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Discrete Curvature Representations for Noise

Robust Image Corner Detection
Weichuan Zhang, Changming Sun, Toby Breckon, Naif Alshammari

Abstract—Image corner detection is very important in the
fields of image analysis and computer vision. Curvature
calculation techniques are used in many contour-based corner
detectors. We identify that existing calculation of curvature is
sensitive to local variation and noise in the discrete domain and
does not perform well when corners are closely located. In this
paper, discrete curvature representations of single and double
corner models are investigated and obtained. A number of model
properties have been discovered which help us detect corners
on contours. It is shown that the proposed method has a high
corner resolution (the ability to accurately detect neighbouring
corners) and a corresponding corner resolution constant is also
derived. Meanwhile, this method is less sensitive to any local
variations and noise on the contour; and false corner detection
is less likely to occur. The proposed detector is compared with
seven state-of-the-art detectors. Three test images with ground
truths are used to assess the detection capability and localization
accuracy of these methods in noise-free and cases with different
noise levels. Twenty-four images with various scenes without
ground truths are used to evaluate their repeatability under affine
transformation, JPEG compression, and noise degradations. The
experimental results show that our proposed detector attains a
better overall performance.

Index Terms—Discrete curvature representations, corner
detection, corner resolution, noise robustness.

I. INTRODUCTION

IMAGE corner detection is an extremely important task in

image analysis and computer vision. Applications include

motion tracking, object recognition, and stereo matching [1],

[2]. A corner can be defined as a point with low self-

similarity or a location where variations of the image intensity

in all directions are significant [3]. Alternatively, a corner

may be defined as a location on an edge contour where the

contour changes direction sharply or where a point has a high

curvature [4].

A. Related works

In general, most existing corner detection algorithms can be

divided into three categories [5]: intensity-based methods [3],

[6]–[16], model-based methods [5], [17]–[25], and contour-

based methods [4], [26]–[42].
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Intensity-based methods extract corners directly from the

input images by measuring image pixel values. One of the

earliest methods [3] considers corners as points which have

low self-similarity in all directions. The self-similarity of a

point can be measured by using the sum of squared differences

(SSD) between their associated image patches. This is the

basis for a large number of corner detectors. Harris and

Stephens [6] proposed to approximate the SSD by the local

autocorrelation matrix. The corner measure is constructed from

the two eigenvalues of the matrix. The Harris detector was

shown to be optimal only for L-junctions [7]. More recently,

the Harris detector was extended with searches over scale

and space in [8]–[16], which detect corners by identifying the

characteristic scale of a corner.

Model-based methods find corners by fitting a small patch

of image with predefined models. Deriche and Giraudon [17]

analyzed the characterization of wedge and Y-type corners by

using the Gaussian filter. In [18] and its variants [22], corners

are defined as the smallest univalue segment assimilating

nucleus points. In [19], [20], junctions are defined as points

in an image where two or more piecewise constant wedges

meet at the central point. Shui and Zhang [5] applied the

anisotropic Gaussian directional derivative filters [43] to derive

the representations of L-type, Y-type, X-type, and star-type

corners and detect corners. Xia et al. [24] introduced a junction

detection method based on the contrario detection theory [44],

called a contrario junction detection. Pham et al. [25] presented

a junction detection method where junctions are computed by

searching for optimal meeting points of median lines in line-

drawing images.

Contour-based methods first extract digital curves from the

input image using some edge detectors and then analyse the

contour shapes to detect corners. The curvature scale space

(CSS) [26] is widely used in the contour-based methods [28]–

[33]. The authors in these methods first smooth the curves

with single- or multi-scale Gaussian filters. Subsequently, they

compute the curvature at each point of the smoothed curves.

The absolute maximal curvature points at single- or multi-

scales are combined for corner detection. It is indicated [34]–

[38] that the existing CSS corner detectors suffer from

two main problems. On the one hand, the CSS curvature

estimation technique is sensitive to local variation and noise

on the curve. On the other hand, it is a difficult task to

select an appropriate Gaussian scale to smooth the curve. To

alleviate the aforementioned problems, many novel techniques,

including multi-scale curvature product (MSCP) [29], direct

curvature scale space [30], adaptive local threshold based on

region of support [31], chord-to-point distance accumulation
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(CPDA) [34], affine-length parametrizations instead of the

arc-length [35], gradient correlation matrices (GCM) of

planar curves [36], multi-direction Gabor filters [37], angle

difference of principal directions [38], triangular theory [39],

Laplacian scale-space [40], and corner detection [42] based on

approximation discrete curvature calculation (ADCC) [45] are

proposed to extract corners from the edge contours.

B. Contributions and outline

In this work, our interest lies in the contour-based

corner detection algorithms. The existing contour-based

methods [26], [28], [29], [31], [33], [41] usually first extract

planar curves from the input image using some edge detectors

and then search for local curvature maximal points along those

curves. The afore-mentioned methods detect corners based

on existing discrete curvature techniques. Our research shows

that the existing discrete curvature techniques suffer from

two main problems: (1) Errors in curvature calculation; (2)

Sensitive to local variation and noise. Inspired by the multi-

scale theory [46] that an object contains local features at

many different scales, three typical corner models [26] (the

END, STAIR, and L models) are used to construct the scale

space map [26], [28], [30], [33], [40], [41] and to analyse

the tracks of extreme points in scale space. The scale space

map consists of the extreme points of curvature at a full range

of smoothing scales [37], [36], [47] or at many significant

scales [28], [33]. Multi-scale methods were mentioned to

suffer from at least two defects [5], [31], [34], [37], [38].

The multi-scale curvature estimation technique is sensitive to

local variations and noises on the contour. It is a difficult

task to select appropriate Gaussian scales to smooth the

contour. Large-scale Gaussian filters suppress noise well but

degrade corner localization while small-scale filters preserve

high precision in localization but are highly noise sensitive.

Meanwhile, there are no existing work which deals explicitly

with corner resolution which represents the ability to exactly

detect adjacent corners. Corner resolution has a great effect

on the detection and localization for neighbouring corners.

Furthermore, our investigation revealed that in the existing

contour-based corner detectors the corner detection accuracy,

corner resolution, and noise robustness issues have not been

considered simultaneously.

In this paper, discrete curvature representations of the

three typical corner models [26] are derived. The properties

of the representations are investigated and specified, and

these properties enable us to propose a new corner detection

algorithm. It is shown that the proposed method is robust to

local variation and noise on the contour, and the method also

has a high corner resolution. A corner resolution constant

is also derived. This approach is less sensitive to the local

variation and noise on the contour while maintaining the

capabilities of high corner resolution, detection capability,

localization accuracy, and real-time processing. This is

impossible for the existing contour-based corner detectors

[26], [28], [30], [33], [40], [41].

In this paper, the proposed corner detector is compared

with seven state-of-the-art corner detectors (MSCP [29], He &

Yung [31], CPDA [34], ARCSS [35], GCM [36], ANDD [5],

and ADCC [42]) by using two commonly used test images

with ground truths to evaluate the detection capability and

localization accuracy for cases with noise-free and different

noise levels. Twenty-four images with different scenes without

ground truths are used to assess the repeatability under affine

transformations, JPEG compression, and noise degradation

of images. The experimental results show that the proposed

method attains a better overall performance.

The following is the organization of the remainder of

this paper. In Section 2, the existing curvature computation

techniques and its weaknesses are discussed, and a new

discrete curvature calculation is proposed. Discrete curvature

representations of three typical corner models are derived.

Section 3 details the properties of the discrete curvature

representations. In Section 4, a new corner measure and a

novel detection algorithm are presented. Section 5 presents and

discusses the experimental results. Finally, our conclusions are

presented in Section 6.

II. DISCRETE CURVATURE REPRESENTATIONS OF CORNERS

In this section, we first introduce the existing discrete

curvature technique. Subsequently, the weakness of the

technique is identified and analysed. Thirdly, a novel discrete

curvature calculation is formulated and discrete curvature

representations of corners on edge contour are presented.

