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Abstract

In this paper we propose a new discrete differential error
metric for surface simplification. Many surface simplifica-
tion algorithms have been developed in order to produce
rapidly high quality approximations of polygonal models,
and the quadric error metric based on the distance er-
ror is the most popular and successful error metric so far.
Even though such distance based error metrics give visu-
ally pleasing results with a reasonably fast speed, it is hard
to measure an accurate geometric error on a highly curved
and thin region since the error measured by the distance
metric on such a region is usually small and causes a loss
of visually important features.

To overcome such a drawback, we define a new error
metric based on the theory of local differential geometry
in such a way that the first and the second order discrete
differentials approximated locally on a discrete polygonal
surface are integrated into the usual distance error metric.
The benefits of our error metric are preservation of sharp
feature regions after a drastic simplification, small geomet-
ric errors, and fast computation comparable to the existing
methods.

1. Introduction

In realtime or interactive applications, 3D polygonal
models with millions of polygons are burdensome even on
fast graphics hardware. Therefore polygonal surface sim-
plification has been one of the main subjects of a great deal
of research. Simplification is the act of transforming a 3D
polygonal model into a simpler version. It must reduce the
number of polygons while trying to retain the good approxi-
mation of the original shape and appearance. Simplification
algorithms can be divided into some categories according
to the strategies employed: vertex decimation [16], vertex
clustering [14], edge contraction [5, 8, 9, 11], and face con-
striction [19].

In spite of extensive use of 3D polygonal models in geo-
metric modeling and computer graphics, there is no agree-
ment on the most appropriate way to estimate simple geo-
metric attributes such as curvatures on polygonal surfaces.
Many surface-oriented applications need an approximation
of the first and the second order differential properties. Un-
fortunately, since 3D polygonal models are piecewise linear
surfaces, the concept of continuous curvatures is not com-
mon. Most simplification algorithms use a geometric dis-
tance metric [2, 5, 10, 16] as their simplification criteria.
But it is hard to measure an accurate geometric error for the
high curvature and thin region that has a small distance error
metric. Recently the discrete curvature can be computed by
many schemes [3, 4, 13], and is useful to enhance the shape
description of polygonal surfaces. Therefore, discrete dif-
ferential metrics are also good criteria of simplification to
preserve the appearance of an original model.

Some simplification methods have approximated dis-
crete differential metrics, especially curvatures as their cri-
teria. In retiling [17], curvature is approximated to the ra-
dius of the largest sphere that is placed on the more curved
side of the surface, but it is just the extension of 2D case
into 3D. In data reduction scheme [7], it is proposed how to
determine the principal curvatures and their associated di-
rections by a least-squares paraboloid fitting of the adjacent
vertices, though the difficult task of selecting an appropri-
ate tangent plane was left to the user. In static polyhedron
simplification [18], the Gaussian curvature is also used and
error zone is defined with a sphere as error bound at each
vertex. Like above, although discrete curvature is useful for
describing characteristics of polygonal model, it is rarely
formalized into an error metric.

The error metric is a measure of difference between two
polygonal models. Small error between two models means
to be very similar to each other. An error metric is usu-
ally defined as the geometric distance between an original
and a simplified model [2, 5, 10, 15]. Some error metrics
combine other attributes – color, normal, and texture co-
ordinator – but these methods are too complex to be rep-



resented altogether [6, 9]. Recently an error metric is de-
fined in different ways instead of the geometric distance. In
memoryless simplification [11] an error metric is based on
geometric properties of the mesh such as volumes and ar-
eas. Image-driven simplification algorithm [12] defines an
image metric, which is a metric based on pixel-wise dif-
ferences between two images, and simplifies a mesh using
image metrics between images from several views.

In this paper, we propose a new discrete differential er-
ror metric for surface simplification. Our simplification al-
gorithm uses iterative edge collapses, which can control the
position of new vertex in order to retain the geometry of the
original model, and do not need a re-triangulation. Since
a distance error metric and the first and the second order
discrete differentials are integrated into our new error met-
ric, our new discrete differential error metric works better
than a previous quadric error metric in finding a position
of new vertex that minimizes a geometric error. As well,
our simplification is as fast as the previous method because
additional computation is done only in the pre-processing
stage.

