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Abstract. A method for solving small-stnin plasticity problem with plastic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflow represented 
by the collective motion of a large number of discrete dislocations is presented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe dislocations 
are modelled as line defects in a hea r  elastic medium. At each instant, superposition is used 
to represent the solution in terms of the infinitemedium solution for the discrete dislocations 
and a complementary solution that enforces the boundary conditions on the finite body. The 
complementary solution is nonsingular and is obtained from a finite-element solution of a 
linear elastic boundary value problem The lattice resistance to dislocation motion, dislocation 
nuclealion and annihilation are incorporated into the formulation through a set of constitutive 
rules. Obstacles leading to possible dislocation pile-ups are also accounted for. The deformation 
history is calculated in a linear incremental manner. Plane-swain boundary value problem are 
solved for a solid having edge dislocaUons on parallel slip planes. Monophase and compasite 
materials subject to simple shear p d i e l  to the slip plme are analysed. Typically, a peak in the 
shear stress versus shear strain C U N ~  is found, &er which the svess falls to a plateau at which 
the material deforms steadily. The plateau is associated with the localization of dislocation 
activity on more or less isalated systems. The results for composite malerials are compared 
with solutions for a phenomenological continuum slip characterivtion of plastic flow. 

1. Introduction 

Plastic deformation in crystalline metals is a consequence of the motion of large numbers of 
dislocations, and much is known about dislocation mechanics from both the atomistic and 
continuum perspectives. However, modeling the behaviour of large numbers of dislocations 
is a computationally intensive task. Only relatively recently have general analyses of the 
collective behaviour of discrete dislocations been undertaken. Investigations of dislocation 
pattern formation and of work-hardening relations in macroscopically homogeneously 
deformed solids have been carried out where the individual dislocations are described as 
l i e  singularities in an elastic solid, e.g. by Gulluoglu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal [l], Amodeo and Ghoniem 12, 
31, Kubin and co-workers [4, 51, Gulluoglu and Hartley [6, 71, Lubarda et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa[ [8], Fang and 
Dah1 [9], and Grama and Pawley [lo]. 

On the other hand, conventional phenomenological descriptions of plastic flow are 
widely used to analyse microscale mechanical processes; examples include deformation 
and failure in composite materials where the reinforcement dimensions are of the order of 
micrometres or tens of micrometres, plastic flow near sharp crack tips, micro-indentation, 
and inhomogeneous grain deformations in polycrystals. Conventional plasticity theories 

are length-scale independent and are based on the concept of a homogeneously deformed 
material element. Dislocation based plasticity has a characteristic length, the Burgers 
vector, and dislocations have a tendency to form highly organized, heterogeneous patterns, 
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such as cells and walls. Additionally, heterogeneous dislocation arrangements lead to 
local stress concentrations, e.g., at pile-ups or in dislocation-free regions, that are not 
modelled by phenomenological characterizations of plastic flow and that can be significant 
for microscale failure processes. A quantitative characterization of the circumstances under 

which phenomenological theories of plasticity provide an accurate representation of plastic 

flow due to dislocation motion remains to be given. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis pertains to classical plasticity 

theories and to theories that incorporate a length scale through the addition of gradient or 

diffusive terms, e.g. Walgraef and Aifantis [ l l] ,  Aifantis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[12], De Borst [13], Fleck and 

Hutchinson [ 141. What is needed for this characterization, and to provide a method for 

analysing micro-scale plastic flow processes in circumstances where the discreteness of 

dislocations plays a dominant role, is a boundary value problem formulation that accounts 

for discrete dislocation effects. 

In this paper, a framework for formulating quasi-static initialbounday value problems 
is described where plastic flow arises directly from the collective motion of large numbers of 

discrete dislocations. Attention is restricted to small strains and the material is characterized 

in terms of a linear elastic constitutive relation. The dislocations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAare modelled as line defects 

in the solid. The solid may consist of more than one phase, as in  a composite material, 
and standard traction and displacement boundary conditions can be enforced to describe 

the imposed loading. The general formulation applies to three-dimensional solids, but the 
implementation and examples are for two-dimensional plane strain problems. 

The approach that is followed, is based on the formulation of Lubarda zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAetal  [SI, where the 
stresses and strains are written as superpositions of fields due to the discrete dislocations, 
which are singular inside the body, and complementary fields that enforce the boundary 
conditions and any continuity conditions across internal phase boundaries. This leads to 
a linear elastic boundary value problem for the smooth complementary fields that can be 

solved by standard numerical techniques such as the finite-element method. Thus, the long- 

range interactions beween dislocations are accounted for through the continuum elasticity 

fields. Atomistic simulations (Vitek [15], Arias and Joannopoulos [16], Gallego and Ortiz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[17 ] )  and experiment (Choi er a1 [18]) show that dislocations are well-represented by the 
linear elastic fields beyond ten or so atomic distances from the core. In Lubarda et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 
[SI, attention was confined to equilibrium dislocation arrangements. Here, drag during 
dislocation motion, interactions with obstacles and dislocation nucleation and annihilation 
are accounted for. These involve effects that are not represented by the elasticity description 
of dislocations and are incorporated into the formulation through a set of constitutive rules. 

To demonstrate the potential capabilities of the framework presented here, a number 
of illustrative boundary value problems are solved for a solid having edge dislocations on 
a single slip system and being subject to simple shear parallel to the slip direction. Both 

monophase and composite materials are considered. For the composite material, the same 
boundary value problem is solved using a phenomenological continuum slip description of 
plastic flow following the approach of [19]. The phenomenological crystal plasticity and 

discrete dislocation results for the overall stress-strain response and for the local stress 
distribution are compared. 

The governing equations are formulated using dyadic notation. Vectors and tensors 
are denoted by bold-face symbols, . denotes the inner product, 8 the tensor product and 
: the trace product. For example, with respect to a Cartesian basis ei and employing 

the summation convention, a I b = aibi, (a 8 b);, = aibj, A : B = A;,Ej i  and 
(L : B)ij = LtjijktBtX, with summation implied over repeated indices. Latin indices run 
from 1 to 3, greek indices run from 1 to 2 only. The gradient operator on (tensor) fields 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvan der Giessen and A Needleman 
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is denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. The second-order unit tensor is I ,  while Z denotes the fourth-order unit 

tensor. 

2. Discrete dislocation formulation 

The problem under consideration is as follows. We consider a linear elastic body of 
volume V ,  comprising elastic inclusions with volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV', which contains a distribution 

of dislocations in the matrix material V M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= V\V' (see figure l(a)). The elastic properties 
of the matrix material are governed by the fourth-order tensor L, while the elastic modulus 
tensor for the inclusion is denoted by L'. The dislocations are regarded as line defects in 
the elastic continuum (see e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20, 211). Each dislocation i is characterized by its Burgers 
vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb and the unit vector n' of its slip plane in accordance with the right-hand screw 

convention for the sense of the dislocation loop, indicated by the unit tangent vector ti (see 

figure l(b)). This body, with boundary S = S, U S,, is now considered to be subject to 
time-dependent traction and displacement boundary conditions T = To(t) on S,, U = udt) 

~~ c ~~~~~ .... :~~.,.. 

Figure 1. Problem formulation. (a) Body V with inclusions V', but with the dislocations 
removed (b) Open view of the small core region C' around dislocation loop i with Burgers 
vector b'. The slip plane normal is n' and T is the surface traction. 

We assume the ensuing deformation process to be quasi-static and to involve small 

strains only. The process will lead to the motion of dislocations, mutual annihilation, 

the generation of new dislocations and their pinning at point obstacles. The analysis of 
the deformation process will be performed in an incremental manner in time, where the 
incremental step at any instant t involves three main computational stages. First, for 

the current dislocation arrangement, the current stress and strain state of the problem is 
determined. Secondly, from this state, the so-called Peach-Koehler force, i.e. the driving 

force for changes in the dislocation structure, i s  determined. Finally, the instantaneous rate 
of change of this dislocation structure is computed on the basis of a set of constitutive 
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equations for the motion, annihilation and generation of dislocations. The first two of 
these stages will be discussed within a general three-dimensional setting in the next two 
subsections, and the constitutive equations will be discussed for two-dimensional problems 
in section 2.3. 

2.1. The instantaneous state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the dislocated body 

The approach that will be followed to determine the current state of the body with the current 
instantaneous dislocation distribution is an extension of the formulation of Lubarda etal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[SI 
for traction-free solids and that of Blume [22] for general prescribed tractions. Here, we 
consider mixed traction4isplacement boundary conditions, and, more importantly, extend 
the aooroach to comoosite elastic solids. 
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Figure 2. Decomposition of the problem for the dislocated body with inclusions into the pmblem 
of interacting dislocations in the homogeneous infinite solid zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC fields) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe comp lcmntq  
problem for the nonhomogeneous body without dislocations (* fields). 