A. The problem of discrete curvature calculation

To begin with, we quote the definition of curvature κ
from [26], [28]. Let Γ be a regular planar curve which is

parameterized by the arc length u (in mathematics, a planar

curve is a curve in a plane that may be either a Euclidean

planar, an affine planar, or a projective planar),

Γ(u) = (x(u), y(u)), (1)

where x (u) and y (u) are coordinate functions and Γ is a

discrete curve in Z2. The curvature κ (u) of the curve Γ (u)
is defined as follows

κ(u) =
ẋ(u)ÿ(u)− ẍ(u)ẏ(u)

(ẋ2(u) + ẏ2(u))3/2
, (2)

where ẋ(u) and ẏ(u) are first and ẍ(u) and ÿ(u) are second

order derivatives with respect to u. The first and second order

derivatives at a point Pi = (xi, yi) (Pi(xi, yi) ∈ Z2) on a

curve are defined as

Ṗi =
Pi+1 − Pi−1

2
, P̈i =

Ṗi+1 − Ṗi−1

2
. (3)

From Equation (3), it is easy to find that only one

neighbouring point on each side of point Pi is used to estimate

the first order derivative on Pi and only two neighbouring

points on each side of point Pi are used to estimate the

second order derivatives. This makes the estimation technique

susceptible to the local variation on the curve and noise which

may result in false detection.

To alleviate the influence of quantization errors, the

curvature scale space technique [26], [28]–[32] is used for
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corner detection. The single- or multi-scale Gaussian filters

g(u, σ) are used to smooth the curve. The curvature on the

smoothed curve κ(u, σ) is given as follows

κ(u, σ) =
Ẋ(u, σ)Ÿ (u, σ)− Ẍ(u, σ)Ẏ (u, σ)

(Ẋ2(u, σ) + Ẏ 2(u, σ))3/2
, (4)

where Ẋ(u, σ) = x(u) ⊗ ġ(u, σ), Ẏ (u, σ) = y(u) ⊗ ġ(u, σ),
Ẍ(u, σ) = x(u)⊗ g̈(u, σ), Ÿ (u, σ) = y(u)⊗ g̈(u, σ). ġ(u, σ)
is first and g̈(u, σ) is second order derivative of g(u, σ), and

⊗ is the convolution operator. It is indicated [33]–[39] that

the conflict between corner detection and noise-sensitivity is

irreconcilable with Gaussian smoothing.

It was indicated in [48], [49] that the existing discrete

curvature calculation methods cannot accurately depict the

difference between corners and edges. Fig. 1 depicts a corner

model and the local variation of a curve in Fig. 1(a) and (b)

respectively. In terms of Equations (2) and (3), the curvature

at point o is 4/(5
√
5) in Fig. 1(a) and

√
2/2 in Fig. 1(b). As

a result, false corners may be detected based on the existing

discrete curvature calculation.

(b)(a)

Fig. 1 Examples of a corner model and the local variation of

a curve. (a) A corner model, (b) Local variation of a curve.

B. Discrete curvature calculation

Our novel discrete curvature calculation is introduced as

follows. The first and second order derivatives at a point Pi

on a curve are defined as

Ṗi,d =
Pi+d − Pi−d

2d
, P̈i,d =

Ṗi+d − Ṗi−d

2d
, (5)

where d is the neighbouring distance on each side of

point Pi. Consequently, the discrete curvature calculation in

Equation (2) is given as follows

κd(u) =
ẋd(u)ÿd(u)− ẍd(u)ẏd(u)

(ẋ2d(u) + ẏ2d(u))
3/2

=
ψ(d)

((xu+d − xu−d)2 + (yu+d − yu−d)2)3/2
,

(6)

where

ψ(d) =(xu+d − xu−d)((yu+2d − yu)− (yu − yu−2d))−
((xu+2d − xu)− (xu − xu−2d))(yu+d − yu−d),

(7)

κd(u) is a curvature function using neighbouring distance d,

ẋd(u) and ẏd(u) are first and ẍd(u) and ÿd(u) are second order

derivatives with respect to u using neighbouring distance d.

C. Discrete curvature representations

In this subsection, we will present the main result of this

paper. The goal is to apply the discrete curvature Equation (6)

on the END model, STAIR model, and L model [26],

[40] (as shown in Fig. 2) to derive the discrete curvature

representations.

A universal END or STAIR corner model [26], which

consists of two corner angles α and β and a distance w,

is shown in Fig. 2(a) and (b) respectively. In terms of

Equation (1), the END model can be written as

x(u) =







u sinα, u < 0
u, 0 ≤ u < w

(u− w) sinβ, w ≤ u,

y(u) =







u cosα, u < 0
0, 0 ≤ u < w

−(u− w) cosβ, w ≤ u.

(8)

The two adjacent corners locate at u = 0 and u = w.

The angle α is equal to 0 when the ray with u < 0 lies

on the dashed line. The α (α > 0) increases when the ray

turns clockwise and α (α < 0) decreases when the ray turns

counter-clockwise. For the ray with (u > w), the definition on

β is just the opposite. Without loss of generality, it is assumed

that α ∈ (−π/2, π/2). When β ∈ (−π/2, π/2), it is an END

model as shown in Fig. 2(a). When β ∈ (π/2, 3π/2), it is a

STAIR model as shown in Fig. 2(b). For ease of calculation,

π − β with β ∈ (−π/2, π/2) is used in the STAIR model.

When β = π/2, it is an L model as shown in Fig. 2(c).

From Fig. 2(a) and (b), it can be easily seen that if the

curvatures of the two corners at the positions u = 0 and u = w
are larger than that at the midpoint u = w/2, the two adjacent

corners can be separated and detected. For this reason, we

focus on the discrete curvature representations of the three

positions using Equation (6).

Representation 2.1 For the END corner model, two corners

are separated by w (w > 1) with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2), and the discrete curvature representations at the

positions u = 0, u = w/2, and u = w are expressed as

follows:

1) When d ∈ [1, w/4), the discrete curvature representations

are

κd(u)|u=0 = −
√
2

d

cosα

(1 + sinα)3/2
,

κd(u)|u=w/2 = 0,

κd(u)|u=w = −
√
2

d

cosβ

(1 + sinβ)3/2
.

(9)

2) When d ∈ [w/4, w/2), the discrete curvature

representations are

κd(u)|u=0 = −
√
2

d

cosα

(1 + sinα)3/2
,

κd(u)|u=w/2 = − (2d− w/2)(cosα+ cosβ)

4d2
,

κd(u)|u=w = −
√
2

d

cosβ

(1 + sinβ)3/2
.

(10)

3) When d ∈ [w/2, w), the discrete curvature representa-

tions are given by Equation (11).

4) When d ∈ [w,+∞), the discrete curvature representa-

tions are given by Equation (12).
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Fig. 2 Corner models: (a) END model, (b) STAIR model, (c) L model. The angles α and β can vary independently.

Representation 2.2 When π − β is used instead of β with

β ∈ (−π/2, π/2), Equations (9)-(12) are the discrete curvature

representations at the three positions u = 0, u = w/2, and

u = w for the STAIR model.

Representation 2.3 When β = π/2, Equations (9)-(12) are

the discrete curvature representations at the three positions u =
0, u = w/2, and u = w for the L model.

The discrete curvature representations indicate that the

corner resolution of the corner models can be determined

analytically, which allows us to derive properties from their

representations. Meanwhile, we can easily determine from the

discrete curvature representations whether the adjacent corners

located at u = 0 and u = w can be accurately detected

or not. These are checked by the ranges of
∣

∣κd(u)|u=0

∣

∣,
∣

∣κd(u)|u=w/2

∣

∣, and
∣

∣κd(u)|u=w

∣

∣ which vary when α, β, w,

and d vary. Then only when the following inequality holds
∣

∣κd(u)|u=0

∣

∣ >
∣

∣κd(u)|u=w/2

∣

∣ , (13)

the two adjacent corners can be exactly detected. It is

worth to note that the derivation process for
∣

∣κd(u)|u=w

∣

∣ >
∣

∣κd(u)|u=w/2

∣

∣ is similar.

III. DISCRETE CURVATURE PROPERTIES OF CORNERS

In this subsection, the properties of the discrete curvature

representations are investigated in detail about the effects of

the corner angles α and β on the curvature representations.

Next, the properties of the END, STAIR, and L models are

presented.

A. END model

For the END model with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2) in Equations (9)-(12), four cases are considered

to investigate the properties of the discrete curvature

representations and the detection of neighbouring corners.

