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Discrete-dipole approximation for scattering by
features on surfaces by means of a two-
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A two-dimensional fast Fourier transform technique is proposed for accelerating the computation of scattering
characteristics of features on surfaces by using the discrete-dipole approximation. The two-dimensional fast
Fourier transform reduces the CPU execution time dependence on the number of dipoles N from O(N2) to
O(N log N). The capabilities and flexibility of a discrete-dipole code implementing the technique are demon-
strated with scattering results from circuit features on surfaces. © 1997 Optical Society of America
[S0740-3232(97)02311-9]
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1. INTRODUCTION
Modeling of light scattering from features on surfaces is
of interest in a variety of technical applications. In the
semiconductor industry, submicrometer particle contami-
nants and defects on silicon wafers with circuit structures
are detected and characterized by in-line scanning sur-
face inspection systems. These systems use a focused la-
ser beam to strike a surface and create a field of scattered
light. The resulting scattered field is sampled and quan-
tified with the use of one or more photodetectors, and sur-
face defects and contaminants are detected. As design
sizes of structures on silicon wafers continue to decrease,
the importance of proper detection and characterization
grows. The design of more sensitive inspection systems
in the future will require a fundamental predictive capa-
bility for light scattering from such structures. A reli-
able model for predicting this light scattering would pro-
vide a flexible and efficient way to understand scattering
processes.

Several models have recently been proposed to address
the issue of light scattering. One basic model that has
been used is based on the Lorenz–Mie theory, which
takes into account surface interaction.1,2 However, the
Lorenz–Mie theory was developed for spherical features,
and most contaminating features and circuit structures
found on wafer surfaces are not spherical, so the Lorenz–
Mie formulation may not predict scattering from the real
features with acceptable accuracy. Another method de-
veloped uses the exact-image theory to model features
above a perfect conductor.3,4 Most substrates in the in-
dustry are not perfect conductors, and the features are
confined to be spherical in this method, so other ap-
proaches need to be considered. Another approach is to
apply the finite-element time-domain method to Max-
well’s equations.5,6 With this method, application of the
boundary conditions sometimes can be difficult, and the
computational requirements limit the feature sizes that
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can be modeled. One of the most recent models devel-
oped is the discrete-source method, which entails the use
of linear combinations of fields from dipoles and multi-
poles to solve Maxwell’s equations and the boundary
conditions.7 Currently, however, this model is confined
to features that are axisymmetric.

In this paper the method used to model the character-
istics of light scattering from features on surfaces is the
discrete-dipole approximation (DDA), also known as the
coupled-dipole method. The DDA models the shape and
composition of a feature as a set of dipoles on a lattice.
An example of the dipoles used to model a sphere is
shown in Fig. 1. An electric field induces a dipole mo-
ment at each dipole. The total electric field at each di-
pole includes contributions from the incident beam field,
the field reflected from the surface, and the field created
by interaction between the dipoles. Once the moment at
each dipole is found, the scattered field outside the fea-
ture boundary can be determined. The DDA was origi-
nally developed to model particles in free space.8–10

Taubenblatt and Tran11 modified the method to model
features on surfaces by employing the Sommerfeld inte-
grals for interaction between dipoles and a surface.

Although developed heuristically by Purcell and
Pennypacker,8 the DDA method can be related to numeri-
cal methods that were developed from the Maxwell equa-
tions. Lakhtakia12,13 provides a macroscopic view of the
DDA method and relates the method to volume integral
methods, which could include finite-element time-domain
methods, as well as the method-of-moments technique.
In the appendix of the paper by Hage and Greenberg,14 a
brief discussion is presented showing the relation be-
tween the electric field integral equation based on Max-
well’s equations and the DDA method.

To model a scattering feature properly with the DDA
method, the dipole spacing must be small compared with
the electric field wavelength within the feature. This re-
1997 Optical Society of America
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Fig. 1. Dipole configuration for a spherical particle on a surface.
quirement can be represented by the relation umukd
< b,10 where d is the dipole lattice spacing, m is the re-
fractive index, k is the wave number, and b is a param-
eter of the order 1. Thus there is a maximum lattice
spacing allowable for a particular material, and the num-
ber of dipoles required to model a feature properly in-
creases as its size increases. Also, a feature of higher re-
fractive index will require more dipoles than a feature of
the same size but lower refractive index. A common
range used by investigators for dipole spacing as well as
for element size when the finite-element methods are
used is l/10–l/20, where l is the wavelength of the inci-
dent beam.15 The dipole lattice spacing also must be
small enough to model the feature shape accurately.
Hoekstra and Sloot15 discuss the importance of dipole size
with respect to feature shape.