The current state of the body in terms of the displacement, strain and stress fields is 
written as the superposition of two fields, 

~~ 

u = u + u  E = Z + E ^  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU = & + &  i n V  ( 1 )  

respectively, as illustrated in figure 2. ?he (3 fields are the fields associated with the 
n dislocations in their current configuration but in an infinitely large medium of the 
homogeneous matrix material (moduli C). These fields are obtained by superposition of the 

fields (U', E' ,  e') associated with each individual dislocation, 

ic=Cu' z = ~ E '  6=xci ( i = l , . . , , n ) .  (2) 

Outside a small core region with radius i-0 around each dislocation loop, see figure I(b), 
these fields are governed by the standard equations of linear elasticity. The governing 
equations for the total (-) fields can therefore be summarized as 

i n V = V M u V '  I V . & = O  ;=V i  

& = e : <  
(3) 
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with the following boundary values at the actual boundary S: 

where U is the outer unit normal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto S. Finding the solution for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 fields is facilitated 
by virtue of the absence of boundaries. In fact, for a number of types of dislocations the 

infinite-body fields are known analytically and may be found in textbooks (e.g. 120, 211). 
However, this is not the case for general curved dislocations and those solutions would have 
to be obtained. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr) fields are the fields to correct for the actual boundary conditions on S as well as 

for the presence of the inclusions. The governing equations for the corresponding boundary 
value problem read 

+ = L : C  i n V M  

B = C : 2 +  (L'- L) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: E  in V* 

Notice the contribution of the so-called polarization stress 

to the 5 field in the inclusions (cf. [23]), which is caused by the dislocation strain field 
and the different elastic properties. With p and B denoting the shear modulus and bulk 
modulus of the matrix material, and with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp' and B+ denoting the corresponding inclusion 
values, the components of the polarization stress for an isotropic elastic solid are obtained 
as 

in terms of the infinite-body dislocation stresses. 
Provided that the dislocation displacement fields remain continuous on S, and along 

the interface between the matrix and the inclusion, the c) fields are smooth. Hence, the 

equations (5) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7) constitute a well-posed linear elastic boundary value problem which 
can be conveniently solved by finite element techniques as in [8]. 
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2.2. The Peach-Koehler force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In an arbitrary state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof deformation satisfying the equations (1) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7), the dislocated body 

as a whole will not be in thermodynamic equilibrium for any given dislocation structure, 

due to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstrong interaction between dislocations and with the boundary of the body. 
Non-equilibrium will tend to let the dislocations redistribute by their motion along the slip 

systems. The thermodynamic force conjugate to the motion of dislocations is determined by 
the variation of the potential energy il of the body, associated with infinitesimal variations 
of the position 6s' of dislocation i .  Writing the potential energy variation in the form 

E van der Giessen and A Needleman 

f' is the so-called Peach-Koehler force. 
Many standard references (e.g. [20, 211) provide elementary treatments of the 

relationship between the Peach-Koehler force and the local state of a stress in the continuum, 
including effects of image dislocations to account for boundary conditions, etc. However, 
the method of solution presented above treats boundary conditions and inclusions in a 
different manner. Therefore. we consider it appropriate to carefully reconsider here the link 
with the Peach-Koehler force. 

In order to write the potential energy for the dislocated body we follow a dislocation 
exclusion procedure like that used by Lubarda eta1 [SI and Blume [221. First we introduce a 
small core region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC' around each dislocation loop i, which is formed by a torus of radius ro 
along the dislocation line, cut open intemally by the slip plane and bounded by two surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S i  and Si (see figure 1). The total surface of the core region, including zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS i  and SL, is 

denoted by K'. Then, the volume of the body excluding the core region C' is !? = V\C'. 
The body volume excluding all core regions = U'C' is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 = V\e. The potential energy 
il for the dislocated body is then found'as the potential energy of the volume f excluding 
all core volumes, while the core energies are accounted for through the work of tractions 
on the interfaces aC' of 3. It is shown in appendix A that the superposition of (3 and (") 
fields according to (1) along with (2). gives 

+ E[ 1 j ui : dV + T' . U' dV] - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl, TO . (6 + ti) dS. (10) 
2 pi 

Here, T i  and ui are the traction and displacement on aC' due to the corresponding 
dislocation. The integrals involved in the double summation in (10) represent the interaction 

energy of the infinite-medium dislocation fields within the finite volume V, while the terms 
in square brackets represent the self-energy of all dislocations. The interaction energy of the 
dislocations with the inclusion is incorporated implicitly in the first two volume integrals. 

Now, we consider variations of the potential energy in (IO) due to variations 6s' 
of the positions of the dislocations. Such variations lead to variations in the infinite 
medium displacement fields, Sui, associated with each dislocation and variations in the 
6 displacements, and hence involve strain field variations 6C and S i .  A careful analysis 
of the resulting variations in the potential energy expression, with due consideration of the 
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singularities at dislocations and the different moduli in matrix and inclusions, is outlined in 
appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB. The result is that 

so that the Peach-Koehler force zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' acting on the ith dislocation is found from (9) as 

The component f' of the Peach-Koehler force in the direction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i  x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn' in the slip plane and 
normal to the dislocation is found as 

It is this component of the Peach-Koehler force that will determine the motion of the 
dislocation in its slip plane, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas will be discussed in the next section. In [SI this force, 
or in fact the total resultant force and associated moment on a dislocation line, was used 
to determine equilibrium configurations of a given set of dislocations. The analysis here 
confirms the validity of the expression (12), even for b o u n d q  value problems with mixed 
traction4isplacement boundary conditions and in the presence of inclusions. 

2.3. Constitutive equations for motion, creation and annihilation 

In what follows, we confine attention to planestrain problems involving edge dislocations, 
viewed in a direction perpendicular to the dislocation lines. In fact, we consider pairs of edge 
dislocations, each pair in a limiting sense representing a cross-section of a dislocation loop. 
The dislocations in such a dipole have opposite signs, and this is commonly incorporated 
through the use of the signed length of the Burgers vector b' = (b' x ti) n' (i = 1, , . . , n). 
The plane of deformation is the XI-xz plane, and in this paper all slip planes are taken 
to be parallel to the XI axis. If the material is elastically isotropic with shear modulus p 
and Poisson's ratio v, the components U& (U. = 1,2) of the infinite-body displacement field 
uli(x.) due to dislocation i positioned at (Xi, Xi) are given by (e.g. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20, 211) 

u;(x,) = -(1 - u ) t a l - l ( z ) }  

where 

A x , = x , - X ;  (a:=1,2) 

The corresponding in-plane stress field components U,$ read [20, 211 
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For such two-dimensional problems, we consider the following ingredients to the 
evolution of the dislocation smctule during the deformation process: the motion of 
dislocations along their slip plane, pinning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof dislocations at obstacles, annihilation of 
opposite dislocations, and generation of new dislocation pairs from discrete sources. Similar 
mechanisms have been considered in previous two-dimensional studies (e.g. [ I ,  2, 3, 6, 7]), 
as well as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the three-dimensional simulations of Kubin et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal [5], although the specific 
constitutive rules that have been implemented differ. 

The motion of the ith dislocation is controlled by the in-plane component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf’ of the 
Peach-Koehler force according to (12). For edge dislocations this component reduces to 

f’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= rib‘ 

where r i  is the resolved shear stress acting in the slip plane at the dislocation line, defined 

by 

with mi denoting the unit vector along the slip plane of dislocation i .  Here, the velocity ui 
of a dislocation in the direction of mi is taken to he related linearly to the resolved shear 
stress through the linear drag relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(18) 

where B is the drag coefficient. For metals, the major contribution stems from phonon 
drag, while for nonmetallics, there may be an increasing contribution to B from the Peierls 
barrier (see e.g. [21]). A similar relationship has been adopted in other quasi-static analyses 
11-3, 9, 101, while in the truly dynamic analyses in [6, 71 a corresponding damping force 
has been taken into account. 

The motion of dislocations along a slip plane can be hindered in real crystals by several 
types of obstacles, such as dislocations on intersecting slip planes, small precipitates, etc. In 
two dimensions, we model this by means of point obstacles at which moving dislocations 
get pinned. Such pinned dislocations are usually the origin of dislocation pile-ups. As 
the number of dislocations in a pile-up increases, the shear stress acting on the leading 
dislocation increases substantially, so that it will eventually bypass the obstacle through a 
thermally activated process. We model this by releasing the pinned dislocation once its 
resolved shear stress exceeds (in absolute value) the obstacle’s strength robs. 

