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Abstract

The collection and analysis of user data drives

improvements in the app and web ecosystems,

but comes with risks to privacy. This paper ex-

amines discrete distribution estimation under lo-

cal privacy, a setting wherein service providers

can learn the distribution of a categorical statistic

of interest without collecting the underlying data.

We present new mechanisms, including hashed

k-ary Randomized Response (k-RR), that empir-

ically meet or exceed the utility of existing mech-

anisms at all privacy levels. New theoretical re-

sults demonstrate the order-optimality of k-RR

and the existing RAPPOR mechanism at different

privacy regimes.

1. Introduction

Software and service providers increasingly see the collec-

tion and analysis of user data as key to improving their ser-

vices. Datasets of user interactions give insight to analysts

and provide training data for machine learning models. But

the collection of these datasets comes with risk—can the

service provider keep the data secure from unauthorized

access? Misuse of data can violate the privacy of users and

substantially tarnish the provider’s reputation.

One way to minimize risk is to store less data: providers

can methodically consider what data to collect and how

long to store it. However, even a carefully processed

dataset can compromise user privacy. In a now famous

study, (Narayanan & Shmatikov, 2008) showed how to de-

anonymize watch histories released in the Netflix Prize,

a public recommender system competition. While most

providers do not intentionally release anonymized datasets,

security breaches can mean that even internal, anonymized
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datasets have the potential to become privacy problems.

Fortunately, mathematical formulations exist that can give

the benefits of population-level statistics without the col-

lection of raw data. Local differential privacy (Duchi et al.,

2013a;b) is one such formulation, requiring each device (or

session for a cloud service) to share only a noised version of

its raw data with the service provider’s logging mechanism.

No matter what computation is done to the noised output of

a locally differentially private mechanism, any attempt to

impute properties of a single record will have a significant

probability of error. But not all differentially private mech-

anisms are equal when it comes to utility: some mecha-

nisms have better accuracy than others for a given analysis,

amount of data, and desired privacy level.

Private distribution estimation. This paper investigates

the fundamental problem of discrete distribution estima-

tion under local differential privacy. We focus on discrete

distribution estimation because it enables a variety of use-

ful capabilities, including usage statistics breakdowns and

count-based machine learning models, e.g. naive Bayes

(McCallum et al., 1998). We consider empirical, maximum

likelihood, and minimax distribution estimation, and study

the price of local differential privacy under a variety of loss

functions and privacy regimes. In particular, we compare

the performance of two recent local privacy mechanisms:

(a) the Randomized Aggregatable Privacy-Preserving Or-

dinal Response (RAPPOR) (Erlingsson et al., 2014), and

(b) the k-ary Randomized Response (k-RR) (Kairouz et al.,

2014) from a theoretical and empirical perspective.

Our contributions are:

1. For binary alphabets, we prove that Warner’s random-

ized response model (Warner, 1965) is globally optimal

for any loss function and any privacy level (Section 3).

2. For k-ary alphabets, we show that RAPPOR is order op-

timal in the high privacy regime and strictly sub-optimal

in the low privacy regime for ℓ1 and ℓ2 losses using an

empirical estimator. Conversely, k-RR is order optimal

in the low privacy regime and strictly sub-optimal in the
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high privacy regime (Section 4.1).

3. Large scale simulations show that the optimal decoding

algorithm for both k-RR and RAPPOR depends on the

shape of the true underlying distribution. For skewed

distributions, the projected estimator (introduced here)

offers the best utility across a wide variety of privacy

levels and sample sizes (Section 4.4).

4. For open alphabets in which the set of input symbols is

not enumerable a priori we construct the O-RR mech-

anism (an extension to k-RR using hash functions and

cohorts) and provide empirical evidence that the perfor-

mance of O-RR meets or exceeds that of RAPPOR over

a wide range of privacy settings (Section 5).

5. We apply the O-RR mechanism to closed k-ary alpha-

bets, replacing hash functions with permutations. We

provide empirical evidence that the performance of O-

RR meets or exceeds that of k-RR and RAPPOR in both

low and high privacy regimes (Section 5.4).