Computational requirements increase significantly
with the number of dipoles used to model a feature. Di-
rect evaluation of the matrix equations developed by the
DDA would require O(N2) operations, where N is the to-
tal number of dipoles used. This requirement becomes
increasingly impractical as the number of dipoles in-
creases. In this paper we discuss the application of the
fast Fourier transform (FFT) technique to the DDA
method to reduce the number of operations required.
The FFT, introduced in 1965 by Cooley and Tukey,16 can
reduce the number of computational operations on N ele-
ments from O(N2) to O(N log N ). Owing to this signifi-
cant decrease in operations, the FFT has been a widely
used analytic technique in fields such as optics,17

electromagnetics,18 and thermal analysis.19 Goodman
et al.20 introduced the application of a three-dimensional
fast Fourier transform (3-D FFT) to the DDA in modeling
features in free space. This contribution significantly im-
proved the usefulness of the DDA method in modeling
features that require a large number of dipoles. The 3-D
FFT technique requires periodicity within the dipole lat-
tice in order to provide a computational advantage.
When a feature is in free space, periodicity can be math-
ematically created in the three axis directions. However,
when a surface is introduced, periodicity cannot be in-
duced in the direction normal to the surface (z). In this
paper we propose to apply a two-dimensional (2-D) FFT
technique to the DDA method with surfaces, taking ad-
vantage of the periodicity in the directions parallel to the
surface (x and y), though not in the z direction.

A code called DDSURF has been developed that is based
on the DDSCAT code developed by Draine and Flatau,10

with a modification to include surface interaction.
DDSURF uses a 2-D FFT routine to solve for the dipole-
moment distribution. In this paper we discuss the pro-
cedure taken to develop the application of the 2-D FFT
technique to the DDA with surface interaction. The va-
lidity and flexibility of DDSURF will also be considered by
comparison both with results found by experiment at Ari-
zona State University and with computational predictions
from other models.

2. METHOD
In the DDA method an array of dipoles is used to model
features present on or near a surface. The feature shape
is modeled by the placement of the dipoles, and the physi-
cal properties of the feature are modeled by designating
the polarizability of each dipole. Figure 1 shows an ex-
ample of the dipole configuration for a spherical particle
on a surface.

A. Local Equations
When an electric field is applied to the array of dipoles,
dipole moments are induced at each dipole. At the dipole
i, the dipole moment Pi is related to the total electric field
Etot,i by the dipole polarizability a i through

Pi 5 a iEtot,i . (1)

Recently, considerable effort has been made to model
the polarizability for the DDA correctly. Several models
are discussed by Draine and Goodman.21 DDSURF has the
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flexibility to use various models, but we have used the lat-
tice dispersion relation as recommended.21 This model is
described in Eqs. (A1)–(A2e).

The total electric field at the dipole is the summation of
the incident field, which includes the direct beam field
and the beam field reflected from the surface; the field
created by direct interaction between the dipoles; and the
dipole fields reflected from the surface. The total electric
field is represented as

Etot,i 5 Einc,i 1 Edirect,i 1 Ereflected,i . (2)

Substituting Eq. (2) into Eq. (1) we obtain an equation in
terms of the three components of the total field:

~a i!
21Pi 2 Edirect,i 2 Ereflected,i 5 Einc,i . (3)

The electric field by direct interaction between the di-
poles, Edirect,i , can be represented as22

Edirect,i 5
k0

2

e0
(
jÞi

Gij • Pj . (4)

The dyadic Green’s function Gij is defined in Eq. (A3).
The electric field interaction between dipoles with re-

flection from the surface, Ereflected,i , can be represented
as22

Ereflected,i 5 (
j51

N S Sij 1
k2

2

e0

k1
2 2 k2

2

k1
2 1 k2

2 Gij
I D • P̄j . (5)

The components of the 3 3 3 Sij matrix are given by the
Sommerfeld integral terms in Eqs. (A7a)–(A7i). The
Sommerfeld integral terms are computed numerically
with routines developed by Lager and Lytle,23 where k1
and k2 are the wave numbers for the feature and the sur-
face, respectively, and e0 is the permittivity. The image
dyadic Green’s function is defined as22

Gij
I 5 2Gij • IR , (6)

where IR is the reflection dyad IR 5 exex 1 eyey 2 ezez .
The dyadic product inverts the sign of the first two col-
umns of the matrix of the dyadic Green’s function but
leaves the third column unchanged.