Two edge dislocations with opposite Burgers vector (dipoles) will annihilate each other 
when they are brought closer and closer together. Presumably the destruction of dipoles 

is due to the effect of their self-stresses. It is modelled here very simply in the way 

= Bvi 
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Figure 3. The two-dimensional dislocation source with Burgen vector b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon slip plane with 
normal n and slip direction m generates a dislocation dipole L mutual distance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALnm, If the 

resolved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAshear shess r > 0. a positive dislocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b > 0) is generated in the direction of m: 
the dislocation signs change when r < 0 .  

that annihilation is taken to occur when opposite dislocations have approached within a 
material-dependent, critical annihilation distance Le. 

New dislocation are being generated through the operation of Frank-Read sources. The 
initial dislocation segment of a Frank-Read source bows out until a critical Frank-Read 
configuration is formed and leaves behind a replica of itself. Thus, a source is characterized 
by the critical stress for activation of the Frank-Read process, the time to form a critical 
configuration and the diameter of the generated dislocation loop. The values of these three 
variables depend on the length of the initial Frank-Read segment, the elastic properties 
and the drag coefficient. Implementing this process in two dimensions clearly involves 
idealizations and approximations. The way we treat dislocation nucleation is to assume that 
sources are point sources on the slip plane, which generate a dislocation dipole when the 
magnitude of the shear stress at the source, 1x1, has exceeded the critical stress rnUc during 
a period of time tnUc. The dipole comprises two opposite dislocation with Burgers vector 
f b ,  with the polarity being determined by the sign of r (see figure 3). The distance Lnuc 
between the two dislocations is taken to be determined by the critical stress according to 

This ensures that, when the new dipole is generated, the total resolved shear stress f,,, 
balances the attractive shear stress that the two dislocations exert on one another (see (17) 
for AX, = Lnuc, AXZ = 0). 

3. Formulation of two-dimensional unit cell analyses 

We demonstrate the approach outlined in the previous sections by considering the boundary 
value problem illustrated in figure 4. The material is assumed to be built up of a doubly 
periodic may of unit cells of width zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2w and height 2h. In some computations, the unit cell 
will be assumed to contain a central (dislocation-free) inclusion of size 2wf by 2hr. The 

cell is subjected to simple shear deformations, prescribed through the kinematic boundary 
conditions 

where ? is the applied shear rate. Periodic boundary conditions are imposed along the 
lateral sides x, = f w .  The average shear stress f needed to sustain the deformation is 
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computed from the shear component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA012 of the total stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU according to (I), either along 
the top or the bottom face of the region: 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvan der Giessen and A Needleman 

I W  
f = - J  2w _lu olz(x1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfh) drl. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. unit cell in a aoubly penoolc amy,  subjected to simple shear. All slip planes are 
t&m to be parallel to the shear direction ( x0 .  

As mentioned before, dislocation motion on a number of slip planes will be considered 

that are parallel to the XI axis. All dislocations come in pairs, or dipoles, with opposite signs 
of their Burgers vectors, so that the net Burgers vector is zero. For simplicity all dislocations 
are taken to have the same magnitude b of the Burgers vector. The determination of the 
(-) fields is somewhat involved for such periodic cell problems. For each dislocation in 
the unit cell, one must also account for the fields due to its replicas in all other cells 

in the array. Even though the self-stress fields rapidly decay with the distance from the 

dislocation, arrays of dislocations have been observed to give rise to very long-range effects 
(e.g., [ I ]  and [SI). Moreover, Gulluoglu er al [ I ]  noted that the truncation of the number of 
adjacent replicas may give rise to artificial dislocation wall formation. In order to resolve 
this problem, it was suggested in [ I ]  to first perform the summation over the infinitely long 
column of dislocations, obtained by collecting all replicas of the dislocation along the xz 
direction, followed by the summation of the results for such columns along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx ,  direction. 

For such a column of dislocations, or dislocation wall, analytical solutions are available in 
the literature for the infinite-medium fields (see e.g. also [ZO]). The summation of these 

dislocation wall fields for a number of replicas left and right of the cell converges rapidly 
[ I ] .  However, this approach has proved to be not particularly suited to the present boundary 
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value problem, since that summation for any finite number of replicas gives different stress 
and displacement fields along the left zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-w) and right zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(XI = w) cell boundaries so that 
exact periodicity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis difficult to realize. 

In this work we have therefore chosen a different approach in which the summation is 
first canied out over replicas of each dislocation on the same slip plane. Then, the fields 
due to such infinitely long strings of dislocations are summed over replicas of the slip plane 
above and below the cell. It is shown in some detail in appendix C that the stress field of 
string i ,  i.e. dislocation i inside the cell and its replicas at mutual distance 2w on the same 
slip plane, can be determined analytically, yielding: 

where 

A(= = (xu - X ~ ) / W  (01 1,2). (22) 

The summation of the displacement field of dislocation string i needs special consideration 

in view of the discontinuities in U I  (see (13)) and the fact that u2 is. unbounded for 
( A x I ) ~  + (AX# -+ 00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see (14)). The mathematical difficulties associated with this are 
eliminated by not considering individual dislocations, but dipoles. After having performed 
the summation over a string of such dipoles, the individual fields can be recovered and 
written in the following form (see appendix C): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

b' 1 rrA$sinrrA& 

2 r ( l  - U) ?coshxAe2-cosrrAg, 
U;(&) = 

(23) 
b' 

2 
- -8' sgn(Ab) 

I 1 
4 

- -(1 - 2 u ) I n ( c o s h n A ~ ~ - c o s n A ~ : )  . 

The term with 6' in (23) ensures that the solution is valid for all A& E (-1, l ) ,  i.e. for all 

XI -Xi E (-W. w), by letting 

- 1  if At l  E (-3/2, -1/2) 
8' = \ +1 if A ~ I  E (1/2,3/2). 
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The stress and displacement fields due to all replicas zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof dislocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi are to be 
determined by summation of these fields for infinite shings of dislocations, equations (19)- 
(21) and (23)-(24), in the x2 direction. Fortunately, these infinite string fields decay nearly 
exponentially with At2. It has been found that only three strings on either side of the central 
string need to be considered for excellent convergence. 

Finally, because of periodicity, dislocations leaving the cell at X I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf w  re-enter at the 
opposite side X I  = i w .  Only the displacement fields of the dislocation need to be corrected 
for that by adding the contribution 

b' 
2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf (x,)  = -8 sgn(Axz) 

The step in the displacements in (25) is retained at all times even after dislocation i has 
annihilated with another dislocation. 

It is noted that in [NI we have presented a few results for a different problem, where 
the sides X I  = &w are traction-free, as a further illustration of the solution procedure for 
boundary value problems outlined in section 2. In those analyses, attention was confined to 
monophase materials, but that is not a necessary restriction. 

A standard finiteelement technique is used to solve the elastic boundary value problem 

(5)-(7). Here, four-noded quadrilateral elements with four Gauss integration points are 
used. The polarization stress @ according to (8) is accounted for as a body force to be 
evaluated at each integration point. The infinite-medium tractions 2. on Sj are computed 
in separate Gaussian integration points along element edges at S,, while the corresponding 

displacements 0 are evaluated at the nodal points on S,. 
The deformation process is solved in a linear incremental manner, using an Euler forward 

time-integration scheme of the equations of motion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(18). The algorithm is similar in spirit 
to the dislocation dynamics procedure proposed by Amodeo and Ghoniem [Z, 31, but the 
details are somewhat different. An adaptive timestepping algorithm is used that ensures 
that the flight distance of any dislocation during a time step Af remains smaller than a 
user-defined maximum distance As-. In the computations to be presented here, we have 
used values of As- ranging from 0.16d to 0.3d, where d is the spacing between slip 
planes. The time step is also adapted to the time scale of nucleation events, determined by 
time laps fnuc, For each slip plane, within each time increment. a subincremental technique 
is used to update all dislocation positions, giving due attention to possible annihilation or 
pinning. In order to avoid numerical instabilities, a suitable amount of underrelaxation is 
used for dislocation pile-ups. 

