l + ε2, 1) − e2(l − ε1, 2) + e2(l + ε3, 3)

+e2(l + ε4, 4), (58g)

δe2(l, 1) = −e3(l − ε2, 1) + e3(l − ε7, 5), (58h)

and all symmetry-related identities. The corresponding DFT representation (39) is

Q1 = (eiθ1 − 1, eiθ2 − 1, eiθ3 − 1, eiθ4 − 1, eiθ5 − 1, eiθ6 − 1, eiθ7 − 1), (59a)

Q2 =




0 −1 0 e−iθ1 −e−iθ1 0 1 0 0 −1 0 e−iθ1

e−iθ2 0 −1 0 0 −e−iθ2 0 1 0 −e−iθ2 0 1

1 0 −e−iθ3 0 −1 0 e−iθ3 0 −1 0 e−iθ3 0

0 1 0 −e−iθ4 0 e−iθ4 0 −1 1 0 −e−iθ4 0

−e−iθ2 −eiθ1 e−iθ3 e−iθ4 0 0 0 0 0 0 0 0

0 0 0 0 e−iθ1 −e−iθ4 −e−iθ3 eiθ2 0 0 0 0

0 0 0 0 0 0 0 0 −eiθ3 e−iθ2 e−iθ4 −e−iθ1




,

(59b)

Q3 =




−eiθ2 0 0 0 eiθ7 0

0 0 1 0 −1 0

0 −eiθ3 eiθ6 0 0 0

−eiθ4 eiθ4 0 0 0 0

0 0 −eiθ1 0 0 eiθ7

0 0 −eiθ4 eiθ4 0 0

eiθ5 0 0 −eiθ3 0 0

1 0 0 0 0 −1

0 1 0 −1 0 0

0 eiθ5 0 0 0 −eiθ2

0 0 0 0 −eiθ4 eiθ4

0 0 0 eiθ6 −eiθ1 0




. (59c)

A cup product is induced by adopting the partial ordering of the vertices implied by

the orientation of 1-cells. Cells in the 2-skeleton are multiplied as in the hexagonal

complex. The remaining non-zero products are

e0(l) ∪ e3(l, 1) = e3(l, 1), (60a)

e3(l, 1) ∪ e0(l + ε4) = e3(l, 1), (60b)

e2(l + ε2, 1) ∪ e1(l + ε5, 1) = −e3(l, 1), (60c)

e1(l, 2) ∪ e2(l + ε5, 7) = e3(l, 1), (60d)

and those obtained from these by symmetry. Again it is interesting to note the

uniqueness of the representations of the 3-cells as products of their faces.
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3. Calculus on lattices

The objective of this section is to develop a lattice analog of the de Rham com-

plex in Rn (cf., e.g., [5]). In particular, we wish to extend to lattices the notions of

forms and differential operators, as well as the theory of integration of forms and cur-

rents. This extension results in natural definitions of boundaries and generalizations

of Stoke’s theorem, the Hodge decomposition theorem, the Gauss linking number

and other classical results and objects. As we shall see, the resulting framework

is ideally suited for the development of a mechanics of lattices, with and without

defects. In particular, the discrete version of the Gauss linking number which we

develop in Section 3.3 provides a natural measure of the degree of entanglement

of a dislocation ensemble. This entanglement contributes to the work-hardening of

crystals. In addition, the discrete analog of discrete dislocations loops and Burgers

circuits will be introduced in Section 5.1. As in the continuum setting, the discrete

linking number also provides a natural device for relating those classes and types

of objects.

3.1. The differential complex of a lattice

Consider a lattice complex X and its chain complex {Cp, ∂}. Let Ep be the set

of p-cells of the lattice. A real-valued exterior differential form of order p, or a

p-form, is a cochain with real coefficients. Thus, p-forms have the representation

ω =
∑

ep∈Ep

f (ep)ep, (61)

where f : Ep → R. Also p-forms with coefficients in an arbitrary abelian group

G may be defined likewise. The case G = Rn will arise frequently in subsequent

applications. In this context, we shall refer to the elementary p-cochains ep as ele-

mentary p-forms, and we shall denote by �p the set of p-forms over the lattice.

The value of the p-form (61) on a general p-chain cp is

〈ω, cp〉 =
∑

ep∈Ep

f (ep)〈ep, cp〉. (62)

The exterior derivative of a p-form is the (p + 1)-form

dω =
∑

ep∈Ep

f (ep)δep. (63)

Since δ2 = 0, we have immediately d2 = 0. It also follows immediately from the

properties of the coboundary operator that

〈dω, cp+1〉 = 〈ω, ∂cp+1〉 (64)

for all p-forms ω ∈ �p. Let now Y be a subcomplex of X. Let α, β ∈ �p and

suppose that α|Y = β|Y . Then,

〈α, ∂ep+1〉 = 〈β, ∂ep+1〉 (65)
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and

〈dα, ep+1〉 = 〈dβ, ep+1〉 (66)

for all (p + 1)-cells ep+1 of Y . Hence, dα|Y = dβ|Y , which shows that d is a local

operator. All the above definitions and operations rely solely on the abelian-group

structure of R under addition and, therefore, extend immediately to forms with

coefficients in an arbitrary abelian group G. When such an extension is necessary,

we shall denote by �p(X, G) the set of p-forms over X with coefficients in G.

The wedge-product of a real-valued p-form α =
∑

f ep and a real-valued

q-form β =
∑

geq may be defined as the real-valued (p + q)-form

α ∧ β =
∑

ep∈Ep

∑

eq∈Eq

f (ep)g(eq)ep ∪ eq . (67)

The wedge product confers �∗ = ⊕n
p=0�

p a graded algebra structure, and it inher-

its the essential properties of the cup product, namely, bilinearity, associativity, and

the coboundary formula

d(α ∧ β) = (dα) ∧ β + (−1)p α ∧ (dβ) (68)

for all α ∈ �p and β ∈ �q .

The graded algebra �∗ together with the operator d may be regarded as a dis-

crete de Rham complex on the lattice X. A form α ∈ �p is closed if dα = 0, and

exact if there is a form β ∈ �p−1 such that α = dβ. The kernel of d are the closed

forms and the image of d are the exact forms. The pth de Rham cohomology of X

is the vector space Hp = (kerd ∩ �p)/(imd ∩ �p). The cohomology of X is the

direct sum H ∗ = ⊕p∈ZHp. In Rn, Poincaré’s lemma states that H ∗ = R if n = 0

and H ∗ = 0 otherwise. We will require the cohomology of a perfect n-dimensional

lattice to be identical to that of Rn.

Considerations of duality lead naturally to the definition of p-vector fields and

the codifferential operator. A real-valued vector field of order p, or a p-vector field,

is a chain with real coefficients and arbitrary (not necessarily finite) support. Thus,

p-vector fields have the representation

u =
∑

ep∈Ep

f (ep)ep, (69)

where f : Ep → R. We shall denote by �p the space of all p-vector fields over

X. If u =
∑

f ep is a p-vector field and α =
∑

gep is a p-form we write

〈α, u〉 =
∑

ep∈Ep

f (ep)g(ep). (70)

We define the codifferential operator δ : �p → �p−1 by the identity

〈α, δu〉 = 〈dα, u〉 (71)
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for all α ∈ �p−1. It follows from (18) that the codifferential operator of a p-vector

field u =
∑

f ep admits the representation

δu =
∑

ep∈Ep

f (ep)∂ep. (72)

The preceding definitions and operations retain there meaning for p-forms and p-

vector fields with coefficients in an inner-product space H . In applications the case

H = Rn, endowed with the standard inner product, will arise frequently. However,

in this simple case we may equivalently perform all differential operations and

duality operations component by component.

The exterior derivative of a p-form α inherits the matrix representation

dα(ep+1) =
∑

ep∈Ep

L(ep, ep+1)α(ep) (73)

directly from (63) and the matrix representation (27) of the coboundary operator.

In addition, the complex Bravais lattice representation (32) and the discrete Fou-

rier representation (40) of the coboundary operator carry over mutatis mutandis to

the exterior derivative. Likewise, the codifferential operator of a p-vector field u

inherits the matrix representation

δu(ep−1) =
∑

ep∈Ep

L(ep−1, ep)u(ep) (74)

directly from (72) and the matrix representation (26). Here again, the complex

Bravais lattice representation (31) and the discrete Fourier representation (38) of

the boundary operator carry over mutatis mutandis to the codifferential.

Given forms α =
∑

f ep, β =
∑

gep and fields u =
∑

aep, v =
∑

bep

taking values in a Hilbert space H , the corresponding L2-products are

〈α, β〉 =
∑

ep∈Ep

〈f (ep), g(ep)〉, (75a)

〈u, v〉 =
∑

ep∈Ep

〈a(ep), b(ep)〉. (75b)

These products enable the introduction of the flat and sharp operators, ♭ : �p → �p

and ♯ : �p → �p, respectively, through the usual identities (cf., [2])

〈α, u♭〉 = 〈α, u〉, (76a)

〈α♯, u〉 = 〈α, u〉. (76b)

Clearly, α♯ =
∑

f ep and u♭ =
∑

aep, and thus the flat and sharp operators simply

extend to forms and fields with the mappings ∗ : Cp → Cp and ∗ : Cp → Cp

defined in Section 2.2. Using the sharp and flat operators it is possible to extend the

differential and codifferential operators to fields and forms, respectively, by setting:
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δα = (δ(α♯))♭ and du = (d(u♭))♯. It is also possible to define a discrete Hodge

∗-operator, i.e., and isomorphism ∗ : �p → �n−p, through the identity

〈α, β〉 = 〈α ∧ ∗β, µ〉 = 〈β ∧ ∗α, µ〉, (77)

where µ =
∑

en is the unit n-chain, or volume form, taking the value 1 on

all n-cells. By linearity, in suffices to specify the ∗-operator for all elementary

p-cochains ep. It can be readily verified that ∗ep is the unique elementary (n−p)-

cochain en−p such that ep ∪ en−p = en for some elementary n-cochain en. Indeed,

〈α ∧ ∗ep, µ〉 = α(ep) = 〈α, ep〉 (78)

and (77) is satisfied identically. Thus, the Hodge ∗-operator is related to the cap

product (cf. Section 2.2) through the identity

∗α =
∑

ep∈Ep

f (ep)(ep ∩ µ)∗, (79)

where α =
∑

f ep.

As in the conventional Hodge-de Rham theory we can define the discrete

Laplace-de Rham operator � : �p → �p by the formula � = dδ + δd. A form α

such that �α = 0 is said to be harmonic. We shall denote by Kp the vector space

of harmonic p-forms. Then we have the following discrete analog of the classical

Hodge decomposition theorem.

Proposition 1. The following equation holds:

�p = d�p−1 ⊕ δ�p+1 ⊕ Kp, (80)

where the decomposition is L2-orthogonal.

Proof. (cf., [2], Theorem 7.5.3). Let α ∈ �p. Then �α = 0 if and only if dα = 0

and δα = 0. Indeed, if dα = 0 and δα = 0 then �α = dδα + δdα = 0. Con-

versely, let �α = 0. Then 〈�α, α〉 = 〈dδα + δdα, α〉 = 〈dδα, α〉 + 〈δdα, α〉 =
〈dα, dα〉+〈δα, δα〉 = 0, whence it follows that dα = 0 and δα = 0. Suppose now

that ω = dα + δβ + γ , with ω ∈ �p, α ∈ �p−1, β ∈ �p+1 and γ ∈ Kp. Then

〈dα, δβ〉 = 〈d2α, β〉 = 〈α, δ2β〉 = 0. In addition, 〈dα, γ 〉 = 〈α, δγ 〉 = 0, and

〈δβ, γ 〉 = 〈β, dγ 〉 = 0. Thus, the spaces d�p−1, δ�p+1 and Kp are orthogonal.

Let now Cp be the orthogonal complement of d�p−1 ⊕ δ�p+1. Clearly, Kp ⊂ Cp.

Conversely, let γ ∈ Cp. Then 〈dα, γ 〉 = 〈α, δγ 〉 = 0 for all α ∈ �p−1, and δγ = 0.

In addition, 〈δβ, γ 〉 = 〈β, dγ 〉 = 0 for all β ∈ �p+1, and dγ = 0. Hence, �γ = 0,

and Cp ⊂ Kp. ⊓⊔

The Hodge decomposition theorem supplies the following direct link between

harmonic functions and cohomology.

Corollary 1. Kp and Hp are isomorphic.
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Proof. (cf., [2], Corollary 7.5.4). Let γ ∈ Kp. Then �γ = 0, dγ = 0 and

γ ∈ kerdp. Hence, Kp can be mapped to kerdp by inclusion, and then to Hp by

projection, i.e., by assigning to γ its equivalence class [γ ]. We wish to show that

the mapping Kp → Hp thus defined is an isomorphism. Suppose [γ ] = 0. This

requires that there is a β ∈ �p−1 such that γ = dβ, i.e., that γ be exact. But,

since γ is harmonic we additionally have δγ = 0. Therefore, 〈γ, γ 〉 = 〈γ, dβ〉 =
〈δγ, β〉 = 0. Hence γ = 0 and the map γ → [γ ] is one-to-one. Suppose now that

[ω] ∈ Hp. By the Hodge theorem we can write ω = dα + δβ + γ , where γ ∈ Kp.

But 0 = dω = dδβ. Hence 〈δβ, δβ〉 = 〈β, dδβ〉 = 0 and δβ = 0. This leaves

ω = dα + γ and [ω] = [γ ], and thus the map γ → [γ ] is onto. ⊓⊔

For perfect lattices, the Hodge decomposition theorem reduces to the following

form.