1) When d ∈ [1, w/4), in terms of Equation (9), it can be

easily concluded that
∣

∣κd(u)|u=0

∣

∣ >
∣

∣κd(u)|u=w/2

∣

∣. Then, the

two adjacent corners can be easily detected.

2) When d ∈ [w/4, w/2), in terms of Equation (10),

inequality (13) becomes

∣

∣

∣

∣

∣

√
2

d

cosα

(1 + sinα)3/2

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)(cosα+ cosβ)

4d2

∣

∣

∣

∣

, (14)

which can be written as

cosα

(1 + sinα)3/2(cosα+ cosβ)
>

(2d− w/2)

4
√
2d

. (15)

The range of the right-hand side of inequality (15) is
[

0, 1
4
√
2

)

.

As a result, inequality (14) is established if it satisfies

cosα

(1 + sinα)3/2(cosα+ cosβ)
>

1

4
√
2
. (16)

It can be seen that inequality (16) is nonlinear. The ranges on α
and β which satisfy inequality (16) is shown in Fig. 3(a). The

white area indicates that inequality (16) is established. Then

the neighbouring corners can be accurately detected. On the

contrary, the gray area indicates that inequality (16) does not

hold. Subsequently, the adjacent corners cannot be accurately

κd(u)|u=0 = − (2d+ w)cosα+ (2d− w)sin(α+ β) + (2d− w)cosβ

d2(1 + sinα)3/2
,

κd(u)|u=w/2 = − (2d− w/2)((2d− w)sin(α+ β) + w(cosα+ sinβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2
,

κd(u)|u=w = − (2d+ w)cosβ + (2d− w)sin(α+ β) + (2d− w)cosα

d2(1 + sinβ)3/2
.

(11)

κd(u)|u=0 = − d(3wcosα+ (4d− 3w)sin(α+ β) + wcosβ)

(2d2(1− cos(α+ β)) + 2w2(1− sinβ) + 2dw(sinα+ sinβ + cos(α+ β)− 1))3/2
,

κd(u)|u=w/2 = − (2d− w/2)((2d− w)sin(α+ β) + w(cosα+ sinβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2
,

κd(u)|u=w = − d(3wcosβ + (4d− 3w)sin(α+ β) + wcosα)

(2d2(1− cos(α+ β)) + 2w2(1− sinα) + 2dw(sinα+ sinβ + cos(α+ β)− 1))3/2
.

(12)
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detected, which may lead to false corner detection.

3) When d ∈ [w/2, w), in terms of Equation (11),

inequality (13) can be rewritten as inequality (17). The

inequality (17) is established if it satisfies

cosα
(

cos(α−β

2
)+sin(α+β

2
)

2cos(α−β

2
)+sin(α+β

2
)
cos(α−β

2 )
)1/2

(1 + sinα)3/2cos(α+β
2 )

∣

∣

∣
sin−3/2(α−β

2 )
∣

∣

∣

>
3
√
2

4
. (18)

See Appendix A for more details. The ranges on α and β
which satisfy inequality (18) are shown in Fig. 3(b).

4) When d ∈ [w,+∞), in terms of Equation (12),

inequality (13) can be rewritten as inequality (19). It is

worth to note that lim
d→+∞

∣

∣κd(u)|u=0

∣

∣ = lim
d→+∞

∣

∣κd(u)|u=w/2

∣

∣.

Therefore, inequality
∣

∣κd(u)|u=0

∣

∣ >
∣

∣κd(u)|u=w/2

∣

∣ does not

hold when d → +∞. The same applies to the STAIR and L

models. Then we investigate the discrete curvature properties

in the case d ∈ [w, τw] with τ > 1 and τ ≪ +∞.

Inequality (19) is established when it satisfies the followings:

a) With α+β
2 ∈

(

−π
2 , arcsin

(

− w(3cosα+cosβ)

2(4d−3w)cos(α+β

2
)

))

,

− (4− 3
τ )sin(α+ β) + 3

τ cosα+ 1
τ cosβ

(

sin2(α+β
2 ) + 1

τ2 sin2(π4 − β
2 )
)3/2

>
4
√
2τ3/2(2− 1

2τ )cos(α+β
2 )

∣

∣

∣
(2− 1

τ )sin(α+β
2 ) + 1

τ cos(α−β
2 )
∣

∣

∣

1/2 ∣
∣

∣
sin

3
2 (α−β

2 )
∣

∣

∣

.

(20)

b) With α+β
2 ∈

(

arcsin
(

− w(3cosα+cosβ)

2(4d−3w)cos(α+β

2
)

)

, 0
)

,

(4− 3
τ )sin(α+ β) + 3

τ cosα+ 1
τ cosβ

(

sin2(α+β
2 ) + 1

τ2 sin2(π4 − β
2 )
)3/2

>
4
√
2τ3/2(2− 1

2τ )cos(α+β
2 )

∣

∣

∣
(2− 1

τ )sin(α+β
2 ) + 1

τ cos(α−β
2 )
∣

∣

∣

1/2 ∣
∣

∣
sin3/2(α−β

2 )
∣

∣

∣

.

(21)

c) With α+β
2 ∈

[

0, π2
)

,

(4− 3
τ )sin(α+ β) + 3

τ cosα+ 1
τ cosβ

(

sin(α+β
2 ) + 1

τ sin(π4 − β
2 )
)3

>
4
√
2τ3/2(2− 1

2τ )cos(α+β
2 )

(

(2− 1
τ )sin(α+β

2 ) + 1
τ cos(α−β

2 )
)1/2 ∣

∣

∣
sin3/2(α−β

2 )
∣

∣

∣

.

(22)

See Appendix B for more details. The ranges on α and β
which satisfy inequality (19) for case 4 of the END model

with τ = 1.3 and τ = 2 are shown in Fig. 3(c) and (d)

respectively.

Fig. 3 The ranges on α and β which satisfy inequality (13)

of the END model with different d: (a) d ∈ [w/4, w/2), (b)

d ∈ [w/2, w), (c) τ = 1.3, and (d) τ = 2.

Property 3.1 For the END corner model, two corners are

separated by w (w > 1) with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2). The region for α and β in which the corners

can be detected becomes smaller as d increases.

B. STAIR model

When π − β is used instead of β with β ∈ (−π/2, π/2),
Equations (9)-(12) are the discrete curvature representations

at the three positions u = 0, u = w/2, and u = w for the

STAIR model. Subsequently, we investigate the properties of

the curvatures at two positions u = 0 and u = w/2. If the

∣

∣

∣

∣

(2d+ w)cosα+ (2d− w)sin(α+ β) + (2d− w)cosβ

d2(2 + 2sinα)3/2

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)((2d− w)sin(α+ β) + w(cosα+ cosβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣

∣

∣

∣

.

(17)

∣

∣

∣

∣

d(3wcosα+ (4d− 3w)sin(α+ β) + wcosβ)

(2d2(1− cos(α+ β)) + 2w2(1− sinβ) + 2dw(sinα+ sinβ + cos(α+ β)− 1))3/2

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)((2d− w)sin(α+ β) + w(cosα+ cosβ))

((d− w/2)2(2− 2cos(α+ β)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣

∣

∣

∣

.

(19)
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curvature satisfies with inequality (13), the adjacent corners

can be exactly detected. Four cases are considered.

1) When d ∈ [1, w/4), in terms of Equation (9), it can

be easily concluded that
∣

∣κd(u)|u=0

∣

∣ >
∣

∣κd(u)|u=w/2

∣

∣. As a

result, the two adjacent corners can be easily detected.

2) When d ∈ [w/4, w/2), in terms of Equation (10),

inequality (13) becomes
∣

∣

∣

∣

∣

√
2

d

cosα

(1 + sinα)3/2

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)(cosα− cosβ)

4d2

∣

∣

∣

∣

, (23)

which can be written as

cosα

(1 + sinα)3/2 |cosα− cosβ| >
(2d− w/2)

4
√
2d

. (24)

The range of the right-hand side of inequality (24) is
[

0, 1
4
√
2

)

.

Then inequality (24) is established if it satisfies

cosα

(1 + sinα)3/2
>

|cosα− cosβ|
4
√
2

. (25)

The ranges on α and β which satisfy inequality (25) is

shown in Fig. 4(a).