4. Continuum formulation 

For comparison purposes, calculations are can id  out for the plane strain unit cell in figure 

4 using continuum slip plasticity to describe the material response. Overviews of the 
continuum slip formulation and its physical background are given in Asaro [25], Bassani 
[26] and Cuitirio and Ortiz 1271. As in Peirce et al [19], the numerical analyses are 
based on a finite-strain Lagrangian convected coordinate formulation of the field equations. 
However, attention here is confined to small strains and finite strain effects are negligible. 
For simplicity, only the small displacement gradient form of the goveming equations is 
presented. 
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The discretization is based on the rate principle of virtual work 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(') denotes a( ) / a t .  
The crystal is taken to have one slip system, with the slip plane normal parallel to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x2 axis and with the slip direction parallel to the x ,  axis. The plastic strain rate, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, is then 

written as 

where m is the slip direction and n is the slip plane normal. The total strain rate, P ,  is 

P = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA€e + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (28) 

where the elastic strain rate, Ce, is given in terms of the stress rate, U,  by Hooke's law 

= E - '  : U.  (29) 

Combining (27). (28) and (29), and inverting to obtain the stress rate-strain rate relation 
gives 

U = L : [€ - !? (m @ n + n @ m)] . (29) 
2 

The material is taken to be viscoplastic, with the strain rate given by the power-law 

relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
g is the slip system hardness, and the slip system resolved shear stress, 'c, is simply u12. 

The slip system strain hardening is described by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r(v) = ~ O ( Y / Y O  + (32) 

where to is the slip system strength, yo is a reference strain and N is the strain hardening 
exponent. 

The unit cell is subject to prescribed displacement rates 

corresponding to a shear rate p, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith the height of the cell, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2h, fixed. Periodic boundary 
conditions are imposed along the lateral sides XI = +w by taking ui(xz, w )  = uc(x2, -w) 
for i = 1,2. 

The deformation history is calculated in a linear incremental manner. In order to increase 
the stable time step, a rate tangent modulus method, as described in Peirce et a1 [19], is 
used. The finite-element discretization is based on quadrilateral elements consisting of four 
'crossed' linear displacement triangles. 
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5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults for monophase material 

In this section we present the results of a number of selected studies carried out by means of 
the unit cell problem outlined in section 3. All results are for square unit cells, w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh (see 

figure 4) ,  containing 80 equally spaced slip planes. Poisson's ratio is v = 0.3. The half- 
width of the cell relative to the Burgers vector b of the dislocations is given by w = 4000b 
(with b = 2.5 x lo-'' m, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABurgers vector for copper as a representative parameter value, 
the cell size is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 pin2). The annihilation distance is taken as Le = 6b. The coefficient B 
in the drag relationship (18) is specified relative to the applied shear rate ? through the 
dimensionless number BC/p  = 0.38x10-" (taking p = 0.26x105MPaand B = lO-'Pas 
as representative parameter values for aluminium [5], this corresponds to a shear rate of 

= IO' s-I). Unless noted otherwise, all obstacles in these computations are taken to have 
the same strength robs = 5.7 x p. The assumed nucleation properties will be discussed 
shortly. 

5.1, Initially dislocation-free material 

We start out by briefly considering a material that is initially completely free of dislocations, 
but that contains a distribution of dislocation sources and obstacles. Upon straining, all 
sources will start to generate dislocations at the same instant if the sources are assumed 
to have the same strength, since the stress distribution prior to the moment is completely 
uniform. Apart from being computationally inconvenient, such a burst of dislocations is not 
very realistic. Therefore, we select the strength of the sources randomly from a Gaussian 
strength distribution. All results to be presented in this paper are for a mean strength 

p. corresponding to a mean nucleation distance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL,,, = 1256, while 
the nucleation time is taken as rnuc = 2.6 x lo6 B / p  (or tnuc = lom5/?). Unless noted 
otherwise, the strength distribution is assumed to have a standard deviation of 0.27nuc. 

When the material is deformed in simple shear, the uniform stress & increases linearly 
with I', until at some instant the resolved shear stress t reaches the lowest critical value 
r,, for any of the sources. When, after an elapse of tnUc, the first dipole is actually 
generated, the total stress field & + + in the unit cell ceases to be homogeneous. Upon 
continued deformation, the dislocations will move along their slip plane, and the total stress 
field continuously changes until the critical strength is exceeded again for some dislocation 
source, and so forth. Once the dislocation density attains a certain level, the dislocation stress 
fields become increasingly important in determining the resolved shear stresses at dislocation 
sources. This tends to become a self-reinforcing phenomenon that leads to the formation 
of dislocation pile-ups on specific slip planes, and to localization of the dislocation activity 
on a few slip planes. An example of this is depicted in figure 5(a), showing two distinct 
'bands' in which dislocation motion is responsible entirely for further plastic deformation. 
The phenomenon may be expected to depend on the standard deviation in the distribution 
of the strengths of the sources. 

As an illustration, figure 50) shows the dislocation distribution at the same shear strain 
when, for the same distribution of sources and obstacles, and for the same average strength, 
the standard deviation of the strength distribution was taken to be smaller, i.e. O.lfnnc. With 
the smaller standard deviation, the distribution of the source strengths is more uniform. 
Hence, in figure 5(b), when dislocation nucleation begins at one source the stress fields 
from the nucleated dislocations trigger nucleation at nearby sources and slip activity tends 
to localize near one slip plane. When the source strength distribution is less uniform, as in 
figure 5(a), there is a greater likelihood of a weak source away from the initial one being 
activated before the dislocation stress fields associated with initial source have induced 
substantial further nucleation. 

E van der Giessen and A Needleman 

= 1.9 x 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Dislocation distributions in an initially zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdjslocation-free. homogeneous mgterial at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.44% for two different standard deviarions in the sfrrngffi disuibution of dislocation 

sources, namely (a1 Q.2fRUc, (b) 0.lFnm. The t denotes a positive dislocation while the - 
denotes a negative dislocation. The grey I and 0 denote obstacles and dislocation sources. 
reswtively. 

5.2. Material with initial dislocations 

As mentioned before, dislocations on a slip system may act as obstacles for the motion 

of dislocations on other slip systems. This is due to the strong interactions between the 
two families of dislocations. It has long been known (e.g. 128, 291) that this is the reason 
for the high stage4 hardening rate in crystals caused by the possibility of secondary slips. 
Dislocation motion on the primary slip system is then severely hindered by the presence of 
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initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArelaxed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

( C )  

Figure 6. Initially random zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdislocarion distributions and corresponding equilibrium distributions 
after relaxation, for three different random realizations (a) to (c). 
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dislocations on the secondary slip systems. 

These effects would emerge clearly, for instance, when we imagine a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcrystal to 
be deformed first so that one slip system is mainly activated, unload the material and 
subsequently load the material in a different direction so that slip occurs only on another 
slip system. In an attempt to mimic this within the current model with just one slip system, 
we perform the following simulation. First, we randomly introduce dipoles of dislocations, 
which we then let relax (under fixed displacements, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI' = 0). Next, we add randomly 
generated obstacles and sources. This then forms the initial state of the material that is 
to be subjected to simple shear. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs the number of sources and obstacles is kept constant 
during the simulation. the results to be presented highlight the influence of the strength and 
density of these entities. On the other hand, for real metals during stage-I1 hardening, the 
density of sources and, especially, of obstacles will generally increase with deformation. 

Figure 6 shows three random, initial dislocation distributions as well as the 
corresponding relaxed configuration. For all three cases, the initial dislocation density is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
200/hu, (with h = w = 1 p m  this corresponds to a dislocation density of 2 x 10" m r 2 ) ;  
the densities of the relaxed configurations are: (a) 93/hw,  @) 85/hw and (c) 68/hw. 
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r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(w 
Figure 7. Evolution of total and mobile dislocations during simple shear simulations starting 
from each of the three relaxed configurations shown in figure 6(a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto (c). 

In each of these three relaxed configurations, dislocation sources and obstacles are then 

generated randomly. The density of sources in all three cases is taken as pouc = 80/hw 
(i.e. of the same order of magnitude as the relaxed dislocation density), while an obstacle 
density of po& = 160/hw is assumed. Now, on shearing the material, the relaxed dislocation 
structures gradually evolve when the dislocations start to move and annihilate with each 
other or with freshly generated dislocations. The evolution of the dislocation densities for 

each of the simulations starting from the three relaxed configurations in figure 6 is shown 
in figure I. It is seen that the relaxed dislocation structure is broken down upon shearing, 
and that in the early stages of the deformation, the total dislocation densities decrease by 

around 15 %. The density of mobile dislocations falls much more due to the fact that many 
dislocations get pinned at obstacles. After some deformation, the rate of nucleation of new 
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dislocations exceeds the rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof annihilation and pinning, so that the dislocation densities 
(total as well as mobile) start to increase. However, the two rates do not differ much, and 
especially the mobile dislocation density increases only somewhat with deformation. During 
these stages of deformation, dislocation pile-ups are formed on specific slip planes, leading 
to localization of the slip activity on a few slip planes, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas noted before in relation to figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. 
Eventually a ‘steady state’ is reached where the dislocation structures remain essentially the 
same. These structures, corresponding to the above three relaxed configurations, are shown 
in figure 8. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvan der Giessen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Needleman 

Figure 8. Dislocation distributions for each of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthree relaxed configurations shown in figurc 6(a) 
to (c) ,  respectively. after shearing to (a) r = 0.91%, (b) r = 0.90%. (c) r = 0.68%. 
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Figure 8. (Continued) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 9. Overall shear stress response to simple shear deformations starting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom each of the 
three relaxed configurations shown zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin figure 6(a) to (c). The deformed dislocation configumions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are show in figure 8(a) to (c). The grey line would correspond to a purely elastic response. 

