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Abstract

Rough relation algebras are a generalization of relation algebras such that the underlying lattice
structure is a regular double Stone algebra. Standard models are algebras of rough relations. A
discrete duality is a relationship between classes of algebras and classes of relational systems
(frames). In this paper we prove a discrete duality for a class of rough relation algebras and a
class of frames.

1 Introduction

Rough sets [16] and rough relations [3] were introduced in connection with reasoning with incom-
plete information. With such information we may not be able to distinguish between members and
non-members of a set or a relation in a definite way. As a consequence sets or relations can be
defined only approximately: An approximation space is a system 〈U,θ〉 where U is a nonempty
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set and θ is an equivalence relation on U . Here, the assumption is that we know the world only
up to the classes of θ : Given a subset X of U , the lower approximation of X in an approximation
space 〈U,θ〉 is defined as l(X) = {x ∈U : θ(x)⊆ X}, where θ(x) = {y ∈U : xθy}. Similarly, the
upper approximation of X in U is u(X) = {x ∈U : θ(x)∩X 6= /0}. A rough set in an approximation
space 〈U,θ〉 is any pair 〈l(X),u(X)〉 where X ⊆U . The collection of rough subsets of 〈U,θ〉 is
denoted by Rough(U) = {〈l(X),u(X)〉 : X ⊆U}. In [17] it is shown that for every approximation
space 〈U,θ〉, Rough(U) can be made into a Stone algebra. Their result was extended by Comer [3]
who showed that Rough(U) can even be made into a regular double Stone algebra by the following
operations:

〈l(X),u(X)〉+ 〈l(Y ),u(Y )〉= 〈l(X)∪ l(Y ),u(X)∪u(Y )〉 join

〈l(X),u(X)〉 · 〈l(Y ),u(Y )〉= 〈l(X)∩ l(Y ),u(X)∩u(Y )〉 meet

〈l(X),u(X)〉∗ = 〈U \u(X),U \u(X)〉 pseudocomplement

〈l(X),u(X)〉+ = 〈U \ l(X),U \ l(X)〉 dual pseudocomplement

0 = 〈 /0, /0〉
1 = 〈U,U〉

In the same paper he proved a representation theorem for regular double Stone algebras showing
that every such algebra is embeddable into the algebra of all rough subsets of an approximation
space.

In related work, various algebras derived from approximation spaces are known in the literature and
shown to be representation algebras for some algebras which provide semantics for non-classical
logics, for example, in [6, 10, 15] monadic algebras and three-valued Łukasiewicz algebras de-
rived from approximation spaces are considered and representation theorems are proved. In [15] a
representation theorem for finite Nelson algebras is proved such that the representation algebra is
derived from an approximation space. A survey of those and several other representation results
where the representation algebras are determined by algebraic models of incomplete information
can be found in [4], Chapter 14, see also [1].

Given an approximation space 〈U,θ〉, it is easy to see that the system 〈U2,θ 2〉 is an approximation
space as well; here, θ 2 is the equivalence relation on U2 induced by θ , i.e. 〈x,y〉θ 2〈x′,y′〉 if and
only if xθx′ and yθy′. A rough (binary) relation on an approximation space 〈U,θ〉 is defined as
a rough subset of the approximation space 〈U2,θ 2〉. The common relational operators can now be
defined on the set of rough binary relations as below. With some abuse of language we use the
same notation for operators on rough relation as for the operators on binary relations:

〈l(R),u(R)〉 ; 〈l(S),u(S)〉= 〈l(R) ; l(S)),u(R) ; u(S)〉 composition

〈l(R),u(R)〉˘ = 〈l(R˘),u(R˘)〉 converse

1′ = 〈θ ,θ〉 identity

The structure 〈Rough(U2),+, ·, ∗,+,0,1, ;, ˘ ,1′〉 is called the full algebra of rough relations (over
〈U,θ〉). An algebra of rough relations is a subalgebra of some full algebra of rough relations.
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In analogy to Tarski’s axiomatization of relation algebras [18], Comer proposed a tentative set of
axioms for rough relation algebras, the intended standard models of which are algebras of rough
relations. These algebras were investigated in some detail in [5] and [8]; numerous examples of
rough relation algebras can be found in these papers. A rough relation algebra (R2A) is called
representable if it is isomorphic to a subdirect product of algebras of rough relations. Even though
the class of representable R2As is not finitely axiomatizable, it was shown in [5] that it is finitely
axiomatizable over the class of representable relation algebras.