Corollary 2. Let X be a perfect lattice complex. Let ω be a p-form over X. Then,

ω = dα + δβ, (81)

where

α = �−1δω, (82a)

β = �−1dω. (82b)

Proof. For a perfect lattice, Kp = Hp = 0 and the Hodge decomposition reduces

to (81). In addition, we have the identities: d�−1δω = �−1dδω and δ�−1dω =
�−1δdω. The first of these identities is verified as follows: �d�−1δω = (dδ +
δd)d�−1δω = dδd�−1δω = d(δd +dδ)�−1δω = d��−1δω = dδω. The second

identity is verified as follows: �δ�−1dω = (δd + dδ)δ�−1dω = δdδ�−1dω =
δ(dδ + δd)�−1dω = δ��−1dω = δdω. By virtue of the preceding identities we

have dα + δβ = d�−1δω + δ�−1dω = �−1dδω + �−1δdω = �−1(dδ + δd)ω

= �−1�ω = ω. ⊓⊔

3.2. Integration on lattices

The characteristic chain of a subset A of Ep is

χA =
∑

ep∈A

ep. (83)

The integral of a p-form α over A is defined as
∫

A

α ≡ 〈α, χA〉. (84)

We may equivalently regard 〈α, χA〉 as the action of A on the form α, and A as a

current, i.e., a linear functional on forms (cf., e.g., [31]). If α =
∑

f (ep)ep then

∫

A

α =
∑

ep∈A

f (ep). (85)
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Suppose now that A ⊂ Ep+1 and ω ∈ �p. Then

∫

A

dω = 〈dω, χA〉 = 〈ω, ∂χA〉. (86)

We define the integral of ω over the boundary of A as

∫

∂A

ω = 〈ω, ∂χA〉. (87)

Then we have

∫

A

dω =
∫

∂A

ω, (88)

which may be regarded as a discrete version of Stoke’s theorem. As an example of

an application, the integration-by-parts formula

∫

∂A

α ∧ β =
∫

A

(dα) ∧ β +
∫

A

(−1)pα ∧ (dβ), (89)

where α ∈ �p, β ∈ �q , and A ⊂ Ep+q+1, follows directly by integrating the

coboundary formula (68) over A and applying Stoke’s theorem to the left-hand

side of the resulting equation.

3.3. The Gauss linking number

Throughout this section we restrict our attention to three-dimensional lattices,

i.e., n = 3. The linking number of two 1-forms ω, ω′ ∈ �1 is defined to be

Link(ω, ω′) =
∫

E3

ω ∧ dω′. (90)

From the integration by parts formula (89) it follows that

Link(ω, ω′) =
∫

E3

dω ∧ ω′. (91)

Clearly, Link(ω, ω′) = 0 if either ω or ω′ is exact. In particular, let A ∈ E0 and let

χA be its characteristic chain, regarded as a 0-form. Then dχA is a

1-form which represents the closed oriented boundary ∂A of A. It then follows

that Link(dχA, ω′) = 0, i.e., the linking number of a closed oriented surface with

any other 1-form is necessarily zero. Suppose instead that ω = χB ∧ dχA for some

B ∈ E0 intersecting A. Then, ω represents a subset C of ∂A determined by its

intersection with B. In addition, it follows from an application of the coboundary

formula (68) that dω = dχB ∧ dχA = dχA ∧ dχB , which represents the loop D

obtained by intersecting the boundaries ∂A and ∂B. Likewise, let ω′ = χB ′ ∧ dχA′

for some distinct but intersecting sets A′, B ′ ∈ E0, and let the oriented area C′
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and oriented loop D′ be defined as before. Now suppose that D and C′ intersect

transversally, i.e., dω ∧ ω′ is supported on isolated 3-cells. Then,

Link(D, D′) =
∑

D∩C′
±1, (92)

where the sum extends over the support of dω ∧ω′ and the sign is positive at inter-

sections where the orientations of D and C′ are consistent, and negative otherwise.

It is readily shown (e.g., [5], §17) that Link(D, D′) is independent of the choices

made in the preceding definition (cf., [5] also for the connection between the linking

number and the Hopf invariant).

If the lattice is perfect, then ω may be written in the form (81). Inserting this

representation into (90) we obtain

Link(ω, ω′) =
∫

E3

dα ∧ dω′ +
∫

E3

δβ ∧ dω′. (93)

But the first term on the right-hand side vanishes by virtue of (89) and we have

Link(ω, ω′) =
∫

E3

δβ ∧ dω′. (94)

Furthermore, inserting (82b) into this expression we obtain

Link(ω, ω′) =
∫

E3

δ�−1dω ∧ dω′. (95)

This identity generalizes the well-known integral formula (3) for the Gauss linking

number of two loops C1 and C2 in R3 (e.g., [21]).

3.4. Examples of linking relations

By way of illustration, we may examine the linking number for the cases of the

simple cubic, BCC and FCC lattices described in Sections 2.3.4, 2.3.6 and 2.3.5.

By the bilinearity of the linking number, it suffices to provide rules for the linking

of pairs of elementary 1-cells.

3.4.1. The simple cubic lattice. In the simple cubic lattice the links that can be

formed with a 1-cell, such as e1(l, 2), are:

Link
(
e1(l + ε2 + ε3, 1), e1(l, 2)

)
= 1, (96a)

Link
(
e1(l + ε1 + ε2, 3), e1(l, 2)

)
= 1, (96b)

Link
(
e1(l + ε2, 3), e1(l, 2)

)
= 1, (96c)

Link
(
e1(l + ε2, 1), e1(l, 2)

)
= 1. (96d)

All other linking relations may be deduced by symmetry.
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3.4.2. The body-centered cubic lattice. In the BCC lattice the 1-cells in the cube

direction, such as e1(l, 5), e1(l, 6) and e1(l, 7), do not form any links. The links

that can be formed with a diagonal 1-cell, such as e1(l, 1), are:

Link
(
e1(l + ε6, 2), e1(l, 1)

)
= 1, (97a)

Link
(
e1(l + ε7, 3), e1(l, 1)

)
= 1, (97b)

Link
(
e1(l + ε1, 2), e1(l, 1)

)
= 1, (97c)

Link
(
e1(l + ε1, 3), e1(l, 1)

)
= 1, (97d)

with all other linking relations following by symmetry.

3.4.3. The face-centered cubic lattice. In the FCC lattice all 1-cells are symme-

try related. It therefore suffices to enumerate the links that can be formed with one

1-cell, with all other linking relations following by symmetry. Taking e1(l, 1) as

the representative 1-cell we obtain

Link
(
e1(l − ε4, 4), e1(l, 1)

)
= 1, (98a)

Link
(
e1(l + ε2, 6), e1(l, 1)

)
= 1, (98b)

Link
(
e1(l + ε1, 4), e1(l, 1)

)
= 1, (98c)

Link
(
e1(l − ε5, 6), e1(l, 1)

)
= 1, (98d)

with all other linking relations following by symmetry.

4. Harmonic lattices

In this section we apply the machinery developed in the preceding sections

to the formulation of a mechanics of lattices. An important observation is that the

essential structure of that mechanics follows from material-frame indifference, pos-

sibly combined with additional assumptions of locality. In particular, invariance of

the energy with respect to rigid-body rotations and translations determines the form

of the deformation and stress fields, both for finite and linearized kinematics. The

equilibrium equations then follow from stationarity, and can be given a compact

expression using discrete differential operators. In addition, we briefly delve into

basic questions of analysis pertaining to the equilibrium problem, and investigate

the continuum limit of the energy function of harmonic lattices in the sense of

Ŵ-convergence.

4.1. The mechanics of lattices

Consider a crystal lattice described by its corresponding lattice complex X. A

deformation of a crystal is a mapping y : E0 → Rn. Thus, y(e0) is the position of

vertex e0 ∈ E0 in the deformed configuration of the crystal. We shall assume that

the energy of a deformed crystal can be written as a function of the form E(y),

i.e., as a function E : �0(X, Rn) → R. For instance E(y) may be approximated
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by means of a suitable empirical potential. Examples of commonly used empirical

or semi-empirical potentials include: pairwise potentials such as Lennard-Jones

[1]; the embedded-atom method (EAM) for FCC metals [11]; the modified embed-

ded-atom method (MEAM) for BCC metals [50]; the Finnis-Sinclair potential

for transition metals [13]; MGPT pseudo-potentials [32]; Stillinger-Weber for

covalent crystals [46]; bond-order potentials [41]; and others.

Energy functions can often be simplified by recourse to suitable assumptions

regarding the nature of the atomic interactions. Atoms in a crystal can be grouped

by shells, according to their distance to a reference atom. Then, nearest-neighbor

interactions refer to interactions extending to the first shell of atoms; next-to-nearest

neighbor interactions consist of interactions extending to the second shell of atoms;

and so on. Some empirical potentials restrict the range of interactions between atoms

to a few atom shells. For instance, the simplest implementations of the EAM account

for nearest-neighbor interactions only. Another common set of restrictions under-

lying empirical potentials concerns the extent of multi-body interactions. Thus, the

energy function E(y) is said to consist of two-body interactions if it can be written

as a sum over energy functions depending on the positions of pairs of atoms; it

is said to consist of three-body interactions if E(y) can be written as a sum over

functions depending of the positions of three atoms; and so on. For instance, the

Lennard-Jones potential accounts for pairwise interactions only.

The energy function E(y) must be material-frame indifferent, i.e., invariant

under superposed rigid-body motions. Thus we must have

E(Ry + c) = E(y) (99)

for all R ∈ SO(n) and c ∈ Rn. Let y1 ∼ y2 if and only if y2 = y1 + c for some

c ∈ Rn. Then ∼ is an equivalence relation, and translation invariance requires that E

be expressible as a function of the quotient space�0(X, Rn)/ ∼. But�0(X, Rn)/ ∼
may be identified with the range of �0(X, Rn) by d . Thus, if y1 ∼ y2 then clearly

dy1 = dy2. Conversely, if dy1 = dy2, then y1 and y2 differ by a constant. Hence

it follows that the energy function is expressible as a function of the deformation

dy : E1 → Rn. We shall denote E(dy) the resulting energy function. Rotation

invariance further requires that

E(Rdy) = E(dy) (100)

for all R ∈ SO(n), i.e., the function E(dy) is isotropic. From Cauchy’s representa-

tion formula for isotropic functions of an arbitrary number of vectors (cf., e.g., [49])

it follows that the energy must be expressible as a function E(C) of the discrete

right Cauchy-Green deformation field C : E1 × E1 → R defined as

C(e1, e
′
1) = dy(e1) · dy(e′

1) (101)

for every pair of 1-cells e1 and e′
1. Note that no assumption of locality is implied

in the representation E(C), which in principle may depend on the value of C for

all pairs of 1-cells.

The stable configurations of interest are the minimizers of E(y), possibly over

a finite domain subject to appropriate boundary conditions and under the action of
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applied loads. However, the energy landscape defined by E(y) is typically of great

complexity, with numerous energy wells, e.g., corresponding to lattice-invariant

deformations. In order to make progress we shall resort to two main approxima-

tions, namely, the harmonic approximation and the eigendeformation formalism.

A harmonic crystal is a crystal whose energy is quadratic in the displacement

field u(e0) = y(e0) − x(e0). We may obtain the harmonic approximation of the

energy by expanding the function E(x + u) in the Taylor series of u. The result is

a quadratic function of the form

E(u) =
∫

E1

∫

E1

∫

E1

∫

E1

1

2
C(e1, e

′
1, e

′′
1 , e′′′

1 )ε(e1, e
′
1)ε(e

′′
1 , e′′′

1 )≡ 1

2
〈Cε, ε〉, (102)

where ε : E1 × E1 → R, defined as

ε(e1, e
′
1) = 1

2

[
du(e1) · dx(e′

1) + dx(e1) · du(e′
1)
]

= ε(e′
1, e1), (103)

is the discrete strain field. We shall also denote by ε(u) the operator that maps

a displacement to its corresponding strain field. Then, the energy (102) can be

rewritten as

E(u) = 1

2
〈Cε(u), ε(u)〉. (104)

The coefficients C : E4
1 → R are harmonic moduli which measure the strength of

the interactions between 1-cells of the lattice. Owing to the symmetry of the strain

field, in (102) we may suppose

C(e1, e
′
1, e

′′
1 , e′′′

1 ) = C(e′
1, e1, e

′′
1 , e′′′

1 ) = C(e1, e
′
1, e

′′′
1 , e′′

1) (105)

without loss of generality. We verify that the discrete strain field is indeed invari-

ant under superposed rigid-body displacements, i.e., under transformations of the

form u → u + c + ωx, c ∈ Rn, ω ∈ so(3), and therefore the energy (102) is

infinitesimally material-frame indifferent. Inserting (103) into (102) we obtain the

representation

E(u) =
∫

E1

∫

E1

1

2
du(e1) · B(e1, e

′
1)du(e′

1) ≡ 1

2
〈Bdu, du〉, (106)

where

B(e1, e
′
1) =

∫

E1

∫

E1

C(e1, e
′′
1 , e′

1, e
′′′
1 )dx(e′′

1) ⊗ dx(e′′′
1 ). (107)

In addition, using the representation (73) of the differential we obtain

E(u) =
∫

E0

∫

E0

1

2
u(e0) · A(e0, e

′
0)u(e′

0) ≡ 1

2
〈Au, u〉, (108)

where

A(e0, e
′
0) =

∫

E1

∫

E1

L(e0, e1)L(e′
0, e

′
1)B(e1, e

′
1). (109)
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The function A : E2
0 → symRn×n collects the harmonic force constants of the

crystal. All moduli arising in the preceding representations of the energy must be

translation and symmetry invariant. In addition, we have the symmetry relations

C(e1, e
′
1, e

′′
1 , e′′′

1 ) = C(e′′
1 , e′′′

1 , e1, e
′
1), (110a)

B(e1, e
′
1) = BT (e′

1, e1), (110b)

A(e0, e
′
0) = AT (e′

0, e0). (110c)

Finally, by translation invariance we have the representations

Bdu = � ∗ du, (111a)

Au = � ∗ u, (111b)

where � and � are the force-constant fields of the lattice. Since (111a) and (111b)

are in convolution form, an application of Parseval’s identity and the convolution

theorem yields the additional representations:

E(u) = 1

(2π)n

∫

[−π,π ]n
1

2
〈�̂(θ)û(θ), û∗(θ)〉 dθ, (112a)

E(u) = 1

(2π)n

∫

[−π,π ]n
1

2
〈�̂(θ)P ∗(θ)û(θ), P (θ)û∗(θ)〉 dθ, (112b)

which will be extensively used in subsequent analyses.

