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Abstract

Background: One important concept in traditional Chinese medicine (TCM) is

“treating different diseases with the same therapy”. In TCM practice, some patients

with Rheumatoid Arthritis (RA) and some other patients with Coronary Heart Disease

(CHD) can be treated with similar therapies. This suggests that there might be

something commonly existed between RA and CHD, for example, biological

networks or biological basis. As the amount of biomedical data in leading databases

(i.e., PubMed, SinoMed, etc.) is growing at an exponential rate, it might be possible

to get something interesting and meaningful through the techniques developed in

data mining.

Results: Based on the large data sets of Western medicine literature (PubMed) and

traditional Chinese medicine literature (SinoMed), by applying data slicing algorithm

in text mining, we retrieved some simple and meaningful networks. The Chinese

herbs used in treatment of both RA and CHD, might affect the commonly existed

networks between RA and CHD. This might support the TCM concept of treating

different diseases with the same therapy.

Conclusions: First, the data mining results might show the positive answer that

there are biological basis/networks commonly existed in both RA and CHD. Second,

there are basic Chinese herbs used in the treatment of both RA and CHD. Third,

these commonly existed networks might be affected by the basic Chinese herbs.

Forth, discrete derivative, the data slicing algorithm is feasible in mining out useful

data from literature of PubMed and SinoMed.

Background

Traditional Chinese Medicine (TCM), is one of China’s splendid cultural heritages [1,2]

with various intelligent theoretical thinking. One important concept in TCM is called

“Treating Different Diseases with the Same Therapy” (TDDST), which can be

explained as that different diseases might be shown with similar TCM patterns based

on TCM diagnostic information (such as symptoms, pulse feelings and tongue appear-

ance). Therefore, they could be treated with similar therapies in TCM. For example, in

Western medicine, Rheumatoid Arthritis (RA) and Coronary Heart Disease (CHD) are
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recognized as different diseases because they are different in etiology and pathology.

However, in TCM pattern classification, they share similar TCM patterns during their

development. RA and CHD, named as Impediment Pattern (Bi Zheng) and Palpita-

tions/Angina Pectoris (Xin Ji/Xin Tong) respectively in TCM, could show similar TCM

patterns in Qi deficiency and blood stasis based TCM pattern classification [2], thus

the two diseases can be treated with similar therapy in this case (reinforcing the defi-

cient Qi and dissolving the blood stasis), which has been practiced during the long-

term TCM activities [2].

The successful clinical practise of TDDST in TCM may suggest the fact that there

may be similar (or same) biological networks/basis in RA and CHD. Due to the com-

plexity of biological networks/basis, the common features are impossible to be revealed

by single experiment or research. Thus, they keep concealed hitherto. It can be sup-

posed that some potential regularity might be discovered by integrated analysis of the

global literatures on the two diseases, in both English and Chinese.

Although forming different theoretical systems, both TCM and Western Medicine

are aiming at human health services. Thus the interdisciplinary research might lighten

the cognition of health and diseases. Based on this, we retrieved data from both

PubMed and SinoMed. In analyzing data from PubMed, we can calculate the biological

networks/basis on Western Medicine commonly existed in both RA and CHD. From

SinoMed, we can filter out the basic Chinese herbs used for the treatment of both RA

and CHD. Therefore, we try to find out some common regularities between RA and

CHD through the overall literatures in both PubMed (English literature) and SinoMed

(TCM literature) by data mining technique. Progress in digital data acquisition and

storage technology has resulted in the growth of huge databases. Thus, it is impossible

for anyone to read them line by line, or record by record. Based on this, we turn to

the technique of data mining. Data mining is the analysis of (often large) observational

data sets to find unsuspected relationships and to summarize the data in novel ways

that are both understandable and meaningful/useful to the data owner and users

[3-12]. During the process of data mining, we explored databases of PubMed for Eng-

lish literature and SinoMed for TCM literature in Chinese.

Results and Discussion

After data mining, we got some well-structured networks, i.e., wheel-shaped, wheel-

wheel shaped, and wheels-connected shaped, etc. What’s more, these networks are not

only in good shapes, they might also demonstrate something meaningful in researches.

Wheel-shaped Networks

In Figure 1. The network visualized in this graph shows those pairs of Descriptor-

Names/keywords associated with central item “Inflammation”. It is clear that factors

associated with inflammation are far more than those listed in this graph, in either RA

or CHD. However, after associating together keywords of “Rheumatoid Arthritis” and

“Coronary Heart Disease”, on the frequency of “19”, only these keywords in Figure 1

are left.

To be more precise, take “Interleukin” confined within rectangles for example. If only

for RA, besides interleukin-1, 6, and 10, we can retrieve interleukin-2, 5, 7, 8, 11, 12,
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13, 15, 16, 17, 18, and 23. It is similar with CHD, apart from interleukin-1, 6, and 10,

there are interleukins of interleukin-2, 8, and 18 are concerned.

At the first glance, one may wonder that why interleukin-2, 8, and 18 are not cov-

ered by the intersection of CHD and RA. The reason is: for DescriptorNames in

CHD_RA, things under considerations are the co-occurrent both in CHD and RA.

Interleukin-2, 8, and 18 do exist in data sets of CHD and RA. However, there is no co-

occurrent DescriptorName pairs link them into each other on frequency “19”. What’s

more, under the framework of TDDST in TCM theory, networks of this kinds or alike

can suggest something new for the research both on treatment and pathogenesis of

CHD and RA.