Related work. There is a rich literature on distribution es-

timation under local privacy (Chan et al., 2012; Hsu et al.,

2012; Bassily & Smith, 2015), of which several works are

particularly relevant herein. (Warner, 1965) was the first to

study the local privacy setting and propose the randomized

response model that will be detailed in Section 3. (Kairouz

et al., 2014) introduced k-RR and showed that it is optimal

in the low privacy regime for a rich class of information the-

oretic utility functions. k-RR will be extended to open al-

phabets in Section 5.1. (Duchi et al., 2013a;b) was the first

to apply differential privacy to the local setting, to study

the fundamental trade-off between privacy and minimax

distribution estimation in the high privacy regime, and to

introduce the core of k-RAPPOR. (Erlingsson et al., 2014)

proposed RAPPOR, systematically addressing a variety of

practical issues for private distribution estimation, includ-

ing robustness to attackers with access to multiple reports

over time, and estimating distributions over open alphabets.

RAPPOR has been deployed in the Chrome browser to al-

low Google to privately monitor the impact of malware on

homepage settings. RAPPOR will be investigated in Sec-

tions 4.2 and 5.2.

Private distribution estimation also appears in the global

privacy context where a trusted service provider releases

randomized data (e.g., NIH releasing medical records) to

protect sensitive user information (Dwork, 2006; Dwork

et al., 2006; Dwork & Lei, 2009; Dwork, 2008; Diakoniko-

las et al., 2015; Blocki et al., 2016).

2. Preliminaries

2.1. Local differential privacy

Let X be a private source of information defined on a dis-

crete, finite input alphabet X = {x1, ..., xk}. A statistical

privatization mechanism is a family of distributions Q that

map X = x to Y = y with probability Q (y|x). Y , the

privatized version of X , is defined on an output alphabet

Y = {y1, ..., yl} that need not be identical to the input al-

phabet X . In this paper, we will represent a privatization

mechanism Q via a k × l row-stochastic matrix. A con-

ditional distribution Q is said to be ε-locally differentially

private if for all x, x′ ∈ X and all E ⊂ Y , we have that

Q (E|x) ≤ eεQ (E|x′) , (1)

where Q (E|x) = P(Y ∈ E|X = x) and ε ∈ [0,∞)
(Duchi et al., 2013a) . In other words, by observing Y ∈
E, the adversary cannot reliably infer whether X = x or

X = x′ (for any pair x and x′). Indeed, the smaller the ε
is, the closer the likelihood ratio of X = x to X = x′ is to

1. Therefore, when ε is small, the adversary cannot recover

the true value of X reliably.

2.2. Private distribution estimation

The private multinomial estimation problem is defined as

follows. Given a vector p = (p1, ..., pk) on the probability

simplex S
k, samples X1, ..., Xn are drawn i.i.d. according

to p. An ε-locally differentially private mechanism Q is

then applied independently to each sample Xi to produce

Y n = (Y1, · · · , Yn), the sequence of private observations.

Observe that the Yi’s are distributed according to m = pQ

and not p. Our goal is to estimate the distribution vector p

from Y n.

Privacy vs. utility. There is a fundamental trade-off

between utility and privacy. The more private you want

to be, the less utility you can get. To formally analyze

the privacy-utility trade-off, we study the following con-

strained minimization problem

rℓ,ε,k,n = inf
Q∈Dε

rℓ,ε,k,n(Q), (2)

where

rℓ,ε,k,n(Q) = inf
p̂

sup
p

E
Y n∼pQ

ℓ(p, p̂)

is the minimax risk under Q, ℓ is an application dependent

loss function, and Dε is the set of all ε-locally differentially

private mechanisms.

This problem, though of great value, is intractable in gen-

eral. Indeed, finding minimax estimators in the non-private

setting is already hard for several loss functions. For in-

stance, the minimax estimator under ℓ1 loss is unknown
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even until today. However, in the high privacy regime, we

are able to bound the minimax risk of any differentially pri-

vate mechanism Q.

Proposition 1 For the private distribution estimation

problem in (2), for any ε-locally differentially private

mechanism Q, there exist universal constants 0 < cl ≤
cu < 5 such that for all ε ∈ [0, 1],

cl min

{

1,
1√
nε2

,
k

nε2

}

≤ rℓ22,ε,k,n ≤ cu min

{

1,
k

nε2

}

,

and

cl min

{

1,
k√
nε2

}

≤ rℓ1,ε,k,n ≤ cu min

{

1,
k√
nε2

}

Proof See (Duchi et al., 2013b).