Figure 9 shows the shear stress responses during simple shearing for each of the three 

cases. Due to the presence of initial mobile dislocations, the responses do not show an elastic 
regime. Up to about 0.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% shear strain, the responses are more or less identical, but beyond 

that the hardening behaviours become somewhat different. All three cases, however, exhibit 
the same characteristic feature that the hardening rate decreases until the shear stress reaches 
a maximum. After $at, the stress level drops to some extent before settling to a 'steady 
state' value corresponding to constant dislocation densities. This is particularly clear for 
case b. Thus, the simulations lead to the introduction of two characteristic strength levels: 
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the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyield strength corresponding to the peak in the stress-strain curve, and the (1ower)pow 
strength at which the material continues to deform steadily. It is interesting to note that the 
yield strengths and the corresponding yield strains depend on the initial relaxed dislocation 

structure, whereas the flow strengths for the three cases seem to be almost identical. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs 
discussed above, 'flow' occurs by localized activity on a few slip planes which is largely 

controlled by the dislocation pile-ups. The breaking-away of the leading dislocation in such 
pile-ups plays a crucial role in the process. Thus, the flow strength in the simulations seems 
to be determined mainly by the density and strength of the obstacles. 
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Figure 10. Effect of density of dislocation sources on the simple shear response. (a) Evolution 
of total and mobile dislocation densities. (b) overall shear stress response. 
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5.3. Influence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof source and obstacle density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the above-mentioned computations, the behaviour was seen to be controlled primarily 
by the rate of nucleation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof new dislocations and the rate of annihilation. The purpose of 
this section is to study how these depend on the densities of obstacles and sources in the 
present type of simulations. In doing so, we shall be comparing with the case a shown in 
figures 6 to 9, for which the densities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai-e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApnuc = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80/hw and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApobs = 160/hw. 

160 mobile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand pinned 
320 / ' I  dislocations 

o ~ ' ~ " ' ' " ' ' ' " " " ' ' " " '  
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Figure 11. Effect of obstacle density. (a) Evolution of total and mobile dislocation densities, 
(b) overall shear suess response. 

Figure 10 shows some results when the source density is halved (by randomly taking out 

half of the sources) or, as a limiting situation, when there are no active dislocation sources. 
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From the fact that the dislocation density is seen to be independent of the source density 
until r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.25%, it is concluded that the simulated behaviour is essentially annihilation 
controllcd. Beyond that strain level, all remaining dislocations tend to be removed by 
annihilation if there are no sources, figure lO(a), and the response would tend to become 
purely elastic, see figure 10(b). If there are sufficient sources, dislocation generation wins 
out over annihilation at some point. The rate of dislocation nucleation then appears to be 
virtually independent of the source density, and will be controlled by the strength of the 
sources. The corresponding stress-strain response shows the typical yield and subsequent 
flow characteristics, with the actual source density having some effect on the hardening 
behaviour and the yield strain, but being seemingly unimportant for the yield strength and 
for the flow strength. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvan der Giessen and A Needleman zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. Average hardening modulus h zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= d?/dT fmm the stress-strain curves in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfigure 11 
as a function of the corresponding obstacle density. 

The effect of obstacle density is briefly studied in figure 11. Relative to the reference 
density pobs = 160/hw, we consider half and quarter of that density (by randomly removing 
obstacles) and a case with twice as many obstacles (by adding obstacles). The initial 
dislocation distribution and the source distribution again correspond to case a in figures 6 to 
9 .  The two cases with the lower obstacle density exhibit a more or less monotonic decrease 
of dislocation density until the steady-state value is reached. Correspondingly, the stres* 
strain responses do not show a distinct yield point, but a more gradual transition to flow. 
For the case with the highest density, pobE = 320/hw, however, annihilation is essentially 
inactive. This is attributed to the fact that for the given initial (mobile) dislocation density 
of p = 93/hw,  the obstacles effectively prevent dislocation motion over distances large 
enough for annihilation to become possible. As a consequence, there is relatively strong 
initial strain hardening, and a very sharp yield point corresponding to a peak in the mobile 
dislocation density. The strain regime just after the stress drop is characterized by a very 
high annihilation-generation activity that continues until around r = 0.7 B, after which 
the dislocations seem to have found ‘stable’ positions, and the material hardens again. 
Notice, however, that on average the dislocation density remained constant after yield. The 
computation with pabs = 320/hw took over 300000 increments due to the fact that the time 
steps needed to be small because of the extremely high nucleation-annihilation activity. 

For each of the results in figure 1 l(b), we have fitted a linear hardening curve to the 
response prior to the yield point. For each obstacle density, the slope of this linear fit, 
h = d i / d r ,  is plotted versus the corresponding obstacle densities in figure 12, and shows 
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Figure 13. Dislocation disliibulions for different obstacle densities (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalso figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) 
pab = 401hw at I- = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.81%. (b) pob = 32O/hw at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0.86%. 

a remarkably linear correlation between h and pobs. Our explanation of this is as follows. 
As mentioned before, prior to yield, the process is controlled mainly by annihilation. 
Dislocations in those stages are still distributed relatively diffusely and the obstacles then 
mainly act to decrease the probability of annihilation by pinning dislocations. Thus, the 
rate of annihilation decreases with increasing obstacle density, and therefore the hardening 
modulus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh in the present simulations increases with increasing obstacle density. 

Figure 13 shows dislocation distributions at about the same strain levels for the two 
extreme obstacle densities, pobs = 40/hw and pobs = 320/hw. Notice that for the lower 

obstacle density, no localization of slip activity takes place, which is consistent with the 
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absence of a yield point (see figure 1 I(a)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE van der Giessen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Needleman 

5.4. Esolution of cell walls 

The computations presented in sections 5.2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.3 have started out from an initially random 
dislocation distribution. In this section, we present a few results for computations where 

the initial dislocations are organized in parallel walls of opposite dislocations, representing 
small-angle grain boundaries zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA211. In fact, we consider walls parallel to the x2 direction 

and spaced at a distance w ,  so that our unit cell contains two walls, as shown in figure 14. 

We consider two cases: one where all dislocations in the walls are pinned and one where 
they are left free to move. In each of the two cases we then introduce the same random 
sources and obstacles, with densities zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApnuc = pob = 80/hw. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. Unit cell containing two pamllel dislocation walls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf mutual distance w 

It is well-known (e.g. 120, 211) and was confirmed in the computations in [8] that in the 
undeformed state, these dislocation walls are in stable equilibrium. Upon shearing however 
they cease to be so (as also seen in 181). In the case of the free walls, they initially bow out, 
and then activate nearby dislocation sources. When the process continues, the wall structures 

are gradually dissolved, as is shown in figure 15(a). In the stress-strain curve, depicted in 
figure 16, this is reflected in a small mount of plasticity in the beginning of deformation, 
but yielding only takes place after r = 0.13 %. On the other hand, when all dislocations 
in the walls are pinned at obstacles, the walls mainly act to generate a nonuniform stress 
field, which determines where nucleation of new dislocations will occur. After nucleation 
is initiated, individual dislocations in the walls get removed by annihilation, as seen in 
figure 15(b), but eventually the'process evolves into a steady-state situation with dislocation 

activity in a few slip planes as in figure 5. The stress-strain response for the pinned walls 
shows rather abrupt yielding (see figure 16). The yield strain is roughly the same as for the 

case with free dislocation walls, but the yield strength is considerably higher. 
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Figure 15. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADislocation dishbutions during simple shear for cases where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe initial dislocations 
are organized in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwalls (see figure 14) and are either left free zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto move or are pinned. (a) free 
walls, r = 0.36% (b) pinned walls, r = 0.35%. 

6. Results for composites 

In this section, results are presented for a material containing a periodic array of square 
particles (w f  = hf in figure 4). The loading conditions and properties of the matrix material 
are taken to be identical to those in section 5; the elastic properties of the inclusions 
are specified as v' = 0.17 and p* = 7 . 3 ~  (taking the matrix elastic constants to be 
representative for aluminium, the parameter values for the inclusion are indicative for the 
properties of silicon. carbide). 
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Figure 16. Overall shear stress response to simple shear for cases where the initial dislocations 
are orgmized in pinned or free dislocation walls zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(see figure 14). 