That is to say, through the calculation of data mining, we can get something which

might be useful for further research on the treatment and pathogenesis of CHD and

RA.

Apart from “Interleukin”, there are nodes tagged with “Cell Division”, “Apoptosis”,

“Acute Disease”, “Biological Markers” that are connected with center node “Inflamma-

tion”. They are all important concepts in systems biology. However, tags of “Cell Divi-

sion”, “Biological Markers”, and “Acute Disease” are not meaning too much concerned

with both RA and CHD, while “Apoptosis” and “Inflammation” are more meaningful

to them. Things demonstrated in Figure 1 can also be shown in Figure 2.

In Figure 2., among all the nodes connected with center node “Apoptosis”, they can

be grouped into two classes. One group is those nodes confined by rectangles. These

Figure 1 Wheel Shaped Network on Frequency 19. This network is constructed with data set

downloaded from PubMed on May 9, 2010. It is built under the condition that any two nodes connected

with each other by an edge are DescriptorName pairs on the co-occurrent frequency of “19”.
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nodes are more specific, usually indicating single substance which might be more

meaningful in practice. The other group is those common nodes, tags of them are

much more abstract. Each of them indicates a concept of a biological process, or a set

of chemical material. Nodes within this group indicate knowledge in a much more

abstract way, usually, they just indicate common sense.

Wheel-wheel Shaped Networks

Upper part in Figure 3, we can see that two wheel-shaped networks connected with

each other by some commonly existed nodes.

In the left wheel, nodes around the center node tagged “Leukocytes” are all tagged

with abstract concepts, i.e., “Blood Platelets”, “Cell Migration Inhibition”, “Cell Adhe-

sion”, “Cell Movement”, and so on. As they cannot indicate much meaningful informa-

tion, they are taken as noises and ignored.

In the right wheel, apart from abstract concepts (i.e., “Biological Markers”, “Mast

Cells”, and “T-Lymphodytes”), we have “Interleukin"-1, 6, and 8, “Tumor Necrosis Fac-

tor - alpha”, and “C-Reactive Protein” connected with center node with tag “Inflamma-

tion Mediators”.

There is one interesting thing in this figure: an intersection composed of five nodes

between two wheel-shaped networks centered by “Leukocytes” and “Inflammation

Mediators”. The intersection nodes are “Cell Adhesion Molecules”, “Inflammation”,

Figure 2 Wheel-shaped Network on Frequency 22. This network is constructed with data set

downloaded from PubMed on May 9, 2010. It is built under the condition that any two nodes connected

with each other by an edge are DescriptorName pairs on the co-occurrent frequency of “22”.
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“Macrophages”, “Cytokines”, and “Monocytes”. What’s more, the intersection nodes

and the two centered nodes within wheel-shaped networks can also form a network.

This network can be dug out from the inter-connected wheel-shaped network, which

can is shown in lower part in Figure 3.

There are two interesting thing in this sub-network in Figure 3. One is the meaning

of this sub-network which has been described above. The other is that we can get a

third sub-network out from a network of two interconnected wheel-shaped networks.

Thus, we know that wheel-wheel shaped networks contain more information than

single-wheel shaped network. They can also suggest much more in medical research.

Wheels-connected Shaped Networks

In Figure 4. There are three wheel-shaped networks connected with each other. Thus,

they form one complex network.

This figure can tell us one important principle: all complex networks can be taken as

inter-connection of single wheel-shaped networks. Of course, there might be some

sub-networks which are isolated, and have no connections with others.

Figure 3 Wheel-wheel Shaped Network on Frequency 14 and It’s Sub_network. This network is

constructed with data set downloaded from PubMed on May 9, 2010. It is built under the condition that

any two nodes connected with each other by an edge are DescriptorName pairs on the co-occurrent

frequency of “14”. The upper network in this figure is the whole network, while the lower network is a sub-

network which is composed of all nodes connecting two center nodes of “Leukocytes” and “Inflammation

Mediators”.
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There are two types of inter-connections among three wheel shaped networks who

are centered by “Phenotype”, “Membrane Glycoproteins”, and “Genetic Predisposition

to Disease” respectively. One type is those nodes connects two wheel-shaped networks,

i.e., “Biological Markers” connects wheels centered by “Phenotype” and “Membrane

Glycoproteins”, “Tumor Necrosis Factor-alpha” and “Carrier Proteins” connect wheels

centered by “Membrane Glycoproteins” and “Genetic Predisposition to Disease”.

“Mutation”, “Base Sequence”, “Linkage (Genetics)”, “Haplotypes”, and “Genetic Mar-

kers” connect wheels centered by “Phenotype” and “Genetic Predisposition to Disease”.

The other type is those who connect all the three wheel-shaped networks. For exam-

ple, nodes with tag “Gene Frequency” and “Genotype” confined within a red rectangle,

each of them has three edges out to the three wheel-shaped networks. Apart from the

two types of inter-connecting nodes, there are also meaningful nodes tagged with sin-

gle chemical materials. Each of them is confined within a rectangle, i.e., “Toll-Like

Receptor 4”, “CD40 Ligand”, “Fas Ligand Protein”, and “Tumor Necrosis Factor-alpha”.

Overview of These Networks in Systems Biology

From Figure 1, 2, 3, and 4, we can find that the pathogenesis of RA and CHD are

commonly associated with “inflammation”, “apoptosis”, “cytokines” and “macrophage”

et., which also have been verified by some experimental research [13-15].

Take “inflammation” in Figure 1 for example. In the past decade, many studies

reported that inflammation was the key pathogenesis in both RA and CHD [16,17].