This result shows that in the high privacy regime (ε ≤ 1),

the effective sample size of a dataset decreases from n to

nε2/k. In other words, a factor of k/ε2 extra samples are

needed to achieve the same minimax risk. This is prob-

lematic for large alphabets. Our work shows that (a) this

problem can be (partially) circumvented using a combina-

tion of cohort-style hashing and k-RR (Section 5), and (b)

the dependence on the alphabet size vanishes in the moder-

ate to low privacy regime (Section 4.3).

3. Binary Alphabets

In this section, we study the problem of private distribution

estimation under binary alphabets. In particular, we show

that Warner’s randomized response model (W-RR) is op-

timal for binary distribution minimax estimation (Warner,

1965). In W-RR, interviewees flip a biased coin (that only

they can see the result of), such that a fraction η of par-

ticipants answer the question “Is the predicate P true (of

you)?” while the remaining particants answer the negation

(“Is ¬P true?”), without revealing which question they an-

swered. For η = eε (ε ≥ 0), W-RR can be described by the

following 2× 2 row-stochastic matrix

QWRR =
1

eε + 1

[

eε 1
1 eε

]

. (3)

It is easy to check that the above mechanism satisfies the

constraints imposed by local differential privacy.

Theorem 2 For all binary distributions p, all loss func-

tions ℓ, and all privacy levels ε, QWRR is the optimal solu-

tion to the private minimax distribution estimation problem

in (2).

Proof sketch. (Kairouz et al., 2014) showed that W-RR

dominates all other differentially private mechanisms in a

strong Markovian sense: for any binary differentially pri-

vate mechanism Q, there exists a 2 × 2 stochastic map-

ping W such that Q = W ◦ QWRR. Therefore, for any

risk function r(·) that obeys the data processing inequality

(r(Q) ≤ r(Q ◦ W ) for any stochastic mappings Q and

W ), we have that r(QWRR) ≤ r(Q) for any binary dif-

ferentially private mechanism Q. In Supplementary Sec-

tion A, we prove that rℓ,ε,k,n(Q) obeys the data processing

inequality, thus W-RR achieves the optimal privacy-utility

trade-off under minimax distribution estimation.

4. k-ary Alphabets

Above, we saw that W-RR is optimal for all privacy lev-

els and all loss functions. However, it can only be ap-

plied to binary alphabets. In this section, we study op-

timal privacy mechanisms for k-ary alphabets. We show

that under ℓ1 and ℓ2 losses, k-RAPPOR is order optimal in

the high privacy regime and sub-optimal in the low privacy

regime. Conversely, k-RR is order optimal in the low pri-

vacy regime and sub-optimal in the high privacy regime.

4.1. The k-ary Randomized Response

The k-ary randomized response (k-RR) mechanism is

a locally differentially private mechanism that maps X
stochastically onto itself (i.e., Y = X ), given by

QKRR(y|x) =
1

k − 1 + eε

{

eε if y = x,
1 if y 6= x.

(4)

k-RR can be viewed as a multiple choice generalization of

the W-RR mechanism (note that k-RR reduces to W-RR for

k = 2). In (Kairouz et al., 2014), the k-RR mechanism was

shown to be optimal in the low privacy regime for a large

class of information theoretic utility functions.

Empirical estimation under k-RR. It is easy to see that

under QKRR, outputs are distributed according to:

m =
eε − 1

eε + k − 1
p+

1

eε + k − 1
(5)

The empirical estimate of p under QKRR is given by

p̂ = m̂Q−1
KRR (6)

=
eε + k − 1

eε − 1
m̂− 1

eε − 1
,

where m̂ is the empirical estimate of m and

Q−1
KRR(y|x) =

1

eε − 1

{

eε + k − 2 if y = x,
−1 if y 6= x.

(7)

via the Sherman-Morrison formula. Observe that because

m̂ → m almost surely, p̂ → p almost surely.
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Proposition 3 For the private distribution estimation

problem under k-RR and its empirical estimator given in

(6), for all ε, n, and k, we have that

E ℓ22(p̂,p) =
1−∑k

i=1 p
2
i

n
+

k − 1

n

(

k + 2(eε − 1)

(eε − 1)2

)

,

and for large n, E ℓ1(p̂,p) ≈
k

∑

i=1

√

2((eε − 1)pi + 1)((eε − 1)(1− pi) + k − 1)

πn(eε − 1)2
,

where an ≈ bn means limn→∞ an/bn = 1.