Figures 17 and 18 show results for two materials with the same area fraction f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(zuh)/(w&f) = 0.2 but with different distributions of obstacles and sources. In the matrix 
region, the obstacle and source distribution in figure 17 is the same as that in figure 8(a), 
while the figure 18 distribution corresponds to figure 8@) (cf. section 5).  In both cases, 
the matrix is initially dislocation-free. For the case shown in figure 17, plastic deformation 
tends to concentrate in the layer of matrix material in between the rows of inclusions; 
there is no dislocation activity on slip planes between inclusions. In fact, as is clear from 
figure 17(b), the dislocation density is still at a low level when all dislocation activity takes 

place within a narrow band of a few slip planes, similar to what was found in many of the 
simulations for homogeneous material in section 5 .  Figure 18, for a different source and 
obstacle distribution, shows a somewhat different behaviour, where the first dislocations 
appear almost exclusively in the layers between rows of inclusions (figures 18(a) and (b)), 
but where at a later stage in the deformation dislocations are also generated in between 

inclusions, as seen in figure l8(c). Finally, again, localization of dislocation activity on a 
few slip planes occurs. 

Figure 19 shows results for a material with smaller inclusions, f = 0.05. The source 
and obstacle distributions in the matrix material are taken to be the same as in figure 8(b) 
and figure 18. As in figure 18, slip band formation occurs (see figure 19(b)). 

Curves of overall composite shear mess versus shear strain are shown in figures 20(a) 
and (b). Figure 2O(a) shows comparisons with continuum slip predictions for f = 0.20. In 
the continuum slip formulation the hardening behaviour is an input to the analysis and not 
an outcome as it is for the dislocation based plasticity calculations. The values of N and 
yo for use in (32) were chosen to fit the initial plastic hardening behaviour found for the 
two cases in figures 17 and 18 and the value of m in (33) was taken as 0.005 to give nearly 
rate-independent response. Since the continuum slip strain hardening behaviour is specified 

to be monotonic, the stress drop of the dislocation based analyses is not represented. (If a 
strain softening relation were assumed in the continuum analysis instead of the hardening 
law (32). shear band localization would occur.) 

Figure 20(b) shows the effect of reinforcement area fraction f .  The composite elastic 
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f = 0.2 of elastic inclusions. The distribution of sources and obstacles is the same &F in 
figure 8(a). (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr = 0.1970, (b) r = 0.44%. 

modulus and the initial hardening depend on f ,  but the flow strength does not. This is 
expected since the flow strength is associated with the localization of dislocation activity in 
the matrix and mainly depends on the density and strength of matrix obstacles (cf. Section 

5.2). As for other cases where slip band formation is observed, the stress-strain curve 
exhibits a distinct yield point and continued plastic flow at a lower stress level. The case 
shown in figure 18, however, where there is a relatively high, diffuse dislocation activity, 
exhibits a prolonged period of strain hardening before localization in few slip planes occurs 
at around r = 0.7%. ?he flow strength levels are approximately the same for all three 
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Figure 18. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAulslocatlon dlslnbullons m an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinitially dislocation-free material with an area fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.2 of elastic inclusions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe distribution of sources and obstacles is the same as in 
figure X(b). (aj r = 0.19%. (bj r = 0.48%. (c) r = 0.78%. 

dislocation-based calculations considered here. They also seem to have roughly the same 

flow strength values as for the unreinforced matrix material (see figure 9). This suggests that 
the inclusions affect the generation and motion of dislocations through the inhomogeneous 
stress fields generated in the matrix, but that they do not directly influence the localization 
of dislocation activity itself. This is expected because the reinforcement does not block all 
the slip planes, as noted in a phenomenological plasticity context by Drucker [30]. 

The evolution of the mobile and total dislocation densities for the three dislocation based 
calculations in figures 20(a) and (b) is shown in figure 2O(c). In each case, the material is 

Figure 18. ulslocatlon dlslnbullons m an initially dislocation-free material with an area fraction 
f = 0.2 of elastic inclusions. The distribution of sources and obstacles is the same as in 
figure X(b). (aj r = 0.19%. (bj r = 0.48%. (c) r = 0.78%. 

dislocation-based calculations considered here. They also seem to have roughly the same 

flow strength values as for the unreinforced matrix material (see figure 9). This suggests that 
the inclusions affect the generation and motion of dislocations through the inhomogeneous 
stress fields generated in the matrix, but that they do not directly influence the localization 
of dislocation activity itself. This is expected because the reinforcement does not block all 
the slip planes, as noted in a phenomenological plasticity context by Drucker [30]. 

The evolution of the mobile and total dislocation densities for the three dislocation based 
calculations in figures 20(a) and (b) is shown in figure 2O(c). In each case, the material is 
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Figure 18. (Continued) 

initially dislocation free and remains so until the stress level is high enough for the weakest 
source to be activated. Most of the nucleated dislocations become pinned so that the mobile 
dislocation density is much less than the total dislocation density. When the dislocation 

activity localizes on a few slip planes, a rather constant dislocation density is maintained as 
for the monophase material in figure 7. 

Figure 21 shows the distribution of the total shear stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuI2 calculated from (l), 

normalized by the overall shear stress i for the case shown in figure 18 at four stages 
of deformation. The lowest contour in figure 21 corresponds to uI2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, so that within the 

region enclosed by this contour zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ~ Z  has the opposite sign of the overall shear stress. The 

stage shown in figure 21(a) is when only two dislocations, in the lower right hand corner of 
the unit cell, have been nucleated. The long-range effect of the dislocation stress fields is 
seen in this figure. Even though there is little dislocation patteming noticeable, the stresses 

away from the dislocation cores can easily become several factors higher than the average 

shear stress. 
The stress fields obtained from the dislocation-based and the continuum slip plasticity 

calculations are compared in figures 22 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25. Figure 22 compares the shear stress 

distribution for the rather high hardening case in figure 18 with that from the continuum 
slip calculation using N = 0.3 at r i= 0.5%. Since the shear stress distribution in  the 

discrete dislocation calculation is dominated by the discrete dislocation fields, the shear 

stress distributions are entirely different. In particular, because of the long range dislocation 

stress fields, the shear stress distributions in the reinforcement from the two calculations 

differ substantially. The shear stress distributions from the case in figure 17 and from the 

continuum slip calculation with N = 0.1 are shown in figure 23, also at r i= 0.5%. The 
stage shown in figure 23(a) is after dislocation activity has localized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon a few slip planes 
and the dislocation density has reached its steady-state value. As in figure 22 regions in 

the reinforcement in figure 23(a) have significantly higher shear stress than is given by the 
continuum slip distribution in figure 23(b). In both figure 23(a) and figure 23(b), there is a 
relatively low value of the shear stress in the matrix alongside the reinforcement. 

Figures 24(a) and 25(a) are for the case from figure 18 at r = 0.78%, which is after the 
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Figure 19. Dislocation distributions in an initially dislocation-free material with an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarea fraction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.05 of elmtic inclusions. The distribution of sourccs and obstacles is the same as in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
figure 8(b). (a) r = 0.26%. (b) r = 0.66%. 

stress drop due to the localization of dislocation activity on a few slip planes has occurred. 

The shear stress distribution is shown in figure 24 and the sum of the in-plane normal 
stresses, umua = U,,  -tu2* is shown in figure 25. The continuum slip solutions shown are for 
the N = 0. I calculation at a comparable strain. However, the stress histories are different 
since there is no stress drop in the continuum slip analysis. Again, the stress distributions 
in figures 24(a) and 25(a) are dominated by the discrete dislocation fields and the stress 

magnitudes in the reinforcement are greater than given by the continuum slip analyses in 

figures 24(b) and 25(b). The value of umaa scales with the actual mean stress (apart from a 
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correction that would have to be applied inside the inclusion due to the polarization stress in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(6)). and is seen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlo be distributed in a rather patchy manner with relatively extended regions 
of high positive values and regions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof high negative values. In particular, it is interesting to 
note the regions of high tensile mean stresses near the lower left-hand and upper right-hand 
corners of the reinforcement. In figure 25(a), the strong effects of the discrete dislocation 
fields dominate over the effect of the stress concentration at the reinforcement corners seen 
in figure 25(b). 