Some immune cells and molecules such as macrophages, neutrophils, monocytes,

Figure 4 Wheels-connected Shaped Network on Frequency 16. This network is constructed with data

set downloaded from PubMed on May 9, 2010. It is built under the condition that any two nodes

connected with each other by an edge are DescriptorName pairs on the co-occurrent frequency of “16”.
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cytokines and so on were all involved in the occurrence and development of these two

diseases. The abundance and activation of macrophages in the inflamed synovial mem-

brane/pannus significantly correlated with the severity of RA [14]. Reactive oxygen,

free radicals and lipase produced by macrophges played an important role in the devel-

opment of CHD [18-20]. High levels of Interleukin-1 (IL-1), Interleukin-6 (IL-6), Inter-

leukin-10 (IL-10) and Tumor necrosis factor-a (TNF-a) in the serum were observed in

RA and CHD patients [21-23]. In Figure 1, we can also find these useful information,

such as “macrophage”, “neutrophils”, “monocytes”, “IL-1”, “IL-6”, “IL-10” and “TNF-a“

etc. Therefore, these data demonstrate that our method to search the commonly

existed biological basis/pathogenesis between RA and CHD is feasible.

Cross Query between SinoMed and PubMed

We query the keywords of “Rheumatoid Arthritis” and “Coronary heart disease” in the

database of SinoMed. Several mostly used Chinese herbs for treating both of these two

diseases are found. They are Angelica, Salvia, Safflower and Astragalus which can be

found in Figure 5. In TCM theory, Chinese medicines of Salvia, Safflower, and Angel-

ica can be used to treat the pattern/syndrome of blood stasis, and Astragalus can be

used to treat the pattern/syndrome of Qi deficiency. What’s more, in TCM practise,

Figure 5 Network of basic Chinese herbs used in the treatment of RA and CHD. This network is

constructed with data set downloaded from SinoMed on Aug. 24, 2010. First, a list of Chinese herbs pairs

is built under the condition that any two nodes connected with each other by an edge are

DescriptorName pairs on co-occurrent frequency. Then, supervised by TCM professionals, four basic

Chinese herbs are selected out. Based on the four Chinese herbs, we mining them again in the data set of

SinoMed, and construct this network based on the co-occurrent frequency greater equal than “4”.

Zheng et al. BioData Mining 2011, 4:18

http://www.biodatamining.org/content/4/1/18

Page 7 of 21



these four Chinese herbs can compose different couplet medicinals. By couplet medic-

inals, two medicinals used in pair can increase the therapeutic effect and reduce the

toxic effect [24]. For example, Angelica and Salvia is more powerful in reinforcing the

blood, Angelica and Astragalus can reinforce both Qi and blood, Salvia and Safflower

can reinforce the blood stasis. [25].

Then, we sliced data retrieved from PubMed with Mesh terms of “Angelica”, “Salvia”,

“Safflower” and “Astragalus” by the method of discrete derivatives and got some mean-

ingful results shown in Table 1 and 2. Interestingly, some familiar nodes emerge again,

i.e., “inflammation”, “apoptosis”, “cytokines”, “leukocytes” and “macrophages” et al.

Take “apoptosis” for example. As we know, apoptosis is the process of programmed

cell death, which plays a pivotal role in tissue homoeostasis. Apoptosis disorders can

lead to some serious diseases such as RA and CHD [26,27], which is also demonstrated

in our study, as shown in Figure 2. We queried “Angelica”, “Salvia”, “Safflower” and

“Astragalus” in PubMed and find “apoptosis” again and some specific nodes such as

“Caspase 3”, “Caspases”, “Proto-Oncogene Proteins c-bcl-2”, “bcl-2-Associated × Pro-

tein”, “Tumor Suppressor Protein p53”, et al, which are related with apoptosis and pre-

viously emerged in Figure 2. These data indicate that the mechanism of these four

Table 1 Results of data mining on RA and CHD in PubMed and SinoMed with Chinese

herbs Angelica and Salvia

SinoMed PubMed

Chinese
Herb

Biology Basis Detailed Information

Angelica Inflammation Apoptosis Caspase 3, Caspases, bcl-2-Associated × Protein, Proto-Oncogene
Proteins c-bcl-2, Transforming Growth Factor beta1, CD40 Ligand,
Tumor Necrosis Factor-alpha, Tumor Suppressor Protein p53, Vascular
Endothelial Growth Factor A

Leukocytes Cyclooxygenase 1, Phospholipases A, Prostaglandin-Endoperoxide
Synthases

Monocytes Interleukin-8

Cytokines Fibroblast Growth Factor 2, Intercellular Adhesion Molecule-1,
Interleukin-2, Interleukin-6, NF-kappa B, Toll-Like Receptor 4,
Transforming Growth Factor beta, Transforming Growth Factor beta1

Macrophages Nitric Oxide Synthase Type II, Cyclooxygenase 2, Interleukin-2, NF-
kappa B, Nitric Oxide Syn-thase, Tumor Necrosis Factor-alpha,
Interleukin- 6, Cyclooxygenase 1, Interleukin-1, Prostaglandin-
Endoperoxide Synthases

Salvia Inflammation Apoptosis Caspase 3, Caspases, Proto-Oncogene Proteins c-bcl-2, bcl-2-
Associated × Protein, Tumor Suppressor Protein p53, L-Lactate
Dehydrogenase, Proto-Oncogene Proteins c-akt, Proto-Oncogene
Proteins, Tumor Necrosis Factor-alpha, Cyclooxygenase 2, Intercellular
Adhesion Molecule-1, Interleukin-2, Interleukin-6, Interleukin-8, Platelet-
Derived Growth Factor, Vascular Endothelial Growth Factor A