In this paper we take a different approach to the representation of R2As, namely, via a discrete
duality. The term discrete duality is the name of a system 〈(Alg,Frm,Cm,Cf〉, where

• Alg is a class of lattices,

• Frm is a class of relational systems, referred to as frames according to the tradition in the
field of non–classical logics,

• Cm : Frm → Alg is a mapping assigning to every frame X ∈ Frm its complex algebra
Cm(X ) in such a way that Cm(X) ∈ Alg,

• Cf : Alg→ Frm is a mapping assigning to every algebra L ∈ Alg its canonical frame Cf(L)
in such a way that Cf(L) ∈ Frm,

and the following two representation theorems hold:

• Every L ∈ Alg is embeddable into the complex algebra of its canonical frame Cm(Cf(L)).

• Every X ∈ Frm is embeddable into the canonical frame of its complex algebra Cf(Cm(X )).

In this case we say that the system 〈(Alg,Frm,Cm,Cf〉 is a discrete duality between the classes
Alg and Frm. Frames, being semantic structures of formal languages, do not involve topology
and therefore, such duality is said to be discrete. Discrete duality differs from the classical Stone,
Jonssón-Tarski or Priestley dualities in that it requires that the complex algebra of any frame be-
longs to the class Alg, not only the complex algebra of a canonical frame Cf(L). Furthermore,
discrete duality representation theorems establish an embedding of the underlying structures, not
necessarily an isomorphism. A general outline of discrete duality can be found in [13].

The paper is organized as follows: First, we recall the definition of regular double Stone algebras
and present some of their relevant properties. Then we introduce rough relation algebras and rough
relation frames and prove the duality theorems.
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2 Regular double Stone algebras

If 〈P,≤〉 is a partially ordered set and Q⊆ P we let ↑ Q = {x ∈ P : (∃y ∈ P)[y ∈ Q and y≤ x]} and
↓ Q = {x ∈ P : (∃y ∈ P)[y ∈ Q and y≥ x]}.

Suppose that 〈L,+, ·,0,1〉 is a bounded distributive lattice with natural order ≤. An ideal of L is a
nonempty subset I of L such that I is closed under join and I =↓. Dually, a filter of L is a nonempty
subset F of L such that F is closed under meet and F =↑ F . A filter F is called a prime filter if
a+b ∈ F implies a ∈ F or b ∈ F .

Next, we briefly review some properties of regular double Stone algebras and their ordered sets of
prime filters. A double Stone algebra (DSA) is a structure 〈L,+.·, ∗,+,0,1〉 of type 2,2,1,1,0,0
such that

DSA1. 〈L,+, ·,0,1〉 is a bounded distributive lattice.

DSA2. For all a,b ∈ L, a ·b = 0 if and only if b≤ a∗.

DSA3. For all a,b ∈ L, a+b = 1 if and only if a+ ≤ b.

DSA4. For all a ∈ L, a∗+a∗∗ = 1.

DSA5. For all a ∈ L, a+ ·a++ = 0.

With some abuse of notation, in the sequel we will usually denote algebras by their base set.

a∗ is called the pseudocomplement of a, and a+ is called the dual pseudocomplement of a. An
element a of L is called dense, respectively, dually dense, if it is of the form a = b+b∗ (a = b ·b+)
for some b ∈ L. The set of dense elements, respectively, dually dense elements, is denoted by D∗,
respectively, D+. It is well known that D∗ is a filter and D+ is an ideal of L. The set B(L) = {a∗ : a∈
L} is called the centre of L. It is well known that 〈B(L),+.·, ∗,0,1〉 is a subalgebra of 〈L,+.·, ∗,0,1〉
and a Boolean algebra; in particular, a+a∗ = 1 for all a ∈ B(L). Furthermore, B(L) = {a+ : a ∈ L}
and

a∗+ = a∗∗, a+∗ = a++,(2.1)

so that the restrictions of the operators ∗ and + to B(L) coincide.