B. Global Equations
It is possible to represent the summation equations in
terms of matrix equations consisting of N dipoles. The
matrix equation for the entire problem can be represented
as

~B 1 A 1 R!P 5 Einc . (7)

For N total dipoles, B is the diagonal matrix of the in-
verse of the polarizabilities:

B 5 diag~a1x
21 , a1y

21, a1z
21, ..., aNx

21, aNy
21, aNz

21, !, (8)

and A is the matrix that corresponds to Eq. (4), which is
for direct interaction, and R is the matrix that corre-
sponds to Eq. (5) for the reflected field interaction. A and
R each consist of N2 3 3 3 submatrices,

A 5 F A11 ••• A1N

A A

AN1 ••• ANN

G , R 5 F R11 ••• R1N

A A

RN1 ••• RNN

G ,

(9)
where the submatrices are defined in Appendix A. P and
Einc are composed of N 1 3 3 vectors:

P 5 ~P1 ...PN!T, Einc 5 ~Einc,1 ...Einc,N!T. (10)

C. Solution of the Matrix Equations
It is often necessary to use a large number of dipoles
(.1000) to model features properly by the DDA method.
Direct inversion of the (B 1 A 1 R) matrix to solve Eq.
(7) can prove to be impractical for large numbers of di-
poles. Therefore iterative methods such as the complex-
conjugate-gradient (CCG) method can be used for such
large systems. DDSURF has the flexibility to use several
different CCG methods, but we will use the method devel-
oped by Petravic and Kuo-Petravic24 and used by Draine.9

In the CCG method an initial guess for the polarization
vector P(0) is provided, and new estimates of P are made
at every iteration. The CCG method requires only the
matrix-vector products of (B 1 A 1 R)P(n) and (B 1 A
1 R)* P(n), where n indicates the iteration step and * in-
dicates the Hermitian conjugate. Direct evaluation of
these terms requires O(N2) operations. To reduce the
excessive computational requirement from O(N2) to
O(N log N), Goodman et al.20 applied a 3-D FFT tech-
nique to the nonsurface DDA model. The FFT technique
requires periodic conditions, and when a surface is
present, it is not possible to have periodicity in the direc-
tion normal to the surface, z. We can, however, apply
the FFT in the directions parallel to the surface plane, x
and y. Thus we developed a 2-D FFT technique that is
applied to the model for the case with a feature on a sur-
face.

To apply the FFT in the x and y directions, we math-
ematically extend the original dipole lattice into a rectan-
gular block, double the lattice size in the x and y direc-
tions, and induce periodicity. To maintain the proper
physics of the problem, we force the dipole moments to
zero at the lattice locations that lie outside the feature
boundaries. Thus the induction of periodicity of the lat-
tice does not limit the coverage of the DDA method when
the FFT technique is used.

After the dipoles have been blocked and doubled in the
x and y directions, we can show the steps to be taken to
apply the FFT to the direct-interaction electric field com-
ponent and the reflection-interaction electric field compo-
nent. The direct-interaction electric field at each dipole
can be determined by summing contributions from each
dipole:

Edirect,i 5 (
jz51

N S (
jy51

2Ny

(
jx51

2Nx

A ijPjD , (11)

where Nx , Ny , and Nz are the original number of dipoles
in the x, y, and z directions, respectively.

The elements of A ij are dependent only on the distance
vector rij 5 ri 2 rj between dipole i and dipole j, and
thus we can define

A i2j8 [ H 0 for i 5 j

A ij for i Þ j
, (12)

and Eq. (11) can be now written in the form of a convolu-
tion:
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Edirect,i 5 (
jz51

Nz S (
jy51

2Ny

(
jx51

2Nx

A i2j8 PjD . (13)

Since Eq. (13) is a convolution, and if we take the Fourier
transform in the x and y directions, keeping the z depen-
dency in the original domain, we obtain the summation in
the z direction:

Êdirect,~nx ,ny ,iz!
5 (

jz51

Nz

Â~nx ,ny ,iz 2 jz!P̂~nx ,ny , jz! , (14)

where the caret denotes the Fourier transform.
Similar steps can be taken for the reflection-interaction

component of the total electric field. For the reflection-
interaction terms, we can think of the interaction be-
tween the actual dipole above the surface and a corre-
sponding image dipole below the surface, j:

Ereflected,i 5 (
jz51

Nz S (
jy51

2Ny

(
jx51

2Nx

R ijPjD . (15)

The elements of R are dependent only on the distance vec-
tors between the dipoles at i and the image dipoles at j,
rij 5 ri 2 rj , and thus we can define

R i2j8 [ R ij for all i, j, (16)

and Eq. (15) can be now written as a convolution:

Ereflected,i 5 (
jz51

Nz S (
jy51

2Ny

(
jx51

2Nx

R i2j8 PjD . (17)

By the linearity property of Fourier transforms, we can
apply the convolution theorem in the jx and jy indices and
thereby represent Eq. (17) in Fourier representation as

Êreflected,~nx ,ny ,iz! 5 (
jz51

Nz

R̂~nx ,ny ,iz 1 jz!8 P̂~nx ,ny , jz! .

(18)

Thus Eqs. (14) and (18) can be combined to create the
transformed equation that relates the incident electric
field and the dipole-moment distribution:

Ŷ~nx ,ny ,iz! 5 (
jz51

Nz

~Â~nx ,ny ,iz2jz!8 1 R̂~nx ,ny ,iz1jz!8 !P̂~nx ,ny , jz! ,

(19)

and for the Hermitian form,

Ŷ~nx ,ny ,iz!
* 5 (

jz51

Nz

~Â~nx ,ny ,iz2jz!8

1 R̂~nx ,ny ,iz1jz!8 !* P̂~nx ,ny , jz! . (20)

The FFT routine used in DDSURF was developed by
Brenner.25 Depending on at what point DDSURF is in the
CCG algorithm, the inverse Fourier transform is taken of
either Ŷ(nx ,ny ,iz) or Ŷ(nx ,ny ,iz)* and is combined with the
product of the polarizability diagonal matrix B and the
most recent estimate of the polarization matrix P. Since
P has 3N elements, the code should in theory converge in
3N iterations. Draine and Flatau10 state that 10–100 it-
erations are often sufficient to find solutions with high ac-
curacy.
D. Far-Zone Approximation
Once the dipole-moment distribution has been deter-
mined, the scattering parameters can be found. To find
the angle-resolved scattering pattern, we need to deter-
mine the electric field in the far zone. A postprocessor
code called RDSURF was developed to compute the far field
from the dipole-moment distribution within the feature.
From the feature to the receiving detector there are two
scattering components to consider. One component is
produced by direct scattering from each dipole, and the
other component reaches the detector after reflection off
the surface. The latter component is found by using the
Fresnel equations. The total electric field at a receiving
point can be represented as22

Esca~r ! 5 k0
2

exp~ik0r !

4pr (
j51

N

$exp~2ikscarj!@~Pj • ê1!ê1

1 ~P1 • ê2!ê2# 1 exp~2ikI,scarj!

3 @RTM~Pj • ê1!ê1 1 RTE~Pj • ê2!ê2#%, (21)

and the irradiance can be found by multiplying the scat-
tered E field by its complex conjugate:

Isca 5 EscaEsca
2 . (22)

E. Computed Parameters
At Arizona State University, experimental results for
scattering from the features on surfaces are collected in
the form of a differential scattering cross section,
dCsca /dV. Differential scattering cross section is defined
as the energy scattered per unit time per unit solid angle
about a certain direction. Bohren and Huffman26 de-
rived an expression for this:

dCsca

dV
5 lim

V→0
S Csca

V
D '

Isca A

I inc~A/r2!
5

r2Isca

I inc
, (23)

where Isca is the scattered irradiance, A is the detection
area, r is the distance from the feature to the observation
point, I inc is the incident irradiance, and V is the detec-
tion solid angle.