Proof See Supplementary Section B.

Observe that for pU =
(

1
k , · · · , 1

k

)

, we have that

E ℓ22(p̂,p) ≤ E ℓ22(p̂,pU) (8)

=

(

1 +
k + 2(eε − 1)

(eε − 1)2
k

)

1− 1
k

n
,

and

E ℓ1(p̂,p) ≤ E ℓ1(p̂,pU) (9)

≈
(

eε + k − 1

eε − 1

)

√

2(k − 1)

πn
.

Constraining empirical estimates to S
k. It is easy to see

that ||p̂KRR||1 = 1. However, some of the entries of p̂KRR

can be negative (especially for small values of n). Several

remedies are available, including (a) truncating the negative

entries to zero and renormalizing the entire vector to sum

to 1, or (b) projecting p̂KRR onto the probability simplex.

We evaluate both approaches in Section 4.4.

4.2. k-RAPPOR

The randomized aggregatable privacy-preserving ordinal

response (RAPPOR) is an open source Google technol-

ogy for collecting aggregate statistics from end-users with

strong local differential privacy guarantees (Erlingsson

et al., 2014). The simplest version of RAPPOR, called

the basic one-time RAPPOR and referred to herein as k-

RAPPOR, first appeared in (Duchi et al., 2013a;b). k-

RAPPOR maps the input alphabet X of size k to an output

alphabet Y of size 2k. In k-RAPPOR, we first map X de-

terministically to X̃ = R
k, the k-dimensional Euclidean

space. Precisely, X = xi is mapped to X̃ = ei, the ith

standard basis vector in R
k. We then randomize the co-

ordinates of X̃ independently to obtain the private vector

Y ∈ {0, 1}k. Formally, the jth coordinate of Y is given

by: Y (j) = X̃(j) with probability eε/2/(1 + eε/2) and

1 − X̃(j) with probability 1/(1 + eε/2). The randomiza-

tion in Qk-RAPPOR is ε-locally differentially private (Duchi

et al., 2013a; Erlingsson et al., 2014).

Under k-RAPPOR, Yi = [Y
(1)
i , · · · , Y (k)

i ] is a k-

dimensional binary vector, which implies that

P(Y
(j)
i = 1) =

(

eε/2 − 1

eε/2 + 1

)

pj +
1

eε/2 + 1
, (10)

for all i ∈ {1, · · · , n} and j ∈ {1, · · · , k}.

Empirical estimation under k-RAPPOR. Let Y n be the

n×k matrix formed by stacking the row vectors Y1, · · · , Yn

on top of each other. The empirical estimator of p under k-

RAPPOR is:

p̂j =

(

eε/2 + 1

eε/2 − 1

)

Tj

n
− 1

eε/2 − 1
, (11)

where Tj =
∑n

i=1 Y
(j)
i . Because Tj/n converges to mj

almost surely, p̂j converges to pj almost surely. As with

k-RR, we can constrain p̂ to S
k through truncation and nor-

malization or through projection (described in Section 4.1),

both of which will be evaluated in Section 4.4.

Proposition 4 For the private distribution estimation

problem under k-RAPPOR and its empirical estimator

given in (11), for all ε, n, and k, we have that

E ℓ22(p̂,p) =
1−∑k

i=1 p
2
i

n
+

keε/2

n(eε/2 − 1)2
,

and for large n, E ℓ1(p̂,p) ≈

k
∑

i=1

√

2((eε/2 − 1)pi + 1)((eε/2 − 1)(1− pi) + 1)

πn(eε/2 − 1)2
,

where an ≈ bn means limn→∞ an/bn = 1.

Proof See Supplementary Section C.

Observe that for pU =
(

1
k , · · · , 1

k

)

, we have that

E ℓ22(p̂,p) ≤ E ℓ22(p̂,pU) (12)

=

(

1 +
k2eε/2

(k − 1)(eε/2 − 1)2

)

1− 1
k

n
,

and

E ℓ1(p̂,p) ≤ E ℓ1(p̂,pU) (13)

≈
√

(eε/2 + k − 1)(eε/2(k − 1) + 1)

(eε/2 − 1)2(k − 1)

√

2(k − 1)

πn
.