It is well known (see e.g. [9], II.6, Exercise 11) that for a pseudocomplemented and dually pseu-
docomplemented distributive lattice

(a ·b)∗∗ = a∗∗ ·b∗∗ and (a+b)++ = a+++b++.(2.2)

In the sequel, let L be a double Stone algebra and let 〈Prim(L),⊆〉 be its set of prime filters, partially
ordered by set inclusion.
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Lemma 2.1. (See [9], II.6, Theorem 6) For each F ∈ Prim(L) there are a unique minimal prime
filter G and a unique maximal prime filter H such that G⊆ F ⊆ H.

In the sequel, let F be the minimal prime filter below F and let F be the maximal prime filter above
F .

Lemma 2.2. [7] Let F be a prime filter of L.

1. F is maximal if and only if D∗ ⊆ F.

2. F is minimal if and only if D+∩F = /0.

Recalling that D∗ = {a+a∗ : a ∈ L} we obtain

Corollary 2.1. Let F ∈ Prim(L).

1. F is maximal if and only if either a ∈ F or a∗ ∈ F for all a ∈ L.

2. F is the filter generated by F ∪D∗.

Lemma 2.3. If F,F ′ ∈ Prim(L) and F ⊆ F ′, then F ∩B(L) = F ′∩B(L).

Proof. “⊆”: This follows immediately from F ⊆ F ′.

“⊇”: Let a ∈ F ′ ∩B(L). Then, a∗ 6∈ F ′, and therefore, F ⊆ F ′ implies a∗ 6∈ F . It follows from
a ∈ B(L) that a+a∗ = 1, and therefore, a ∈ F since F is prime.

Lemma 2.4. Let F ∈ Prim(L). Then, F is the filter generated by F ∩B(L).

Proof. Let G be the filter generated by F∩B(L), and let a+b∈G. Then, there is some c∈F∩B(L)
such that c ≤ a + b; since c ∈ B(L) we may suppose w.l.o.g. that c = c++. Now, c = c++ ≤
(a+ b)++ = a++ + b++, the latter by (2.2), and c ∈ F show that a++ ∈ F or b++ ∈ F . Since
a++ ≤ a and b++ ≤ b we have a ∈ G or b ∈ G. Thus, G is a prime filter. By Lemma 2.3 and the
definition of G we have G⊆ F , and thus, G = F since F is minimal.

A DSA L is called regular if

a ·a+ ≤ b+b∗(2.3)

for all a,b ∈ L.

Lemma 2.5. [20, 21] Let L be a double Stone algebra. Then, the following are equivalent:

1. L is regular

2. For all a,b ∈ L, a∗ = b∗ and a+ = b+ implies a = b.

3. Each chain of prime filters has at most two elements.

Lemma 2.5(3) together with Lemma 2.1 shows that in a regular DSA Prim(L) is the disjoint union
of chains of length at most 2.
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3 Rough relation algebras and rough relation frames

In analogy to Tarski’s relation algebras, Comer [3] has introduced a class of algebras which are
intended to serve as an abstract counterpart to algebras of rough relations: A rough relation algebra
(R2A) is a structure 〈L,+, ·, ∗,+,0,1, ;, ˘ ,1′〉 of type 2,2,1,1,0,0,2,1,0 satisfying the following
axioms:

R2A0. 〈L,+, ·, ∗,+,0,1〉 is a regular double Stone algebra.

R2A1. 〈L, ;,1′〉 is a semigroup with identity 1′.

R2A2. a ; (b+ c) = (a ; b)+(a ; c), (b+ c) ; a = (b ; a)+(c ; a).

R2A3. a˘ ˘ = a.

R2A4. (a+b)˘ = a˘ +b˘.

R2A5. (a ; b)˘ = b˘ ; a˘.

R2A6. a˘ ; (a ; b)∗ ≤ b∗.

R2A7. (a∗ ; b∗)∗∗ = a∗ ; b∗.

R2A8. 1′∗∗ = 1′.

In the sequel, L will denote an R2A. The original axiom system of [3] included the property

R2A6a. (a ; b) · c≤ a ; a˘ ; c.

The inequality R2A6a is not required to characterize representability of R2As, since it was shown
in [5] without R2A6a that an R2A L is representable if and only if it satisfies the equation

(a ; b)++ = a++ ; b++,

and B(L) is a representable relation algebra.

The following properties of R2As can be found in [5]; we have checked that R2A6a was not used
in the proofs:

Lemma 3.1. Let a,b,c ∈ L. Then,

1. a≤ b⇐⇒ a˘ ≤ b˘ .