3. CALCULATIONS AND RESULTS
A. Fast Fourier Transform
Figure 2 demonstrates the effect of 2-D FFT implementa-
tion on the CPU time requirements for an IBM 370
RS6000 workstation. The cases considered were for a cu-
bical feature on a surface and a spherical feature on a sur-
face. Table 1 shows the number of dipoles and the corre-
sponding CPU time-per-iteration requirements for the
FFT and non-FFT methods for the spherical-feature case.
When the FFT is not used, it is not necessary to extend
the dipole lattice to form a rectangular shape, and thus
CPU time per iteration varies with shape only when the
FFT is used. However, using the FFT significantly re-
duces the time requirement for every case considered,
even when the symmetry requirements force usage of a
much greater number of dipoles.
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B. Comparisons with Other Models
Figure 3 shows results of calculations for a scattering pa-
rameter determined by DDSURF, the DDA code developed
by Taubenblatt and Tran,11 and the finite-element
method developed by Wojcik et al.,5 which is based on
Maxwell’s equations. The parameter in Fig. 3 is the
same as the one used in Fig. 4 of Taubenblatt and Tran.11

The parameter is the ratio of the scattered and the inci-
dent beam irradiance multiplied by k2r2, where k
5 2p/l and r is the radius of the feature. DDSURF

agrees well with the Taubenblatt code over most scatter-
ing angles, showing a maximum discrepancy of 19% at
59° near the first scattering minimum. However, at the
first minimum the values determined by DDSURF show
agreement within 5% with the Wojcik finite-element-
method results.

C. Comparisons with Experiment
We also compared results from DDSURF with experimental
results found at Arizona State University. A scatterom-
eter arrangement that is used to determine scattering
characteristics from small features on surfaces is shown
in Fig. 4. Scattering from a feature or structure on a sili-
con surface is created by a focused laser beam. For the
cases considered in this paper, the incident beam has a
wavelength of 632.8 nm and strikes the substrate at a 45°

Fig. 2. Comparison of required CPU time per iteration for
DDSURF with and without the 2-D FFT. Computations were
performed on an IBM 370 RS6000 workstation.

Table 1. Number of Dipoles Needed and CPU
Time per Iteration for a Spherical Particle on a

Surface, with FFT and non-FFT Routines

# Dipoles/
Sphere
(Active)

# Dipoles,
Total

(FFT)/(no FFT)

CPU Time
(FFT)

(seconds per
iteration)

CPU Time
(no FFT)

(seconds per
iteration)

81 125/81 0.26 0.42
179 343/179 0.93 2.10
552 1000/552 3.36 20.1
912 1728/912 7.04 55.0

4224 8000/4224 54.6 1180

a CPU times are for an IBM 370 RS6000 workstation.
angle measured from the surface normal. The differen-
tial scattering cross section is measured by the scatterom-
eter.

The scattered-irradiance signature pattern is sampled
experimentally by a ring/wedge photodetector. Figure 5
shows the geometry and position of the detector with re-
spect to the feature on the surface. The differential scat-
tering cross section for the cases considered here are mea-
sured in the ring and wedge regions of the photodetector.
The ring region consists of 32 concentric ring detectors at
angles from 0.6° to 62.7° from the specular direction,
which is 45° from the surface-normal vector. The wedge
region consists of 32 wedge detectors that range from
290° to 90° from the center in the f direction. The cen-
ter of the detector is 8.2 mm from the sample feature.
The differently shaped detectors permit the determina-
tion of different characteristics resulting from the scat-
tered light. The ring region provides information about
the size of the scattering feature, and the wedge section
provides information about the configuration of the fea-
ture.

The postprocessor RDSURF modeled the ring and wedge
regions of the detector, and dCsca /dV at each ring and
wedge was found by averaging the differential scattering
cross section at a large number of discrete points within
each detector.

1. Scattering from a Spherical Particle
We now discuss scattering from a spherical particle on a
flat surface. Scattering experiments were conducted for
a 0.482-mm polystyrene latex (PSL) sphere on a silicon
substrate. An s-polarized 632.8-nm beam was incident
on the sphere at 45° from the surface normal. Figure 1
displays the dipole configuration for a spherical particle
on a surface. We first show the intensity distribution of
the scattered light from the sphere. Figure 6 shows the
plane of detection where the ring/wedge detector lies, and
Fig. 7 shows the calculated intensity distribution of the
scattered beam on a logarithmic scale. To quantify the
scattering results and to compare them with experiment,
Figs. 8(a) and 8(b) show the numerical predictions and

Fig. 3. Prediction of scattering in the x –z plane as a function of
the angle measured from the surface normal by DDSURF compared
with predictions by Taubenblatt and Tran11 and Wojcik et al.5
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Fig. 4. Arizona State University scatterometer used for measuring light scatter from samples.