3) When d ∈ [w/2, w), in terms of Equation (11),

inequality (13) can be rewritten as inequality (26). The

inequality (26) is established if it satisfies the followings:

a) With β−α
2 ∈

(

−π
2 , arctan

(

− w
2darctan(π4 − β

2 )
))

,

ξ(α, β)

(

cos2
(

β − α

2

)

+ sin2
(

π

4
− β

2

)

sin2
(π

4
− α

2

)

)

> 4ξ(α, β)cos

(

β − α

2

)

sin

(

π

4
− β

2

)

sin
(π

4
− α

2

)

+
3

4

∣

∣

∣

∣

sin

(

β − α

2

)∣

∣

∣

∣

cos2
(π

4
− α

2

)

,

(27)

where

ξ(α, β) =

∣

∣

∣

∣

sin

(

β − α

2

)∣

∣

∣

∣

cos

(

π

4
− β

2

)

− cos

(

β − α

2

)

sin

(

π

4
− β

2

)

.

(28)

b) With β−α
2 ∈

(

arctan
(

− w
2darctan(π4 − β

2 )
)

, π2

)

,

ψ(α, β)

(

cos
2

(

β − α

2

)

+ sin
2

(

π

4
−
β

2

)

sin
2
(π

4
−
α

2

)

)

> 4ψ(α, β)cos

(

β − α

2

)

sin

(

π

4
−
β

2

)

sin
(π

4
−
α

2

)

+
3

2

∣

∣

∣

∣

sin

(

β − α

2

)
∣

∣

∣

∣

cos
2
(π

4
−
α

2

)

,

(29)

where

ψ(α, β) =2sin

(

β − α

2

)

cos

(

π

4
− β

2

)

+ cos

(

β − α

2

)

sin

(

π

4
− β

2

)

.

(30)

See Appendix C for more details. The ranges on α and β
which satisfy case 3 of the STAIR model is shown in Fig. 4(b).

4) When d ∈ [w, τw], in terms of Equation (12), inequali-

ty (13) can be rewritten as inequality (31). Inequality (31) is

established when it satisfies the followings:

a) With β−α
2 ∈

(

−π
2 , arcsin

(

−wcosα
4(d−w)cos( β−α

2
)+2wcos(π

4
−α

2
)cos(π

4
− β

2
)

))

,

− (4− 3
τ )sin(β − α) + 3

τ cosα− 1
τ cosβ

(

4cos2(β−α
2 ) + 4

τ2 cos2(π4 + β
2 )
)3/2

>
2(2− 1

2τ )
∣

∣

∣
sin(β−α

2 )
∣

∣

∣

(

(2− 1
τ )cos(β−α

2 ) + 1
τ sin(α+β

2 )
)2 .

(32)

b) With β−α
2 ∈

(

arcsin
(

−wcosα
4(d−w)cos( β−α

2
)+2wcos(π

4
−α

2
)cos(π

4
− β

2
)

)

, π2

)

,

(4− 3
τ )sin(β − α) + 3

τ cosα− 1
τ cosβ

(

4cos2(β−α
2 ) + 4

τ2 cos2(π4 + β
2 )
)3/2

>
2(2− 1

2τ )
∣

∣

∣
sin(β−α

2 )
∣

∣

∣

(

(2− 1
τ )cos(β−α

2 ) + 1
τ sin(α+β

2 )
)2 .

(33)

See Appendix D for more details. The ranges on α and β
which satisfy case 4 of the STAIR model with τ = 1.3 and

τ = 2 are shown in Fig. 4(c) and (d) respectively.

∣

∣

∣

∣

(2d− w)(cosα− cosβ + sin(β − α)) + 2wcosα

d2(2 + 2sinα)3/2

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)((2d− w)sin(β − α) + w(cosα− cosβ))

((d− w/2)2(2 + 2cos(β − α)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣

∣

∣

∣

.

(26)

∣

∣

∣

∣

d(3wcosα+ (4d− 3w)sin(β − α)− wcosβ)

(2d2(1 + cos(β − α)) + 2w2(1− sinβ) + 2dw(sinα+ sinβ − cos(β − α)− 1))3/2

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)((2d− w)sin(β − α) + w(cosα− cosβ))

((d− w/2)2(2 + 2cos(β − α)) + w(2d− w)(sinα+ sinβ) + w2)3/2

∣

∣

∣

∣

.

(31)
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Fig. 4 The ranges on α and β which satisfy inequality (13)

of the STAIR model with different d: (a) d ∈ [w/4, w/2), (b)

d ∈ [w/2, w), (c) τ = 1.3, and (d) τ = 2.

Property 3.2 For the STAIR corner model, two corners are

separated by w (w > 1) with α ∈ (−π/2, π/2) and β ∈
(−π/2, π/2). The region for α and β in which the corners

can be detected becomes smaller as d increases.

C. L model

When α ∈ (−π/2, π/2) and β = π/2, Equations (9)-(12)

are the discrete curvature representations at the three positions

u = 0, u = w/2, and u = w for the L model. It follows that we

only need to investigate the properties for the curvatures at two

positions u = 0 and u = w/2. If the curvature satisfies with

inequality (13), the adjacent corners can be exactly detected.

Four cases are considered.

1) When d ∈ [1, w/4), in terms of Equation (9), it

can be easily concluded that
∣

∣κd(u)|u=0

∣

∣ >
∣

∣κd(u)|u=w/2

∣

∣.

Subsequently, the corner at the position u = 0 can be exactly

detected.

2) When d ∈ [w/4, w/2), in terms of Equation (10),

inequality (13) becomes
∣

∣

∣

∣

∣

√
2

d

cosα

(1 + sinα)3/2

∣

∣

∣

∣

∣

>

∣

∣

∣

∣

(2d− w/2)cosα

4d2

∣

∣

∣

∣

, (34)

which can be rewritten as

1

(1 + sinα)3/2
>

(2d− w/2)

4
√
2d

. (35)

The range of the right-hand side of inequality (35) is
[

0, 1
4
√
2

)

.

It is very easy to prove that inequality (35) is established. Then

it can be concluded that the corner at the position u = 0 can

be exactly detected in this case.

3) When d ∈ [w/2, w), in terms of Equation (11),

inequality (13) becomes
√
2cosα

d(1 + sinα)3/2
>

2d(2d− w/2)cosα

((2d2 − w2/2)(1 + sinα) + w2)3/2
, (36)

which can be rewritten as
((

2−
(

w√
2d

)2
)

+
(w/d)2

1 + sinα

)3/2

>
√
2
(

2− w

2d

)

. (37)

It is easy to prove that inequality (37) is established. Then it

can be concluded that the corner at the position u = 0 can be

exactly detected in this case.

4) When d ∈ [w, τw], in terms of Equation (12),

inequality (13) can be rewritten as
√
2cosα

d(1 + sinα)3/2
>

2d(2d− w/2)cosα

((2d2 − w2/2)(1 + sinα) + w2)3/2
. (38)

Inequality (38) can be rewritten as

(

(2τ2 − 1/2) +
1

1 + sinα

)3/2

>
√
2τ2(2τ − 1/2). (39)

It is easy to prove that inequality (39) is established. Then it

can be concluded that the corner at the position u = 0 can be

exactly detected in this case.

Property 3.3 For the L corner model, the corner with α ∈
(−π/2, π/2) can always be exactly detected as d increases.

IV. NEW CORNER DETECTION METHOD

In this section, the corner resolution based on the proposed

discrete curvature representation is investigated, and its corre-

sponding corner resolution constant is derived. Furthermore,

the properties of the discrete curvature representations are used

to construct a new corner measure and a new corner detection

method is proposed.

A. Corner resolution

Corner resolution is defined as the capability of a corner

measure to differentiate nearby corners. The ability of the

curvature representation technique to detect adjacent corners

depends on whether the curvature maxima of the adjacent

corners can be resolved.

For the END and STAIR models, two corners are separated

by w (w > 1) with α ∈ (−π/2, π/2) and β ∈ (−π/2, π/2).
In terms of discrete curvature representation, only if d is less

than w/4, the adjacent corners can be exactly detected without

considering angle change. It means, given a d, only if the

distance w between the adjacent corners is larger than 4d,

the adjacent corners can be exactly detected. Then the corner

resolution constant λ can be defined as λ = 4d − 1. For

example d = 1, the corresponding corner resolution constant

is λ = 3; with d = 2, λ is 7; and with d = 3, λ is 11.