Taking variations of (102) we obtain

Ė =
∫

E1

∫

E1

σ(e1, e
′
1)ε̇(e1, e

′
1) ≡ 〈σ, ε̇〉, (113)

where

σ(e1, e
′
1) =

∫

E1

∫

E1

C(e1, e
′
1, e

′′
1 , e′′′

1 )ε(e′′
1 , e′′′

1 ) (114)

or, in invariant notation,

σ = Cε (115)

is the discrete stress field. This relation may be regarded as a discrete version of

Hooke’s law. We note that the stress field is symmetric, i.e.,

σ(e1, e
′
1) = σ(e′

1, e1). (116)

Inserting (103) in (113) we further obtain

Ė =
∫

E1

τ(e1) · du̇(e1) ≡ 〈τ, du̇〉, (117)

where

τ(e1) =
∫

E1

σ(e1, e
′
1)dx(e′

1) (118)



Discrete Crystal Elasticity and Discrete Dislocations in Crystals 189

or, in invariant notation,

τ = σdx (119)

is an internal force field. The equilibrium equation is, therefore,

δτ = 0. (120)

The equilibrium conditions across the boundary of a domain can be ascertained

likewise. Let A ⊂ E1. Then (117) can be split as

Ė =
∫

A

τ(e1) · du̇(e1) +
∫

E1−A

τ(e1) · du̇(e1)

=
∫

E1

χAτ(e1) · du̇(e1) +
∫

E1

χE1−Aτ(e1) · du̇(e1), (121)

and stationarity requires that

δ(χAτ)(e0) + δ(χE1−Aτ)(e0) = 0 (122)

which, for vertices e0 on the boundary ∂A, may be regarded as a discrete trac-

tion-equilibrium equation. An equation of equilibrium in terms of the displace-

ment field can be obtained as follows. From (120) we have that, for any test field

v ∈ �0(X, Rn),

0 = 〈δτ, v〉 = 〈τ, dv〉 = 〈σdx, dv〉 = 〈Cε(u), ε(v)〉 = 〈Au, v〉 (123)

and, hence, the equations of equilibrium take the form

δτ = Au = 0, (124)

which can also be derived by taking variations of (104) directly.

Further restrictions on the force constants, which facilitate their identification,

are obtained from macroscopic properties of the lattice such as the elastic moduli.

In order to make this connection, consider a stress field σ : E1 ×E1 → R over the

lattice and let τ : E1 → Rn be the corresponding internal force field. Suppose in

addition that an incremental deformation u̇ : E0 → Rn is applied to the stressed

lattice. Let Y be a subcomplex of X consisting of n-cells and their faces, henceforth

referred to as a sub-body, and let |Y | be its volume. The tractions on the boundary

of Y are given by δ(χE1(Y )τ), equation (122), and their deformation power is

Ė(Y ) =
∫

E0

δ(χE1(Y )τ)(e0) · u̇(e0)

=
∫

E1

(χE1(Y )τ)(e1) · du̇(e1)

=
∫

E1(Y )

τ(e1) · du̇(e1)

=
∫

E1(Y )

∫

E1

σ(e1, e
′
1)dx(e′

1) · du̇(e1)

=
∫

E1(Y )

∫

E1

σ(e1, e
′
1)ε̇(e1, e

′
1). (125)
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Suppose that the incremental deformation is of the form du̇ = ˙̄εdx, where ˙̄ε ∈
symRn×n represents a uniform macroscopic strain rate. For this particular case we

have

Ė(Y ) =
{∫

E1(Y )

∫

E1

σ(e1, e
′
1)dx(e1) ⊗ dx(e′

1)

}
· ˙̄ε (126)

and, hence, the average macroscopic stress over Y is

σ̄ (Y ) = 1

|Y |

∫

E1(Y )

∫

E1

σ(e1, e
′
1)dx(e1) ⊗ dx(e′

1)

= 1

|Y |

∫

E1(Y )

τ(e1) ⊗ dx(e1), (127)

so that Ė(Y ) = |Y |σ̄ (Y ) · ˙̄ε. Assume now that the state of stress is itself the result

of a uniform macroscopic strain ε̄ ∈ symRn×n, i.e.,

σ(e1, e
′
1) =

{∫

E1

∫

E1

C(e1, e
′
1, e

′′
1 , e′′′

1 )dx(e′′
1) ⊗ dx(e′′′

1 )

}
ε̄, (128)

which follows from (114) by setting du = ε̄dx. Since, in this case, the state of

stress and deformation of the lattice is uniform, it follows that, for sufficiently large

Y , σ̄ (Y ) converges to

σ̄ij = cijkl ε̄kl, (129)

where

cijkl ∼ 1

|Y |

∫

E1(Y )

∫

E1

∫

E1

∫

E1

C(e1, e
′
1, e

′′
1 , e′′′

1 )

dxi(e1)dxj (e
′
1)dxk(e

′′
1)dxl(e

′′′
1 )

∼ 1

|Y |

∫

E1(Y )

∫

E1

Bik(e1, e
′′
1)dxj (e1)dxl(e

′′
1) (130)

are the elastic moduli of the lattice. We note that the requisite major and minor

symmetries cijkl = cklij = cjikl = cij lk of the elastic moduli follow directly from

(105).

An alternative expression for the elastic moduli in terms of force constants may

be obtained as follows: insert representation (73) of dx into (130) to obtain

cijkl ∼ 1

|Y |

∫

E0

∫

E0

∫

E1(Y )

∫

E1

L(e0, e1)L(e′
0, e

′
1)Bik(e1, e

′
1)xj (e0)xl(e

′
0). (131)

Using (109) we have, asymptotically for large Y ,

cijkl ∼ 1

|Y |

∫

E0(y)

∫

E0

Aik(e0, e
′
0)xj (e0)x1(e

′
0) (132)

or, equivalently,

cijkl ∼ − 1

2|Y |

∫

E0(Y )

∫

E0

Aik(e0, e
′
0)(xj (e0) − xj (e

′
0))(xl(e0) − xl(e

′
0)) (133)
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For a simple lattice, by translation invariance and representation (111b) we have,

explicitly,

cijkl = −1

2�

∑

l∈Zn

�ik(l)xj (l)xl(l), (134)

where the elastic moduli are now expressed simply in terms of the force constants

of the lattice.

It is interesting to note that the minor symmetries of cijkl are not evident in

(134). Indeed, those minor symmetries do not hold for arbitrary choices of the

force-constant field �, but only for force-constant fields of the form (109) dic-

tated by material-frame indifference. The restrictions imposed by material-frame

indifference on the force constants have been addressed in [43, 45], but have not

always been recognized in the literature, where the force constants are often mis-

takenly regarded as fundamental and subject to no restrictions other than material

symmetry.

4.2. Equilibrium problem

Suppose now that a crystal lattice is acted upon by a distribution of forces

f ∈ �0. We wish to determine the equilibrium configurations of the crystal, i. e.,

the solutions of the equilibrium equation

Au = f (135)

under appropriate boundary and forcing conditions. Problems arising in applica-

tions frequently fall into the following categories: (i) f has bounded support and

u decays to 0 at infinity; (ii) f and u are periodic; (iii) f and u are periodic in

certain directions, and f has bounded support and u decays to 0 at infinity in the

remaining directions. Examples of problems of the first type include the deforma-

tion of a crystal under the action of an applied point load or in the presence of

a dilatation point. Taylor dislocation lattices fall in the second class of problems,

straight dislocations in the third.

The equilibrium equation (135) may be analyzed – and its solutions character-

ized – by means of the fundamental solution formalism (cf., e.g., [42]). Recall that,

by translation invariance, the equilibrium equation can be expressed in convolution

form as

� ∗ u = f, (136)

where � is the force-constant field of the lattice. The following proposition covers

a broad class of problems often encountered in applications.

Proposition 2. Suppose that

(i) � has finite support;

(ii) �̂−1 ∈ L1([−π, π ]n);
(iii) f has finite support.
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Let

G(l) = 1

(2π)n

∫

[−π,π ]n
�̂−1(θ)eiθ ·l dθ. (137)

Then,

u = G ∗ f (138)

is a solution of the equilibrium equation (136).

Note that assumptions (i) and (iii) state that � and f are zero everywhere except

on a finite set of vertices, whereas assumption (ii) implies that �̂ is invertible almost

everywhere in [−π, π ]n and its inverse is integrable. The function G is the funda-

mental solution, or Green’s function, of the lattice. Condition (ii) of the proposition

is easily verified directly for specific force-constant models. Clearly, solutions need

not be unique in general, e.g., they may be determined up to translations and infin-

itesimal rotations.

Proof. We verify that, since �̂−1(θ)eiθ ·l ∈ L1([−π, π ]n), G(l) in (137) is defined

for all l ∈ Zn. In addition,

(� ∗ G)(l) =
∑

l′∈Zn

�(l − l′)G(l′)

=
∑

l′∈Zn

�(l − l′)

{
1

(2π)n

∫

[−π,π ]n
�̂−1(θ)eiθ ·l dθ

}
. (139)

Since the sum over l extends over a finite number of terms, we have

(� ∗ G)(l) = 1

(2π)n

∫

[−π,π ]n
�̂−1(θ)

{∑

l′∈Zn

�(l − l′)eiθ ·l
}

dθ

= 1

(2π)n

∫

[−π,π ]n
Ieiθ ·l dθ

= Iδ(l), (140)

where

δ(l) =
{

1 if l = 0,

0 otherwise,
(141)

and I is the identity in Rn×n. Also, we note that (138) is well defined since by

assumption f has finite support. Then

(� ∗ u)(l) =
∑

l′∈Zn

�(l − l′)

{∑

l′′∈Zn

G(l′ − l′′)f (l′′)

}
. (142)
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Since both sums are finite, we have

(� ∗ u)(l) =
∑

l′′∈Zn

{∑

l′∈Zn

�(l − l′)G(l′ − l′′)

}
f (l′′)

=
∑

l′′∈Zn

δ(l − l′′)f (l′′)

= f (l), (143)

which shows that u is indeed a solution of (136). ⊓⊔
The solution of the periodic problem is elementary. Suppose that the peri-

odic unit cell of the problem is in the form of a set Y ⊂ Zn, and that the trans-

lates {Y + LiAi, L ∈ Zn} define a partition of Z3 for some translation vectors

Ai ∈ Zn, i = 1, . . . , n. Let Ai be the corresponding dual basis, and Bi = 2πAi

the reciprocal basis. Using the convolution theorem for periodic lattice functions,

equation (A.293), the equilibrium equations (136) reduce to the finite problem

�̂(θ)û(θ) = f̂ (θ), θ ∈ Z, (144)

where Z is the intersection of the lattice spanned by Bi and [−π, π ]n, and f̂ (θ)

is given by (A.289). Supposing that �̂(θ) is invertible for all θ �= 0, the sole

remaining difficulty in solving (144) is that �̂(θ) necessarily vanishes at the origin.

Thus, the solvability of problem (144) necessitates f̂0 = 0. In view of (A.294), this

condition simply amounts to the requirement that the average force 〈f 〉 be zero,

i.e., the applied forces f (l) must be in static equilibrium. The solution û(θ) is then

indeterminate at θ = 0, i.e., the lattice displacement field u(l) is determined up

to a rigid translation. This situation can also be understood from the standpoint of

the Fredholm alternative. Thus, consider the operator (T û)(θ) = �̂(θ)û(θ). The

kernel N (T ) is the space of rigid translations. For problem (144) to have solutions,

f̂ must be orthogonal to N (T ), i.e., f̂0 must be zero or, equivalently, f (l) must

have zero average. If this condition is satisfied, the solution is determined modulo

N (T ), i.e., up to a rigid translation. If û(θ) is a solution of (144), the correspond-

ing lattice displacement field u(l) follows by an application of the inverse discrete

Fourier transform formula (A.290).

Conditions for existence and uniqueness of the solutions of the equilibrium

problem follow from standard theory (e.g., [10]). To this end, recall that the space

X = H 1(Rn)/Rn, defined as the space of equivalence classes with respect to

the relation: u ∼ v ⇔ u − v is a constant, is a Banach space under the norm

||u̇||X = ||∇u||L2 , where u ∈ u̇, u̇ ∈ X (cf., e.g., [8], proposition 3.40). For present

purposes, it is advantageous to express the equilibrium problem in variational form.

To this end, let f ∈ X∗ and let

F(u) =
{

E(u) − 〈f, u〉 if supp(û) ∈ [−π, π ]n,
+∞ otherwise,

(145)

be the potential energy of the crystal, where the energy E(u) is defined as in (112a).

Then, we wish to find the minimum

mX(F ) = inf
u∈X

F(u) (146)
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and the set of minimizers

MX(F ) = {u ∈ X s. t. F(u) = mX(F )}. (147)

The following proposition collects standard conditions guaranteeing the existence

and uniqueness of solutions of problem (146).

Proposition 3. Suppose that �̂ is measurable and that there exists a constant C > 0

such that

〈�̂(θ)ζ, ζ ∗〉 ≧ C|θ |2|ζ |2, ∀θ ∈ [−π, π ]n, ζ ∈ Cn. (148)

Then F has a unique minimum in X.