Contributions

� We define a new discrete differential error metric on
surfaces. Since polygonal surfaces may be considered
as piecewise linear approximation of unknown smooth
surfaces, their tangent planes and discrete curvatures
can be estimated.

� Using our new discrete differential error metric, sur-
face simplification algorithm can produce rapidly
higher quality approximations of polygonal models
than previous works because the new discrete differ-
ential error metric includes a distance error metric and
the first and the second discrete differentials, and addi-
tional computation is done only during pre-processing.

2. Problem Statement

The goal of surface simplification is to generate an ap-
proximation of the original rapidly. An error metric can
control the quality of simplified models. Previous work [5]
has shown that a quadric error metric allows fast and accu-
rate geometric simplification of meshes, but this metric has
a weak point for a highly curved and thin region because its
error is computed using plane equations. We want to solve
this drawback by adopting a theory of local differential ge-
ometry into our error metric.

Figure 1. A vertex v and the related variables
for this local configuration (left). The blend-
ing cylinder along ~e between faces fi�1 and
fi, seen from the side (right).

2.1. Notation

A polygonal surface M consists of a set of vertices
V = fvigi � R

3, which are connected by a set of
edges E = fej = (vj1 ; vj2)gj and a set of faces F =

ffk = �(vk1 ; vk2 ; vk3)gk. Let v 2 V be a vertex of
a polygonal surface M and let v1; : : : ; vn be the ordered
neighboring vertices of v (cf. Fig 1). Each vertex v
has a geometric position p 2 R3. We define the edges
~ei = vi � v and the angle between two successive edges
�i = 6 (~ei; ~ei+1). The triangular face between ~ei and ~ei+1
is named fi = �(v; vi; vi+1), the corresponding face nor-
mal ~ni = (~ei � ~ei+1)=k~ei � ~ei+1k. The dihedral angle
at an edge ~ei is the angle between the normals of the adja-
cent faces, �i = 6 (~ni�1; ~ni). For each vertex v, the vertex
normal ~nv is defined by ~nv =

P
fi3v

~ni, and the tangent
plane Pv is orthogonal to ~nv. Note that in these definitions
we identify the index 0 with n and the index n+ 1 with 1.

2.2. Problem

Our simplification algorithm uses iterative edge col-
lapses since an edge collapse does not need a re-
triangulation. Besides, it can control the position of a new
vertex in order to retain the geometry of the original. The
key point to produce high quality approximation is how to
assign its position that minimizes the geometric error.

Many previous simplification algorithms use a distance
error metric in order to find the optimal position of a new
vertex after an edge collapse, and a point-to-plane distance
that is used for computing a distance error is the one of its
weak points. In Fig. 2(a), there are three cases where the
same edge (v1; v2) is on different polygonal shapes. Their
shapes are definitely different but the plane equations of the
neighbor faces of this edge are same. If this edge is col-
lapsed using the distance error metric only, each of the three
cases will result in Fig. 2(b) respectively. Because the plane
equations of the three cases are same, the positions of new

2



(a) Three polygon shapes before an edge collapse (v1; v2) ! v, where all plane equations are
same.

(b) After an edge collapse (v1; v2) ! v, where all new vertex v’s positions and distance error
metrics are same.

Figure 2. Seen from the side, although their shapes are obviously different, they have the same
distance error metric because of the same plane equations.

vertex v in three cases will be also same. For that reason,
all of the three cases will have the same values of a distance
error metric. That means, even though their shapes are ob-
viously different, they are simplified altogether within the
same error metric regardless of their different shapes. This
is mainly caused by using only a distance error metric for
surface simplification. Therefore our new error metric is
invented in order to assign different error metrics for such
three cases, since they have obviously different shapes.

Based on local differential geometry, the vertex v1 and
v2 in each case of Fig. 2(a) have different differentials, es-
pecially discrete curvatures, from the vertex v1 and v2 in
other case. Therefore this paper proposes new concept of a
discrete differential error metric for polygonal surface sim-
plification, which is the unification of a distance, a tangen-
tial, and a discrete curvature error metrics.