B. New corner measure

Based on the above analysis, we can conclude that curvature

calculation for a corner measure using a small d has good

corner localization and good ability to resolve adjacent corners

but is noise-sensitive. Taking the existing discrete curvature

calculation technique as an example, d=1 is used to calculate

the curvature and detect corners in [26], [28]. The two

methods [26], [28] have the highest corner resolution (λ = 3)

in the existing contour-based methods [4], [26]–[42]. However,

the two methods [26], [28] are sensitive to local variations and

cannot accurately depict the difference between corners and

edges, as shown in Fig. 1. Curvature calculation for a corner

measure using a large d is noise-robust but it will degrade

corner resolution.



8

To obtain better corner detection accuracy with a high corner

resolution and noise robustness simultaneously, a new corner

measure is proposed in this paper with curvature calculation

given as

Λ(u) =
|ẋd1

(u)ÿd1
(u)− ẍd1

(u)ẏd1
(u)|

(ẋ2d1
(u) + ẏ2d1

(u))3/2
×

|ẋd2
(u)ÿd2

(u)− ẍd2
(u)ẏd2

(u)|
(ẋ2d2

(u) + ẏ2d2
(u))3/2

,

(40)

where d1 = 2 and d2 = 3. For the END and STAIR models,

provided that two corners are separated by w = 8 with α ∈
(−π/2, π/2) and β ∈ (−π/2, π/2), it can be easily found

from Equation (40) that the curvature Λ(u)|u=4 is 0. It means

that the two adjacent corners can be exactly detected. From

the above analysis, λ = 7 pixels can be used to represent the

corner resolution of the proposed new corner measure for two

neighbouring corners. This is defined as the corner resolution

constant of the proposed corner measure. In corner detection,

the detection of neighbouring corners is mainly determined by

the corner resolution constant.

In general, the above curvature function has the following

advantages over the existing contour-based corner detection

techniques [26], [28], [29], [31], [34], [36]–[38]. For a

curvature-based corner measure, noise-robustness usually

means poor corner localization because of large scale Gaussian

smoothing. The proposed corner measure has a high corner

resolution using a small d1 while maintaining high noise-

robustness using a large d2, which also enhances the stability

of corner detection and avoids the degradation of corner

localization. This is impossible for the existing contour-based

corner detectors [26], [28]–[31] using the multi-scale curvature

techniques [26]. The proposed corner measure makes corners

more distinguishable and suppresses false corners effectively,

and it also avoids the issue of parameter selection for an

appropriate Gaussian smoothing scale. As a result, false corner

detections are less likely to occur.

C. Comparisons of corner measures

In what follows, we compare our new corner measure with

the MSCP measure [29], the local curvature measure [31],

the CPDA measure [34], the local curvature measure using

Equation (5) (d=2), and the local curvature measure using

Equation (5) (d=3) for the contour-based corner detectors. Fig.

5 illustrates the test image ‘Block’, edge contours extracted

by the Canny edge detector [50], the MSCP measure [29],

the local curvature measure [31], the CPDA measure [34], the

local curvature measure using Equation (5) (d=2), the local

curvature measure using Equation (5) (d=3), and the new

corner measure on the contour. One example edge contour

is extracted from the edge map indicated by the arrow in

Fig. 5(b), which contains 13 corners labelled by the black

squares in Fig. 5(c). The three other corner measures use the

default choices in their original codes and the 13 corners

in the contour match 13 peaks of the four graphs. It can

be observed that the six graphs in Fig. 5(d)-(i) demonstrate

different behaviours. The MSCP measure [31] uses three

different scales to smooth the edge contour, and then the

product of the three corresponding curvatures via Equation (2)

is defined as the corner measure, which has the ability to

suppress local variations. However, the fusion of multi-scale

curvatures from different smoothed edge contours may lead

to the difficulty in extracting some candidate corners from

the edge contour, for example, the sixth and ninth candidate

corners as shown in Fig. 5(d). This implies that the MSCP

detector has a large probability of occurrence for missing

corners. The local curvature measure in [31] uses a single

scale of Gaussian to smooth the edge contour and to calculate

the curvature for corner detection. This measure contains

some maxima with larger magnitudes besides the 13 corners,

meaning that the detector [31] has a slightly large probability

of generating false corners. The CPDA corner measure has

hardly any maximum besides the corners, implying that the

CPDA detector has a small probability of generating false

corners. However, the CPDA detector might potentially miss

obvious corners where two neighbouring candidate corners are

located close to each other, just as the sixth candidate corner

which has the fifth corner nearby, as shown in Fig. 5(f). The

reason is that the chord length with more number of pixels

is used to calculate the chord-to-point distance [38], [39],

which affect the calculation of curvatures. The local curvature

measures using Equation (5) (d=2 or d=3) contain some

maxima with larger magnitudes besides the 13 corners. This

implies that the local curvature measures using Equation (5)

(d=2 or d=3) have a slightly large probability of generating

false corners. Our new corner measure has sharp peaks at

corners and almost no local maxima apart from the 13 corners.

This means that the new corner measure is better in corner

detection and has the ability to resolve adjacent corners on a

contour than the three other detectors [29], [31], [34].

D. Contour-based corner detection using new corner measure

In this section, we describe how our proposed corner

measure described above is used in our proposed detector.

The proposed corner detector first extracts the edge map

from an input image using the Canny edge detector [50].

Consequently, planar curves are extracted from the edge map.

Next, Equation (40) is used to estimate the curvature on the

curves. The local maxima of the curvatures along the curves

are marked as candidate corners. Finally, a single curvature

threshold is used to select corners.

The outline of the proposed corner detection algorithm is

as follows:

1) Detect edges from the input image using Canny or other

edge detectors to obtain a binary edge map.

2) Extract contours from the edge map as in the methods of

[28], [31]:

- Fill in gaps along the edge contours.

- Locate the T-junctions and mark them as T-corners.

3) For each point of the contours, calculate the curvature

following the proposed corner measure as in Equation-

s (40).

4) Find the local maxima of curvature as candidate corners

and remove false corners by comparing with the curvature

threshold Th.
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Fig. 5 Comparison of six corner measures on a contour, (a)

Noise-free ‘Block’ image, (b) Edge map, (c) A closed

contour with 13 corners, (d) The MSCP corner measure

in [29], (e) Local curvature measure in [31], (f) The CPDA

measure in [34], (g) Local curvature measure using

Equation (5) (d=2), (h) Local curvature measure using

Equation (5) (d=3), and (i) Proposed corner measure on the

contour.

V. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

The full performance evaluation on the proposed corner

detector is reported in this section. Firstly, three images with

ground truths are used to compare the proposed method

with seven state-of-the-art corner detectors (MSCP [29],

He & Yung [31], CPDA [34], ARCSS [35], GCM [36],

ANDD [5], and ADCC [42]) in terms of the numbers of

missed and false corners and localization errors of correctly

detected corners [5], [38]. Secondly, 24 images are used to

evaluate the detectors’ average repeatability under image affine

transformations, JPEG compression, and noise degradation.

The three commonly used test images ‘Block’, ‘Lab’ and

‘Pentagon’ [5], [31] are used in one of the performance

evaluations [5], [31], [39]. The ground truths of the three test

images are shown in Fig. 6(a), (b) and (c). In the three ground

truth images, the image ‘Block’ contains 59 corners, the image

‘Lab’ contains 249 corners, and the image ‘Pentagon’ contains

78 corners. It is worth to note that ‘Block’ and ‘Lab’ are noise

free images, while ‘Pentagon’ is a natural image with noise.

Let DC = {(x̂i, ŷi), i = 1, 2, . . . ,M1} and GT =
{(xj , yj), j = 1, 2, . . . ,M2} be the detected corners by a

corner detector and the true corners in the ground truth images

respectively. For a corner (xj , yj) in set GT , we find its

minimal distance from set DC. If the minimal distance is

not more than the predefined threshold δ (here δ = 4), the

corner (xj , yj) is treated as correctly detected. Consequently,

corner (xj , yj) in set GT and the detected corner in set

Fig. 6 Test images (a) ‘Block’, (b) ‘Lab’, and (c) ‘Pentagon’

and their ground truth corner positions.