Proof. Under the assumptions, F is sequentially coercive in X. In fact, the sets

{F ≦ t} are bounded in the reflexive space X and therefore relatively compact in its

weak topology. In addition, F is continuous in the strong topology of X and convex,

and therefore sequentially lower semicontinuous in the weak topology of X. Hence,

F has a minimum in X. The uniqueness of the minimizer follows directly from the

strict convexity of F . Thus, let u, v ∈ MX(F ) so that F(u) = F(v) = mX(F ). If

u �= v we have

F
(u

2
+ v

2

)
<

1

2
F(u) + 1

2
F(v) = mX(F ), (149)

which is impossible. Hence u = v. ⊓⊔

The results cited in this proof are standard (e.g., [10], Examples 1.14, 1.22 and

1.23, Propositions 1.18 and 1.20, Theorem 1.15).

4.3. Continuum limit

In this section we study the continuum limit of the equilibrium problem (135),

i.e., the behavior of the lattice as the lattice parameter is allowed to become vanish-

ingly small, or, equivalently, in the long wavelength limit. It is widely appreciated

that harmonic lattices behave like elastic continua in that limit. A common way

of understanding this limiting behavior is to refer to the asymptotic form of the

dynamical matrix, or, equivalently, of the phonon dispersion relation as the wave

number k → 0. Here, instead, we seek to understand the continuum limit in the

sense of the Ŵ-convergence of the energy functional (104). As it is well known,

Ŵ-convergence of the energy functional also guarantees convergence of the energy

minimizers under rather general conditions (cf., e.g., [10], Corollary 7.24). For

simplicity, throughout this section we restrict our attention to simple lattices.

We begin by adopting the wave number representation of the Fourier transform

(cf. Section A.2), which is more natural in the continuum setting. In this represen-

tation the energy (112a) takes the form

E(u) = 1

(2π)n

∫

B

1

2
〈D(k)û(k), û∗(k)〉 dk, (150)
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where

D(k) = 1

�2
�̂(k)

= 1

�

∑

l∈Zn

�(l)e−ik·x(l) (151)

is the dynamical matrix of the lattice. For a simple lattice and assuming sufficient

differentiability, the properties

DT (k) = D∗(k), (152a)

D(−k) = DT (k), (152b)

D(0) = 0, (152c)

∂kD(0) = 0 (152d)

follow simply from reciprocity, translation invariance and the centrosymmetry of

the lattice. In particular, property (152a) implies that D(k) is hermitian. The behav-

ior of D(k) for small k is of particular importance in the continuum limit. From

(151), (152c), (152d) and (134) we obtain

lim
ε→0

ε−2Dik(εk) = lim
ε→0

ε−2 1

�

∑

l∈Zn

�(l)e−iεk·x(l) =cijklkjkl ≡ (D0)ik(k), (153)

where D0 is the dynamical matrix of the linear elastic solid of moduli cijkl .

Consider now the sequence of functions Eε : H 1(Rn) → R̄ defined as:

Eε(u) =
{

1
(2π)n

∫
B/ε

1
2
〈ε−2D(εk)û(k), û∗(k)〉 dk if supp(û) ∈ B/ε,

+∞ otherwise,
(154)

obtained by scaling down the lattice size by a factor of ε. We wish to ascertain the

limiting behavior of the sequence Eε as ε → 0. We surmise that the likely limit is

the linear elastic energy

E0(u) =
∫

Rn

1

2
cijklui,juk,ldx = 1

(2π)n

∫

Rn

1

2
cijklkjkl ûi û

∗
kdk, (155)

where cijkl are the elastic moduli of the material and a comma denotes partial differ-

entiation. Simple conditions under which this limit is indeed realized are provided

by the following proposition.

Proposition 4. Suppose that:

(i) for every ζ ∈ Cn the function 〈D(·)ζ, ζ ∗〉 is measurable on B;

(ii) there is a constant C such that

0 ≦ 〈D(k)ζ, ζ ∗〉 ≦ C|k|2|ζ |2 (156)

for a. e. k ∈ B and for every ζ ∈ Cn;
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(iii) for every ζ ∈ Cn, the functions ε−2〈D(εk)ζ, ζ ∗〉 converge for a. e. k to

〈D0(k)ζ, ζ ∗〉 = cijklkjklζiζ
∗
k (157)

Then,

Ŵ − lim
ε→0

Eε(u) = E0(u) (158)

in the weak topology of H 1(Rn).

Proof. Let u ∈ H 1(Rn), and let uε the sequence of H 1(Rn)-functions converging

to u obtained by restricting û to B/ε (cf. Section A.4.1). Then,

Eε(uε) = 1

(2π)n

∫

B/ε

1

2
〈ε−2D(εk)û(k), û∗(k)〉 dk. (159)

By assumptions (ii)–(iii) and dominated convergence, it follows that

lim
ε→0

∫

B/ε

〈ε−2D(εk)û(k), û∗(k)〉dk =
∫

〈D0(k)û(k), û∗(k)〉dk (160)

and, hence,

lim
ε→0

Eε(uε) = E0(u). (161)

Let now uε ⇀ u in H 1(Rn). We need to show that

E0(u) ≦ lim inf
ε→0

Eε(uε). (162)

Suppose that lim infε→0 Eε(uε) < +∞, otherwise there is nothing to prove. We

pass to a subsequence, to be renamed uε, which gives the lim inf as a limit. In view

of (160) it suffices to prove that

lim
ε→0

∫

B/ε

(
〈ε−2D(εk)ûε(k), û∗

ε(k)〉 − 〈ε−2D(εk)û(k), û∗(k)〉
)
dk ≧ 0. (163)

Consider the identity

〈ε−2D(εk)ûε(k), û∗
ε(k)〉 − 〈ε−2D(εk)û(k), û∗(k)〉

= 〈ε−2D(εk)
(
ûε(k) − û(k)

)
, û∗

ε(k) − û∗(k)〉
+2〈ε−2|k|−1D(εk)û(k),

(
û∗

ε(k) − û∗(k)
)
|k|〉. (164)

In the last term,
(
ûε(k)− û(k)

)
|k| ⇀ 0 in L2, whereas, by dominated convergence,

ε−2|k|−1D(εk)û(k) → |k|−1D0(k)û(k) also in L2. Hence,
∫

B/ε

〈ε−2|k|−1D(εk)û(k),
(
û∗

ε(k) − û∗(k)
)
|k|〉 dk → 0, (165)

and

lim
ε→0

∫

B/ε

(
〈ε−2D(εk)ûε(k), û∗

ε(k)〉 − 〈ε−2D(εk)û(k), û∗(k)〉
)
dk

= lim
ε→0

∫

B/ε

〈ε−2D(εk)
(
ûε(k) − û(k)

)
, û∗

ε(k) − û∗(k)〉 dk ≧ 0 (166)

as required. ⊓⊔
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If D(k) is sufficiently smooth at the origin then, by (152c) and (152d),

lim
ε→0

ε−2Dik(εk) = 1

2

∂2Dik

∂kj∂kl

(0)kjkl . (167)

Comparing this expression with (153) we find the identity

cijkl + cilkj = ∂2Dik

∂kj∂kl

(0), (168)

which provides an alternative means, equivalent to (134), of computing the elastic

moduli of the lattice. Identity (168) shows that, as expected, the elastic moduli fully

describe the behavior of the lattice in the continuum limit.

If the first of inequalities (156) can be strengthened to

C|k|2|ζ |2 ≦ 〈D(k)ζ, ζ ∗〉 (169)

for some constant C > 0, for all ε > 0, a. e. k ∈ B and for every ζ ∈ Cn, then

the sequence of functions Eε(u) is equicoercive in the space X = H 1(Rn)/Rn

defined in Section 4.2. If, in addition, the conditions of Theorem 3 are satisfied,

then the unique minimizer of Eε(u) converges weakly in X to the unique minimizer

of E0(u) (cf., e.g., [10] for the connection between equicoercivity and convergence

of minimizers).

4.4. Simple illustrative examples

The consideration of complex interatomic potentials describing specific mate-

rials is beyond the scope of this paper. Therefore, we shall confine our attention

to two simple examples, namely, the square and simple cubic lattices with nearest

neighbor interactions, mainly for purposes of illustration and for developing insight

and intuition.

4.4.1. The square lattice. As a first simple example we consider the case of a

square lattice undergoing anti-plane shear. The lattice complex is as described in

Section 2.3.2. In the nearest-neighbor approximation, the single non-zero harmonic

force constant is C(e1, e1) = µ/a, where µ is the shear modulus of the crystal.

The remaining nonzero force constants (111a) and (111b) are

�

(
0

1, 1

)
= �

(
0

2, 2

)
= µa, (170)

and

�(1, 0) = �(0, 1) = �(−1, 0) = �(0, −1) = −µa, (171a)

�(0, 0) = −�(1, 0) − �(0, 1) − �(−1, 0) − �(0, −1) = 4µa. (171b)
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Here �
(

l
α,β

)
designates the force constant that couples du(0, α) to du(l, β), and

�(l) designates the force constant that couples u(0) and u(l). A straightforward

computation yields

�̂(θ) = 4µa

(
sin2 θ1

2
+ sin2 θ2

2

)
, (172)

whence the dynamical matrix follows as

D(k) = 4µ

a2

(
sin2 k1a

2
+ sin2 k2a

2

)
, (173)

which in this simple example reduces to a scalar. We verify that (1/2)∂k1∂k1D(0) =
µ and (1/2)∂k2∂k2D(0) = µ, as required.

4.4.2. The simple cubic lattice. Consider now the simple cubic lattice complex

described in Section 2.3.4. In the nearest-neighbor approximation, the non-zero

harmonic force constants are: C(e1, e1, e1, e1) ≡ F ; C(e1, e1, e
′
1, e

′
1) ≡ G; and

C(e1, e
′
1, e1, e

′
1) ≡ H . Here e1 and e′

1 denote 1-cells having a common vertex. Thus,

F is the strength of the pairwise component of the energy, G measures the strength

of the coupling between the elongations of adjacent 1-cells, or Poisson effect, and

H measures the strength of the bond-angle interactions. The corresponding force-

constant fields are

�

(
0

1, 1

)
= a2




F 0 0

0 4H 0

0 0 4H


 , (174a)

�

(
0

1, 2

)
= a2




0 G 0

H 0 0

0 0 0


 , (174b)

and

�
(
1, 0, 0

)
= a2




−F 0 0

0 −4H 0

0 0 −4H


 , (175a)

�
(
1, 1, 0

)
= a2




0 −G − H 0

−H − G 0 0

0 0 0


 , (175b)

�
(
0, 0, 0

)
= a2




2F + 16H 0 0

0 2F + 16H 0

0 0 2F + 16H


 , (175c)

whence all the remaining force constants follow by symmetry. Lengthy but straight-

forward calculations yield

�̂11(θ) = a2

[
4F sin2 θ1

2
+ 16H

(
sin2 θ2

2
+ sin2 θ3

2

)]
, (176a)

�̂12(θ) = 4a2(G + H) sin θ1 sin θ2, (176b)
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whence the dynamical matrix follows as

D11(k) = 1

a

[
4F sin2 k1a

2
+ 16H

(
sin2 k2a

2
+ sin2 k3a

2

)]
, (177a)

D12(k) = 4

a
(G + H) sin(k1a) sin(k2a) (177b)

with all remaining components following by symmetry. Finally, the elastic moduli

follow from (168) as

c11 = aF, (178a)

c12 = 4aG, (178b)

c44 = 4aH. (178c)

Thus, for this simple model all the forces constants can be identified directly from

the elastic moduli and the lattice parameter.

5. Eigendeformation theory of crystallographic slip

The total energy of a crystal is invariant under lattice-invariant deformations

(cf. Section 2.1) and, therefore, it is a nonconvex function of the atomic displace-

ments. This lack of convexity in turn permits the emergence of lattice defects such

as dislocations. A seeming deficiency of the harmonic approximation described

earlier – which would appear to disqualify it as a suitable framework for the study

of dislocations – is that the energy (108) is a convex function of the displacements

and, in particular, not invariant under lattice-invariant deformations. However, this

limitation can be overcome by recourse to the theory of eigendeformations (cf.,

e.g., [36]), which we proceed to formulate in this section.

5.1. The energy of a plastically deformed crystal

Consider a uniform lattice-invariant deformation of the form (16), correspond-

ing to a homogeneous crystallographic slip on planes of normal mia
i through a

translation vector sjaj . This uniform deformation has the matrix representation

F = I + ξ

d
b ⊗ m, (179)

where m is the unit normal to the slip plane, b is the Burgers vector, d is the dis-

tance between consecutive slip planes, and ξ ∈ Z is the slip amplitude in quanta of

Burgers vector. The corresponding linearized eigendeformation 1-form β ∈ �1 is

β(e1) ≈ (F − I )dx(e1) = (dx(e1) · m) ξb. (180)

We note that, by a suitable choice of lattice complex, 1-cells either lie on a slip

plane, in which case dx(e1) · m = 0, or join two consecutive slip planes, in which
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case dx(e1) · m = d . Let E1(m) be the set of 1-cells of the second type, i.e.,

E1(m) = {e1 ∈ E1, s. t. dx(e1) · m = d}. Then we have the representation

β =
∑

e1∈E1(m)

ξb e1. (181)

The general eigendeformation 1-form resulting from the activation of the slip sys-

tem defined by b and m is obtained by localizing (181) 1-cell by 1-cell, with the

result

β =
∑

e1∈E1(m)

ξ(e1)b e1, (182)

where now ξ is an integer-valued function on E1(m). Suppose now that crystal-

lographic slip can take place on N crystallographic systems defined by Burgers

vectors and normals (bs, ms), s = 1, . . . , N , respectively. The resulting eigende-

formation 1-form is

β =
N∑

s=1

∑

e1∈E1(ms )

ξ s(e1)b
s e1, (183)

where ξ s : E1(m
s) → Z is the slip field corresponding to slip system s. We shall

assume that exact, or compatible, eigendeformations of this general type cost no

energy. A simple device for building this feature into the theory is to assume an

elastic energy of the form

E(u, ξ) = 1

2
〈B(du − β), du − β〉, (184)

which replaces representation (106) in the presence of eigendeformations. Clearly,

if β = dv, i.e., if the eigendeformations are exact, or compatible, then the energy-

minimizing displacements are u = v and E = 0. However, because slip is crystal-

lographically constrained, β must necessarily be of the form (183) and, therefore,

is not compatible in general. By virtue of this lack of compatibility, a general dis-

tribution of slip induces residual stresses in the lattice and a nonvanishing elastic

energy, or stored energy.