Leukocytes Intercellular Adhesion Molecule-1, Tumor Necrosis Factor-alpha

Monocytes Proto-Oncogene Proteins, Transforming Growth Factor beta1, Tumor
Necrosis Factor-alpha

Cytokines Alanine Transaminase, Tumor Necrosis Factor- alpha, Interleukin-6,
Interleukin-8, Nitric Oxide Synthase Type II, Platelet-Derived Growth
Factor, Prostaglandin- Endoperoxide Synthases, Transforming Growth
Factor beta1

Macrophages Nitric Oxide Synthase Type II, Tumor Necro-sis Factor-alpha,
Cyclooxygenase 2, NF-kappa B, Interleukin-1, Interleukin-6, Nitric Oxide
Synthase, Transforming Growth Factor beta1, Caspases, Chemokine
CCL2, E-Selectin, Intercellular Adhesion Molecule-1, Matrix
Metalloproteinase 9
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Chinese herbs treating RA and CHD is partly through affecting cell apoptosis by regu-

lating apoptosis-related signal pathway, which are consistent with some experimental

results [28,29].

In sum, from the Table 1 and 2, we can obtain following useful information:

1. For the treatment of RA and CHD, some basic Chinese herbal medicines are

used. They are Angelica, Salvia, Safflower and Astragalus. In TCM theory, Chinese

herbs of Angelica, Salvia and Safflower can be grouped into the class of reinforcing

blood, while Astragalus can be grouped into the class of reinforcing Qi;

2. The mechanisms of these commonly used traditional Chinese herbal medicines

for the treatment of both RA and CHD are mostly associated with “inflammation”,

“apoptosis”, “cytokines”, “monocytes”, “macrophages”, etc., which indicate that

these herbs can affect the same biological networks that are commonly existed in

RA and CHD;

3. Data mining results demonstrate that our method is feasible, and they may sup-

port the concept of TDDST in TCM;

4. These results can also give us some useful tips for the future research of these

two diseases.

Table 2 Results of data mining on RA and CHD in PubMed and SinoMed with Chinese

herbs Safflower and Astragalus

SinoMed PubMed

Chinese
Herb

Biology Basis Detailed Information

Safflower Inflammation Apoptosis Proto-Oncogene Proteins c-bcl-2, Caspase 3, bcl-2- Associated ×
Protein, Caspases, Nitric Oxide Synthase, Prostaglandin-Endoperoxide
Synthases, Vascular Endothelial Growth Factors

Leukocytes Interleukin-2, Leukotriene B4, Linoleic Acid, Throm-boxane B2,
Triglycerides

Monocytes Interleukin-1, Tumor Necrosis Factor-alpha, Interleukin-6, NF-kappa B,
Intercellular Adhesion Molecule-1

Cytokines Interleukin-6, Tumor Necrosis Factor-alpha, Interleukin-1, Interleukin-
10, Thromboxane B2, 6-Ketoprostaglandin F1 alpha, Cyclooxygenase
1, Cyclooxygenase 2, Leukotriene B4, NF-kappa B, Prostaglandin-
Endoperoxide Synthases, Toll-Like Receptor 4

Macrophages Eicosapentaenoic Acid, Interleukin-2, Prostaglandins E, Tumor
Necrosis Factor-alpha, Interleukin-1, Leukotriene B4, Endothelial
Growth Factors, Prostaglandin-Endoperoxide Synthases, Thromboxane
B2, Vascular Endothelial Growth Factor A, Vascular Endothelial Growth
Factors

Astragalus Inflammation Apoptosis Caspase 3, Tumor Necrosis Factor-alpha, Caspases, NF-kappa B, Proto-
Oncogene Proteins c-bcl-2, bcl-2-Associated × Protein, Interleukin-10,
Interleukin-6, Nitric Oxide Synthase Type II, Transforming Growth
Factor beta1, Tumor Suppressor Protein p53

Leukocytes Cyclooxygenase 1, E-Selectin, Intercellular Adhesion Molecule-1, NF-
kappa B, Phospholipases A, Tumor Necrosis Factor-alpha

Monocytes Tumor Necrosis Factor-alpha

Cytokines Interleukin-2, Interleukin-10, Interleukin-6, Interleukin-1, Interleukin-8,
Matrix Metalloproteinase 9, Toll-Like Receptor 4, Transforming Growth
Factor beta1, Tumor Necrosis Factor-alpha, Vascular Endothelial
Growth Factor A

Macrophages Interleukin-1, Interleukin-2, NF-kappa B, Toll-Like Receptor 4
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Conclusions

First, common biological networks/basis may exist

Through the calculation, we get partial results shown in Figure 1, 2, 3, and 4. These

figures indicate the existence of common biological networks and biological basis in

both RA and CHD;

Second, basic Chinese herbal medicines may affect these common biological networks/

basis

Through the calculation of derivatives on different orders (i.e., primary, secondary, etc.)

between PubMed and SinoMed, back and forth, we get the data that support the TCM

concept of TDDST through data mining. In brief, the biological basis/networks com-

monly existed in RA and CHD, and they might be affected by the Chinese herbal med-

icines which are used in TCM therapies for both RA and CHD;

Third, our data slicing algorithm works

Through the above two items, we have reason to believe that our data slicing algo-

rithm, together with other skills adopted in data mining, can dig out simple and mean-

ingful information from large data sets from both PubMed and SinoMed. What’s

more, these results may support the concept of TDDST in TCM.