DC form a matched pair. Otherwise, the corner (xj , yj) is

counted as a missed corner. Similarly, for a corner (x̂i, ŷi)
in set DC, we find its minimal distance from set GT . If

the minimal distance is larger than threshold δ, then corner

(x̂i, ŷi) is labelled as a false corner. The localization error is

defined as the average distance on all the matched pairs. Let

{(x̂k, ŷk), (xk, yk): k = 1, 2, . . . , N} be the matched corner

pairs in sets GT and DC. As a result, the average localization

error is calculated by

ALe =

√

√

√

√

1

N

N
∑

k=1

((x̂k − xk)2 + (ŷk − yk)2). (41)

It is worth to note that the predefined δ is determined by the

corner resolution constant. In this paper, the corner resolution

constant λ is 7, so it is right to set δ = 4.

The seven other detectors [5], [29], [31], [34]–[36], [42] use

the authors’ original codes. Here, the default values are used

for all the tuneable parameters of the detectors. The parameter

settings for the proposed detector are: two lengths of curvature

calculation d1 = 2 and d2 = 3, the thresholds for Canny edge

detector being low = 0 and high = 0.35, and the curvature

threshold Th = 0.008. The choices for the thresholds of the

Canny edge detector are based on methods in [31], [36], [39].

The parameter settings are taken in the set






d1 = 1, 2, 3;
d2 = 2, 3, 4; (d2 > d1)
Th = 0.001, 0.0015, ..., 0.0325







. (42)

Below we discuss how the parameters (d1, d2, and Th) for the

proposed method are selected.

Assuming that missing a corner and reporting a false corner

incur the same loss for detection performance, we use the

total of missed and false corners to evaluate the detection

performance for the proposed method. For the three test

images, the effect of parameter changes on the proposed corner

detector is shown in Fig. 7. It can be observed that the

proposed detector with d1 = 2, d2 = 3, and Th = 0.008
(marked by ‘◦’) achieves a better detection accuracy than the

proposed detector with other parameter settings.

As the number of test images with ground truths are

limited, it is not sufficient to evaluate the performance of the

corner detectors just based on these images. For important

applications such as feature matching and registration, the

average repeatability under affine transformations, JPEG

compression, and noise degradation was suggested [5], [34],

[38], [39] for the evaluation of corner detectors. Repeatability
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Fig. 7 Effect of parameters changes on the proposed corner

detector.

computation does not require the ground truths of images.

Therefore, a large image dataset can be used for evaluation.

In [34], the average repeatability Ravg explicitly measures

the geometrical stability of the detected corners based on the

original and affine transformed images. It is defined as:

Ravg =
Nr

2

(

1

No
+

1

Nt

)

, (43)

where No and Nt represent the number of detected corners

from the original and transformed images by a detector, and

Nr is the number of corners between them. It is noted that a

corner point Bi = (xi, yi) is detected in the original image and

its corresponding position is point Qj after geometric image

transformation. If a corner point is detected in a geometrically

transformed image, and it is in the neighbourhood of Qj

(say within 4 pixels which is also determined by the corner

resolution constant of the proposed corner measure), then a

repeated corner is achieved. A higher average repeatability

means a better performance.

A. Evaluation of detection performance based on ground truth

images

In the first experiment, we compare the eight detectors using

three images with ground truths. The detection results of the

seven detectors are given in Fig. 8, Fig. 9, and Fig. 10. The

number of missed corners, the number of false corners, and

the localization error for each detector are listed in Table I.

Fig. 8 Detection results on the test image ‘Block’. (a) MSCP

detector [29], (b) He & Yung detector [31], (c) CPDA

detector [34], (d) ARCSS detector [35], (e) GCM

detector [36], (f) ANDD detector [5], (g) ADCC

detector [42], and (h) Proposed detector.

In this experiment, the total numbers of missed and false

corners are used to evaluate the detection performance for

(a)   (b)   (c)   (d)   

(e)   (f)   (g)   (h)   

Fig. 10 Detection results on the test image ‘Pentagon’. (a)

MSCP detector [29], (b) He & Yung detector [31], (c) CPDA

detector [34], (d) ARCSS detector [35], (e) GCM

detector [36], (f) ANDD detector [5], (g) ADCC

detector [42], and (h) Proposed detector.

a corner detector. Furthermore, considering the number of

true corners in the three test images, the ratio of the total

number of missed and false corners to the number of true

corners in the ground truths can be used to quantitatively

evaluate the detection performance. For the three test images,

the ratios for the eight corner detectors, i.e., MSCP [29], He &
Yung [31], CPDA [34], ARCSS [35], GCM [36], ANDD [5],

ADCC [42], and the proposed detector are 237/386, 219/386,

207/386, 276/386, 176/386, 261/386, 176/386, and 171/386

respectively. It can be observed that the proposed detector

attains the best detection performance in the noise-free cases.

Besides, the corner localization accuracy is another important

measure to evaluate detectors. It can be observed that for the

three test images with ground truths the proposed detector

attains the smallest localization error for image ‘Lab’ and

image ‘Pentagon’ and attains the third smallest localization

error for image ‘Block’, while the CPDA [34], ADCC [42],

He & Yung [31], and GCM [36] detectors are moderate, and

the ANDD [5], MSCP [29], and ARCSS [35] detectors are the

poorest in corner localization.

The second experiment is used to compare the noise

robustness of the eight detectors for two noisy test images. The

two test images (‘Block’ and ‘Lab’) are added with zero-mean

Gaussian white noise with variance ε2ω (εω = 1, 2, . . . , 20).

For each noise variance, 300 experiments were carried out

to obtain the average number of missed corners, average

number of false corners, and average localization errors. In

this evaluation criteria, with the increase of the noise variance,

the lower the average slope of the curve, the better the noise

robustness of a detector. The three measures for the two images

are given in Fig. 11(a)-(c) and (d)-(f) respectively. For the eight

detectors (MSCP [29], He & Yung [31], CPDA [34], ARCSS

[35], GCM [36], ANDD [5], ADCC [42], and the proposed

detector), the three measures gradually become worse with

the increase of the noise level. Taking the three measures into

account, the proposed method achieves the best results for the

noisy test images, and the method has the lowest curve average

slope change. The reason is that the proposed method has a



11

Fig. 9 Detection results on the test image ‘Lab’. (a) MSCP detector [29], (b) He & Yung detector [31], (c) CPDA

detector [34], (d) ARCSS detector [35], (e) GCM detector [36], (f) ANDD detector [5], (g) ADCC detector [42], and (h)

Proposed detector.

TABLE I Performance comparison of the eight detectors for noise-free test images (the unit is in pixel).

Missed corners False corners Localization error
Detector Test

image
‘Block’

Test
image
‘Lab’

Test image
‘Pentagon’

Test
image

‘Block’

Test
image
‘Lab’

Test image
‘Pentagon’

Test
image

‘Block’

Test
image
‘Lab’

Test image
‘Pentagon’

MSCP 2 45 4 6 88 92 1.379 1.437 1.571
He & Yung 11 45 9 5 77 72 1.024 1.389 1.483

CPDA 27 122 43 0 12 3 0.952 1.313 1.225
ARCSS 36 180 44 0 7 9 1.302 1.429 1.942
GCM 7 95 32 1 32 7 1.209 1.324 1.253

ANDD 4 94 18 1 50 99 1.326 1.455 2.254
ADCC 5 94 6 1 33 37 1.116 1.295 1.523

Proposed 5 75 19 2 48 22 1.111 1.288 1.219

better capability on noise robustness and corner resolution. The

GCM, ADCC, and ANDD detectors are moderate. The He &
Yung, MSCP, and ARCSS detectors perform poorly because

they are more sensitive to local variation and noise on curves.
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Fig. 11 Demonstration of the noise-robustness of the eight

detectors for the test images ‘Block’ and ‘Lab’: (a-c) for

noisy ‘Block’ images, and (d-f) for noisy ‘Lab’ images.

However, there exist some exceptions for the CPDA detector

[34]. From Fig. 11(a) and (e), it can be found that the measures

for the CPDA detector become better with the increase of noise

level. The reason is that the authors of the CPDA detector

[34] raise the threshold only to detect ‘strong’ corners with

large curvatures and neglect some obvious corners, as shown

in Fig. 8(d) and Fig. 9(d). However, the low corner resolution

makes the CPDA detector uncertain for some corner detection

under the influence of different noise levels. Take the sixth

corner in Fig. 5(c) as an example, the CPDA detector cannot

detect it in the noise-free case as shown in Fig. 8(d), while

it can be detected in the noisy case with a standard variance

εω = 20 as shown in Fig. 12(a). The output of the proposed

detector is shown in Fig. 12(b) with the same noise level.