A compelling geometrical interpretation of eigendeformations can be given with

the aid of a discrete version of the Nye dislocation density tensor [38], namely,

α = dβ. (185)

This simple relation may be regarded as the discrete version of Kröner’s formula

(6) (see [26]). From (185) it follows immediately that

dα = 0, (186)

which generalizes the conservation of the Burgers vector identity (7). Note that α

is a 2-form, i.e., α ∈ �2. Clearly, if the eigendeformations are compatible, i.e., if

β = dv, then α = d2v = 0. Thus, the dislocation density 2-form α measures the
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degree of incompatibility of the eigendeformations. Furthermore, it follows from

the definition (90) of the linking number that
∫

E3

ω ∧ α = Link(ω, β). (187)

Thus, suppose that α is supported on a collection of closed loops, and ω is a subset

of dχA, where χA is the characteristic chain of a subset A ∈ E0. Then by the inter-

section interpretation of the linking number it follows that (187) counts the number

of signed intersections of the dislocation loops with ω. In particular, if ω = dχA,

then Link(ω, β) = 0, which shows that the number of dislocation loops entering a

closed surface must necessarily equal the number of dislocation loops exiting the

surface.

Further insight into the geometry of dislocations may be derived by inserting

representation (183) into (185), which yields

α =
N∑

s=1

∑

e1∈E1(ms )

ξ s(e1)b
s δe1 ≡

N∑

s=1

αs . (188)

Thus, each slip system s contributes a certain dislocation density αs to α. Further-

more, the dislocation density αs has a constant direction bs and consists of the

superposition of elementary dislocation loops δe1 ∈ B2 with multiplicities ξ s(e1).

Each elementary loop δe1 is an elementary 2-coboundary. Equivalently, since the

lattice complex is assumed to be perfect, the elementary dislocation loops may be

regarded as 2-cocycles surrounding the 1-cells of the lattice, hence their designation

as loops.

5.2. Examples of dislocation systems

A compilation of experimentally observed slip systems metallic crystals may

be found in [19]. Thus, for instance, FCC crystals are commonly found to deform

plastically through the activation of 12 slip systems consisting of {111} slip planes

and [110] slip directions. Likewise, BCC crystals exhibit activity on 24 main slip

systems consisting of {110} and {112} slip planes and [111] slip directions. Table 1

collects the slip directions and plane normals for the square, hexagonal, simple

cubic, FCC and BCC crystals for ease of reference.

In perfect lattices, the sets {∂e2(l, α), l ∈ Zn, α = 1, . . . , N2} and {δe1(l, α),

l ∈ Zn, α = 1, . . . , N1} generate Z1 and B2, respectively. These 1-cycles and

2-coboundaries may be regarded as sets of elementary Burgers circuits and dis-

location loops, respectively. All Burgers circuits and dislocation distributions can

be obtained by taking integer combinations of the elementary circuits and loops,

respectively. In two-dimensional lattices, the elementary loops take the form of

dipoles. The geometry of the elementary circuits and dipoles of the square and

hexagonal lattices is shown in Fig. 12 by way of illustration. In three-dimensional

lattices, the elementary dislocation loops consist of rings of oriented 2-cells inci-

dent on 1-cells. In particular, it is somewhat misleading – and best avoided – to

represent elementary dislocation loops as closed curves in space. The geometry of



202 M. P. Ariza & M. Ortiz

Table 1. Slip-system sets in Schmid and Boas’ nomenclature. The vector m is the unit nor-
mal to the slip plane, and s is the unit vector in the direction of the Burgers vector of the
system. All vectors are expressed in cartesian coordinates.

Slip System A3 B3
Square s [001] [001]

m (100) (010)

Slip System A3 B3 C3
Hexagonal s [001] [001] [001]

2m (02̄0) (
√

31̄0) (
√

310)

Slip System A2 A3 B1 B3 C1 C2
SC s [010] [001] [100] [001] [100] [010]

m (100) (100) (010) (010) (001) (001)

Slip System A2 A3 A6 B2 B4 B5

FCC
√

2s [011̄] [101] [1̄1̄0] [01̄1] [101̄] [1̄10]√
3m (1̄11) (1̄11) (1̄11) (111) (111) (111)

Slip System C1 C3 C5 D1 D4 D6√
2s [011] [1̄01̄] [11̄0] [01̄1̄] [1̄01] [110]√
3m (1̄1̄1) (1̄1̄1) (1̄1̄1) (11̄1) (11̄1) (11̄1)

Slip System A2 A3 A6 B2 B4 B5

BCC
√

3 s [1̄11] [1̄11] [1̄11] [111] [111] [111]√
2 m (01̄1) (101) (110) (01̄1) (1̄01) (1̄10)

Slip System C1 C3 C5 D1 D4 D6√
3 s [111̄] [111̄] [111̄] [11̄1] [11̄1] [11̄1]√
2 m (011) (101) (1̄10) (011) (1̄01) (110)

the elementary Burgers circuits and dislocation loops of the cubic, FCC and BCC

lattices is shown in Fig. 13.

5.3. The stored energy of a fixed distribution of dislocations

If the distribution of eigendeformations is known, and in the absence of addi-

tional constraints, the energy of the lattice can be readily minimized with respect

to the displacement field. Suppose that the crystal is acted upon by a distribution

of forces f ∈ �0(X, Rn). The total potential energy of the lattice is then

F(u, ξ) = E(u, ξ) − 〈f, u〉. (189)

Minimization of F(u, ξ) with respect to u yields the equilibrium equation

Au = f + δBβ, (190)

where δBβ may be regarded as a distribution of eigenforces corresponding to the

eigendeformations β. The equilibrium displacements, are, therefore,

u = A−1(f + δBβ) ≡ u0 + A−1δBβ, (191)

where u0 = A−1f is the displacement field induced by the applied forces in the

absence of eigendeformations and we write, formally,

A−1f ≡ G ∗ f (192)
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(a) (b)

 

(c) (d)

 

(e)

Fig. 12. Elementary dislocation dipoles (generators of the group B2) for the square (a and b)
and hexagonal lattices (c, d and e). The dipoles consist of a dislocation segment pointing into
the plane (shown as

⊗
), and a dislocation segment pointing away from the plane (shown as⊙

). The corresponding Burgers circuits (generators of the group Z1) are shown as oriented
circles. The 1-cell to which the dipoles are attached is shown as an oriented 1-cell.

(cf. equation (138)). Conditions under which the minimum problem just described

is well-posed and delivers a unique energy-minimizing displacement field have

been given in Section 4.2. The corresponding minimum potential energy is

F(β) = 1

2
〈Bβ, β〉 − 1

2
〈A−1(f + δBβ), f + δBβ〉

= 1

2
〈Bβ, β〉 − 1

2
〈A−1δBβ, δBβ〉 − 〈A−1δBβ, f 〉 − 1

2
〈A−1f, f 〉

= 1

2
〈Bβ, β〉 − 1

2
〈A−1δBβ, δBβ〉 − 〈Bβ, du0〉 − 1

2
〈Au0, u0〉. (193)

The first two terms

E(β) = 1

2
〈Bβ, β〉 − 1

2
〈A−1δBβ, δBβ〉 (194)
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(a) (b)

(c) (d)

Fig. 13. Elementary dislocation loops (generators of the group B2) for: (a) the simple cubic
lattice; (b) the face-centered cubic lattice; and (c) and (d) the body-centered cubic lattice. The
remaining elementary circuits and loops may be obtained by symmetry from those shown
in the figure. The elementary loops consist of rings of oriented 2-cells incident on a 1-cell.
The oriented 2-cells are the elementary Burgers circuits (generators of the group Z1). The
1-cell to which the elementary dislocation loops are attached is shown as an oriented 1-cell.

in (193) give the self-energy of the distribution of lattice defects represented by the

eigendeformation field β, or stored energy; the third term in (193) is the interaction

energy between the lattice defects and the applied forces; and the fourth term in

(193) is the elastic energy of the applied forces.

In the theory of continuously distributed elastic dislocations, a result of Mura

[35] shows that the energy E(β) can in fact be expressed directly as a function E(α)

of the dislocation density field α, and is independent of the choice of slip distribu-

tion β used to induce α. In particular, two distributions of slip which differ by an

exact form and, hence, represent the same dislocation density, have the same stored

energy. In linear elasticity, this situation also arises in the theory of cut surfaces,
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where an application of Stoke’s theorem shows that the energy is independent of

the choice of cut [3]. The corresponding discrete analog may be derived as follows.

By virtue of the Hodge-Helmholtz decomposition (81) for perfect lattices we have

the respresentation

β = dv + δ�−1α, (195)

where v = �−1δβ, (cf., equation (82a)). Inserting this representation in (194) and

redefining u−v as u, an altogether identical derivation to that leading to (193) now

gives

E(α) = 1

2
〈Bδ�−1α, δ�−1α〉 − 1

2
〈A−1δBδ�−1α, δBδ�−1α〉 (196)

for the stored energy of the crystal, and

F(α) = E(α) − 〈Bδ�−1α, du0〉 − 1

2
〈Au0, u0〉 (197)

for the potential energy. We thus verify that, as in the case of linear elastic disloca-

tions, the stored energy corresponding to a distribution of slip β can be expressed

directly in terms of the dislocation density α = dβ.

Suppose that the crystal under consideration possesses N slip systems and its

eigendeformations admit the representation (183) in terms of an integer-valued slip

field ξ ≡ {ξ s, s = 1, . . . , N}. Because of the integer-valuedness condition, each

component ξ s corresponding to a particular slip system s defines a 1-cochain and,

consequently, ξ belongs to the group CN
1 . Additionally we recall that values of ξ s

on 1-cells e1 such that dx(e1) is contained in the corresponding slip plane, i.e.,

such that dx(e1) · ms = 0, contribute nothing to the eigendeformation field β and,

therefore, may be set to zero for definiteness. This normalization will be left implied

– but is tacitly in force – throughout all subsequent developments. Then, the stored

energy (194) can be written in the form

E(ξ) = 1

2
〈Hξ, ξ〉, (198)

where the operator H is defined by the identity

〈Hξ, ξ〉 = 1

2
〈Bβ, β〉 − 1

2
〈A−1δBβ, δBβ〉, (199)

in which β and ξ are related through (183). By translation invariance we must have

Hξ = ϒ ∗ ξ (200)

for some discrete hardening-moduli field ϒ . If ξ ∈ l2, then (198) admits the Fourier

representation

E(ξ) = 1

(2π)n

∫

[−π,π ]n
1

2
〈ϒ̂(θ)ξ̂ (θ), ξ̂∗(θ)〉 dθ. (201)
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If, in addition, the crystal is acted upon by a force field f , the resulting potential

energy is (cf. equation (193))

F(ξ) = E(ξ) − 〈τ, ξ〉 − 1

2
〈A−1f, f 〉, (202)

where the forcing field τ follows from the identity

〈τ, ξ〉 = 〈f, A−1δBβ〉, (203)

in which β and ξ are again related through (183). We note that τ(e1) is the energetic

force conjugate to ξ(e1) and, therefore, may be regarded as a collection of N discrete

Peach-Koehler forces, or resolved shear stresses, acting on the 1-cell e1. According

to this interpretation, Hξ represents the resolved shear-stress field resulting from

a slip distribution ξ , and therefore H can be regarded as an atomic-level hardening

matrix (cf., e.g., [9] for an account of the classical notion of a hardening matrix in

crystal plasticity).

The preceding framework may be taken as a basis for formulating abstract ver-

sions of a number of classical problems in dislocation mechanics. For instance, a

central problem in physical metallurgy and crystal plasticity is the characterization

of the dislocation structures that arise as a result of the plastic working of ductile

crystals (cf., e.g., [17, 27]). Insight into those structures can sometimes be derived

from knowledge of energy-minimizing dislocation structures. The corresponding

variational problem concerns the minimization of (197) subject to the constraint

(186) of conservation of Burgers vector and the additional constraint

||α||1 ≡
N∑

s=1

∑

e2∈E2

|dξ s(e2)| = M (204)

that fixes the total mass of dislocation in the crystal. The resulting problem lacks

lower-semicontinuity and its minimizers may be expected to exhibit fine oscil-

lations. Numerical studies of energy-minimizing dislocation structures do indeed

exhibit such patterns [37, 29].

Another longstanding problem in physical metallurgy concerns the determi-

nation of the patterns of slip activity which occur in plastically worked metals

and attendant macroscopic properties such as yield stresses and hardening rates

(cf., e.g., [33]). On a first approach to the problem, it might seem tempting to

attempt the minimization of the potential energy (202) as a means of characteriz-

ing the slip fields likely to occur under the action of applied loads. However, this

approach fails due to the lack of coerciveness of the function F(ξ). We demon-

strate this lack of coerciveness by means of a counterexample. Consider the case

of a square lattice undergoing anti-plane shear, cf. Section 5.4.1. Suppose that the

lattice deforms under the action of a point load f > 0 applied to the origin. For

h ∈ Z, h ≧ 1, consider a sequence of displacements such that uh(l) = hb at l = 0,

and uh(l) = 0 elsewhere. In addition, let (ξh)A3(l, 1) = −h, (ξh)B3(l, 2) = −h,

(ξh)A3(l − ε1, 1) = h, (ξh)B3(l − ε2, 2) = hb, and ξh = 0 otherwise. Then, it can

be readily verified that duh = βh and αh = 0, and thus the strain-energy of the

crystal is zero. Therefore, F(ξh) = −hf b which tends to −∞ as h → +∞. Thus,
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F(ξ) lacks coerciveness and the corresponding minimum problem fails to deliver

solutions in general.

