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Basic Premise

How can we extend differential geometry to meshes?

Goal – Consistent operators for first and second order 
differential properties:

● Normal
● Curvatures (Mean, Gaussian, Principal), 
● Principal Directions 

We've already looked at a couple of approaches.



Why?

 

Numerous mesh-processing applications:
● Mesh smoothing/enhancement
● Re-meshing
● Parameterization
● Subdivision
● Simplification
● Etc.

Also, applications in higher dimensions :
● Denoising of data



Approach

Take properties at vertices to be spatial average of a 
local region of the mesh (integrate), as seen in class.

Choose regions carefully to ensure maximum 
accuracy.

Derive expressions for differential operators that  
respect the same properties as continuous 
counterparts.



Choosing Regions
Split edges at midpoints.

How to join midpoints?

Either connect to:
        circumcenter            barycenter (avg vertices).



Mean Curvature Normal

Given a point P, the mean curvature normal (AKA 
Laplace-Beltrami) operator  is:

Gives both the mean curvature and unit normal at 
the vertex.



Mean Curvature Normal

For a triangle mesh, parameterized by u,v, along 
edges, over a region M, this is a Laplacian:

where:



Gauss' Theorem

Gauss' theorem lets us convert an area integral into a 
line integral around the boundary.

Since our mesh is piece-wise linear, the gradient of 
x is a constant over each triangle.



Mean Curvature Normal
Because the gradient is constant, our choice of 
region will not affect the integral's value.

Thus we can simply use a 
straight line.

For the integral in one triangle
we then have:



Mean Curvature Normal
Now, note that any point in the triangle is a linear 
combination of its vertices.

Taking the gradient gives:



Mean Curvature Normal
The gradient of the B's are perpendicular to the 
opposing edge and sum to 0, so rearranging:

Applying this to the earlier integral gives:

Now, the dot product is proportional to a cosine, and 
the A

T
 term is proportional to a sine, so...



Mean Curvature Normal

Replace with a cotangent ( = cos/sin) to get:



And finally...

So what have we done exactly?

Derived a simple expression for
mean curvature normal depending 
only on vertex positions and angles 
of the adjacent triangles.

Mean Curvature Normal



Error Analysis
Consider a C2 surface, tiled with our triangulated C0 

surface.

We can express the error between our spatial average 
and the correct pointwise average as:

If C
i
 is the Lipschitz constant for K(x), then:



Error Analysis
Taking the C

i
's outside the summation:

Recall that Voronoi regions minimize ||x-x
i
|| by 

definition. 

Assuming C varies with ratio ε from patch to patch, we 
are guaranteed that the Voronoi region is no more than 
O(ε) from the true optimal patch. 



This is only valid for non-obtuse triangles. 

For obtuse triangles the 
circumcenter will lie outside 
of the triangle.

Work-around: Use the midpoint of the edge opposite 
to the obtuse angle as the center.

Gives a non-overlapping tiling of the surface using 
Voronoi cells where possible.

But...



Obtuse Triangles
Example of mixed areas
around a vertex:

Area of non-Voronoi regions is
either A

triangle
/2 or A

triangle
/4:



Summary So Far
Area computation:

Mean curvature normal operator:



Gaussian Curvature
Easy! We looked at it in class already – use the 

Gauss-Bonnet theorem (but with new region 
definition).

Gaussian Curvature operator:



Principal Curvatures
We now have both the mean and Gaussian 

curvatures, and we know the relationships:

We can rearrange and solve.

Principal Curvature operators:



Curvature Visualization



Principal Directions
Before I get into (more) math, here's the overview:

Mean curvature formula can be seen as a weighted 
sum of normal curvatures along adjacent edges.

Use these samples of curvature normals to fit an 
ellipse with least squares, to determine a curvature 
tensor.

Extract eigenvectors from this tensor – these are the 
principal directions.



Mean Curvature, Interpreted

Where:

This an expression for curvature along an edge.



Interpretation
Right angle implies:

Rearranged:

which is the inverse of what we
just saw:

Hence each KN
i,j
 is an estimate of curvature along an 

edge.



So?
So, our mean curvature formula can be interpreted 
as weighted combination of normal curvature 
samples along neighbouring edges.

Let's fit an ellipse to these curvature samples to find 
a  least-squares approximation of the curvature 
tensor.



Curvature Tensor
The (symmetric) curvature tensor looks like:

Applied to a tangent vector, it should give the 
curvature normal along that direction.

We just project each edge onto the tangent plane to 
get d

i,j
's.



Curvature Tensor
Apply least squares minimization to the error to get B.

Extract the eigenvectors from B, and voila! 
It is just that easy.



Numerical Results
Accuracy roughly equivalent to finite differences, 
without the restriction of regular meshes.

Compared against analytical surfaces at varying 
resolutions:

● Less than 1.3% error for Gaussian curvature
● Less than 0.07% error for mean curvature

Irregular sampling reduces accuracy, but “in
practice, the rate at which the error increases is
low.” 



Applications



Conclusions
Is this approach an improvement?

Gives a more convincing justification for choice of 
both surface normal and the region type used for 
calculations.

Better numerical results than existing approaches.

Graceful degradation in the presence of irregular 
meshes (claimed).
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