Compared with the noise-free case, as shown in Fig. 8(h), the

change of the result is not obvious. The reason is that the issue

of corner resolution and noise robustness without the loss of

corner detection accuracy has been considered in our corner

measure.

Fig. 12 The effect of corner resolution on corner detectors,

(a) CPDA detector [34], (b) Proposed detector.

B. Evaluation of detection performance based on average

repeatability

In this section, another performance evaluation for corner

detection based on average repeatability [34] is adopted, which

has no human involvement and can be used with any size of
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database. We had a total of 24 different gray-scale images:

one is the ‘Block’ image [5] and the other 23 images are

collected from standard databases [51], [52], which include

many commonly used images such as ‘Lena’, ‘Leaf’, ‘House’,

and ‘Lab’.

We had a total of 8,904 transformed test images, which

were obtained by applying the following six different

transformations on each original image:

• Rotations: The original image was rotated at 18 different

angles within [−π/2, π/2].
• Uniform scaling: The original image was scaled with scale

factors sx = sy in [0.5, 2] with 0.1 apart, excluding 1.

• Non-uniform scaling: The scales sx and sy were chosen

by sampling the ranges [0.7, 1.5] and [0.5, 1.8] with a 0.1

interval respectively.

• Shear transformations: The shear factor c was chosen by

sampling the range [−1, 1] with a 0.1 interval, excluding 0,

with the following formula
[

x′

y′

]

=

[

1 c
0 1

] [

x
y

]

.

• Lossy JPEG compression: A JPEG quality factor was

chosen by sampling the range [5, 100] with an interval 5.

• Gaussian noise: Zero mean white Gaussian noise was

added to the original image at 15 standard deviations in [1, 15]
with an interval 1.

In order to have a fair performance comparison in this

experiment, for each input image, the average number of

detected corners of the eight detectors is marked as the

reference corner number for the input image. Then the

threshold for each detector is adjusted so that each detector

extracts about the same number of corners from each

input image. Fig. 13 shows the average repeatability of the

eight detectors under rotation, uniform scaling, non-uniform

scaling, shear transformation, lossy JPEG compression, and

Gaussian noises. Our proposed detector attains the best

average repeatability under rotation, uniform scaling, non-

uniform scaling, lossy JPEG compression, and Gaussian

noises, and achieves the second-best performance with shear

transformation. The reason is that the proposed detector has

a better capability on corner resolution, detection accuracy,

and noise robustness in the discrete domain. The CPDA

detector [34] has the best average repeatability under the shear

transformation, the second-best performance under uniform

scaling, non-uniform scaling, lossy JPEG compression, and

Gaussian noises, and the third-best performance for rotation

changes. The performances of the GCM [36], ADCC [42],

He & Yung [31], ANDD [5], MSCP [29], and ARCSS

[35] detectors are moderate. The reason is that the corner

detection accuracy, corner resolution, and noise robustness are

not considered simultaneously by the seven detectors. The

average repeatability and localization error are summarized in

Table II. Meanwhile, it can be also found that the performance

comparison results on CPDA [34], GCM [36], MSCP [29],

He & Yung [31], and ARCSS [35] detectors in this paper

are consistent with the performance comparison results given

in [53].
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Fig. 13 Average repeatability of the eight detectors under

rotation, uniform scaling, non-uniform scaling, shear

transforms, lossy JPEG compression, and additive white

Gaussian noises.

TABLE II Average repeatability and localization error.

Detector Repeatability Localization error

(percentage) (pixels)

MSCP 0.612 1.974

He & Yung 0.645 1.818

CPDA 0.711 1.577

ARCSS 0.603 2.064

GCM 0.677 1.635

ANDD 0.622 1.719

ADCC 0.671 1.731

Proposed 0.722 1.518

Based on the aspects of missed and false corners and the

localization accuracy for the two commonly used test images

which have ground truths with noise-free and different noise

levels, the average repeatability under affine transformation,

lossy JPEG compression, and noise robustness, the eight

detectors have different performances. Fully comparing the

performances of the detectors over these four aspects, the

proposed detector is the best in overall performance. This is

owing to the fact that the proposed detector is less sensitive

to local variation and noise on curves while maintaining a

high corner resolution, detection capability, and localization

accuracy.

C. Average running time

The proposed corner detector has been implemented in

MATLAB (R2016a) using a 2.81 GHz CPU with 16 GB

of memory. For each test image, the proposed algorithm

was executed 100 times and the mean execution time was
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measured. The average running time of the eight corner

detectors is summarized in Table III. According to Table III,

the ‘Block’ and ‘House’ images required similar times; the

‘Lab’, ‘Lena’, and ‘Parking meter’ images required more

times. Note that the time varies slightly depending on the

number of detected edge pixels in the image. Meanwhile, it

can be easily concluded that the proposed method meets the

requirement of real-time applications.

TABLE III Average running time

(the unit is in second, image size is in pixels).

Methods

Time (s)

Block House Lab Lena Parking
meter

(256×256) (256×256) (512×512) (512×512) (558×495)

MSCP 0.058 0.055 0.173 0.246 0.255

He &

Yung
0.062 0.059 0.183 0.253 0.261

CPDA 0.143 0.124 0.359 0.347 0.363

ARCSS 0.162 0.159 0.383 0.367 0.392

GCM 0.167 0.144 0.381 0.392 0.402

ANDD 0.984 0.941 4.231 4.491 4.682

ADCC 0.136 0.135 0.318 0.356 0.389

Proposed 0.127 0.106 0.285 0.326 0.290

VI. CONCLUSION

The main contribution of the paper is the development of

the discrete curvature representations. The discrete curvature

behavior on three corner models is investigated and a number

of model properties are specified. A new corner measure is

proposed which has high corner resolution and strong ability

for noise robust corner detection. Consequently, the corner

resolution constant is derived and as a result, a noise robust

corner detector is presented. The experimental results show

that the proposed detector outperforms the seven state-of-the-

art corner detectors in terms of missed corners, false corners,

and localization accuracy under different levels of noises,

and in average repeatability under affine transformation, lossy

JPEG compression, and noise robustness.

APPENDIX A

SOLVING INEQUALITY (17)

It is worth to note that when judging which is larger between

two numbers F (u) and H(u), given F (u) > f(u) and h(u) >
H(u), if f(u) > h(u), then F (u) > H(u) is established.

For inequality (17), the left-hand side of the inequality is

|κd(u)|u=0| of Equation (11), the right-hand side of inequality

is |κd(u)|u=w/2| of Equation (11). In terms of Equation (11),

|κd(u)|u=0| =
4(2d− w)cos(α+β

2 )cos(π4 − α
2 )cos(π4 − β

2 ) + 2wcosα

d2(1 + sinα)3/2

>
2wcosα

d2(1 + sinα)3/2
,

(44)

and

|κd(u)|u=w/2| =
2(2d− w/2)cos(α+β

2 )
(

(2d− w)sin(α+β
2 ) + wcos(α−β

2 )
)

(

(

(2d− w)sin(α+β
2 ) + wcos(α−β

2 )
)2

+ w2sin2(α−β
2 )

)3/2

(45)

It is easy to prove that

|κd(u)|u=w/2| ≤
√
2
2 (2d− w/2)cos(α+β

2 )

w3/2
(

(2d− w)sin(α+β
2 ) + wcos(α−β

2 )
)1/2

|sin3/2(α−β
2 )|
(46)

Inequality (46) can be rewritten as

|κd(u)|u=w/2| ≤
(2d− w/2)cos(α+β

2 )

2w2
(

cos(α−β

2
)+sin(α+β

2
)

2cos(α−β

2
)+sin(α+β

2
)
cos(α−β

2 )
)1/2

|sin3/2(α−β
2 )|

(47)

Then, inequality (17) is established when it satisfies

2wcosα

d2(1 + sinα)3/2
≥

(2d− w/2)cos(α+β
2 )

2w2
(

cos(α−β

2
)+sin(α+β

2
)

2cos(α−β

2
)+sin(α+β

2
)
cos(α−β

2 )
)1/2

|sin3/2(α−β
2 )|

.
(48)

In this case, d ∈ [w/2, w), then inequality (48) can be further

written as inequality (18).