3. Discrete Differential Error Metric

Discrete Differential Error Metric (DDEM) is newly de-
fined since it is hard to measure an accurate geometric error
for a highly curved and thin region using only a distance
error metric. Because that region gathers planes close, the
small value of a distance error metric can be approximated
even though the region is conspicuous. Defined by combin-
ing a distance error metric with a tangential and a discrete
curvature error metrics, DDEM can measure more accurate
geometric error. Therefore surface simplification by using
our new error metric can maintain the high curvature fea-

tures, which are usually removed by using only a distance
error metric.

DDEM is defined by unifying a distance error metric and
the first and the second order discrete differentials, which
become a tangential and a discrete curvature error metrics:

DDEM(v) = f(v) + f 0(v) + f 00(v)

where f(v) = Qv(p) is a distance error function, f 0(v) =
T v(p) is a tangential error function, and f 00(v) = Cv(p) is
a discrete curvature error function. After an edge collapse,
the new vertex is assigned to the position that minimizes
DDEM(v), and the edge which will be collapsed next is
chosen as the one from the top of the priority queue that has
the lowest value of DDEM(v).

3.1. Distance error metric

DDEM uses a quadric form[5] as its distance error met-
ric. The quadric error metric is based on weighted sums of
squared distances. It defines on each face f of the original
mesh a quadric Qf (p) equal to squared distance of a point
p 2 R3 to the plane containing the face f . Qf (p) is defined
as the distance in R3 from p to plane of face (v1; v2; v3).
Each vertex v of the original mesh is assigned the sum of
quadrics on its adjacent faces weighted by face area is as-
signed:

Qv(p) =
X
f3v

area(f) �Qf (p):
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Let us now derive Qf (p) for a given face f =

(v1; v2; v3). The signed distance of p to the plane con-
taining f is ~nTp + d, where the face normal ~n = (p2 �
p1)� (p3 � p1)=k(p2 � p1)� (p3 � p1)k and the scalar
d = �~nTp1. As an aside, a different formulation is to ob-
tain these parameters by solving the linear system,0

@ pT1 1

pT2 1

pT3 1

1
A� ~n

d

�
=

0
@ 0

0

0

1
A

with the additional constraint that k~nk = 1.
Therefore, the squared distance between point p and

plane containing f is

Qf (p) = (~nTp+ d)2 = pT (~n~nT )p+ 2d~nTp+ d2;

which can be represented as a quadric functional pTAp +

2bTp + c where A is a symmetric 3 � 3 matrix, b is a
column vector of size 3, and c is a scalar. Thus,

Qf = (A;b; c) = (~n~nT ; d~n; d2)

is stored using 6+3+1=10 coefficients. The advantage of
this representation is that the quadric is obtained using sim-
ple linear combinations of these coefficient vectors.

At last, a quadric for the distance error metric of a new
vertex v after an edge collapse (v1; v2)! v is assigned the
sum of quadrics on its adjacent faces weighted by face area
for vertex v1 and v2:

Qv
=
X
f3v1

area(f) �Qf
+
X
f3v2

area(f) �Qf : (1)

3.2. Tangential error metric

A tangential error metric is defined by the magnitude
of a difference vector between two normal vectors of tan-
gent planes. Assume that an edge (v1; v2) will be collapsed
to v. Vertex v1, v2, and v have the tangent plane Pv1 , Pv2 ,
and Pv respectively. As definition, a tangential error metric
is the sum of the magnitudes of difference vectors between
two normal vectors ~nv1 and ~nv of tangent planes Pv1 and
Pv, and two normal vectors ~nv2 and ~nv of tangent planes
Pv2 and Pv .

