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Discretedislocation simulations and size dependent hardening
in single slip
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2628 CD Delft, the Netherlands
* Brown University, Division of Engineering, Box 0, Providence RI 02912, U.SA

Abstract. Plastic deformation in two-dimensionalmonophase and composite materials is studied
using a discrete dislocation dynamics method. In this method, dislocations are represented by
line defects in a linear elastic medium, and their interactions with boundaries or second-phase
elastic particles are incorporated through a complementary finite element solution. The formulation
includes a set of simple constitutive rules to model the lattice resistance to dislocation glide, as
well as the generation, annihilation and pinning of dislocations at point obstacles. The focus is on
the predicted strain hardening of these materials when only a single slip system is active. When
the particle morphology is such as to require geometricallynecessary dislocations, hardening in the
composite materials exhibits a distinct size effect. This size effect is weaker than that predicted by
simple analytical estimates based on geometrically necessary dislocations.

1 INTRODUCTION
The plastic flow properties of metal-matrix composite materials have been predicted either within
dislocation approaches, e.g. [1, 2, 3], or continuum plasticity approaches, e.g. [4]. Traditional
dislocation approaches postulate a dislocation mechanism and then investigate the consequences of
the assumed mechanism for the mechanical response of the composite. The continuum analyses
are based on solving boundary problems for multi-phase solids, with each phase characterized as a
classical elastic-plastic (or elastic) material.

There are significant limitations to both of these approaches. Classical continuum analyses pre-
sume a size independent response, whereas a definite size dependence is seen for composites with
reinforcements in the 1 to 100µm range. Presuming a dislocation structure avoids the issue of what
dislocation structures evolve for a given composite morphology and loading history.

In this paper, we discuss predictions of the stress-strain response of a simple model composite
material that are obtained using a discrete dislocation framework in which plastic flow arises directly
fromthe collective motion of large numbers of discrete dislocations, [5, 6, 7]. The plastic stress-strain
response and the evolution of the dislocation structure are outcomes of the boundary value problem
solution. For comparison purposes, we also discuss corresponding predictions for a homogeneous
material in order to get some insight into the separate roles of dislocation interactions and the
interactions with the elastic particles. The focus is on the dependence of the plastic flow behavior
on the reinforcement size.

2 FORMULATION
The deformation of a linear elastic body with a distribution of dislocations is considered. The
elastic properties of the body need not be homogeneous. As described in detail in [6] and [7]' the
deformation history is calculated in an incremental manner, with each time step involving three main
computational stages: (i) determining the current stress and strain state for the current dislocation
arrangement; (ii) determining the forces between dislocations, i.e. the Peach-Koehler force; and (iii)
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determining the rate of change of the dislocation structure, which involves the motion of dislocations,
the generation of new dislocations, their mutual annihilation, and their pinning at obstacles.

The key idea for determining the current state of the body with the current dislocation distribution
(see also [8]) is that, in the current state, the displacement, strain and stress fields are 'written as the
superposition of two fields,

u=ũ+ũ, ε=ε~+ε~, 0"=17+17 (1)

respectively. The (~) fields are the superposition of the fields of the individual dislocations, in
their current configuration, but in an infinite medium of the homogeneous matrix material, and are
obtained by superposition of the fields (ui, εi, O"i) associated with the individual dislocations (see
e.g. [9, 10]),

~ Σ i ~ Σ i ~ Σ i (. 1 )u = u, ε = ε, 0" = 0" i = , ... ,n
iii

(2)

where n is the number of dislocations in the current configuration. The (^) fields represent the image
fields that correct for the actual boundary conditions and for any elastic heterogeneity. A key point
is that the (^) fields are smooth, so that the boundary value problem for them can be conveniently
solved by the finite element method (or some other numerical method, e.g., the boundary element
method).

The smoothness of the (^) fields is illustrated in Fig. 1. Figure la shows the finite element
visualization of the total dispacement field for a model plane strain composite material that is being
sheared parallel to its single slip plane (for more details, see Sec. 4). The highly localized deformation
pattern that ensues is evident in this figure. The corresponding ũ field, which has rather diffuse
gradients and can be resolved even with a rather coarse mesh, is shown in Fig. lb. The difference
between these fields, Le. u - ũ, is the displacement field due to the discrete dislocations, ũ. The
highly localized displacement pattern in Fig. la stems entirely from the discrete dislocation fields.
Hence, the fact that the deformations in Fig. la are concentrated in a row of elements does not
indicate a mesh dependence of the results, as would be the case for localized deformations in a rate
independent strain softening continuum.