This degeneracy can be remedied, and the mathematical problem rendered well

posed, by a careful accounting of physical sources of resistance, or obstacles, to

the motion of dislocations (cf., e.g., [19]). For instance, when two dislocation lines

cross each other, reactions take place that result in jogs, junctions and other reac-

tion products. This source of work hardening is referred to as forest hardening. A

simple limiting case is obtained by assuming that an infinite energy is required for

dislocations to cross each other. This effectively rules outs crossings, a constraint

that can be expressed in terms of the linking number (90) in the form

Link
(
ξ r(e1), ξ

s(e′
1)
)

= 0, ∀e1, e
′
1 ∈ E1, r, s = 1, . . . , N, r �= s, (205)

This constraint introduces a topological obstruction that restricts the configura-

tions accessible to the dislocation ensemble. A rigorous analysis of the interaction

between dislocations and obstacles has recently been performed by Garroni and

Müller [14, 15].

5.4. Simple illustrative examples of stored energies

In this section we present two simple examples of stored energy corresponding

to the simple cubic and square lattices. While these examples are of limited rel-

evance to actual materials, they nevertheless serve the purpose of illustrating the

structure of stored energies.

5.4.1. The square lattice. A particularly simple example concerns a square lattice

undergoing anti-plane shear. The nearest-neighbor force constants and dynamical

matrix for this case have been collected in (170), (171a), (171b) and (173). The

relation between the eigendeformations and the slip field is

β
(
e1(l, 1)

)
= bξA3

(
e1(l, 1)

)
, (206a)

β
(
e1(l, 2)

)
= bξB3

(
e1(l, 2)

)
, (206b)

where the nomenclature for the slip systems can be referred to in Table 1. In addi-

tion, we conventionally set ξA3

(
e1(l, 2)

)
= 0 and ξB3

(
e1(l, 1)

)
= 0. From (184)

the energy of the crystal per unit length in the anti-plane shear direction follows as

E(u, ξ) = 1

(2π)2

∫ π

−π

∫ π

−π

µ

2

{
|(eiθ1 − 1)û(θ) − bξ̂A3(θ)|2

+|(eiθ2 − 1)û(θ) − bξ̂B3(θ)|2
}
dθ1dθ2. (207)

Minimization with respect to u gives

û(θ) = i
b

2

sin θ1
2
η̂A3(θ) + sin θ2

2
η̂B3(θ)

sin2 θ1
2

+ sin2 θ2
2

, (208)
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and the corresponding stored energy per unit length is computed to be

E(ξ) = 1

(2π)2

∫ π

−π

∫ π

−π

µb2

2

| sin θ2
2
η̂A3(θ) − sin θ1

2
η̂B3(θ)|2

sin2 θ1
2

+ sin2 θ2
2

dθ1dθ2, (209)

where we write b2 ≡ |b|2 and

η̂A3(θ) = ξ̂A3(θ)eiθ1/2, (210a)

η̂B3(θ) = ξ̂B3(θ)eiθ2/2 (210b)

may be regarded as translates of the fields ξA3 and ξB3 to the center of the cor-

responding 1-cells. Alternatively, using (47b) and (185), the energy (209) may be

recast in the form

E(α) = 1

(2π)2

∫ π

−π

∫ π

−π

µb2

2

|α̂(θ)|2

sin2 θ1
2

+ sin2 θ2
2

dθ1dθ2, (211)

which is a special case of (196) and exemplifies the general result that the stored

energy of a crystal can be written in terms of the dislocation density α. In the special

case in which slip is confined to a single plane, e.g., the plane {e1(l, 2) s. t. l2 = 0},
the energies (209) and (211) reduce to

E(ξ) = 1

2π

∫ π

−π

µb2

2

∣∣∣sin θ1
2

∣∣∣
√

1 + sin2 θ1
2

|ξ̂B3(θ1)|2dθ1 (212)

and

E(α) = 1

2π

∫ π

−π

µb2

2

|α̂(θ1)|2√
sin2 θ1

2
+ sin4 θ1

2

dθ1, (213)

respectively.

5.4.2. The simple cubic lattice. The relation between eigendeformations and the

slip field in a simple-cubic lattice is

β
(
e1(l, 1)

)
= bA2ξA2

(
e1(l, 1)

)
+ bA3ξA3

(
e1(l, 1)

)
, (214a)

β
(
e1(l, 2)

)
= bB1ξB1

(
e1(l, 2)

)
+ bB3ξB3

(
e1(l, 2)

)
, (214b)

β
(
e1(l, 3)

)
= bC1ξC1

(
e1(l, 3)

)
+ bC2ξC2

(
e1(l, 3)

)
, (214c)

where the designation of the slip systems is as in Table 1. In addition, the com-

ponents of ξ not appearing in the preceding relations are conventionally set to

zero. Suppose, for simplicity, that activity takes place in the single system C1 and

that c12 = 0 and c11 = 2c44. The elastic moduli thus obtained are isotropic, and

Poisson’s ratio is zero. Assume, in addition, that ξ̂C1 is independent of θ1, corre-

sponding to a distribution of straight screw dislocations. Then, using moduli (174a)

and (174b) the energy per unit length of dislocation is computed to be

E(ξ) = 1

(2π)2

∫ π

−π

∫ π

−π

2ab2H
sin2 θ2

2

sin2 θ2
2

+ sin2 θ3
2

|ξ̂C1|2dθ2dθ3. (215)
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Finally, if slip is confined to the single plane {e1(l, 3) s. t. l3 = 0}, the energy per

unit length reduces to

E(ξ) = 1

(2π)

∫ π

−π

2ab2H

∣∣∣sin θ1
2

∣∣∣
√

1 + sin2 θ1
2

|ξ̂C1|2dθ2. (216)

We verify that (212) is recovered from this expression by making the identification

4aH = c44 = µ.

5.5. Continuum limit of the stored energy

We conclude this article by returning to the connection between the discrete and

continuum theories investigated in Section 4.3. Here again, the aim of the analysis is

to identify limiting situations in which the mechanics of the crystal can effectively

be described by means of linear elasticity, thus achieving considerable simplifica-

tion with respect to the full discrete theory. However, the continuum limit of the

stored energy is somewhat subtle due to the logarithmic divergence of the energy

of linear elastic dislocations. This difficulty notwithstanding, a well-defined con-

tinuum limit is attained by letting the dislocations become well-separated, i.e., in

the dilute limit. Another useful limit of the discrete theory is attained by letting both

the lattice size and the Burgers vector become vanishingly small. As shown sub-

sequently, this limit coincides with the classical theory of continuously-distributed

dislocations (cf., e.g., [36]).

5.5.1. Well-separated or dilute dislocations. Recall that the stored energy has

the representation (201) in terms of the hardening moduli ϒ̂(θ) and the complex

Bravais lattice representation ξ̂ (θ, α) of the discrete slip field. Recall that the sup-

port of the slip field ξ s is Es
1 = {e1 ∈ E1, s. t. dx(e1) · ms = ds}. With a view

to facilitating the passage to the continuum, we rewrite the stored energy (201) in

wavenumber form and require the Fourier transforms ξ̂ s of the slip functions to be

supported on the Brillouin zone B of the lattice. The resulting form of the stored

energy is

E(ξ) = 1

(2π)n

∫

B

1

2
〈G(k)ξ̂ (k), ξ̂∗(k)〉 dk, (217)

where

Grs(k) = 1

�

∑

α∈I r

∑

β∈I s

ϒ̂ rs
αβ(k)eik·(rα−rβ ) (218)

and � is the volume of the unit cell of the lattice. In this expression, the labels r

and s refer to a pair of slip systems, whereas the labels α and β range over the

sublattices of Er
1 and Es

1, respectively, and rα is the shift of sublattice α.

In order to attain the limit of interest we proceed to scale the slip fields in such

a way as to increasingly separate the dislocations. Consider a slip system s and let

(cs
1, . . . , c

s
n) be a Bravais basis for the crystal such that (cs

1, . . . , c
s
n−1) spans the
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slip planes of the system, and let (c1
s , . . . , c

n
s ) be the corresponding dual basis. Let

ξ s be the slip function for system s and let h ∈ Z, h ≧ 1. The appropriate scaled

slip function is

ξ̂ s
h(k) = ws

h(k)ξ̂ s(hk), (219)

where ξ is extended by periodicity outside B and

ws
h(k) =

n−1∏

j=1

1 − e
−ihk·cs

j

1 − e
−ik·cs

j

≡ qs(hk)

qs(k)
(220)

is a slip-plane window function. The effect of this scaling transformation may be

ascertained by applying it to the function

ξ s(l′) =
{

1 if l′ = l,

0 otherwise.
(221)

The Fourier transform of this function is ξ̂ s(k) = �e−ik·x(l), and, hence, in this

case ξ̂ s
h(k) = �ws

h(k)e−ik·x(hl). Thus, by linearity, the scaling transformation maps

the value ξ s(l) at x(l) of a general slip function ξ s onto the area {x(l + ν), νi =
1, . . . , h, i = 1, . . . , n − 1} of the corresponding slip plane, which in turn has the

effect of expanding the dislocation lines within their planes. In addition, the scaling

transformation separates the planes containing the dislocations. We additionally

define the continuum window functions

ws
0(k) =

n−1∏

j=1

1 − e
−ik·cs

j

ik · cs
j

≡ qs(k)

qs
0(k)

, (222)

and introduce the diagonal matrices Wh = diag{w1
h, . . . , w

N
h } and W0 =

diag{w1
0, . . . , w

N
0 } for notational convenience. The properties

|h1−nws
h(h

−1η)| ≦ 1 (223)

and

lim
h→∞

|h1−nws
h(h

−1η)| = w0(η) (224)

are noted for subsequent reference.

It should be carefully noted that in the scaling just described, the scaled dis-

location ensemble consists of long straight segments of directions defined by the

vectors (cs
1, . . . , c

s
n−1). Evidently, the corresponding limiting energy depends on

the choice of these vectors. However, the dislocation segments of many crystals

classes exhibit preferred directions. For instance, dislocations in BCC crystals are

known to consist predominantly of screw and edge segments. In these cases, the

vectors (cs
1, . . . , c

s
n−1) may conveniently be taken to coincide with the preferred

orientations of the dislocation segments.
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Next we wish to elucidate the behavior of the stored energy of the crystal under

the scaling transformation just defined, i.e., the behavior of the sequence of func-

tions

Eh(ξ) = E(ξh)

= 1

(2π)n

∫

B

1

2
〈G(k)Wh(k)ξ̂ (hk), W ∗

h (k)ξ̂∗(hk)〉 dk. (225)

Alternatively, effecting a change of variables to η = hk we obtain

Eh(ξ) = h−n

(2π)n

∫

hB

1

2
〈G(h−1η)Wh(h

−1η)ξ̂ (η), W ∗
h (h−1η)ξ̂∗(η)〉 dη

= 1

(2π)n

∫

B

1

2
〈Gh(k)ξ̂ (k), ξ̂∗(k)〉 dk, (226)

where

Gh(k) = h−n
∑

ν∈Zn∩[−h,h]n
(WhGW ∗

h )
(
h−1(k + 2πνia

i)
)
. (227)

The limit of Eh(ξ) as h → ∞ now characterizes the stored energy of a crystal

containing well-separated, or dilute, dislocations.

The following lemmas set the stage for the determination of the dilute limit of

the stored energy. We begin by ascertaining the form

G0(k) = lim
ε→0

G(εk) (228)

of G(k) in the long wavelength limit.

Lemma 1. Suppose that:

(i) there is a constant C > 0 such that

C|k|2|ζ |2 ≦ 〈D(k)ζ, ζ ∗〉 (229)

for a. e. k ∈ B and for every ζ ∈ Cn;

(ii) for every ζ ∈ Cn, the functions ε−2〈D(εk)ζ, ζ ∗〉 converge for a. e. k to

〈D0(k)ζ, ζ ∗〉 = cijklkjklζiζ
∗
k . (230)

Then,

Grs
0 (k) =

[
cijkl − (D−1

0 )pm(k)cpqij cmnklkqkn

] br
i

dr
mr

j

bs
k

ds
ms

l . (231)

for a. e. k.
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Proof. Fix k throughout. From (183) and (184) we have

〈G(k)ζ, ζ ∗〉 = min
c∈Cn

〈E(k)[Q(k)c − η(k)], [Q(k)c − η(k)]∗〉 (232)

for all ζ ∈ CN , where Q(k) is the matrix representation (41) of d0,

η(k) = −
N∑

r=1

ζ r [mr · i∂kQ(k)]b
r

dr
(233)

and

E(k) = 1

�2
�̂(k). (234)

By (109) we have the identity

〈D(k)c, c∗〉 = 〈E(k)Q(k)c, [Q(k)c]∗〉. (235)

Scaling k in (232) we obtain

〈G(εk)ζ, ζ ∗〉 = min
c∈Cn

〈E(εk)[Q(εk)c − η(εk)], [Q(εk)c − η(εk)]∗〉

= min
c∈Cn

〈E(εk)[Q(εk)ε−1c−η(εk)], [Q(εk)ε−1c−η(εk)]∗〉. (236)

By assumption (229) the quadratic functions 〈ε−2D(εk)c, c∗〉 are convex and equi-

coercive. Therefore, we have

〈G0(k)ζ, ζ ∗〉 = lim
ε→0

〈G(εk)ζ, ζ ∗〉

= min
c∈Cn

lim
ε→0

〈E(εk)[Q(εk)ε−1c−η(εk)],[Q(εk)ε−1c−η(εk)]∗〉. (237)

But,

lim
ε→0

ε−1Q(εk) = k · ∂kQ(0), (238a)

lim
ε→0

η(εk) = −
N∑

r=1

ζ r [mr · i∂kQ(0)]b
r

dr
, (238b)

〈E(0)a · ∂kQ(0)c, [a · ∂kQ(0)c]∗〉 = cijklciaj c
∗
ka

∗
l , (238c)

where in arriving at the last identity we have made use of (168) and (235). Hence,

〈G0(k)ζ, ζ ∗〉 = min
c∈Cn

cijkl

(
icikj −

N∑

r=1

ζ rsr
i m

r
j

)(
ickkl−

N∑

s=1

ζ sss
km

s
l

)∗

. (239)

A direct calculation of the minimizer finally gives (231). ⊓⊔

We note that G0(k) is determined by the properties of the limiting linear elastic

continuum, namely, by the elasticity of the crystal through the elastic moduli cijkl

and the elastic dynamical matrix (153). The following lemma reveals the essential

structure of the continuum kernel G0(k).
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Lemma 2. Suppose that the elastic moduli cijkl are positive definite and finite.