Methods

For data mining, data preparation, pretreatment, and treatment is fundamental and

necessary [30-33] for the final result.

The whole process of data mining is scheduled as described below. First, mine the

data retrieved from Pubmed. Through this process, we get the common biological net-

works/basis existing in both RA and CHD. Then, mine the data retrieved from

SinoMed. By doing this, we get the basic Chinese herbal medicines (with the highest

frequencies occurring in literature) which are used for the treatment of both RA and

CHD. At last, we turn to PubMed again with the basic Chinese herbal medicines for

verification. After analyzing the data retrieved from PubMed with these basic Chinese

herbs, we will verify our hypothesis: these basic Chinese herbs might affect those biologi-

cal networks/basis commonly existed in both RA and CHD. In brief, we can test

whether or not these Chinese herbs used against RA and CHD in TCM can affect the

biological networks/basis existed in both RA and CHD.

Data from PubMed and SinoMed

PubMed is a free database accessing the MEDLINE database of citations, abstracts and

some full text articles on life sciences and biomedical topics. The United States

National Library of Medicine (NLM) at the National Institutes of Health (NIH) main-

tains PubMed as part of the Entrez information retrieval system [34]. We retrieved

data of RA and CHD from PubMed as basic material for data mining. SinoMed http://

sinomed.cintcm.ac.cn/index.jsp is also a database like PubMed. The characteristic of

SinoMed is that this database focus on Chinese literature in the fields of TCM, biologi-

cal and medicine. We only retrieve TCM data in SinoMed for basic Chinese herbs

used for the treatment of both RA and CHD.
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Query and Download Data

As mentioned above, we queried the keywords of “Rheumatoid Arthritis” and “Coron-

ary Heart Disease” in the database of PubMed http://www.ncbi.nlm.nih.gov/pubmed/

on May 9, 2010. To be more specific, we searched MeSH for “Rheumatoid Arthritis”

[MeSH Major Topic] with Restrict Search to Major Topic headings only retrieved a

record set of 67,049 papers. Search MeSH for “Coronary Heart Disease” [MeSH Major

Topic] with Restrict Search to Major Topic headings only retrieved records of 115,757.

When this query was done, we downloaded these retrieved data sets in the type of

XML into local computer system for the pretreatment.

In SinoMed http://sinomed.imicams.ac.cn/index.jsp, we queried the MeSH terms of

“Rheumatoid” and “Arthritis” for RA, “Coronary Heart Disease” for CHD in Chinese

on Aug. 24, 2010. By querying terms of “Default: Coronary Heart Disease or Rheuma-

toid or Arthritis“ in Chinese, we retrieved 60,967 records for CHD, and 13,686 records

for RA. The difference between PubMed and SinoMed is that PubMed can download

all data in one time, while in SinoMed, we can only download 500 record one time.

Pretreat Data

After retrieving data from PubMed (the same with SinoMed), we listed the data order

by PMID and found that, for each PMID, there were several DescriptorNames asso-

ciated with it. What’s more, these DescriptorNames are also the keywords of this

paper. Observed this, it is natural and intuitive to construct pairs of co-occurrent

DescriptorNames from the retrieved data [35]. When the tables of co-occurrent

DescriptorName pairs are constructed, it is natural to calculate the frequencies of

these pairs [8,36,37]. When the tables of frequency pairs are built, our data slicing

algorithm get its input raw material.

In order to analyze these data retrieved from PubMed and SinoMed by these given

keywords, the best way is to get interesting data into the framework of structured file

system, i.e., structured databases [5,7,9,38]. Because only in the structured database,

large amount of optimization techniques can be applied and taking effects. Then, we

can get efficient processing of our algorithm on large data sets [5].

For PubMed data sets, we transferred the XML data to the structured database of

Microsoft® SQL® 2000. In order to find new pattern and rules in data mining and text

mining, we should understand our data first. The more we understand our data (espe-

cially with specified knowledge), the more accurately and efficiently we can do in

further analysis [38]. For SinoMed data sets, we developed a tool to transfer its plain

TXT data into Microsoft® SQL® 2000.

In structured database, we focused on the relationships among keywords (both

PubMed and SinoMed), i.e., PMID (paper ID in PubMed database) and Descriptor-

Name (keywords associated with PMID in PubMed database). For example, we have

data: <PMID> = ‘20464912’, and <DescriptorName> = {physiopathology, rehabilitation,

Evidence-Based Medicine, Humans, Muscle Stretching Exercises, Physical Fitness,

Resistance Training, Treatment Outcome}. For the convenience of data processing, the

set of DescriptorName is listed in Table 3.

Then, based on the assumption that the keywords’ frequency can represent the

research interests world wide, and potential causal connection, we construct the algo-

rithm which is show in Table 4. This algorithm constructs the co-existing
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DescriptorNames in each article. Following the algorithm in Table 4 we can construct

the table of co-occurrent DescriptorName pairs in Table 5.

By the algorithm in Table 4 we can build the table of co-occurrent DescriptorName

pairs. By applying this algorithm with input of Table 3 we can get the result demon-

strated in Table 5.

Based on Table 5 our algorithm of discrete derivatives on the distribution frequency

can get its turn for calculations.