2. (a ·b)˘ = a˘ ·b˘ .

3. a∗ ˘ = a˘∗, a˘+ = a+ ˘ .

4. (a ; b)∗∗ = a∗∗ ; b∗∗.
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5. a≤ b implies a ; c≤ b ; c and c ; a≤ c ; b.

6. (a ; b)∗ ·b˘ ≤ a∗.

7. D∗ is closed under ; and ˘ .

8. (a ; b) · c = 0⇐⇒ (a˘ ; c) ·b = 0⇐⇒ (c ; b˘) ·a = 0.

If F,G ⊆ L, we define F ; G = {c : (∃a,b)[a ∈ F,b ∈ T, and a ; b ≤ c]}. Furthermore, we set
F ˘ = {a˘ : a ∈ F}.

Lemma 3.2. [19] Suppose that F,G are filters of L.

1. F ; G is a (not necessarily proper) filter of L.

2. if H is a prime filter of L and F ; G ⊆ H, then there are prime filters F ′,G′ such that F ⊆
F ′, G⊆ G′ and F ′ ; G′ ⊆ H.

Proof. 1. Let c ∈ F ; G; there are a ∈ F,b ∈G such that a ; b≤ c. If c≤ c′, then a ; b≤ c′ showing
that c′ ∈ F ; G.

Let c0,c1 ∈ F ; G; then, there are a0,a1 ∈ F,b0,b1 ∈G such that a0 ; b0 ≤ c0 and a1 ; b1 ≤ c1. From
Lemma 3.1(5) it follows that (a0 ·a1) ; (b0 ·b1)≤ (a0 ; b0) · (a1 ; b1)≤ c0 ·c1. Since F,G are filters,
a0 ·a1 ∈ F, b0 ·b1 ∈ G, and thus, (a0 ·a1) ; (b0 ·b1)≤ c0 · c1 ∈ F ; G.

If a ∈ F, b ∈ G such that a ; b = 0, then F ; G = L.

2. Suppose that F is the collection of all filters Q of L such that F ⊆ Q and Q ; G ⊆ H. Note that
F 6= /0, since F ∈F. Furthermore, F is closed under unions of chains, and thus, it contains a maximal
element, say, F ′. All that is left to show is that F ′ is prime. Let a+b∈ F ′ and assume that a,b 6∈ F ′.
Suppose that F ′(a) is the filter of L generated by F ′∪{a}. Since a 6∈ F ′ we have F ′ ( F ′(a), and
the maximality of F ′ implies that F ′(a) ; G 6⊆ H. Thus, there exist a0 ∈ F ′, a1 ∈ G such that
(a0 · a) ; a1 6∈ H. Similarly, if F ′(b) is the filter generated by F ′ ∪{b}, there are b0 ∈ F ′,b1 ∈ G
such that (b0 ·b) ; b1 6∈H. Since H is prime, it follows that ((a0 ·a) ; a1)+((b0 ·b) ; b1) 6∈H. Now,

(a0 ·b0 ·a) ; (a1 ·b1)+(a0 ·b0 ·b) ; (a1 ·b1) = (a0 ·b0 ·a+a0 ·b0 ·b) ; (a1 ·b1) by R2A2

= (a0 ·b0 · (a+b)) ; (a1 ·b1).

Since a0,b0,a+b ∈ F ′ and a1,b1 ∈ G it follows that (a0 ·b0 ·a) ; (a1 ·b1)+(a0 ·b0 ·b) ; (a1 ·b1) ∈
F ′ ; G ⊆ H. On the other hand, (a0 · b0 · a) ; (a1 · b1) ≤ (a0 · a) ; a1 and (a0 · b0 · b) ; (a1 · b1) ≤
(b0 ·b) ; b1. Hence, (a0 ·b0 ·a) ; (a1 ·b1)+(a0 ·b0 ·b) ; (a1 ·b1)≤ ((a0 ·a) ; a1)+((b0 ·b) ; b1) ∈H,
a contradiction.

The existence of G′ is shown analogously.
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A rough relation frame is a structure X = 〈X ,≤,R, f , I〉 where ≤ is a partial order on X which is
the disjoint union of chains of length at most 2. If x ∈ X , we denote the minimal element below x
by x, and the maximal element above x by x. Furthermore R is a ternary relation on X , f : X → X
a function, and I ⊆ X for which the following axioms hold:

R2F1. R(x,y,z), x′ ≤ x, y′ ≤ y, z≤ z′⇒ R(x′,y′,z′).