4.3. Theoretical Analysis

We now analyze the performance of k-RR and k-RAPPOR

relative to maximum likelihood estimation (which is equiv-

alent to empirical estimation) on the non-privatized data
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Xn. In the non-private setting, the maximum likelihood es-

timator has a worst case risk of

√

2(k−1)
πn under the ℓ1 loss,

and a worst case risk of
1− 1

k

n under the ℓ22 loss (Lehmann

& Casella, 1998; Kamath et al., 2015).

Performance under k-RR. Comparing Equation (8) to

the observation above, we can see that an extra factor of
(

1 + k+2(eε−1)
(eε−1)2 k

)

samples is needed to achieve the same

ℓ22 loss as in the non-private setting. Similarly, from Equa-

tion (9), a factor of
(

eε+k−1
eε−1

)2

samples is needed under

the ℓ1 loss. For small ε, the sample size n is effectively

reduced to nε2/k2 (under both losses). When compared to

Proposition 1, this result implies that k-RR is not optimal

in the high privacy regime. However, for ε ≈ ln k, the sam-

ple size n is reduced to n/4 (under both losses). This result

suggests that, while k-RR is not optimal for small values of

ε, it is “order” optimal for ε on the order of ln k. Note that

k-RR provides a natural interpretation of this low privacy

regime: specifically, setting ε = ln k translates to telling

the truth with probability 1
2 and lying uniformly over the

remainder of the alphabet with probability 1
2 ; an intuitively

reasonably notion of plausible deniability.

Performance under k-RAPPOR. Comparing Equation

(12) to the observation at the beginning of this subsection,

we can see that an extra factor of
(

1 + k2eε/2

(k−1)(eε/2−1)2

)

samples is needed to achieve the same ℓ22 as in the non-

private case. Similarly, from Equation (13), an extra factor

of
(eε/2+k−1)(eε/2(k−1)+1)

(eε/2−1)2(k−1)
samples is needed under the ℓ1

loss. For small ε, n is effectively reduced to nε2/4k (un-

der both losses). When compared to Proposition 1, this re-

sult implies that k-RAPPOR is “order” optimal in the high

privacy regime. However, for ε ≈ ln k, n is reduced to

n/
√
k (under both losses). This suggests that k-RAPPOR is

strictly sub-optimal in the moderate to low privacy regime.

Proposition 5 For all p ∈ S
k and all ε ≥ ln(k/2),

E ||p̂KRR − p||22 ≤ E ||p̂RAPPOR − p||22 , (14)

where p̂KRR is the empirical estimate of p under k-RR,

p̂RAPPOR is the empirical estimate of p under k-RAPPOR,

and p̂ is the empirical estimator under k-RAPPOR.

Proof See Supplementary Section D.

4.4. Simulation Analysis

To complement the theoretical analysis above, we ran sim-

ulations of k-RR and k-RAPPOR varying the alphabet size

k, the privacy level ε, the number of users n, and the true

distribution p from which the samples were drawn. In

all cases, we report the mean over 10,000 evaluations of

‖p̂ − p̂decoded‖1 where p̂ is the ground truth sample drawn

from the true distribution and p̂decoded is the decoded k-RR

or k-RAPPOR distribution. We vary ε over a range that

corresponds to the moderate-to-low privacy regimes in our

theoretical analysis above, observing that even large val-

ues of ε can provide plausible deniability impossible under

un-noised logging.

We compare using the ℓ1 distance of the two distributions

because in most applications we want to estimate all val-

ues well, emphasizing neither very large values (as an ℓ2
or higher metric might) nor very small values (as informa-

tion theoretic metrics might). Supplementary Figures 5 and

6, analogous to the ones in this section, demonstrate that

the choice of distance metric does not qualitatively affect

our conclusions on the decoding strategies for k-RR or k-

RAPPOR nor on the regimes in which each is superior.