Design Algorithm to Treat Data Sets

In the process of data mining, we construct an data slicing algorithm called discrete

derivatives. This algorithm is based on the calculation of frequency. First, it splits data

into different “layers”, i.e., slicing actions are executed based on the frequency distribu-

tion of DescriptorName pairs. When data slices are calculated, we construct the func-

tion of discrete derivatives fdd. This is based on the principle of derivative in advanced

calculus [39] yet in discrete space. Function fdd can calculate the difference between

two adjacent data slices. When discrete derivatives fdd are calculated, we will discuss

one property of function fdd.

PubMed Data

Among the tables of co-occurrent DescriptorName pairs in CHD, RA and CHD_RA

(intersection of CHD and RA), there might be something interesting existed. In the

Table 3 A Paper in PubMed with Its PMID and DescriptorNames

PMID DescriptorName

20464912 physiopathology

20464912 rehabilitation

20464912 Evidence-Based Medicine

20464912 Humans

20464912 Muscle Stretching Exercises

20464912 Physical Fitness

20464912 Resistance Training

20464912 Treatment Outcome

Table 4 Algorithm of Calculating Co-occurrent DescriptorNames

USE Table I

FOR each P MID

k = Number_of_DescriptorName(PMID)

j = 1

FOR DescriptorNames(i) (i =, 1, 2,..., k)

DO while j ≤ k

DescriptorNames Pair = DescriptorNames(i)+

DescriptorNames (j)

j = j + 1

OUTPUT DescriptorName_Pair INTO

table DM_pairs

ENDDO

j = 1

ENDFOR

ENDFOR
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table of CHD, there are 7,277 lines. In RA, there are 11,952 lines, and in CHD_RA,

there are 1,474 lines. That is, focused on the DescriptorName pairs within both RA

and CHD, there are only 1,474 pairs left. Table CHD_RA forms the initial data of un-

directed graph on the DescriptorName.

Table 5 Results of Co-occurrent DescriptorName Pairs Calculated by Algorithm in Table

3 with Raw Data Listed in Table 2

DescriptorName_1 DescriptorName_2

physiopathology rehabilitation

physiopathology Evidence-Based Medicine

physiopathology Humans

physiopathology Muscle Stretching Exercises

physiopathology Physical Fitness

physiopathology Resistance Training

physiopathology Treatment Outcome

rehabilitation Evidence-Based Medicine

rehabilitation Humans

rehabilitation Muscle Stretching Exercises

rehabilitation Physical Fitness

rehabilitation Resistance Training

rehabilitation Treatment Outcome

Evidence-Based Medicine Humans

Evidence-Based Medicine Muscle Stretching Exercises

Evidence-Based Medicine Physical Fitness

Evidence-Based Medicine Resistance Training

Evidence-Based Medicine Treatment Outcome

Humans Muscle Stretching Exercises

Humans Physical Fitness

Humans Resistance Training

Humans Treatment Outcome

Muscle Stretching Exercises Physical Fitness

Muscle Stretching Exercises Resistance Training

Muscle Stretching Exercises Treatment Outcome

Physical Fitness Resistance Training

Physical Fitness Treatment Outcome

Resistance Training Treatment Outcome

Table 6 Algorithm of Calculating Frequency of Co-occurrent DescriptorName Pairs

USE table CHD_RA

k = max_line_number

DO while k ≥ 1

GO top

FOR DescriptorName_Pair(1)//The 1st pairs in CHD_RA

COUNT its Frequency

EndFor

OUTPUT DescriptorName Pairs, Frequency INTO table

CHD_RA_Frqncy

DELETE all DescriptorName_Pair(1) from table

CHD_RA

k = max_line_number

ENDDO
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Based on the table of co-occurrent DescriptorName pairs of CHD_RA in Table 5 we

can further build the table of frequency distribution on it. This is done by the follow-

ing algorithm in Table 6.

When table CHD_RA_Frqncy is constructed, we can classify the data of co-occurrent

DescriptorName pairs into different slices according to their frequency distributions.

Thus, we get the table of data slices as CHD_RA_Frqncy _i where i = 1, 2, 3,···, 30

with 30 is the greatest frequency existed in table CHD_RA_Frqncy.

When this is done, we have the tables of data slices according to distributions of

DescriptorName_Pairs. However, though the data slices are much more simple in com-

plexity and small in size, we still cannot get useful data from those binary-relationship

tables. Based on this, we can get them visualized for better understanding through

visualization. By software Cytoscape, we can observe them in different graphs accord-

ing to their frequencies, which can be shown in Figure 6.

From Figure 6, we can see that there is a trend of simplification as frequency goes

from 1 to 30. For example, numbers within parentheses keep descending as frequency

increases.

What’s more, as frequency goes up from 1 to 18, the main part of these networks are

too complicate to check for naked eye. Then, it is hard for one to get useful informa-

tion on the first view. However, there are some notable “wheel” shape sub-networks of

existed in graphs on frequencies of 1, 2, 6, 8, 9, and 10. These wheel-shaped sub-net-

works might have some meaningful cue. As frequency goes from 19 to 24, some well

structured sub-networks can be observed in these graphs. For example, on frequencies

of 19, 20 and 21, there are distinct wheel-shape sub-networks in the left-top position

of the graphs. As frequency goes beyond 25, it is clear that we can get wonderful rela-

tionships among DescriptorNames.

Check graphs on different frequencies, we can get that, apart from the fact that most

of them are distinct, there are also some similar even equivalent graphs, i.e., 25 and 26.