R2F2. x≤ y⇒ f (x)≤ f (y).

R2F3. I is ≤–closed and ≥–closed.

R2F4. R(x,y,z) and R(z,v,w)⇒ (∃u)[R(x,u,w) and R(y,v,u)].

R2F5. R(x,y,z) and R(v,z,w)⇒ (∃u)[R(u,y,w) and R(v,x,u)].

R2F6. f ( f (x)) = x.

R2F7. f (x) = f (x), f (x) = f (x).

R2F8. R(x,y,z)⇒ R( f (x),z,y).

R2F9. R(x,y,z)⇒ R(z, f (y),x).

R2F10. R(x,y,z)⇒ R(x,y,z).

R2F11. x≤ y⇐⇒ (∃z)[z ∈ I and R(x,z,y)].

R2F12. z≤ y⇐⇒ (∃x)[x ∈ I and R(x,z,y)].

Lemma 3.3. For all x,y,z ∈ X, R(x,y,z)⇒ R(x,y,z).

Proof. Suppose that R(x,y,z). Then, R( f (x),z,y) by R2F8, R(x,y,z) by R2F6 and R2F8, R(z, f (y),x)
by R2F9, and, finally, R(x,y,z) by R2F6 and R2F9.

4 The duality theorems

The canonical frame of L has the ordered set Prim(L) as its base set. For F,G,H ∈ Prim(L) we let
RL(F,G,H) if and only if F ; G⊆ H, fL(F) = F ˘, and IL = {F ∈ Prim(L) : 1′ ∈ F}.

Theorem 4.1. The canonical frame of a rough relation algebra satisfies R2F1 – R2F12.

Proof. R2F1 – R2F3 and R2F6 are immediate from the definitions and Lemma 3.1. R2F4 and R2F5
can be proved with Lemma 3.2 as in [14].

R2F7: Let F ∈ Prim(L), and F be the maximal prime filter containing F . Let a∈ F ˘; then, a˘ ∈ F .
Since F is generated by F ∪D∗, there are b ∈ F,d ∈ D∗ such that b · d ≤ a ˘ . Now, b ˘ ∈ F ˘ and
d˘ ∈D∗ by Lemma 3.1(7) shows that a∈ F ˘. Conversely, let a∈ F ˘; there are some b∈ F ˘,d ∈D∗

such that b ·d ≤ a, so that b˘ ·d ˘ ≤ a˘. Since b˘ ∈ F and d ˘ ∈D∗ we obtain a˘ ∈ F , and therefore,
a ∈ F ˘.
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Next, let F be the minimal prime filter containing F . Let a ∈ F ˘ ; then, a ˘ ∈ F . By Lemma 2.4,
there is some b ∈ F ∩B(L) such that b≤ a ˘ . Now, b ˘ ∈ F ˘ ∩B(L) and b ˘ ≤ a show that a ∈ F ˘.
The other direction is similar.

R2F8: Let F,G,H ∈ Prim(L), F ; G⊆H, and G be the maximal prime filter containing G. Suppose
that z ∈ F ˘ ; H. Then, there are a ∈ F , b ∈H such that a˘ ; b≤ z. Assume that a˘ ; b 6∈G. Since G
is maximal we have (a ˘ ; b)∗ ∈ G, and therefore, (a ˘ ; b)∗ ∈ G since G∩B(L) = G∩B(L). Now,
a ; (a˘ ; b)∗ ∈ F ; G⊆ H, and thus, b∗ ∈ H by R2A6. This contradicts b ∈ H.

R2F9: Let F,G,H ∈ Prim(L), F ; G⊆H, and F be the maximal prime filter containing F . Suppose
that z ∈ H ; G ˘ . Then, there are a ∈ H,b ∈ G such that a ; b ˘ ≤ z. Assume that a ; b ˘ 6∈ F . Since
F is maximal, this implies that (a ; b ˘ )∗ ∈ F , hence, (a ; b ˘ )∗ ∈ F , since (a ; b ˘ )∗ is Boolean.
Therefore, (a ; b˘)∗ ; b ∈ F ; G⊆ H. Now, Lemma 3.1(6) shows that (a ; b˘)∗ ; b≤ a∗. It follows
that a∗ ∈ H which contradicts a ∈ H.