T v(p) = T v1(p) + T v2(p) = k~nv � ~nv1k+ k~nv � ~nv2k:

In case of k~nv � ~nv1k, the cosine law is applied to it as

k~nv � ~nv1k2 = k~nvk2 + k~nv1k2 � 2k~nvkk~nv1k cos �:

Since normal vectors are unit vectors, their magnitudes
k~nvk = k~nv1k = 1, and cos � is found out by ~nT

v ~nv1 .
Therefore a tangential error metric for vertex v1 is

k~nv � ~nv1k2 = 1 + 1� 2 cos � = 2(1� ~nTv ~nv1):

At last, a tangential error metric T v(p) for a vertex v can
be arranged by,

T v(p) =
p
2

q
1� ~nTv ~nv1 +

p
2

q
1� ~nTv ~nv2 : (2)

3.3. Discrete curvature error metric

Let us explain how to derive the computation of discrete
curvatures and then define a discrete curvature error metric.
This metric is proposed in optimizing a 3D triangular mesh
[4]. From a theoretical point of view polygonal surfaces do
not have any curvature at all, since all polygonal faces are
flat and the curvature is not properly defined along edges
and at vertices because the surface is not C 2-differentiable
there. But thinking of a polygonal surface as a piecewise
linear approximation of an unknown smooth surface, one
can try to estimate the curvatures of that unknown surface
using only the information that is given by the polygonal
surface itself.

We are particularly interested in computing the discrete
Gaussian curvature K, the absolute discrete mean cur-
vature jH j, and the sum of absolute discrete principal cur-
vatures j�1j and j�2j at the vertices of the polygonal sur-
face since our new error metric is based on these values.

Especially in case of principal curvatures, from the rela-
tions K = �1�2 and M = (�1 + �2)=2, we get �1;2 =

H �
p
H2 �K. Note that j�1j + j�2j is always a real

number, even if jH j2 = H2 < K, which corresponds to
complex principal curvature values. Of course, this cannot
happen for smooth surfaces, but since we are dealing with
discrete curvatures it can occur for some vertices.

The integral discrete Gaussian curvature �K = �Kv

and the integral absolute discrete mean curvature
j �H j = j �Hv j with respect to the area S = Sv attributed to v
is defined by

�K =

Z
S

K = 2� �
nX

i=1

�i

and

j �Hj =
Z
S

jH j = 1

4

nX
i=1

k~eikj�ij;

where �i denotes the angle at a vertex, ~ei is an edge of a
vertex, and �i is a dihedral angle (cf. Fig. 1).

To derive the discrete curvatures at the vertex v from
these integral values we assume the curvatures to be uni-
formly distributed around the vertex and simply normalize
by the area:
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K =
�K

S
=

2� �
Pn

i=1 �i

1

3
A

and

jH j = j �H j
S

=

1

4

Pn

i=1 k~eikj�ij
1

3
A

;

where A is the sum of the areas of adjacent faces around a
vertex v.

Moreover, from the relations K = �1�2 andM = (�1+
�2)=2, we can get the sum of the absolute discrete principal
curvatures without knowing H but only jH j:

j�1j+ j�2j =
(

2jH j; if K � 0;

2
p
jH j2 �K; otherwise:

Now we can define a discrete curvature error metric,
which measures a certain difference of discrete curvatures
between an original and a simplified polygonal model. The
discrete curvature error metric is the variance value of
discrete curvatures of neighbor vertices of a collapsed edge.
Let a vertex vi; i = 1; : : : ; n be neighbor of a vertex v. A
discrete curvature error metric C v(p) for a vertex v is de-
fined by

Cv(p) =

nX
i=1

jCvi � C 0

vi
j: (3)

Cvi can be chosen among the discrete Gaussian and the
absolute discrete mean curvature, and the sum of absolute
discrete principal curvatures of a vertex v i, and C 0

vi
means

the discrete curvatures of a vertex vi after an edge collapse.

4. Simplification Algorithm

Our simplification algorithm is based on iterative edge
collapses and DDEM combined with Eq. (1), (2), and (3).

DDEM(v) = Qv(p) + T v(p) + Cv(p) (4)

As noted above, we can choose one discrete curva-
ture error metric among the discrete Gaussian and the dis-
crete absolute mean curvature, and the sum of absolute
discrete principal curvatures. Starting with a polygonal
model and choosing one discrete curvature error metric,
we perform a simplification algorithm. For each edge col-
lapse (v1; v2) ! v, simplification algorithm determines
DDEM(v) and then assigns the position p of a new ver-
tex v minimizing DDEM(v). An edge collapse with the
lowest DDEM is chosen and actually carried out.