It is evident from figures 22 to 25 that the stress fields obtained from the 
discrete dislocation calculations differ substantially from their continuum slip counterparts. 
However, in making the comparison, one should realize that the continuum slip formulation 
implies averaging of fields over many dislocations in the material element, while the 
dislocation densities in the computations presented here are still rather low (of the order of 
io9 cm-2 for h = w = 1 pm). 

7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAConeluding remarks 

A continuum mechanics based approach for analysing microscale plastic flow processes has 
been presented where plastic flow arises directly from the collective motion of large numbers 
of dislocations. The formulation consists of: (i) accounting for the long-range interaction 
between dislocations by considering the dislocations as singularities in an infinite elastic 
medium (for which analytical expressions are available in a number of cases of interest); 
(ii) representing other interactions between dislocations or characteristics of dislocation 
motion, such as dislocation nucleation and annihilation, and dislocation drag, through a set 
of constitutive rules; and (iii) obtaining the correction (or image) fields that are needed 
to meet the boundary conditions, on the basis of the numerical solution to a standard 
linear elastic boundary value problem. The present computational framework permits rather 
general initial/boundary value problems to be formulated and solved for dislocated solids. 

To demonstrate some of the features of the approach, the formulation has been 
implemented for two-dimensional plane strain problems for solids having edge dislocations 
on parallel slip planes. Even in this simple case, there are aspects of the formulation that 
provide computational challenges. One is the computation of the long-range interactions. 
Here, for doubly periodic cells, the explicit summing of the conhibutions of long strings of 
dislocations (appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC) provides an efficient procedure. In more general circumstances, 
the fast summation algorithm of Wang and LeSar [31] could be used. What proved to be 
the computational limiting factor in the calculations here however, was the small time step 
required. The time limiting factors were mainly (i) the short time scale associated with 
nucleation events and (ii) the numerical stability considerations associated with the strong 
dislocation interactions in pileups. Using parameters representative of fcc metals (like AI, 
Cu), up to 300000 time steps were required for an imposed strain of about 1%. 

Computations have been presented for monophase and composite materials with periodic 
microsmctures subjected to simple shear loading. Even though they are only for a single 
slip system and use simple assumptions for sources and obstacles, the results show a number 
of noteworthy features. Equilibrium dislocation configurations exhibit a tendency to form 
organized patterns, as in figure 6 (see also [ I ,  3, 6, SI), but the organized pattern breaks 
down under an applied (monotonic) stress. This is even so for perfect wall smctures, 

figure 15. 
Upon continued monotonic deformation, and with random distributions of obstacles and 

sources, the results show no evidence of a tendency for spatial patterning, even though 
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Figure 20. Overall response Lo simple shea corresponding to the wses shown in figures 17-19. 
Shear SMSS responses ace shown in (a) and (b), in comparison with continuum slip results based 
on two sets of hardening parameters N, M. The evolution of dislocation densities is plotted 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c). 

that was one of the driving forces for the development of discrete dislocation plasticity 

approaches. It may be that dislocation patterning, when it is observed experimentally, 
occurs in regions that are relatively obstacle-free or where the prior deformation history has 
greatly decreased the density of obstacles (for instance, due to cyclic loading). Here, instead, 
the dislocation activity is found to localize in a small number of slip planes, determined 
by the (stochastic) spatial dishibution of sources and obstacles. This kind of localization 

of slip activity in such 'planar arrays' has also been found for instance in simulations by 

Amodeo and Ghoniem [31 and is suggestive of tbe coarse slip lines or coarse slip bands . 
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Figure 20. (Continued) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
which are often observed in crystalline metals (see, e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[a]). 

Related to this type of behaviour is  the occurrence of two characteristic strength levels in 
the simulations: a yield strength, corresponding to a local peak in the stress-strain response, 
and a flow strength, at which the material deforms at a more or less constant shear stress 
level. This flow strength is associated with the more or less 'steady-state' state dislocation 
pattern after localization of the slip activity. In the dependence of these strength levels on 
the sources and obstacles assumed in the computations, there seems to be a rather sharp 
transition from source-limited plasticity to obstacle controlled plasticity. At a sufficiently 
low source density, the dislocation process is completely source-limited, above a certain 
source density however, the mentioned typical response is observed with the pre-yield as 
well as post-yield behaviour being controlled by the obstacle density and the strength of the 
obstacles. 

The computations have been canied out for a highly idealized model problem. A 
substantial part of any lack of correspondence with real material behaviour must, of course, 
be attributed to some of the highly simplifying assumptions made in the constitutive rules 
used in these initial calculations. There are several obvious improvements. One key 

extension seems to be to account for dislocation motion on more than one slip system. 
This will immediately involve the dynamic formation of obstacles (in the form of forest 
dislocations) and sources due to multiple slip. It is emphasized that the formulation of 
the technique immediately allows for this; it only involves a small extension of the set of 
constitutive rules. Also, in order to provide a quantitative description of real material 
behaviour, the computational implementation has to be extended to three-dimensional 
geometries. 

There is a great deal of interest in problems of, for instance, plastic flow near 
crack tips, around micro-indentors and in composite materials, at a size scale where the 
collective motion of large numbers of dislocations and discrete dislocation effects play a 
role. The results presented in section 6 on composite materials are a reminder of the 
averaging procedures that underlie continuum plasticity descriptions. They indicate that 

for the aforementioned microscale problems, continuum plasticity may not give the desired 

resolution of stress and strain fields on that scale, and that the discrete nature of dislocations 
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may need to be accounted for. The general formulation here provides a framework to address 
such problems. Even in a two-dimensional plane strain context, substantial computational 
resources are required, but such computations are currently feasible. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE van der Giessen and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA Needleman 
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Appendix A. Derivation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof (10) 

We start by writing the potential energy for the volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 excluding the core regions around 
all dislocations as 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i7 = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu : E dV - (-T) . U dS - if TO . U dS 

2 3  ' S  
where the second term accounts for the core strain energies through the work of the 
tractions -2' on the internal surfaces a? of P (see figure I(b)). After substitution of 
the decomposition in (I), one arrives at 

The terms with (mixed) strain energies can, for example, be rewritten zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

5 : 2 dV = L5 : Z dV - 5 : Z dV = L5 : Z dV - G dS 

where use has been made of the fact that the singularities in the infinite-medium dislocation 
stress fields 5 are weak enough to allow for application of the divergence theorem and the 
equilibrium conditions in (3), provided that G is smooth on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe. Strain energy terms with 
5 : Z or % : E can be worked similarly. Upon substitution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2), the terms with 5 : E are 

expanded as 

u1 : E' dV + ui : dV - cc/, uj : ea dV. 
i i l k C '  



Discrete didocarion plasticity: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa simple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAplanar model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA729 

The work of tractions associated with the infinite-medium fields is rewritten zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

G dS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ~~~/ TJ . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk dS 
acs 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,, Ti . ui dS + rrF;/ T J  . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuk dS 
i # j # k  ac' 

Then, by substitution into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(AI) and by noting that 

= E / c r ' : ~ ' d V  , V' 

one arrives at the expression (10). 

Appendix B. Derivation of (11) 

The derivation of (1 1) is to a large extent similar to the derivation given in [8], but special 
care should be taken here of the potential energy contribution of the inclusion. We start 

out with a straightforward variation of the expression (10) for the potential energy l7. 
Splitting up the first two integrals over matrix volume and inclusion volume, respectively, 
and insertion of the stress-strain relationships for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 as well as (7 fields from (3) and (6), 
respectively, gives after some re-organization that 

In order to determine the variation in the self-energy of each dislocation, we introduce 
the unbounded region E' exterior to the small core volume C' for the ith dislocation, and 
similarly the exterior v of the body V. Then 

where in the last equality use is made of the fact that, under certain restrictions, the integrals 
over E' and over aCi remain invariant with respect to variations of the position of the 
dislocation. This invariance holds in all cases when the matrix material containing the 
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Figure B1. Cross-section along zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa slip plane, showing the change of the area S' swept by 
dislocation i due to a variation 8s' of the position along the dislocation line. The normal vector 
to the slip plane, nL. is painting upwards out of the paper. 

dislocation is isotropic. If the material is anisotropic, the variations 6s' must preserve the 
orientation of the slip plane relative to the directions of anisotropy. 

The variation in potential energy is now obtained as 

6n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB : 6; d V  + l ( B  : 6C+ b : 6;) d V  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc/ si : 6ek dV 
i # k  v 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcl 6' : BE' dV - To .  ( 6 6  + S i i )  dS. k (B1) 

The derivation proceeds by making use of the divergence theorem and the equilibrium 
conditions for the stress fields involved cf. (3) to (5) .  Subsequently, 

k B : B ; d V =  L T . . & d S  032) 

k b : B ; d V =  L T . s & d S  (B3) 

(B4) J, La' : SE' dV = - Ti . 8ui dS. 