Fig. 5. Configuration of the ring/wedge photodetector used to measure light scatter.
the experimental results for the differential scattering
cross section computed from the ring and the wedge re-
gions of the photodetector, respectively. Because of opti-
cal noise, the comparisons between the experiment and
the numerical predictions in Fig. 8(a) started at the tenth
ring from the center. We see that the DDSURF results and
the experimental results are in relatively good agree-
ment. For the ring region the predictions were between
5% and 60% higher, and the results for the wedge region
show agreement within 50%. Several factors could ac-
count for the differences between experiment and the nu-
merical results. We can see that in Fig. 7, since the scat-
tering feature is spherical, the scattered light is
symmetrical about the aximuthal axis. We would there-
fore expect the wedge data to be symmetrical about the 0°
angle. By examination of the experimental results in
Fig. 8(b), we can deduce that the photodetector was not
aligned perpendicular to the plane of incidence. We see
that the experimental results are slightly asymmetric,
whereas the computed results are symmetric. Other dif-
ferences could be the result of variation of the sphere di-
ameter from the 0.482 mm as specified by the manufac-
turer and the result of an oxide layer that may be present
on the silicon substrate because of exposure to the envi-
ronment. Experimental uncertainties such as beam
power, beam width, and detector distance can also ac-
count for the difference between experiment and predic-
tion.

2. Scattering from Nonspherical Features
Investigating scattering from a fundamental particle
shape such as a sphere is important; however, the pri-
mary objective for developing DDSURF is to model scatter-

Fig. 6. Plane of detection for the ring/wedge photodetector with
respect to the sample die.



3032 J. Opt. Soc. Am. A/Vol. 14, No. 11 /November 1997 Schmehl et al.
Fig. 7. Predicted intensity distribution of light scattered from a 0.482-mm PSL sphere on a Si surface.
Fig. 8. Numerical predictions and experimental calculations of
the differential scattering cross sections for (a) the ring region
and (b) the wedge region of the ring/wedge photodetector for a
0.482-mm PSL sphere on a Si surface.
ing from a wide range of feature configurations that are of
interest to the silicon wafer industry. These features are
integrated circuits on silicon wafers. At Arizona State
University, light-scattering experiments have been con-
ducted on SiO2 features on the ASU/SRC section of the
silicon SEMATECH Standard Wafer Defect Die devel-
oped by VLSI Standards Inc.27 The features on the de-
fect die were developed to represent the basic geometry of
integrated circuits. Figure 9 shows a configuration of a
cornered feature that was investigated on the defect die.
A spherical PSL contaminant was placed near the feature
to simulate contamination that is sometimes found dur-
ing manufacturing. Investigation of the effect of the con-
taminant particle on the scattering from the die allows
the user of the code to detect the presence of the contami-
nant.

Figure 10 shows the scattered-light pattern from the
cornered-feature–contaminant configuration determined
by DDSURF. The presence of the cornered feature and the
scattering interaction between the contaminant and the
feature cause the light-scattering pattern to be signifi-
cantly more complicated than the pattern for the sphere
only as seen in Fig. 7. Because of this complicated na-
ture, it is important to be able to quantify the scattering
by using the ring/wedge detector.

Figures 11(a) and 11(b) show the experimentally and
numerically determined differential scattering cross sec-
tions for scattering in the ring and the wedge regions, re-
spectively, of the ASU ring/wedge detector. In Fig. 11(a)
we see that there is excellent agreement between experi-
ment and numerical results. The comparisons for this
configuration are better than the comparisons for the
sphere-only configuration. In Fig. 11(b) we can clearly
detect the presence of the particle contaminant, with the
hump region at scattering angles near 20°. The differen-
tial scattering cross sections predicted by DDSURF follow
this experimental trend very closely. The numerical re-
sults are consistently lower than in the experiment for
the wedge region. As mentioned above, this may be due
to experimental uncertainty. However, DDSURF has
shown the ability to follow the trends of the experiment
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extremely well, and this can be useful to the developers of
particle-detection systems in the silicon industry. Ex-
perimental and numerical computations of other feature–
contaminant configurations will be discussed in a future
paper.