R2F10: Let F,G,H ∈ Prim(L), F ; G⊆H, F be the minimal prime filter below F , G be the minimal
prime filter below G, and H the minimal prime filter below H. Suppose that a ∈ F ; G; then, there
are b ∈ F ,c ∈ G such that b ; c ≤ a. Since F ,G are minimal, by Lemma 2.4 we may suppose that
b,c∈B(L). From Lemma 3.1(4) we obtain b ; c∈B(L), and now F ; G⊆H implies b ; c∈B(L)∩H.
It follows from Lemma 2.4 that b ; c ∈ H, and b ; c≤ a implies a ∈ H.

R2F11: Let F ⊆G and let ↑ {1′} be the principal filter of L generated by {1′}. Then, F ;↑ {1′} ⊆G
and by Lemma 3.2 there is some prime filter H such that 1′ ∈ H and F ; H ⊆ G.

R2F12: Analogous.

Let X = {X ,≤,R, f , I} be a rough relation frame. The complex algebra Cm(X) of X has as its
universe the set L(X) of all increasing subsets of X . For Y ∈ L(X) we let Y ∗ be the largest increasing
subset contained in −Y , and Y+ be the smallest increasing subset containing −Y , so that

Y ∗ = {y :↑ {y}∩Y = /0},
Y+ = {y :↓ y∩−Y 6= /0}.

Furthermore, we set Y ;X Z = {t ∈ X : (∃y,z)[y∈Y, z∈ Z, and R(y,z, t)]}, Y^X = { f (x) : x∈Y},
and 1′X = I.

Lemma 4.1. Let Y ⊆ X be increasing. Then, Y ∗∗ = {x ∈ X : (∃y)[y ∈ Y and x≤ y]}.

Proof. “⊆”: Let x ∈ Y ∗∗; then, ↑ {x}∩Y ∗ = /0, in particular, x 6∈ Y ∗. Hence, ↑ {x}∩Y 6= /0.

“⊇”: Let x ≤ y and y ∈ Y . Assume that ↑ {x} ∩Y ∗ 6= /0. Then, there is some z ∈ X such that
x≤ z and ↑ {z}∩Y = /0. Since each chain in X has at most two elements, we must have z ∈ {x,y},
contradicting that y′ ∈ Y .

Corollary 4.1. Y = Y ∗∗ if and only if Y =↓↑ Y .
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Lemma 4.2. If Y,Z ⊆ X are increasing, so are Y ;X Z and Y^X .

Proof. Let x ∈ Y ;X Z, and x≤ x′. Then, there are y ∈ Y,z ∈ Z such that R(y,z,x), and from R2F1
we obtain R(y,z,x′), hence, x′ ∈ Y ;X Z.

Let x ∈ f (Y ) and x≤ x′. Then, f (x)≤ f (x′) by R2F2, and f (x)∈Y by R2F6. Since Y is increasing,
we have f (x′) ∈ Y , and R2F6 implies x′ ∈ f (Y ).

Theorem 4.2. The complex algebra of a rough relation frame is a rough relation algebra.

Proof. We have shown in [7] that 〈L(X),∩,∪, ∗,+, /0,X〉 is a regular double Stone algebra.

Next, we show that 1′X is the identity element of Cm(X ): Let A⊆ X be increasing. We first show
A ;X 1′X = A:

“⊆”: Let z ∈ A ;X 1′X . Then, there are x ∈ A, y ∈ I such that R(x,y,z). By the ⇐ direction of
R2F11 we obtain x≤ z. Since A is increasing and x ∈ A it follows that z ∈ A.

“⊇”: Let z ∈ A. Since ≤ is reflexive we have z≤ z and by the⇒ direction of R2F11 there is some
y ∈ I such that R(z,y,z). This implies z ∈ A ; 1′X .

Next, we show that 1′X ;X A = A:

“⊆”: Let t ∈ 1′X ;X A. Then, there are x ∈ I and z ∈ A such that R(x,z, t). By the⇐ direction of
R2F12 we obtain z≤ t. Since A is increasing and z ∈ A it follows that t ∈ A.

“⊇”: Let z ∈ A. Since ≤ is reflexive we have z≤ z and by the⇒ direction of R2F12 there is some
y ∈ I such that R(y,z,z). This implies z ∈ 1′X ;X A.