Note: in Figure 6, for better visual effects, keeping topology structure unchanged, we

re-arranged the nodes in graphs on frequencies 24 and 25 by moving their positions

for better view angle. For example, move nodes from density areas to sparse areas, so

as to get better structured sub-networks. We also did this in Figure 7 on frequencies

numbered 9, 13, 14, 16, and 23.

Now, we can calculate the distribution of co-occurrent DescriptorNames pairs on

each distinct frequency. We call this distribution as level distribution, because it slices

original data set into different subsets according to the frequency distribution, and

these distributions are calculated from co-occurrent DescriptorNames pairs. Thus,

level distribution is the difference between two adjacent slices of initial data set. For-

mally, we have the following formal definition.

Definition 1 (Level Distribution) For given data set D, let k be the hierarchical para-

meter, where k is the maximum frequency of occurrence and k = max(frequency(ei)).

For slices of data sets slicei (i = 1, 2,···, k) in D, level distribution ld can be expressed

by formula ldi = slicei - slicei+1 where i = 1, 2,···, k - 1.

We calculate level distributions between different initial frequencies, i.e., top-left cell

in Figure 7 with subscription of “1(179)” means the visualized data of level distribution

“1”. “1” means the data slice ID, and it represent the data between initial data slices of

frequencies “1” and “2”. “179” in parentheses means the number of nodes
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(DescriptorName) represented in level distribution “1”. Figure 7 shows all level distri-

butions of frequencies, i.e., from “1” to “30”.

From Figure 8, we can see that the level distribution of initial data is much more

simple and meaningful.

Left-top graph above cell “1(179)” illuminates the data on frequency distribution of

“1”. There are large amount of connected pairs of co-occurrent DescriptorNames com-

posed of “2”, “3”, “4” or “5” nodes. These pairs can illuminate three kinds of

Figure 6 Graphics of initial data based on frequency with nodes in parenthesis. These networks are

constructed with data set downloaded from PubMed on May 9, 2010. They are built under the conditions

that any two nodes connected with each other by an edge are DescriptorName pairs on the co-occurrent

frequencies. These frequencies can be demonstrated as integer which are greater equal than i, where i = 1,

2, 3,···, 30.
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knowledge:

1. Common knowledge already existed, useful but meaningless for research;

2. Rarely involved knowledge, can be taken as noises or false positive findings;

3. Emerging knowledge, useful and meaningful for research.

Graphs on frequencies “1” and “2” are both of this kind. As for graphs on frequen-

cies “3"-"8” and “15”, there is no specific structures exist. To get better understanding

of these data, we have to check these graphs manually. Graphs on frequencies “10"-

Figure 7 Graphics of data slices on level distribution based on frequency with nodes in

parenthesis. These networks are constructed with data set downloaded from PubMed on May 9, 2010.

They are built under the conditions that for a network on frequency i (i = 1, 2, 3,···, 30) which are in Fig. 7.

We calculate the data slice slicei with formula slicei - slicei+1 with i ≤ 29.
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"14”, “16” and “23”, are clearly structured on topology, nodes in these graphs indicate

explicit relationships among DescriptorNames. As for graphs on frequencies “18”, “19”,

“21”, “22”, “24”, and “26”, nodes inside them are wheel-shaped with a centered node,

all other nodes are around the centered one. These graphs indicate some knowledge to

a large probability of popular science in professional eyes. Graphs on frequencies “17”,

“20”, “25”, and “27"-"29” are blank, this means that there is no content in the level of

these frequencies. On “30”, as there is nothing exists higher than it but empty set ∂,

so, it is meaningless to calculate its content.

Figure 8 Graphics of the first discrete derivative based on frequency with nodes in parenthesis.

These networks are constructed with data set downloaded from PubMed on May 9, 2010. They are built

under the conditions that for a network on frequency i (i = 1, 2, 3,,···, 29) which are in Fig. 8. We calculate

the discrete derivative slice′
i =

slicei − slicei+1

1
= slicei − slicei+1 with i ≤ 28.
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As we have calculated level distribution as shown in Figure 7, it is natural for us to

think of calculating the discrete derivative of these level distributions for even more

simple results. The discrete derivative came from the principle of derivative in

advanced calculus [39], which means calculating the changing-rate/velocity of the data

in a continuous space. Formally, we have f ′
x0

=
f (x) − f (x0)

x − x0
=

�(y)

�(x)
.

Based on this, we give out the formal definition of discrete derivative.

Definition 2 (Discrete Derivative) For a given serious of data slices slicei with i = 1,

2,···, k where k is a natural number, discrete derivative is

ld′ =
slicei − slicei+1

1
= slicei − slicei+1.

Definition 2 gives out the definition of the first order of discrete derivative on the

slices of initial data set. Enlightened by the calculation of higher order derivatives in

advanced calculus [39], we give out the definitions of higher order discrete derivatives.

Definition 3 (Higher Order of Discrete Derivative)

As ld’ = slicei - slicei+1 is the first order discrete derivative, and ld” = (ld”) is the sec-

ond discrete derivative. Then, higher order of discrete derivative is ld(j) = (ld(j-1))’

where j Î INT and j >2.

In order to get the full view of the discrete derivatives, we calculate several orders of

derivative (i.e., the first order, the second order, etc.) based on Definition 2. Most of

them are similar and we show the first derivative in Figure 8.