4. SUMMARY
The DDA method can be used to determine scattering
characteristics of features on surfaces. A major chal-
lenge to the use of the DDA method is the computational
power needed to solve the matrix equations. The 2-D
FFT method developed here reduces the computational
requirements from O(N2) to O(N log N ) per iteration, al-
lowing for a larger range of features in terms of size and
refractive index that can be practically considered here.
The DDA code created to implement the 2-D FFT (DD-

SURF) has been used in a series of comparisons with other
models and with experimental results. DDSURF agrees
well with other DDA methods that have been developed
and with a finite-element method considered. DDSURF

also exhibits the ability to predict scattering from non-
spherical features on surfaces.

APPENDIX A
1. Polarizability
The relation for calculating the polarizability by means of
the lattice dispersion relation method21 is
a i 5
a i

~0 !

1 1 ~a~0 !/d3!@~b1 1 m2b2 1 m2b3S !~k0d !2 2 ~2/3!i~k0d !3#
, (A1)
Fig. 9. Dipole arrangement for cornered-feature–contaminant
configuration.
Fig. 10. Predicted intensity distribution of light scattered from a SiO2 cornered-feature–PSL sphere contaminant configuration on a Si
surface.
where

a j
~0 ! 5 3e0

mj
2 2 1

mj
2 1 2

DVj , (A2a)

b1 5 21.8915316, (A2b)

b2 5 0.1648469, (A2c)

b3 5 21.7700004, (A2d)

S [ (
j

~ajej
~0 !!2, (A2e)

aj is the unit propagation vector, ej
(0) is the unit polariza-

tion vector, and d is the dipole spacing.
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2. Dyadic Green’s Function
The dyadic Green’s function can be represented in the
form28

G~R! 5 ~I 2 R̂R̂ !g~R! 1
i

kR
~I 2 3R̂R̂ !g~R!

2
1

k2R2 ~I 2 3R̂R̂ !g~R!, (A3)

where we introduce

R 5 r 2 r8, (A4a)

R 5 ur 2 r8u, (A4b)

R̂ 5 R/R, (A4c)

g~R! 5 ~4pR !21 exp~ikR !. (A4d)

Fig. 11. Numerical predictions and experimental calculations of
the differential scattering cross sections for (a) the ring region
and (b) the wedge region of the ring/wedge photodetector for a
SiO2 cornered-feature–PSL sphere contaminant configuration on
a Si surface.
The geometric representation of these variables can be
found in Fig. 12. The first term in Eq. (A3) varies as 1/R
and can be referred to as the radiation term; it dominates
at distances that are far from the source. The second
term varies as 1/R2 and can be referred to as the induc-
tion term; it dominates at intermediate distances. The
third term varies as 1/R3; it dominates close to the source
and can be called the electrostatic term.28

3. Direct-Interaction Matrix
As stated earlier in the paper, A is the interaction matrix
that considers the direct interaction between the dipoles.
The components of each submatrix in A are the following:

For the diagonal submatrices,

A ii 5 F 0 0 0

0 0 0

0 0 0
G . (A5a)

For the off-diagonal submatrices,

A ij 5 CijF b ij 1 g ijr̂ ij,x
2 g ijr̂ ij,xr̂ ij,y g ijr̂ ij,xr̂ ij,z

g ijr̂ ij,yr̂ ij,x b ij 1 g ijr̂ j, y
2 g ijr̂ ij,yr̂ ij,z

g ijr̂ ij,zr̂ ij,x g ijr̂ ij,zr̂ ij,y b ij 1 g ijr̂ ij,z
2
G ,

(A5b)

where

r̂ ij,x 5
rij,x

rij
, r̂ ij,y 5

rij,y

rij
, r̂ ij,z 5

rij,z

rij
, (A6a)

Cij 5 2
k0

2

4pe0
exp~ik0rij!~rij!

21, (A6b)

b ij 5 @1 2 ~k0rij!
22 1 i~k0rij!

21#, (A6c)

g ij 5 2@1 2 3~k0rij!
22 1 3~k0rij!

21i#, (A6d)

rij 5 @~xi 2 xr!
2 1 ~yi 2 yj!

2 1 ~zi 2 zj!
2#1/2.