The distributions we considered in simulation were bino-

mial distributions with parameter in {.1, .2, .3, .4, .5} , Zipf

distribution with parameter in {1, 2, 3, 4, 5}, multinomial

distributions drawn from a symmetric Dirichlet distribution

with parameter ~1, and the geometric distribution with mean

k/5. The geometric distribution is shown in Supplementary

Figure 4. We focus primarily on the geometric distribution

here because qualitatively it shows the same patterns for

decoding as the full set of binomial and Zipf distributions

and it is sufficiently skewed to represent many real-world

datasets. It is also the distribution for which k-RAPPOR

does the best relative to k-RR over the largest range of k
and ε in our simulations.

4.4.1. DECODING

We first consider the impact of the choice of decoding

mechanism used for k-RR and k-RAPPOR. We find that

the best decoder in practice for both k-RR and k-RAPPOR

on skewed distributions is the projected decoder which

projects the p̂KRR or p̂RAPPOR onto the probability simplex

S
k using the method described in Algorithm 1 of (Wang &

Carreira-Perpiñán, 2013). For k-RR, we compare the pro-

jected empirical decoder to the normalized empirical de-

coder (which truncates negative values and renormalizes)

and to the maximum likelihood decoder (see Supplemen-

tary Section F.1). For k-RAPPOR, we compare the standard

decoder, normalized decoder, and projected decoder. Fig-

ure 1 shows that the projected decoder is substantially bet-

ter than the other decoders for both k-RR and k-RAPPOR

for the whole range of k and ε for the geometric distri-

bution. We find this result holds as we vary the number

of users from 30 to 106 and for all distributions we evalu-

ated except for the Dirichlet distribution, which is the least

skewed. For the Dirichlet distribution, the normalized de-

coder variant is best for both k-RR and k-RAPPOR. Be-
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cause the projected decoder is best on all the skewed distri-

butions we expect to see in practice, we use it exclusively

for the open-alphabet experiments in Section 5.

4.4.2. k-RR VS k-RAPPOR

To construct a fair, empirical comparison of k-RR and k-

RAPPOR, we employ the same methodology used above in

selecting decoders. Figure 2 shows the difference between

the best k-RR decoder and the best k-RAPPOR decoder (for

a particular k and ε). For most cells, the best decoder is the

projected decoder described above.

Note that the best k-RAPPOR decoder is consistently better

than the best k-RR decoder for relatively large k and low

ε. However, k-RR is slightly better than k-RAPPOR in all

conditions where k < eε (bottom-right triangle), an empiri-

cal result for ℓ1 that complements Proposition 5’s statement

about ML decoders in ℓ2. All of the skewed distributions

manifest the same pattern as the geometric distribution. As

the number of users increases, k-RR’s advantage over k-

RAPPOR in the low privacy environment shrinks. In the

next sections, we will examine the use of cohorts to im-

prove decoding and to handle larger, open alphabets.

5. Open Alphabets, Hashing, and Cohorts

In practice, the set of values that may need to be collected

may not be easily enumerable in advance, preventing a di-

rect application of the binary and k-ary formulations of pri-

vate distribution estimation. Consider a population of n
users, where each user i possesses a symbol si drawn from

a large set of symbols S whose membership is not known

in advance. This scenario is common in practice; for ex-

ample, in Chrome’s estimation of the distribution of home

page settings (Erlingsson et al., 2014). Building on this in-

tuitive example, we assume for the remainder of the paper

that symbols si are strings, but we note that the methods

described are applicable to any hashable structures.

5.1. O-RR: k-RR with hashing and cohorts

k-RR is effective for privatizing over known alphabets. In-

spired by (Erlingsson et al., 2014), we extend k-RR to open

alphabets by combining two primary intuitions: hashing

and cohorts. Let HASH(s) be a function mapping S → N

with a low collision rate, i.e. HASH(s) = HASH(s′) with

very low probability for s′ 6= s. With hashing, we could use

k-RR to guarantee local privacy over an alphabet of size

k by having each client report QKRR(HASH(s) mod k).
However, as we will see, hashing alone is not enough to

provide high utility because of the increased rate of colli-

sions introduced by the modulus.

Complementing hashing, we also apply the idea of hash co-

horts: each user i is assigned to a cohort ci sampled i.i.d.

from the uniform distribution over C = {1, ..., C}. Each

cohort c ∈ C provides an independent view of the underly-

ing distribution of strings by projecting the space of strings

S onto a smaller space of symbols X using an independent

hash function HASHc. The users in a cohort use their co-

hort’s hash function to partition S into k disjoint subsets

by computing xi = HASHci(si) mod k = HASH
(k)
ci (si).