Checking graphs in Figure 8, we can see that most of the graphs in Figure 8 are

exactly the same as Figure 7, except on frequency “29”. It is blanked by the definition

of the algorithm on discrete derivative. It is meaningless to calculate the derivative of

the last point, which is the same as frequency “30” in Figure 7. What’s more, we con-

tinue our test of calculating the second, the third, and even the forth discrete deriva-

tives, all these results demonstrate one interesting phenomenon: for a given frequency,

discrete derivatives all orders are constant. That is to say, discrete derivatives of given

frequency keep unchanged and independent of the orders of discrete derivative.

Now, take Figure 7 and 8 for example, it is very interesting that there are some slight

differences between them. For example, pairs on frequencies of “2”, “4”, “9”, “11”, “12”,

“13”,···. However, check them carefully, we can find that their nodes and edges are all

the same, this means their topology of nodes and relationships are all the same.

Then, naturally, comes another question. Why graphs within these two figures under

these frequencies are all the same? We all know that most derivative of functions

change in the continuous space [39], i.e., (x2)′ = 2x,

(

3 + x

3 − x

)′

=
6

(3 − x)2
, and so on.

Of course, there are exceptions, i.e., c’ = 0 where c is constant, (ex )’ = ex and so on.

These phenomena are all have their own explanations. As to the reason of our ques-

tion, we believe that it is based on the essence of our data type: discrete characteristic

data in PubMed. If we have all the DescriptorNames assigned with specific numbers in

the continuous space, then, our discrete derivatives will have their numeric results.

What’s more, these results will change as those examples mentioned before.

Thus, we have our theorem of this interesting phenomenon.

Theorem 4 (Discrete Derivatives Keep Constant)
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Given a data set D with elements ei (i = 1, 2,···, n) where |D| = n is the size of the

data set. D can be made hierarchical by k where k = max (frequency(ei)), frequency(ei)

is the occur times of ei within D. Pairwise elements {ei, ej } stands for the co-occur-

rence within D where i ≠ j. Then, discrete derivatives ld(m) = constant where m ≥ 1 is

the order of discrete derivative.

PROOF: By Definition 2, we know that the first order discrete derivative is

ld′
i = ldi − ldi+1

= (slicei − slicei+1) − (slicei+1 − slicei+2)

where 1 ≤ i ≤ k - 1, and let ld′
i = constanti.

By Definition 3, we have the second discrete derivative

ld′′
i = (d′

i)
′

= (ldi − ldi+1)′

= ((slicei − slicei+1) − (slicei+1 − slicei+2))

− ((slicei+1 − slicei+2) − (slicei+2 − slicei+3))

By Definition 1, we have slicei = {ei|frequency(ei) = 1, 1 ≤ i ≤ |D|}. What’s more, by

algorithm in Table 4 we know that ei is distinct co-occurrent DescriptorName pair. By

algorithm in Table 6 we know that ei i = 1, 2,···, n are tagged with frequency frequency

(ei). Then, slicei is the collection of co-occurrent DescriptorName pairs with frequency

(ei) = 1.

Thus, we know that co-occurrent DescriptorName pairs of different frequency value

are also distinct. That is, ldi ∩ ldj = ∅ with i ≠ j. Then, we have ldi ∩ ldj+1 = ∅. Thus,

we have ldi - ldi+1 = ldi hold, which is also the first discrete derivative ld′
i. To this

point, we have an important result that ld′
i = ldi i = 1, 2, · · ·, k − 1. Now, return to the

calculation of ld′
i and ld′′

i , we have

ld′
i = (slicei − slicei+1) − (slicei+1 − slicei+2)

= slicei − slicei+1

= slicei

and

ld′′
i = ((slicei − slicei+1) − (slicei+1 − slicei+2))

− ((slicei+1 − slicei+2) − (slicei+2 − slicei+3))

= (slicei − slicei+1) − (slicei+1 − slicei+2)

= slicei − slicei+1

= slicei

Then, we have ld′
i = ld′′

i .

In this way, we can prove that ld′′
i = ld

(3)
i = ld

(4)
i = · · · = ld

(k)
i
. Together with ld′

i = ld′′
i ,

we have ld′
i = ld′′

i = ld
(3)
i = · · · = ld

(k)
i

hold, and the proof is done.

SinoMed Data

In order to mine out the basic Chinese herbs used in the treatment of RA and CHD in

TCM, we turned to SinoMed for data sets. First, we calculated their commonly existed

DescriptorNames in the same way as described in PubMed. Then, we built a table of

Chinese herbs composed of 539 records as filter to filtrate the data retrieved from
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SinoMed. At last, we calculated the number of occurrences of Chinese herbs in the

data of SinoMed. When this was done, we checked the list with TCM professionals.

They found that the first four Chinese herbs listed at the top of number of occurrences

are reasonable. These four Chinese herbs are “Angelica”, “Salvia”, “Safflower” and

“Astragalus”. These four Chinese herbs can be found in Figure 5. By now, we ascertain

that these four Chinese herbs can be used to treat RA and CHD in TCM. However,

we still do not know whether or not they have association with the knowledge hidden

in PubMed which are studied by modern medical researchers. In order to verify our

idea that the Chinese herbs used in both RA and CHD can affect the biological net-

works/basic in both RA and CHD, we explore PubMed with these four Chinese herbs.

When these data set typed XML downloaded from PubMed, we transfer them into

Microsoft® SQL® 2000 as we did before.

Through the cross queries from SinoMed to PubMed with these four Chinese herbs

mentioned above, we get meaningful data in Table 1 and 2 which can support our

assumption that these basic Chinese herbs used to treat RA and CHD in TCM can

actually affect the biological networks/basis that exist in RA and CHD.
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