The proofs that X satisfies R2A1 – R2A5 are the same as in the classical case, and can be found
in [14], Theorem 6.

R2A6: Let Y,Z ∈ L(X) and z ∈ Y^X ;X (Y ;X Z)∗. Then, there are x ∈ Y,y ∈ (Y ;X Z)∗ such
that R( f (x),y,z). By R2F1, we have R( f x),y,z) and R(x,z,y) by R2F8. Now,

y ∈ (Y ;X Z)∗⇐⇒↑ {y}∩ (Y ;X Z) = /0,(4.1)

in particular, y 6∈ Y ;X Z.

Assume ↑ {z}∩ Z 6= 0; then, z ∈ Z since Z is increasing. Since x ∈ Y and by R(x,z,y) we have
y ∈ Y ;X Z, a contradiction.

R2A7: Let Y,Z ∈ L(X) and x ∈ (Y ∗ ;X Z∗)∗∗. By Lemma 4.1, there is some t ∈ Y ∗ ;X Z∗ such
that x ≤ t; observe that t ≤ x. Suppose that r,s ∈ X such that ↑ {r}∩Y = /0, ↑ {s}∩Z = /0, and
R(r,s, t). If r is minimal. then r = r, and therefore, ↑ {r}∩Y = /0. If r is not minimal, then r < r,
and ↑ {r} = {r,r}. Now, r 6∈ Y , together with the fact that Y is increasing, imply ↑ {r}∩Y = /0.
Similarly, ↑ {s}∩Z = /0, so that r ∈ Y ∗ and s ∈ Z∗. Now, R(r,s, t) and R2F10 imply R(r,s, t), and it
follows from t ≤ x and R2F1 that R(r,s,x). Hence, x ∈ Y ∗ ;X Z∗.

R2A8: This is R2F3 together with Corollary 4.1.
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Let h : L→ Cm(Cf(L)) be defined by h(x) = {F ∈ Prim(L) : x ∈ F}.

Theorem 4.3. h is an embedding of R2As.

Proof. We have shown in [7] that h preserves the operations +, ·, ∗,+,0,1. Let a,b ∈ L; we show
that h(a ; b) = h(a) ;X h(b):

“⊆”: Let H ∈ h(a ; b), i.e. a ; b ∈ H. Since H is a filter it follows that ↑ {a} ;↑ {b} ⊆ H. By
Lemma 3.2, there are prime filters F,G such that ↑ {a} ⊆ F,↑ {b} ⊆G, and F ; G⊆H. Since a∈ F
and b ∈ G we have a ; b ∈ H, i.e. H ∈ h(a) ;X h(b).

“⊇”: Suppose that H ∈ h(a) ;X h(b). Then, there are F ∈ h(a),G ∈ h(b) such that R(F,G,H),
i.e. F ; G⊆ H. It follows from a ∈ F,b ∈ G that a ; b ∈ H, i.e. H ∈ h(a ; b).

Next,

H ∈ h(a˘)⇐⇒ a˘ ∈ H⇐⇒ a˘ ˘ ∈ f (H)⇐⇒ a ∈ f (H)

⇐⇒ f ( f (H)) ∈ h(a)^X ⇐⇒ H ∈ h(a)^X .

Finally,

H ∈ h(1′)⇐⇒ 1′ ∈ H⇐⇒ H ∈ I⇐⇒ H ∈ 1′X .

This completes the proof.

Let X = 〈X ,≤,R, f , I〉 be a rough relation frame, and let k : X→ Cf(Cm(X)) be defined by k(x) =
{A ∈ L(X) : x ∈ A}; note that k(x) is the (principal) prime filter of L(X) generated by ↑ {x}.

Theorem 4.4. k preserves R, f , and I.

Proof. First, we will show that R(x,y,z)⇐⇒RCf(Cm(X))(k(x),k(y),k(z)). If F,G,H ∈Prim(Cm(X)),
then, by the definition,

RCf(Cm(X))(F,G,H)⇐⇒ F ;X G⊆ H by definition of RCf(Cm(X))

⇐⇒{C : (∃A ∈ F,B ∈ G)A ;X B⊆C} ⊆ H by definition of complex ;X
⇐⇒ (A ∈ F and B ∈ G⇒ A ;X B ∈ H) since H is a filter

⇐⇒ (A ∈ F and B ∈ G⇒{u ∈ X : (∃s ∈ A, t ∈ B)R(s, t,u)} ∈ H)

by definition of ;X , so that

RCf(Cm(X))(k(x),k(y),k(z))⇐⇒ (x ∈ A and y ∈ B⇒ z ∈ {c ∈ X : (∃a ∈ A,b ∈ B)R(a,b,c)}).