Edge dislocations, all having the same Burgers vector magnitude, b, are considered on a single
slip system, with the slip plane normal n being in the x2-direction and with the glide direction m
being in the xl-direction. The component of the Peach-Koehler force fi on dislocation i in the glide
direction is determined by the local stress state as fi = biTi with Ti = m· (17+Σj≠i O"j) . n being the
resolved shear stress. The magnitude of the glide velocity Vi of dislocation i is taken to be linearly
related to the Peach-Koehler force fi through the drag relation fi = Bvi. Obstacles to dislocation
motion are modeled as fixed points on a slip plane. Such obstacles account for the effects of small
precipitates or for dislocations on other, secondary, slip systems in blocking slip on the primary slip
plane. Pinned dislocations can only pass the obstacles when their Peach-Koehler force exceeds an
obstacle dependent value Tobsb. Annihilation of two dislocations with opposite Burgers vector occurs
when they are sufficiently close together within a material-dependent, critical annihilation distance
Le. This distance is here chosen to be 6b [11]. New dislocation pairs are generated by simulating
Frank-Read sources. In two dimensions, with single slip, this is simulated by point sources on the
slip plane which generate a dislocation dipole when the magnitude of the Peach-Koehler force at the
source exceeds the critical value Tnueb during a period of time tnue' The distance Lnue between the
two new dislocations is specified as

µ b_
Lnue = 2π(1 - ν) Tnue'

(3)

with µ and ν the elastic shear modulus and Poisson's ratio, respectively. At this distance, the shear
stress of one dislocation acting on the other is balanced by the slip plane shear stress. The magnitude
of Tnue is randomly chosen from a Gaussian distribution with mean strength Tnue.
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Figure 1: Displacement fields visualized by distorted finite element meshes for a unit cell of a particle reinforced
model material sheared to a shear strain of 1 % (the grey regions indicate the particles). (a) total displacement field
it + it; (b) image field it. All displacements are amplified by a factor 10.

More complete descriptions of the formulation are presented in [6, 7]. It is worth emphasizing
that the formulation is a full three-dimensional one, although to date only two-dimensional plane
strain problems have been solved. Specifically, the calculations to be discussed are carried out for
monophase or composite materials arranged as a doubly periodic array of rectangular cells. Each
phase has isotropic elastic moduli. The unit cell (size 2w x 2h) is subjected to plane strain, simple
shear, which is prescribed through displacement boundary conditions at the top and bottom of the
cell, x2 = ±h. The average shear stress required to sustain the shear strain Γ is denoted by τ¯.

3 MONOPHASE MATERIAL RESULTS
Figure 2, from [6], shows predicted shear stress versus shear strain curves for a monophase material
when the source density ρnuc is varied and including, as a limiting situation, a case where there
are no active dislocation sources. Stresses are normalized by the elastic shear modulus µ. Due
to the presence of initial mobile dislocations, there is no elastic regime. The simulations exhibit
two characteristic strength levels: the yield strength corresponding to the peak in the stress-strain
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Figure 2: Overall shear stress (-τ) response to simple shear (Γ) of a monophase material containing initial mobile
dislocations and obstacles, for varying densities ρnuc of dislocation sources.

curve, and the (lower) flow strength at which the material continues to deform steadily. The latter is
associated with the localization of dislocation activity on a few isolated slip planes. The simulated
behavior in Fig. 2 is essentially annihilation controlled until Γ ≈ 0.25 %, because the dislocation
density is independent of the source density in that range. Beyond that strain level, all remaining
dislocations tend to be removed by annihilation if there are no sources, and the response tends to
become purely elastic. If there are sufficient sources, dislocation generation wins out over annihilation
at some point. The rate of dislocation nucleation then appears to be virtually independent of the
source density, and controlled by the strength of the sources. The source density has some effect on
the hardening behavior and the yield strain, but is seemingly unimportant for the yield strength and
for the flow strength.

The effect of obstacle density on the stress-strain response is shown in Fig. 3, also from [6].
The initial mobile dislocation density is the same as for the case in Fig. 2. The two cases with
the lower obstacle density exhibit stress-strain responses that do not show a distinct yield point,
but exhibit a more gradual transition to flow. In these cases, there is a more or less monotonic
decrease of dislocation density until a steady-state value is reached. For the case with the highest
density, Pobs = 320/hw, there is relatively st.rong initial strain hardening, and a very sharp yield
point. Annihilation is essentially inactive because, for the given initial (mobile) dislocation density
of P = 93/hw, the obstacles effectively prevent dislocation motion over distances large enough for
annihilation to become possible. The sharp yield point corresponds to a peak in the mobile dislocation
density. The strain regime just after the stress drop is characterized by a very high annihilation-
generation activity that continues until around Γ = 0.7%, after which the dislocations seem to have
found 'stable' positions, and the material hardens again.