The algorithm can be quickly summarized as follows:

1. Compute the quadrics of DDEM by Eq. (4) for the
initial polygonal model.

2. Compute the new vertex position p for each edge col-
lapse (v1; v2)! v. A discrete differential error metric
of the vertex v becomes the cost of an edge collapse.

3. Place all the edge collapses in a heap with the edge of
the minimum cost at the top.

4. Iterative remove an edge collapse of least cost from
the heap, collapse this edge, and update the costs of all
edge collapses involving v1 and v2.

5. Implementation and Results

All models were simplified on a PC with Pentium III
866Mhz processor and 512MB of main memory. We have
tested a number of simplified models, and used the Metro
[1] in order to measure surface deviation after simplifica-
tion. Metro accepts two polygonal models – an original and
a simplified model – and computes mean geometric errors
of the simplified model with respect to the original. This is
done by point sampling on the simplified model uniformly,
using Phong interpolation to estimate the surface normal at
each sample, and intersecting the line defined by the point
sample and its normal with the original model. Both the
maximum and mean distances between the point samples
and their corresponding intersections with the original are
recorded.

Fig. 3 shows the mean geometric deviations between the
original and the simplified models. There is the comparison
with three graphs representing geometric errors of simpli-
fied models using only a distance error metric, a distance
and a tangential error metrics, and a DDEM. It can be seen
from these graphs that the simplified results using a DDEM
have small mean geometric errors compared with the errors
resulted in by other error metrics.

Fig. 4 shows the several simplified steps. Fig. 4(a) is the
example simplified using a DDEM, and Fig. 4(b) is simpli-
fied using quadric error metrics [5]. When simplified to 700
faces using quadric error metrics, the model lost one pro-
peller. But our simplified result did not lose any propeller
until it is simplified to 325 faces.

Fig. 5 shows the simplified results using different error
metrics. Fig. 5(a) and Fig. 5(e) are the originals, and Fig.
5(b) � 5(d) and Fig. 5(f) � 5(h) are the simplified results
each using only a distance error metric Qv, a distance and
a tangential error metrics Qv + T v, and a DDEM. Similar
to Fig. 4(a), Fig. 5(d) preserved the features of the models
such as the propellers and missiles. Compared with Fig.
5(f), 5(h) preserved better the silhouette of the back and the
leg, and boundaries of the bottom.
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(a) Cessna model (b) Helicopter model

(c) Stanford bunny model

Figure 3. Mean geometric error measured by Metro [1]. Q: distance error metric, and T : tangential
error metric.

Tab. 1 shows us the comparison with the pre-processing
and the run times for simplification algorithm. Even though
slightly more time is needed in the pre-processing step for
combining several different metrics, it does not significantly
impair the total running time.

6. Conclusion and Future Work

In this paper we proposed a new discrete differential er-
ror metric based on the theory of local differential geometry
in such a way that the first and the second order discrete dif-
ferentials approximated locally on a discrete polygonal sur-
face are integrated into the usual distance error metric. Our
new error metric overcomes the drawback of distance based
error metrics such as quadric error metrics, with which it
is hard to measure an accurate geometric on highly curved
and thin region. The benefits of our error metric are preser-
vation of sharp feature regions after a drastic simplification,

small geometric errors, and fast computation comparable to
the existing methods.

In future work, it would be desirable to measure the er-
ror metrics of attributes for surface simplification and prove
theoretical analysis.
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(a) Simplified using a DDEM

(b) Simplified by the QSlim [5]

Figure 4. Comparison with the proposed algorithm and the QSlim [5]. The leftmost column is the
original(13,546 faces), the next is each simplified to 700 faces, 650 faces, 550 faces, and 325 faces.

(a) Original (34,708 faces) (b) Simplified using only Qv (c) Using Qv + T
v (d) Using a DDEM

(e) Original (69,451 faces) (f) Simplified using only Qv (g) Using Qv + T
v (h) Using a DDEM

Figure 5. Simplified results of the helicopter (986 faces) and the Stanford bunny (150 faces) models.
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