“⇒”: Suppose that R(x,y,z), and let x ∈ A and y ∈ B. Since R(x,y,z) it follows that z ∈ {u ∈ X :
(∃s ∈ A, t ∈ B)R(s, t,u)}), and therefore, RCf(Cm(X))(k(x),k(y),k(z)).

“⇐”: Suppose that RCf(Cm(X))(k(x),k(y),k(z)), and set A =↑ {x}, B =↑ {y}.
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1. x = x, y = y: Then, A = {x,x},B = {y,y}. Let s ∈ A, t ∈ B such that R(s, t,z). By R2F1,
R(s, t,z) and thus, R(x,y,z).

2. x = x, y = y: Then, A = {x},B = {y}, and therefore, R(x,y,z).

3. x = x, y = y: Then, A = {x,x},B = {y}. Let s ∈ A, t ∈ B such that R(s, t,z); then, t = y. By
R2F1, R(s,y,z) and thus, R(x,y,z).

4. x = x, y = y: Analogous.

k( f (x)) = fCf(Cm(X))(k(x)): Using R2F6 repeatedly we obtain

A ∈ k( f (x))⇐⇒ f (x) ∈ A⇐⇒ x ∈ A^X ⇐⇒ A^X ∈ k(x)⇐⇒ A ∈ fCf(Cm(X))(k(x).

Finally we show that x ∈ I⇐⇒ k(x) ∈ ICf(Cm(X)):

x ∈ I⇐⇒ I ∈ k(x)⇐⇒ 1′X ∈ k(x)⇐⇒ k(x) ∈ ICf(Cm(X)).

This completes the proof.

5 Conclusion

In this paper we extended discrete dualities for relation algebras [14] and regular double Stone al-
gebras [7] to rough relation algebras. Rough relation algebras differ from relation algebras in that
the underlying Boolean algebras are replaced by regular double Stone algebras. As a consequence,
the axiom a ˘ ; −(a ; b) ≤ −b of relation algebras which is equivalent to De Morgan theorem K
and involves the Boolean complement was replaced by the axiom R2A6 obtained from it by using
the pseudocomplement ∗ instead of the Boolean complement −. Moreover, the axioms R2A7 and
R2A8 were added which further characterize the action of the pseudocomplement with composi-
tion of rough relations and with the unit element of the monoid, respectively. As shown in [7],
the frames associated with regular double Stone algebras are obtained from the frames of double
Stone algebras by postulating that their partial order is the disjoint union of chains of length at
most 2. This specific feature implied that properties of relation R – being a frame counterpart to
the algebraic operation of composition of rough relations, and of the function f – corresponding
to the operation of converse of rough relations – had to be confronted with this particular ordering,
and tuned accordingly. The frame axioms R2F8 – R2F10 were postulated in response to that re-
quirement. Furthermore, the RA frame axiom characterizing the set I, which is a counterpart to the
unit element of the monoid, is split into two axioms R2F11 and R2F12. It was shown in the present
paper that these frames are an adequate counterpart to rough relation algebras, so that a discrete
duality between the two classes of structures holds.
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A discrete duality is a step towards a duality via truth [12]. Duality via truth holds between a class
of algebras and a class of frames whenever they are equivalent as semantic structures of a formal
language whose signature coincides with the signature of the algebras in question. This amounts
to saying that the notions of truth determined by these classes of structures are the same in that the
structures validate the same formulas of the language. Development of duality via truth for rough
relation algebras and their associated frames is an open problem. Once a frame semantics of a
logic is given, a dual tableaux proof system for the logic can be constructed following the methods
presented in [11]. Thus providing duality via truth for a logic of rough relations would enable us
to contribute to automated deduction for the logic.

Further work is also needed on the status of the inequality R2A6a which was postulated in [3] as an
axiom. As shown in [2] it is true in relation algebras. Neither the conditions of representability of
rough relation algebras nor the discrete duality developed in the paper depend on that axiom.
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