4 COMPOSITE MATERIALS
Yield due to easy glide in materials with reinforcing elastic particles has similar charateristics as
discussed above when the fraction of particles and their morphology is such that there are bands or
veins of unreinforced matrix material [6, 7]. However, when the particles block all slip planes, as
in the case of the morphology in Fig. 1 (shown also in the inset of Fig. 4), the behaviour is quite
different. The simulations discussed in [7] show that such composites exhibit high strain hardening,
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Figure 3: Effect of obstacle density on shear stress response in monophase material containing initial mobile disloca-
tions and dislocation sources (ρnuc = 80/hw).

which is dependent on the size of the particles. The size effect for this particular morphology is
further explored here by systematically varying the size of the particles within the range from 0.5
to 2 times a reference particle size. The reference size is such that the half height h of the cell is
equal to L, the latter being a fixed length scale set by the matrix material as L = 4000b. Thus, the
reference particle height for particles with an aspect ratio of 2 and an area fraction of 20 % is 4700b
(i.e. 1.2 µm if the matrix has a Burgers vector of b = 2.5 X 10-10 m.)

Figure 4 shows the shear stress vs shear strain responses for initially dislocation-free materials
with three size scales of particles, specified by hi L = 0.5, 1 and 2. The random distributions
of dislocation sources and obstacles for each of the three materials were so that the corresponding
densities were roughly the same. The figure shows a systematic trend that the flow strength increases
with decreasing particle size. This is confirmed by computations using different distributions of
sources and obstacles, and by simulations for intermediate particle sizes; these results are not included
in this figure to maintain clarity.

Snapshots of the dislocation distribution in the three materials at the same shear strain of around
1% are displayed in Fig. 5. Upon comparing the three distributions (note that there is a factor of 16
difference in area between the smallest and largest cells), one observes an evident difference between
the organization of dislocations for the three sizes. What appears to be of particular importance
is the distinction between dislocation pile-ups against the particles versus the more or less random
distribution in the matrix away from the particles. Piling-up of dislocations against the particle sides
leads to the development of dislocation walls or tilt boundary like structures that are "geometrically
necessary" to accomodate the particle rotation (see Fig. 1). Ashby's [1] treatment of geometrically
necessary dislocations employs a similar model material as the one used in our simulations, and he
concludes that the density of geometrically necessary dislocations increases linearly with strain, while
additional dislocations are being generated in a statistical manner.

From the outcome of a dislocation evolution process as considered here, it is impossible to unam-
biguously identify which dislocations are geometrically necessary and which are statistically stored.
In [7]we have adopted the working definition that all dislocations on either side of the central particle
and within a distance of 0.1 times the particle spacing are termed geometrically necessary. It appears
that the density (per unit length of the particle) of dislocations piling up against the central parti-
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Figure 4: Shear stress response to simple shear of composite materials with various size scales of particles.

cle in Fig. 5 increases with increasing particle size. However, not all dislocations piling up against
particles are geometrically necessary, as they may have arrived there as a consequence of the dy-
namics of dislocation motion, generation and pinning. Indeed, closer examination of the dislocation
distribution in Fig. 5 for h = 2L suggests that the density of dislocations near the interface between
the central particle and the matrix is around 70 % larger than the density of geometrically necessary
dislocations expected from the particle rotation at this strain. The lattice curvature and induced
rotation due to these dislocations is compensated by a concentration of like-signed dislocations in
the matrix at the other side of the particle. For the smaller particle size (h = L/2) such an over-
saturation of dislocation pile-ups is not observed, so that the above-mentioned working definition
actually gives a fair identification of geometrically necessary dislocations. In this case, the ratio of
geometrically necessary dislocations compared to the total ones remains roughly constant during
the deformation process. Indeed, it is observed from the dislocation evolution shown in Fig. 6 that
the total dislocation density and hence the density of geometrically necessary dislocations increases
linearly with strain, as would be required by Ashby's [1]description. In fact, Fig. 6 shows that, over
the strain range considered here, there is a linear increase of the total dislocation density with strain
irrespective of particle size. The important effect of particle size appears to be reflected in the rate
of dislocation evolution.