The volume integral with B : 6: needs special care in view of the fact that the 

singularities in E vary in position when the positions, Ss' ,  of the dislocations are varied. 
We therefore again decompose the volume V into c and the total excluded core region c 
(see figure 1). Then 

l B : 6 ; d V =  1 B : Z d V  (B5) 

since the integral over f? vanishes as S i  + S l  ( i  = I ,  , , . , n) and ro --f 0. For a similar 

reason, after application of the divergence theorem, the surface integral over a2 vanishes. 
But, a variation 6s' leads to a variation SS' of the surface enclosed by the dislocation loop 

Figure B1. Cross-section along a slip plane, showing the change of the area S' swept by 
dislocation i due to a variation 8s' of the position along the dislocation line. The normal vector 
to the slip plane, n'. is painting upwards out of the paper. 

dislocation is isotropic, If the material is anisotropic, the variations 6s' must preserve the 
orientation of the slip plane relative to the directions of anisotropy. 

The variation in potential energy is now obtained as 

6n = s, B : 6; d V  + l ( B  : 6C+ b : 6;) d V  + cc/ si : 6ek dV 
i # k  v 

- cj 6' : BE' dV - T o .  ( 6 & + 6 i i )  dS. (B1) 
i v  k 

The derivation proceeds by making use of the divergence theorem and the equilibrium 
conditions for the stress fields involved cf. (3) to (5) .  Subsequently, 

k B : B ; d V =  L T . . & d S  032) 

k b : B ; d V =  L T . s & d S  (B3) 

(B4) 

The volume integral with B : 6: needs special care in view of the fact that the 

singularities in E vary in position when the positions, Ss' ,  of the dislocations are varied. 
We therefore again decompose the volume V into c and the total excluded core region c 
(see figure 1). Then 

J, La' : SE' dV = - Ti . 8ui dS. 

l B : 6 ; d V =  1 B : Z d V  (B5) 

since the integral over f? vanishes as S i  + S l  ( i  = I ,  , , . , n) and ro --f 0. For a similar 

reason, after application of the divergence theorem, the surface integral over a2 vanishes. 
But, a variation 6s' leads to a variation SS' of the surface enclosed by the dislocation loop 
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Figure C1. An infinitely long string of dislocations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAat mutual distance d .  The grey dislocations 
of opposite sign, but at the same spacing. result in a string of dislocation dipoles. 

(see figure BI). Noting that the slip plane normal is the normal vector to S i  pointing 

inwards into zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, we then have 

by noting that the displacement jump over S i  relative to S! is U: -U! = b'. By observing 
that the variation 6s' of an element dl of the dislocation line changes the area Si (see 
figure B1) by an amount 6s' according to 

n i S S i  = 8s' x t dl 

we arrive at 

Similarly, the integral of UJ : 8ek can be rewritten as 

Substitution of (B2) to (B7) into (BI), and application of (2), yields the desired expression 

(11). 

Appendix C. Derivation of infinite-body fields due to strings of dislocations 

Consider a horizontal, infinite string of dislocations with spacing d on a slip plane parallel 
to the x ,  axis (see figure Cl). Identify the dislocations with j ,  and let j = 0 for the 
dislocation closest to the point x, under consideration. Hence, 

An, = x ,  - X{ = -(X + j d )  Ax2 = x2 - Xi = -Y ( j  = . . . , -1,O, 1, .  . .) 
(C1) 

where X E (-d/2, d / 2 )  and Y give the position of the 0th dislocation with respect to x,, 
as shown in figure C1. 
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The infinite-body stress components umo at x. due to this string of dislocations are 

obtained by summation of the stress fields due to each dislocation j over all integers. With 
(C1) i t  follows from (15)-(17) that 

where 

6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= X/d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq =  Y/d  

and where 

Pb 
2n(l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv)  

a =  

in terms of the Burgers vector b. These infinite sums are conveniently evaluated by 
application of the Residue Theorems of complex function theory, i.e. 

For instance, for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA61 I according to (CZ), the function f ( i )  has a double pole for (z + Q-iq = 
0 (iz = -1) with associated residue 

= - iir cota(-t + iq) - $p?csc’n(-t + iq). 

Similarly, one obtains the residue corresponding to the other double pole for (z+t)+iq = 0. 
Then, 

After rearrangement, the result for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu11, dong with the results for the other stress components 
obtained similarly, reads 

(C6) 
1 - COS 2x5 cosh 2aq 

2sinh2xq+ 2x17 
h cosh 2x7 -cos 2nc cosh 2nq  - COS 2x5 
a 

U] ]  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-n 
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sinh2xq 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 2x17 I cosh2nq - C O S ~ X ~  h C O S ~ ~ Z V  - C O S ~ Z ~  

a sin 2 x t  
a12 = --?7 

The displacement field due to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa string of dislocations cannot be constructed directly along 
the same lines. The reason for this is that the displacement component zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA142 perpendicular to 
the slip plane increases without bound when the distance from the dislocation increases [see 
(14)l. This difficulty is overcome by adding a string of dislocations with the opposite sign on 
the same slip plane, as illustrated in figure C1; this is consistent with the restriction imposed 
in the present analyses that all dislocations come in dipoles (see section 2.3). For a dipole, 
the displacements do remain bounded, as is readily verified by adding the displacement 
fields according to (13) and (14) for a positive and a negative dislocation. Now consider 
the dipole j formed by dislocation j @urgers vector b)  and the opposite dislocation at a 
distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAX ahead of it. The displacement components uOL at x, due to all such dipoles 
are obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas 

where 

A t  = A X / d  

and 

b 
C =  

2n(l - w ) ’  

The two sums in the respective square brackets in (C9) and (C10) are directly evaluated by 
using 

1 21rq s i n h 2 q  - _  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17’ 

i=-,(t+ j ) ’ + $  2cosh2?717-~os2?7~ 
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but the remaining sums in both expressions rzquire special care. 

through 
For that purpose we note that sums as in the left-hand side of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(C5) can also be evaluated 

if F ( j )  is defined as F ( j )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= af(j)/aq, under certain restrictions concerning f ( j ) .  For the 
last sum in (C10) we have 

in which we recognize the separate contributions of the two opposite dislocations at 4 and 
at t + A t ,  respectively. Each of the two terms can now be summed separately by making 
use of (C12); after integration, ((213) gives 

Similarly, for the last sum in (C9) we have 

for which the Residue Theorem (U) yields 

sin 2x5 sinZn(6 +A:) +m 

- - x  
j=-m F ( j ) = r r c o s h 2 n q - c o s ~ ~  c o s h 2 n q - c o s k ( t + A f )  

so thar, after integration, we find from (C13) that 

We note that even though the summations could only be carried out by considering dipoles 
of dislocations, the contributions of the opposite dislocations are still recognized separately 
in (C14) and (CIS). This enables one to separate out the displacement fields for the two 
opposite strings of dislocations, and to write the result for the original string of dislocations 
with Burgers vectors b as 

I 2 z q s i n 2 n 5  tan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlrt 

tanhnq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu j = c  - I 4 cosh2nrj - COS2irf 

1 2 x q s i n h h r j  1 

- C O S 2 Z t  4 
- - ( I  - 2~)ln(cosh2nq - C O S ~ Z ~ )  
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(provided, of course, that there is an opposite string of dislocations available). The last 
complication that needs to be dealt with is the discontinuity in U I  at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= *+, which gives 

rise to a jump zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUI(;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq)  - U , ( - ; ,  q )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-ibsgn(q). Obviously, this is an artifact caused by 
the fact that tan-] is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa mnltivalued function. This can be resolved by adding a term 

to the right-hand side in (CIX), where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS = +I if $ < f < 1 and 6 = -1 if -: < < < -I  2’ 

This renders the U ,  field continuous over all f E (-1, 1). 
It should be noted that the analytical summations considered here are generally very 

efficient, since some of the series converge very slowly. For example, when the sum in 
(C14) is approximated for, say, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 = 0.0125, Af = 0.925, q = -0.5 by a finite sum from 
-k to +k, it turns out that one needs to take k as large as loo00 in order to arrive within 
2.5% of the analytical result in (C14). 

The above results for the stresses and displacements due to an infinitely long string 
of dislocations can be immediately applied to the analysis (see section 3) of the periodic 
array of cells illustrated in figure 4 by taking d to be equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2w. Using the substitutions 
6 = -;A61 and q = -;A62 for the ith dislocation in the unit cell (cf. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(22)), one arrives at 
the expressions (19)-(21) and (23)-(24), respectively. 
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