Each subset contains approximately the same number of

strings, and because each cohort uses a different hash func-

tion, the induced partitions for different cohorts are orthog-

onal: P(xi = xj |ci 6= cj) ≈ 1
k even when si = sj .

5.1.1. ENCODING AND DECODING

For encoding, the O-RR privatization mechanism can be

viewed as a sampling distribution independent of C. There-

fore, QORR(y, c|s) is given by

1

C(eε + k − 1)

{

eε if HASH
(k)
c (s) = y,

1 if HASH
(k)
c (s) 6= y.

(15)

For decoding, fix candidate set S and interpret the privati-

zation mechanism QORR as a kC×S row-stochastic matrix:

QORR =
1

C

1

eε + k − 1
(1+ (eε − 1)H) (16)

where:

H(y, c|s) = 1
{HASH

(k)
c (s)=y}

(17)

Note that H is a kC×S sparse binary matrix encoding the

hashed outputs for each cohort, wherein each column of H

has exactly C non-zero entries.

Now m = pQORR is the expected output distribution for

true probability vector p, allowing us to form an empiri-

cal estimator by using standard least-squares techniques to

solve the linear system:

p̂ORRH =
1

eε − 1
(C(eε + k − 1)m̂− 1) . (18)

Note that when C = 1 and H is the identity matrix, (18)

reduces to standard k-RR empirical estimator as seen in (6).

As with the k-RR empirical estimator, p̂ORR may have neg-

ative entries. Section 4.1 describes methods for constrain-

ing p̂ORR to S
k, of which simplex projection is demon-

strated to offer superior performance in Section 4.4. The

remainder of the paper assumes that O-RR uses the sim-

plex projection strategy.

5.2. O-RAPPOR

RAPPOR also extends from k-ary alphabets to open alpha-

bets using hashing and cohorts (Erlingsson et al., 2014);

we refer to this extension herein as O-RAPPOR. How-

ever, the k-RAPPOR mechanism uses a size |X̃ | = 2k
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Figure 1: The improvement in ℓ1 decoding of the projected k-RR decoder (left) and projected k-RAPPOR decoder (right).

Each grid varies the size of the alphabet k (rows) and privacy parameter ε (columns). Each cell shows the difference in ℓ1
magnitude that the projected decoder has over the ML and normalized k-RR decoders (left) or the standard and normalized

k-RAPPOR decoders (right). Negative values mean improvement of the projected decoder over the next best alternative.
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Figure 2: The improvement (negative values, blue) of the best k-RR decoder over the best k-RAPPOR decoder varying the

size of the alphabet k (rows) and privacy parameter ε (columns). The left charts focus on small numbers of users (100);

the right charts show a large number of users (30000, also representative of larger numbers of users). The top charts show

the geometric distribution (skewed) and the bottom charts show the Dirichlet distribution (flat).

(a) Open alphabets. (b) Closed alphabets.

Figure 3: ℓ1 loss of O-RR and O-RAPPOR for n = 106 on the geometric distribution when applied to unknown input

alphabets (via hash functions, (a)) and to known input alphabets (via perfect hashing, (b)). Lines show median ℓ1 loss

with 90% confidence intervals over 50 samples. Free parameters are set via grid search over k ∈ [2, 4, 8, . . . , 2048, 4096],
c ∈ [1, 2, 4, . . . , 512, 1024], h ∈ [1, 2, 4, 8, 16] for each ε. Note that the k-RAPPOR and O-RAPPOR lines in (b) are nearly

indistinguishable. Baselines indicate expected loss from (1) using an empirical estimator directly on the input s and (2)

using the uniform distribution as the p̂ estimate.
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input representation as opposed to k-RR’s size |X | =
k representation. Taking advantage of the larger input

space, O-RAPPOR uses an independent h-hash Bloom filter

BLOOM
(k)
c for each cohort before applying the k-RAPPOR

mechanism—i.e. the j-th bit of xi is 1 if HASH
(k)
c,h′(si) = j

for any h′ ∈ [1 . . . h], where HASH
(k)
c,h′ are a set of hC mu-

tually independent hash functions modulo k.