Then, there is a constant C > 0 such that

〈G0(k)ζ, ζ ∗〉 ≦ CN

N∑

r=1

(
1 − (k · mr)2

|k|2
)

|ζ r |2. (240)

Proof. By (239) and convexity we have

〈G0(k)ζ, ζ ∗〉 ≦ min
c∈Cn

1

N

N∑

r=1

cijkl

(
icikj − Nζ rmr

i s
r
j

) (
ickkl − Nζ rmr

ks
r
l

)∗

≦ min
c∈Cn

1

N

N∑

r=1

C|ic ⊗ k − Nζ rmr ⊗ sr |2 (241)

= CN

N∑

r=1

(
1 − (k · mr)2

|k|2
)

|ζ r |2. ⊓⊔

Finally, in order to investigate the Ŵ-convergence of the energy Eh(ξ) we need

to ascertain the precise manner in which it scales with h. Begin by noting that

h2−nGh(k) =
∑

ν∈Zn∩[−h,h]n

(
(h1−nWh)G(h1−nW ∗

h )
)(

h−1(k + 2πνia
i)
)
. (242)

Thus, in view of (224) and definition (228) we expect

h2−nGh(k) ∼
∑

ν∈Zn∩[−h,h]n
(W0G0W

∗
0 )(k + 2πνia

i) (243)

for large h. The behavior of the right-hand side of this asymptotic equation is

established by the following lemma.

Lemma 3. Let n ≧ 2, Z ∋ h > 1. Suppose that the elastic moduli Cijkl are positive

definite and finite. Then, there is a constant C > 0 such that

1

log h

∑

ν∈Zn∩[−h,h]n
〈(W0G0W

∗
0 )(k + 2πνia

i)ζ, ζ ∗〉 ≦ C|ζ |2 (244)

for all ζ ∈ CN .

Proof. Fix k and ζ ∈ CN . By lemma 2 there is a constant C > 0 such that

〈G0(k)W0(k)ζ, W ∗
0 (k)ζ ∗〉 ≦ C

N∑

r=1

(
1 − (k · mr)2

|k|2
)

|wr
0(k)|2|ζ r |2. (245)
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Let kr
p = k − (k ·mr)mr be the projection of k onto the slip planes of system r and

let θ r
i = k · cr

i . Then,

(
1 − (k · mr)2

|k|2
)

|wr
0(k)|2 =

|kr
p|2

|k|2 |wr
0(k)|2

≦ C

∑n−1
i=1 (θ r

i )2

∑n
i=1(θ

r
i )2

|wr
0(k)|2

≦ C

n−1∑

i=1




n−1∏

j=1
j �=i

sin2 1
2
θ r
j(

1
2
θ r
j

)2




4 sin2 1
2
θ r
i∑n

k=1(θ
r
k )2

. (246)

But

h∑

νi=−h

h∑

νn=−h

4 sin2 1
2
(θ r

i + 2πνi)∑n
k=1(θ

r
k + 2πνk)2

= 2

∣∣∣∣sin
θ r
i

2

∣∣∣∣
h∑

νi=−h

h∑

νn=−h

2
∣∣sin 1

2
(θ r

i + 2πνi)
∣∣

∑n
k=1(θ

r
k + 2πνk)2

≦ 2

∣∣∣∣sin
θ r
i

2

∣∣∣∣
h∑

νi=−h

h∑

νn=−h

2
∣∣sin 1

2
(θ r

i + 2πνi)
∣∣

(θ r
i + 2πνi)2 + (θ r

n + 2πνn)2

≦ 2

∣∣∣∣sin
θ r
i

2

∣∣∣∣
h∑

νi=−h

∞∑

νn=−∞

2
∣∣sin 1

2
(θ r

i + 2πνi)
∣∣

(θ r
i + 2πνi)2 + (θ r

n + 2πνn)2

= 2

∣∣∣∣sin
θ r
i

2

∣∣∣∣
h∑

νi=−h

1

|θ r
i + 2πνi |

∣∣sin 1
2
(θ r

i + 2πνi)
∣∣ ∣∣sinh(θ r

i + 2πνi)
∣∣

cosh(θ r
i + 2πνi) − cos θ r

n

. (247)

By virtue of the bound

sin
η
2

sinh η

cosh η − cos ξ
≦ C ≈ 2.23743 (248)

in the range η ∈ [0, ∞), ξ ∈ [−π, π ], we further have

h∑

νi=−h

h∑

νn=−h

4 sin2 1
2
(θ r

i + 2πνi)∑n
k=1(θ

r
k + 2πνk)2

≦ 2C

∣∣∣∣sin
θ r
i

2

∣∣∣∣
h∑

νi=−h

1

|θ r
i + 2πνi |

≦ 2C

∣∣∣∣sin
θ r
i

2

∣∣∣∣
(

1

|θ r
i | + 1

π
log h

)

≦ C

(
1 + 1

π
log h

)
. (249)
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In addition we have

h∑

νj =−h

4 sin2 1
2
(θ r

j + 2πνj )

(θ r
j + 2πνj )2

≦ 1. (250)

Combining the preceding bounds we obtain

∑

ν∈Zn∩[−h,h]n
〈(W0G0W

∗
0 )(k + 2πνia

i)ζ, ζ ∗〉 ≦ C

(
1 + 1

π
log h

)
|ζ |2, (251)

which proves the assertion. ⊓⊔

The preceding lemma suggests the behavior Eh(ξ) ∼ hn−2 log h for large h.

Therefore, we introduce the scaled sequence of functions

Fh(ξ) = h2−n

log h
Eh(ξ) = 1

(2π)n

∫

B

1

2
〈Kh(k)ξ̂ (k), ξ̂∗(k)〉 dk, (252)

where

Kh(k) = h2−n

log h
Gh(k). (253)

The behavior of the sequence Fh(ξ) as h → ∞ is characterized by the following

proposition.

Proposition 5. Let n ≧ 2, Z ∋ h > 1. Suppose that:

(i) for every ζ ∈ CN the function 〈Kh(·)ζ, ζ ∗〉 is measurable on B;

(ii) there is a constant C such that

0 ≦ 〈Kh(k)ζ, ζ ∗〉 ≦ C|ζ |2 (254)

for a. e. k ∈ B and for every ζ ∈ CN ;

(iii) for every ζ ∈ CN , the function 〈Kh(k)ζ, ζ ∗〉 converges for a. e. k to 〈K0(k)ζ,

ζ ∗〉 as h → ∞.

Let

F0(ξ) = 1

(2π)n

∫

B

1

2
〈K0(k)ξ̂ (k), ξ̂∗(k)〉 dk. (255)

Then,

Ŵ − lim
h→∞

Fh = F0 (256)

in X = {ξ ∈ CN
1 s. t. ξ̂ ∈ [L2(B)]N }.
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Proof. Let ξ ∈ X. Then, from assumptions (i)–(iii) and dominated convergence,

it follows that Fh(ξ) → F0(ξ). Hence, Fh converges to F0 pointwise. Consider

now the space Y = {ξ : E1 → RN s. t. ξ̂ ∈ [L2(B)]N } obtained by lifting the

integer-valuedness constraint and allowing the slip fields to take real values. By

assumption (ii) it follows that the functions Fh are convex and equibounded, hence

equi-lower semicontinuous, over Y . Since X is a closed subspace of Y it follows that

the sequence Fh is likewise equi-lower semicontinuous over X. The proposition

then follows from a standard result regarding the equivalence of pointwise con-

vergence of equi-lower semicontinuous sequences and Ŵ-convergence (see [10],

Proposition 5.9). ⊓⊔

The conditions of the theorem may be verified simply for specific force constant

models. The hn−2 log h scaling of the stored energy Eh(ξ) is consistent with the

known solutions from linear elasticity for point dislocations in two dimensions and

for dislocation loops in three dimensions (cf., e.g., [19]). The factor hn−2 accounts

for the increase in dislocation length, or dislocation stretching, with increasing h.

The factor log h corresponds to the familiar logarithmic divergence of the dislo-

cation energy with the size of the domain occupied by the dislocations. It bears

emphasis that the limiting energy (255) involves an integral over the Brillouin zone

B and is defined for discrete slip fields. In this particular sense, the limit just derived

retains the discreteness of the lattice on the scale of the dislocation cores and, as

a consequence, remains free of the logarithmic core-divergence of linear elastic

dislocation mechanics.

5.5.2. Continuously-distributed dislocations. Lemma 2 establishes the struc-

ture of the continuum kernel G0(k) and, by extension, sets the natural functional

framework for the analysis of continuously distributed dislocations. Thus, the bound

(240) suggests that the natural norm for a continuum slip field η : Rn → RN is

||η||X =
[

N∑

s=1

1

(2π)n

∫ (
1 − (k · ms)2

|k|2
)

|η̂s(k)|2dk

]1/2

. (257)

Correspondingly, we may define the space X of continuum slip fields as the space

of distributions resulting from the completion of C∞
0 under the norm (257). Since

0 ≦ 1 − (k · ms)2

|k|2 ≦ 1, (258)

it follows that

||η||X ≦ ||η||L2 (259)

and L2(Rn, RN ) is a subspace of X. Moreover, it follows from (259) that sequences

converging strongly in L2 also convergence strongly in X.

In addition to L2-fields, the space X contains discontinuous slip fields such as

ηs = f (xs
p)δ(xs

n), (260)
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where (xs
1, . . . , x

s
n) is a local system of cartesian coordinates for system s, with

(xs
1, . . . , x

s
n−1) spanning the in-plane directions and xs

n measuring distance in the

direction normal to the slip planes; δ is the Dirac measure; and, for simplicity, we

assume simple slip and set ηr = 0, r �= s. Indeed, in this case,

||η||2X = 1

(2π)n

∫ |ks
p|2

|ks |2 |f̂ (ks
p)|2dks

= 1

(2π)n−1

∫
|ks

p| |f̂ (ks
p)|2dks

p = ||f ||21/2. (261)

Thus, the slip field (260) is in X provided that f ∈ H 1/2(Rn−1).

For ε > 0, consider now the sequence of stored energy functions Eε : X → R̄:

Eε(ξ) =





1
(2π)n

∫
1
2
〈G(εk)ξ̂ (k), ξ̂∗(k)〉 dk if supp(ξ̂ s) ⊂ ε−1B,

and ξ s(εx(l)) ∈ εZ,

l ∈ Zn, s = 1, . . . , N,

+∞ otherwise,

(262)

obtained by scaling down both the crystal lattice and the Burgers vectors by a factor

of ε simultaneously. In addition, consider the following candidate limiting energy

E0 : X → R̄:

E0(η) = 1

(2π)n

∫
1

2
〈G0(k)η̂(k), η̂∗(k)〉 dk. (263)

The behavior of the sequence Eε(ξ) as ε → 0 is characterized by the following

proposition.

Proposition 6. Suppose that:

(i) for every ζ ∈ CN the function 〈G(·)ζ, ζ ∗〉 is measurable on B;

(ii) there is a constant C such that

0 ≦ 〈G(k)ζ, ζ ∗〉 ≦ C

N∑

r=1

(
1 − (k · mr)2

|k|2
)

|ζ r |2 (264)

for a. e. k ∈ B and for every ζ ∈ CN ;

(iii) for every ζ ∈ CN , the functions 〈G(εk)ζ, ζ ∗〉 converge for a. e. k to 〈G0(k)ζ, ζ ∗〉
as ε → 0.

Then,

Ŵ − lim
ε→0

Eε = E0 (265)

in the weak topology of X.
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Proof. Let η ∈ X. Let ui ∈ C∞
0 be such that ui → η in X. Approximate ui by

simple functions taking values in εZ and converging strongly to ui in X. Finally,

sample the simple functions pointwise on a lattice of size ε (cf. Section A.4.2).