How are these dislocation structures responsible for the size effect seen in Fig. 4? A more detailed
study of the predicted stress-strain curves in Fig. 4 and results for other realizations reveal that there
is a reasonable correlation between particle size and the average tangent modulus dτ¯/ dr. On the
other hand, the initial yield stress varies within 0.5 x 10-3µ in all the calculations here but with no
correlation with reinforcement size. This is due to .the fact that the initial yield stress is determined by
the statistics of the location and strength of the dislocation sources. Apparently, the tangent modulus
is to a much smaller extent determined by the statistics of the dislocation distribution, although it
remains difficult to pin-point precisely how geometrically necessary dislocations are responsible for
this.

On average, the hardening for all sizes appears to be linear with strain (Fig. 4), so that the tangent
modulus is fairly constant. Figure 7 summarizes the tangent moduli as a function of particle size, as
obtained from the stress-strain curves in Fig. 4 as well as from other simulations using intermediate



40e COLLOQUE DE MÉTALLURGIE Pr4-89

Figure 5: Dislocation distributions at Γ ≈ 1% for three size scales of the reinforcing particles (cf. Fig 4). Note that
the actual area of succesive unit cells differs by a factor of 4.
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Figure 6: Evolution of the total (i.e. pinned and mobile) dislocations for three size scales of the reinforcing particles,
corresponding to the stress-strain curves in Fig. 4.

particle sizes. For hi L = 0.5, the serrations in the stress-strain curve make it somewhat difficult
to find a unique tangent modulus; therefore, three values are plotted that give an indication of the
scatter. For hi L in between 0.5 and 1. it was not possible to use exactly the same density of sources
and obstacles, so that the results of three simulations at slightly different hi L are included for which
these densities vary within 25 % of the nominal value used. The distinct results for the sizes with
hi L ≥ 1 are from different simulations with the same source and obstacle density but with different
random positions. Clearly, there is a substantial amount of variation in the results, which is due to
the fact the unit cell used comprises only 2 particles. Nevertheless, the effect of particle size, through
hi L, is persistent. Although the amount of data in Fig. 7 is too small to be statistically meaningful,
it suggests that a size effect on hardening according to dτ¯/dΓ ex h-1/3 is reasonable. Also shown in
Fig. 7 are the normalized dislocation densities for the various cases at Γ = 1%. It is interesting to
note that the dislocation density appears to scale in the same way: ρ ex h-1/3.

It is of some interest to confront these predictions with relatively simple size effect predictions
based on the notion of geometrically necessary dislocations by Ashby [1]. He concludes that a shear
deformation process like the one studied here is governed by the stress-strain relationship

√bΓ
l' = 1'0 + βµ _λG (4)

where λG is the spacing between particles. Furthermore, 1'0 is the initial flow stress of the matrix,
and incorporates contributions to hardening not due to dislocations (e.g. solution hardening). The
coefficient β is a geometric factor which has a value of approximately 0.35 [1, 2]. This relationship is
based on the well-known assumption that the flow stress depends on the square root of the dislocation
density, and assumes that the density of geometrically necessary dislocations, ρG, dominates. The
expression (4) is obtained by invoking that ρG scales as [1]

Γ
ρG ex λGb' (5)

Observing that the particle spacing λG scales directly with the size h of the unit cell in our simulations,
these estimates would predict the following size effects: ρG ex h-1 and df/dΓ ex h-1/2. Clearly, the
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Figure 7: Effect of particle size, through hi L, on the average tangent modulus dτ ĪdΓ (0) and the dislocation density
(6: mobile and pinned dislocations; ▲: mobile dislocations; here, at Γ = 1 %).

results in Fig. 7 do not comply with these estimates, nor do we observe the parabolic hardening
according to (4) in Fig. 4. Note that our results cannot be readily used to directly extract a size
effect on flow strength as in (4) because of the stochastic variations in initial yield strength that we
found.

5 CONCLUDING REMARKS
Plastic flow in monolithic materials with a single slip system leads to easy glide with no apparent
hardening in our simulations. This is to be attributed mainly to the fact that the density of obstacles
remains constant during the deformation process, which eventually leads to localization of dislocation
activity in 'planar arrays'.

In a material with reinforcing particles, this mechanism is suppressed when the particle size and
density is such that all slip planes are blocked by particles. For the morphology studied in Sec. 4, the
ncar-linear hardening is the result of both dislocation-dislocation interactions and the interactions
between particles and dislocations; but these effects are not easily separated. There is also no clear
distinction between those dislocations that are geometrically necessary and those that are statistically
stored. Nevertheless, the former do playa central role and are primarily responsible for the size effect
seen here in the hardening of composite materials. Simulations using a different morphology with
the same dislocation density but with square particles (as in [7]) did not show a size effect, due to
the fact that veins of matrix material remain that allow localization of plastic flow to take place in
a similar manner to what is found for the monophase material.
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