Decoding for O-RAPPOR is described in (Erlingsson et al.,

2014) and follows a similar strategy as for O-RR. However,

because this paper focuses on distribution estimation rather

than heavy hitter detection, we eliminate both the Lasso re-

gression stage and filtering of imputed frequencies relative

to Bonferroni corrected thresholds, retaining just the regu-

lar least-squares regression.

5.3. Simulation Analysis

We ran simulations of O-RR and O-RAPPOR for n = 106

users with input drawn from an alphabet of S = 256 sym-

bols under a geometric distribution with mean=S/5 (see

Supplementary Figure 4). As described in Section 4.4, the

geometric distribution is representative of actual data and

relatively easy for k-RAPPOR and challenging for k-RR.

Free parameters were set to minimize the median ℓ1 loss.

Similar results for S = 4096 and n = 106 and 108 are

included in the Supplementary Material.

In Figure 3(a), we see that under these conditions, O-RR

matches the utility of O-RAPPOR in both the very low and

high privacy regimes and exceeds the utility of O-RAPPOR

over midrange privacy settings.

For O-RR, we find that the optimal k depends directly on

ε, that increasing C consistently improves performance in

the low-to-mid privacy regime, and that C = 1 noticably

underperforms across the range of privacy levels. For O-

RAPPOR, we find that performance improves as k increases

(with k = 4096 near the asymptotic limit), that C = 1 not-

icably underperforms across the range of privacy values,

but with all C ≥ 2 performing indistinguishably. Finally,

we find that the optimal value for h is consistently 1, in-

dicating that Bloom filters provide no utility improvement

beyond simple hashing. See Supplementary Figure 11 for

details.

5.4. Improved Utility for Closed Alphabets

O-RR and O-RAPPOR extend k-ary mechanisms to open

alphabets through the use of hash functions and cohorts.

These same mechanisms may also be applied to closed al-

phabets known a priori. While direct application is possi-

ble, the reliance on hash functions exposes both mechanism

to unnecessary risk of hash collision.

Instead, we modify the O-RR and O-RAPPOR mechanisms,

replacing each cohort’s generic hash functions with mini-

mal perfect hash functions mapping S to [0 . . . S−1] before

applying the modulo k operation. In most closed-alphabet

applications, S = [0 . . . S − 1], in which case these mini-

mal perfect hash functions are simply permutations. Also

note that in this setting, O-RR and and O-RAPPOR reduce

to exactly their k-ary counterparts when C and h are both

1 except that the output symbols are permuted.

In Figure 3(b), we evaluate these modified mechanisms us-

ing the same method described in Section 5.3 (note that the

utilities of k-RAPPOR and O-RAPPOR are nearly indistin-

guishable). O-RAPPOR benefits little from the introduction

of minimal perfect hash functions. In contrast, O-RR’s util-

ity improves significantly, meeting or exceeding the utility

of all other mechanisms at all considered ε.

6. Conclusion

Data improves products, services, and our understanding

of the world. But its collection comes with risks to the

individuals represented in the data as well as to the insti-

tutions responsible for the data’s stewardship. This paper’s

focus on distribution estimation under local privacy takes

one step toward a world where the benefits of data-driven

insights are decoupled from the collection of raw data. Our

new theoretical and empirical results show that combining

cohort-style hashing with the k-ary extension of the classi-

cal randomized response mechanism admits practical, state

of the art results for locally private logging.

In many applications, data is collected to enable the mak-

ing of a specific decision. In such settings, the nature of the

decision frequently determines the required level of util-

ity, and the number of reports to be collected n is pre-

determined by the size of the existing user base. Thus, the

differential privacy practitioner’s role is often to offer users

as much privacy as possible while still extracting sufficient

utility at the given n. Our results suggest that O-RR may

play a crucial role for such a practitioner, offering a single

mechanism that provides maximal privacy at any desired

utility level simply by adjusting the mechanism’s parame-

ters.

In future work, we plan to examine estimation of non-

stationary distributions as they change over time, a com-

mon scenario in data logged from user interactions. We

will also consider what utility improvements may be pos-

sible when some responses need more privacy than others,

another common scenario in practice. Much more work re-

mains before we can dispel the collection of un-noised data

altogether.
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