Let ξε be a diagonal sequence extracted from the preceding sequences. Then ξε

satisfies the integer-valuedness constraint in (262) and converges strongly to η in

X. By assumption (ii) we have

〈G(εk)ξ̂ε(k), ξ̂∗
ε (k)〉 ≦ C

N∑

r=1

(
1 − (k · mr)2

|k|2
)

|ξ̂ r
ε (k)|2. (266)

By assumption (iii) and the dominated convergence theorem it follows that

lim
ε→0

∫
〈G(εk)ξ̂ε(k), ξ̂∗

ε (k)〉dk =
∫

〈G0(k)η̂(k), η̂∗(k)〉dk (267)

and, hence,

lim
ε→0

Eε(ξ̂ε) = E0(η). (268)

Let now ηε ⇀ η in X. We need to show that

E0(η) ≦ lim inf
ε→0

Eε(ηε). (269)

Suppose that lim infε→0 Eε(ηε) < +∞, otherwise there is nothing to prove. Pass

to a subsequence, to be renamed ξε, which gives the lim inf as a limit. In view of

(267) it suffices to prove that

lim
ε→0

∫ (
〈G(εk)ξ̂ε(k), ξ̂∗

ε (k)〉 − 〈G(εk)η̂(k), η̂∗(k)〉
)
dk ≧ 0. (270)

Let A(k) = diag{1− (k ·m1)2/|k|2, . . . , 1− (k ·mN )2/|k|2}. Consider the identity

〈G(εk)ξ̂ε(k), ξ̂∗
ε (k)〉 − 〈G(εk)η̂(k), η̂∗(k)〉

= 〈G(εk)
(
ξ̂ε(k) − η̂(k)

)
, ξ̂∗

ε (k) − η̂∗(k)〉
+2〈A−1/2(k)G(εk)η̂(k), A1/2(k)

(
ξ̂∗
ε (k) − η̂∗(k)

)
〉 (271)

In the last term, A1/2(k)
(
ξ̂ε(k)− η̂(k)

)
⇀ 0 in L2, whereas, by dominated conver-

gence, A−1/2(k)G(εk)η̂(k) → A−1/2(k)G0(k)η̂(k) also in L2. Hence,
∫

〈G(εk)η̂(k),
(
ξ̂∗
ε (k) − η̂∗(k)

)
〉 dk → 0 (272)

and

lim
ε→0

∫ (
〈G(εk)ξ̂ε(k), ξ̂∗

ε (k)〉 − 〈G(εk)η̂(k), η̂∗(k)〉
)
dk

= lim
ε→0

∫
〈G(εk)

(
ξ̂ε(k) − η̂(k)

)
, ξ̂∗

ε (k) − η̂∗(k)〉 dk

≧ 0 (273)

as required. ⊓⊔
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The energy (263) follows directly by minimizing out the displacement field

in continuum plasticity with the aid of the Fourier transform. However, the pre-

ceding discussion does add to that formal result by providing an understanding

of the precise manner in which the continuously distributed dislocation limit is

approached, and an understanding of the natural functional setting in which to

couch that limit. Thus, for instance, it is interesting to note that the energy (263) is

well-defined for discontinuous slip of the form (260), provided that the slip distri-

bution f ∈ H 1/2(Rn−1) on the slip plane. By contrast, the limiting theory does not

support Volterra dislocations, since a piecewise constant function f ∈ H 1/2(Rn−1)

is necessarily constant [14].

Appendix A. The discrete Fourier transform

Appendix A.1. Definition and fundamental properties

Begin by introducing the usual lp spaces of lattice functions. Let f be a com-

plex-valued lattice function, i.e., a function f : Zn → C. Its lp-norm is

||f ||p =
{∑

l∈Zn

|f (l)|p
}1/p

. (A.274)

Let lp be the corresponding Banach spaces. In particular, l1 can be turned into a

Banach algebra with involution by taking the convolution

(f ∗ g)(l) =
∑

l′∈Zn

f (l − l′)g(l′) (A.275)

as the multiplication operation and complex conjugation as the involution (cf., e.g.,

[42]). The discrete Fourier transform of f ∈ l1 is

f̂ (θ) =
∑

l∈Zn

f (l)e−iθ ·l . (A.276)

In addition we have

f (l) = 1

(2π)n

∫

[−π,π ]n
f̂ (θ)eiθ ·ldθ, (A.277)

which is the inversion formula for the discrete Fourier transform. It follows from

this expression that f (−l) is the Fourier-series coefficient of f̂ (θ). The discrete

Fourier transform characterizes all complex homomorphisms of the Banach algebra

l1. In particular we have the identity

f̂ ∗ g = f̂ ĝ, (A.278)



220 M. P. Ariza & M. Ortiz

which is often referred to as the convolution theorem. Suppose in addition that

f, g ∈ l2. Then, from the identity

∑

l∈Zn

(
1

(2π)n

∫

[−π,π ]n
f̂ (θ)eiθ ·ldθ

)
g∗(l)

= 1

(2π)n

∫

[−π,π ]n
f̂ (θ)

(∑

l∈Zn

g∗(l)e−iθ ·l
)

dθ (A.279)

we obtain

∑

l∈Zn

f (l)g∗(l) = 1

(2π)n

∫

[−π,π ]n
f̂ (θ)ĝ∗(θ)dθ, (A.280)

which is the Parserval identity for the discrete Fourier transform. If, in particular,

g = f , Parseval’s identity reduces to

∑

l∈Zn

|f (l)|2 = 1

(2π)n

∫

[−π,π ]n
|f̂ (θ)|2dθ, (A.281)

which shows that the DFT is an l2-isometry. Since l∞ ⊂ l̂1 is dense in l2, it follows

that the DFT has a unique continuous extension to an isometric isomorphism of l2

onto L2([−π, π ]n).

Appendix A.2. Wave-number representation

The ordinary Fourier transform of continuum fields is most often expressed in

terms of wave-numbers. In applications concerned with the passing to the contin-

uum, it is therefore natural to adopt a wave-number vector representation of the

discrete Fourier transform. In particular, this representation ensures that the discrete

and ordinary Fourier transforms of physical fields of the same kind have matching

units. We begin by effecting a change of variables in all discrete Fourier transforms

f̂ (θ) from angles θ to wave-number vector k ≡ θia
i . In addition, we multiply f̂ (θ)

by the atomic volume. The resulting function f̂ (k) is supported on the Brillouin

zone B in dual space, and is given directly by

f̂ (k) = �
∑

l∈Zn

f (l)e−ik·x(l), (A.282)

where x(l) = liai are the coordinates of the vertices of the lattice. We note that the

identity k ·x(l) = θ · l holds, so that (A.282) is indeed equivalent to (A.276) except

for the scaling factor of �. The inverse mapping is given by

f (l) = 1

(2π)n

∫

B

f̂ (k)eik·x(l)dk. (A.283)

In this representation the convolution (A.275) becomes

(f ∗ g)(l) = �
∑

l′∈Zn

f (l − l′)g(l′) (A.284)
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and the convolution theorem remains of the form (A.278). In addition, the Parseval

identity (A.280) now is

�
∑

l∈Zn

f (l)g∗(l) = 1

(2π)n

∫

B

f̂ (k)ĝ∗(k)dk, (A.285)

which establishes an isometric isomorphism of l2 onto L2(B).

Appendix A.3. Periodic functions

The extension of the Fourier transform formalism to periodic functions is of

particular interest in applications. Consider a set Y ⊂ Zn, the unit cell, such that the

translates {Y +LiAi, L ∈ Zn}, for some translation vectors Ai ∈ Zn, i = 1, . . . , n,

define a partition of Zn. Let Ai be the corresponding dual basis, and Bi = 2πAi the

reciprocal basis.A lattice function f : Zn → R is Y -periodic if f (l) = f (l+LiAi),

for all L ∈ Zn. Proceeding formally, the discrete Fourier transform of a Y -periodic

lattice function can be written in the form

f̂ (t) =
∑

L∈Zn

∑

l∈Y

f (l)e−it ·(l+Lj Aj )

= 1

|Y |

{∑

l∈Y

f (l)eit ·l
}{

|Y |
∑

L∈Zn

eit ·(Lj Aj )

}
, (A.286)

where |Y | is the number of points in Y . But

|Y |
∑

L∈Zn

eit ·(Lj Aj ) = (2π)n
∑

H∈Zn

δ(t − HiB
i) (A.287)

and, hence,

f̂ (t) = (2π)n

|Y |
∑

θ∈Z

f̂ (θ)δ(t − θ), (A.288)

where

f̂ (θ) =
∑

l∈Y

f (l)e−iθ ·l (A.289)

and Z is the intersection of the lattice spanned by Bi and [−π, π ]n. In addition,

the inverse Fourier transform specializes to

f (l) = 1

|Y |
∑

θ∈Z

f̂ (θ)eiθ ·l . (A.290)

For periodic functions, Parseval’s identity takes the form

∑

l∈Y

f (l)g∗(l) = 1

|Y |
∑

θ∈Z

f̂ (θ)ĝ∗(θ). (A.291)
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Likewise, let f and g be complex-valued lattice functions, where the latter is peri-

odic. Inserting representation (A.288) into the convolution theorem gives

̂(f ∗ g)(t) = f̂ (t)

(
(2π)n

|Y |
∑

θ∈Z

ĝ(θ)δ(t − θ)

)

= (2π)n

|Y |
∑

θ∈Z

f̂ (θ)ĝ(θ)δ(t − θ), (A.292)

whence it follows that

̂(f ∗ g)(θ) = f̂ (θ)ĝ(θ). (A.293)

Finally, the average of a periodic function follows as

〈f 〉 = 1

|Y |
∑

l∈Y

f (l) = 1

|Y | f̂0. (A.294)

Appendix A.4. Sampling and interpolation

In passing to the continuum the question arises of how to sample a function over

Rn on a lattice and, conversely, how to extend a lattice function to Rn. The former

operation may be regarded as sampling a continuum function, whereas the latter

operation may be regarded as interpolating a lattice function. Evidently, functions

can be sampled and interpolated in a variety of ways. In this section we collect the

particular schemes that arise in applications.

Appendix A.4.1. Filtering. A simple device for sampling a function f ∈ H s is

to restrict its ordinary Fourier transform f̂ (k) to the Brillouin zone B of the lattice,

i.e., to set

ŝBf (k) = f̂ (k), k ∈ B. (A.295)

The corresponding lattice function then follows from an application of the inverse

discrete Fourier transform (A.283), with the result

sBf (l) = 1

(2π)n

∫

B

f̂ (k)eik·x(l)dk (A.296)

for l ∈ Zn. Conversely, for every lattice function f (l) we can define an interpolant

over Rn of the form

iBf (x) = 1

(2π)n

∫

B

f̂ (k)eik·xdk. (A.297)

A projection PB : H s → H s can now be defined as PB = iB ◦ sB , i.e., by applying

the sampling and interpolation operations in succession. Thus, for every f ∈ H s

we have

P̂Bf (k) =
{

f (k) if k ∈ B,

0 otherwise.
(A.298)
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Clearly, the projection is orthogonal. Suppose now that the lattice is scaled down

in size by a factor ε → 0. The Brillouin zones of the scaled lattices are Bε = B/ε.

Let f ∈ H s and fε = PBεf . Then it follows trivially that f̂ε → f̂ pointwise. In

addition,

||f̂ε − f̂ ||2s = 1

(2π)n

∫

Rn\Bε

|f̂ (k)|2 dµs(k), (A.299)

where dµs(k) = (1 + |k|2)sdk, which, by dominated convergence, shows that

fε → f in H s .

AppendixA.4.2. Pointwise sampling. An alternative scheme for sampling a func-

tion on a lattice is to sample the function pointwise, i.e.,

sBf (l) = f (x(l)) (A.300)

for l ∈ Zn, provided that the pointwise value of f at x(l) is defined. This method

of sampling has the property of preserving the range of the function, i. e., if f takes

values in a subset A ⊂ R, then so does sBf . In terms of Fourier transforms we

have

ŝBf (k) = �
∑

l∈Zn

f (x(l))e−ik·x(l)

= �
∑

l∈Zn

{
1

(2π)n

∫
f̂ (k′)eik′·x(l)dk′

}
e−ik·x(l)

= 1

(2π)n

∫ {
�
∑

l∈Zn

ei(k−k′)·x(l)

}
f̂ (k′)dk′

= 1

(2π)n

∫ {
(2π)n

∑

m∈Zn

δ(k − k′ − 2πmia
i)

}
f̂ (k)dk. (A.301)

Hence, the discrete Fourier transform of the sampled lattice function is given by

the Poisson summation formula

ŝBf (k) =
∑

m∈Zn

f̂ (k + 2πmia
i), k ∈ B. (A.302)

Conversely, for every lattice function f (l) we define an interpolant over Rn of the

form (A.297). As in the preceding section, a projection PB : L2 → L2 can now be

defined as PB = iB ◦sB , i.e., by applying the sampling and interpolation operations

in succession. Thus, if f ∈ L2 and fB = PBf we have

P̂Bf (k) =
{∑

m∈Zn f̂ (k + 2πmia
i) if k ∈ B,

0 otherwise.
(A.303)

It is verified that
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PBf (x(l)) = 1

(2π)n

∫

B

(∑

m∈Zn

f̂ (k + 2πmia
i)

)
eik·x(l) dk

= 1

(2π)n

∫
f̂ (k)eik·x(l) dk = f (x(l)), (A.304)

which shows that the projection preserves the value of the function on the lattice

and, hence, is orthogonal. Suppose now that the lattice is scaled down in size by a

factor ε → 0. The Brillouin zones of the scaled lattices are Bε = Bε. Let f ∈ L2

and let fε = PBεf . Then, we have

f̂ε(k) =
{∑

m∈Zn f̂ (k + ε−12πmia
i) if k ∈ Bε,

0 otherwise.
(A.305)

We verify that

||f̂ε − f̂ ||20
= 1

(2π)n

∫

Bε

|f̂ε(k) − f̂ (k)|2 dk + 1

(2π)n

∫

Rn\Bε

|f̂ (k)|2 dk

= 1

(2π)n

∫

Bε

∣∣∣
∑

m∈Zn\{0}
f̂ (k + ε−12πmia

i)

∣∣∣
2
dk + 1

(2π)n

∫

Rn\Bε

|f̂ (k)|2 dk

≦
1

(2π)n

∫

Bε

∑

m∈Zn\{0}
|f̂ (k + ε−12πmia

i)|2 dk + 1

(2π)n

∫

Rn\Bε

|f̂ (k)|2 dk

= 2
1

(2π)n

∫

Rn\Bε

|f̂ (k)|2 dk. (A.306)

Hence, by dominated convergence, ||f̂ε − f̂ ||0 → 0 as ε → 0.
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