(A6e)

4. Sommerfeld Integrals/Reflection Interaction
The components of the reflection interaction submatrix,
Rij , can be found by considering the equations for the di-
pole reflection E field. The following are equations for

Fig. 12. Geometry of two dipoles and the terms referred to in
the Green’s function in Eq. (A3).
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the E field over a dielectric surface, which will include the
Sommerfeld integrals: Ir

V, Iz
V, If

H, Ir
H.22

Px dipole,

Ex
~x ! 5 CH F S x

r
D 2

Ir
H 2 S y

r
D 2

If
HG 2

k1
2 2 k2

2

k1
2 1 k2

2

3 F S ]2

]x2 1 k2
2D 4pgIG J Px , (A7a)
R ij 5 2~4pe0!21F r̂ I,ij,x
2 Ir

H 2 r̂ I,ij,y
2 If

H r̂I,ij,xr̂I,ij,y@Ir
H 1 If

H# r̂ I,ij,xIr
V

r̂I,ij,xr̂I,ij,y@Ir
H 1 If

H# r̂ I,ij,y
2 Ir

H 2 r̂ I,ij,x
2 If

H r̂I,ij,yIr
V

2r̂ I,ij,xIr
V 2r̂ I,ij,yIr

V Iz
V

G
2

k1
2 2 k2

2

k1
2 1 k2

2

exp~ik0rI,ij!

4pe0rI,ij F 2~bI,ij 1 gI,ijr̂ I,ij,x
2 ! 2~gI,ijr̂ I,ij,xr̂I,ij,y! gI,ijr̂ I,ij,xr̂I,ij,z

2~gI,ijr̂ I,ij,yr̂I,ij,x! 2~bI,ij 1 gI,ijr̂ I,ij,y
2 ! gI,ijr̂ I,ij,yr̂I,ij,z

2~gI,ijr̂ I,ij,zr̂I,ij,x! 2~gI,ijr̂ I,ij,zr̂I,ij,y! bI,ij 1 gI,ijr̂ I,ij,z
2

G , (A8)
Ey
~x ! 5 CFxy

r2 ~Ir
H 1 If

H! 2
k1

2 2 k2
2

k1
2 1 k2

2

3 S ]2

]x]y
4pgID GPx , (A7b)

Ez
~x ! 5 2CFx

r
Ir

V 1
k1

2 2 k2
2

k1
2 1 k2

2 S ]2

]x]z
4pgID GPx ;

(A7c)

Py dipole,

Ex
~y ! 5 CFxy

r2 ~Ir
H 1 If

H!

2
k1

2 2 k2
2

k1
2 1 k2

2 S ]2

]x]y
4pgID GPy , (A7d)

Ey
~y ! 5 CH F S y

r
D 2

Ir
H 2 S x

r
D 2

If
HG 2

k1
2 2 k2

2

k1
2 1 k2

2

3 F S ]2

]y2 1 k2
2D 4pgIG J Py , (A7e)

Ez
~y ! 5 2CFy

r
Ir

V 1
k1

2 2 k2
2

k1
2 1 k2

2 S ]2

]y]z
4pgID GPy;

(A7f )

Pz dipole,

Ex
~z ! 5 CFx

r
Ir

V 1
k1

2 2 k2
2

k1
2 1 k2

2 S ]2

]x]z
4pgID GPz ,

(A7g)

Ey
~z ! 5 CFy

r
Ir

V 1
k1

2 2 k2
2

k1
2 1 k2

2 S ]2

]y]z
4pgID GPz ,

(A7h)
Ez
~z ! 5 CH Iz

V 1
k1

2 2 k2
2

k1
2 1 k2

2

3 F S ]2

]z2 1 k2
2D 4pgIG J Pz , (A7i)

where C 5 (4pe0)21.
Equations (A7a)–(A7i) can be used to find the compo-

nents for the R ij submatrices:
where

r̂ I,ij,x 5
rI,ij,x

rI,ij
, r̂ I,ij,y 5

rI,ij,y

rI,ij
, r̂ I,ij,z 5

rI,ij,z

rI,ij
,

(A9a)

bI,ij 5 @1 2 ~k0rI,ij!
22 1 i~k0rI,ij!

21#, (A9b)

gI,ij 5 2@1 2 3~k0rI,ij!
22 1 3~k0rI,ij!

21i#, (A9c)

rI,ij 5 uri 2 ĪR • rju 5 @~xi 2 xj!
2 1 ~yi 2 yj!

2

1 ~zi 1 zj!
2#1/2. (A9d)
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