APPENDIX B

SOLVING INEQUALITY (19)

For (19), denote

Ω =2d2(1− cos(α+ β)) + 2w2(1− sinβ)+

2dw(sinα+ sinβ + cos(α+ β)− 1).
(49)

For (49), it can be concluded

With α+β
2 ∈

(

−π
2 , 0
)

,

Ω ≤ 4d2sin2(
α+ β

2
) + 4w2sin2(

π

4
− β

2
). (50)

With α+β
2 ∈

[

0, π2
)

,

Ω ≤
(

2dsin(
α+ β

2
) + 2wsin(

π

4
− β

2
)

)2

. (51)

For (19), it can be found that

(4d− 3w)sin(α+ β) + 3wcosα+ wcosβ = 0 (52)

holds when

α+ β

2
= arcsin

(

− w(3cosα+ cosβ)

2(4d− 3w)cos(α+β
2 )

)

. (53)

In terms of (46), (49)-(53), inequality (19) with d ∈ [w, τw]
is established when it satisfies
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a) With α+β
2 ∈

(

−π
2 , arcsin

(

− w(3cosα+cosβ)

2(4d−3w)(cos(α+β

2
)

))

,

− d((4d− 3w)sin(α+ β) + 3wcosα+ wcosβ)
(

4d2sin2(α+β
2 ) + 4w2sin2(π4 − β

2 )
)3/2

>

√
2
2 (2d− w/2)cos(α+β

2 )

w3/2|(2d− w)sin(α+β
2 ) + wcos(α−β

2 )|1/2|sin3/2(α−β
2 )|

.

(54)

Inequality (54) can be further written as inequality (20).

b) With α+β
2 ∈

(

arcsin
(

− w(3cosα+cosβ)

2(4d−3w)(cos(α+β

2
)

)

, 0
)

,

d((4d− 3w)sin(α+ β) + 3wcosα+ wcosβ)
(

4d2sin2(α+β
2 ) + 4w2sin2(π4 − β

2 )
)3/2

>

√
2
2 (2d− w/2)cos(α+β

2 )

w3/2|(2d− w)sin(α+β
2 ) + wcos(α−β

2 )|1/2|sin3/2(α−β
2 )|

.

(55)

Inequality (55) can be further written as inequality (21).

c) With α+β
2 ∈

[

0, π2
)

,

d((4d− 3w)sin(α+ β) + 3wcosα+ wcosβ)
(

2dsin(α+β
2 ) + 2wsin(π4 − β

2 )
)3 >

√
2
2 (2d− w/2)cos(α+β

2 )

w3/2
(

(2d− w)sin(α+β
2 ) + wcos(α−β

2 )
)1/2

|sin3/2(α−β
2 )|

.

(56)

Inequality (56) can be further written as inequality (22).

APPENDIX C

SOLVING INEQUALITY (26)

For (26), d ∈ [w/2, w), the right-hand side of inequali-

ty (26) is

|κd(u)|u=w/2| =
2(2d− w/2)

∣

∣

∣
sin(β−α

2 )
(

(2d− w)cos(β−α
2 ) + wsin(α+β

2 )
)
∣

∣

∣

(

(

(2d− w)cos(β−α
2 ) + wsin(α+β

2 )
)2

+ w2cos2(α+β
2 )

)3/2

≤ 2(2d− w/2)|sin(β−α
2 )|

(

2dcos(β−α
2 )− 2wsin(π4 − β

2 )sin(π4 − α
2 )
)2

(57)

For (26), denote

Ψ =(2d− w)(cosα− cosβ + sin(β − α)) + 2wcosα

=8dsin(
β − α

2
)cos(

π

4
− α

2
)cos(

π

4
− β

2
)+

4wcos(
α− β

2
)cos(

π

4
− α

2
)sin(

π

4
− β

2
).

(58)

For (58), it can be found that Ψ = 0 holds when

β − α

2
= arctan

(

− w

2d
tan

(

π

4
− β

2

))

. (59)

Meanwhile, the left-hand side of inequality (26) can be

written as

|κd(u)|u=0|

=
|2dsin(β−α

2 )cos(π4 − β
2 ) + wcos(β−α

2 )sin(π4 − β
2 )|

2d2cos2(π4 − α
2 )

.
(60)

Then, solving inequality (26) as follows

a) With β−α
2 ∈

(

−π
2 , arctan

(

− w
2d tan(π4 − β

2 )
))

, Equa-

tion (60) can be reduced to

|κd(u)|u=0|

≥ |sin(β−α
2 )|cos(π4 − β

2 )− cos(β−α
2 )sin(π4 − β

2 )

dcos2(π4 − α
2 )

(61)

In this case, inequality (26) is established when it satisfies

|sin(β−α
2 )|cos(π4 − β

2 )− cos(β−α
2 )sin(π4 − β

2 )

dcos2(π4 − α
2 )

≥

2(2d− w/2)|sin(β−α
2 )|

(

2dcos(β−α
2 )− 2wsin(π4 − β

2 )sin(π4 − α
2 )
)2 .

(62)

Inequality (62) can be further written as inequality (27).

b) With β−α
2 ∈

(

arctan
(

− w
2d tan(π4 − β

2 )
)

, π2

)

, Equa-

tion (60) becomes

|κd(u)|u=0|

≥ 2sin(β−α
2 )cos(π4 − β

2 ) + cos(β−α
2 )sin(π4 − β

2 )

2dcos2(π4 − α
2 )

(63)

In this case, inequality (26) is established when it satisfies

2sin(β−α
2 )cos(π4 − β

2 ) + cos(β−α
2 )sin(π4 − β

2 )

2dcos2(π4 − α
2 )

≥

2(2d− w
2 )|sin(β−α

2 )|
(

2dcos(β−α
2 )− 2wsin(π4 − β

2 )sin(π4 − α
2 )
)2 .

(64)

Inequality (64) can be further written as inequality (29).

APPENDIX D

SOLVING INEQUALITY (31)

For (31), denote

Λ = 3wcosα+ (4d− 3w)sin(β − α)− wcosβ. (65)

For (65), it can be found that Λ = 0 holds when

β − α

2
=

arcsin

(

−wcosα

4(d− w)cos(β−α
2

) + 2wcos(π
4
− α

2
)cos(π

4
− β

2
)

)

.
(66)

For (31), denote

Θ = 2d2(1 + cos(β − α)) + 2w2(1− sinβ)+

2dw(sinα+ sinβ − cos(β − α)− 1)

≤ 4d2cos2(
β − α

2
) + 4w2cos2(

π

4
+
β

2
)

(67)
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Meanwhile, the right-hand side of inequality (31) can be
written as

|κd(u)|u=w/2| ≤
2(2d− w/2)

∣

∣sin(β−α
2

)
∣

∣

(

(2d− w)cos(β−α
2

) + wsin(α+β
2

)
)2 (68)

Then inequality (31) is established when it satisfies

a) With β−α
2 ∈

(

−π
2 , arcsin

(

−wcosα
4(d−w)cos( β−α

2
)+2wcos(π

4
−α

2
)cos(π

4
− β

2
)

))

,

− d ((4d− 3w)sin(β − α) + 3wcosα− wcosβ)
(

4d2cos2(β−α
2 ) + 4w2cos2(π4 + β

2 )
)3/2

>
2(2d− w/2)

∣

∣

∣
sin(β−α

2 )
∣

∣

∣

(

(2d− w)cos(β−α
2 ) + wsin(α+β

2 )
)2

(69)

Inequality (69) can be further written as inequality (32).

b) With β−α
2 ∈

(

arcsin
(

−wcosα
4(d−w)cos( β−α

2
)+2wcos(π

4
−α

2
)cos(π

4
− β

2
)

)

, π2

)

,

d((4d− 3w)sin(β − α) + 3wcosα− wcosβ)
(

4d2cos2(β−α
2 ) + 4w2cos2(π4 + β

2 )
)3/2

>
2(2d− w/2)

∣

∣

∣
sin(β−α

2 )
∣

∣

∣

(

(2d− w)cos(β−α
2 ) + wsin(α+β

2 )
)2

(70)

Inequality (70) can be further written as inequality (33).
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