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   1. Introduction. 

   In the paper [5], N. Furukawa and S. Iwamoto have defined Markovian decision 

processes with a new broad class of reward systems, that is, recursive reward func-
tions, and have studied the existence and properties of optimal policies. Under some 
conditions on the reward functions, they have proved that there exists a (p, s)-optimal 

stationary policy and that in the case of a finite action space there exists an optimal 

stationary policy. These are some generalizations of results by D. Blackwell [3]. 

   In this paper the author defines a dynamic programming problem with a recursive 

additive system which is referred to one type of Markovian decision processes with 

recursive reward functions defined by the previous authors [5]. This paper gives 
an algorithm for finding optimal stationary policies in the dynamic programming 

with the recursive additive system in the case of finite state and action spaces. 

Furthermore, we give several interesting examples with numerical computations to 

obtain optimal policies. 
   The motivation to consider the dynamic programming problem with the recursive 

additive system is the following : If we restrict the " reward " in narrow sense, for 

instance, the money in economic systems or the loss in statistical decision problems, 

it will be appropriate for us to accept the total sum of stage-wise rewards as a 

performance index. That is so-called additive reward system. But many practical 

problems in the field of engineerings enable us to interpret the " reward " in wider 
sense. In those problems we often encounter much complicated reward systems that 

are more than so-called additive. We have an interesting class of such complicated 

reward systems in which we can find a common feature named " recursive additive ". 

By talking about various reward systems belonging to this class at the same time, 

we can make clear, as a dynamic programming problem, an important common 

property within the class, Our proofs are partially owing to Blackwell [2].

   2. Notations and optimization problem. 

   A dynamic programming problem with a recursive additive system is, in general, 

defined by six-tuple {S, A, p, r, thtl, where S is a set of states labeled by the integers
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s= 1, 2, ••• , N, that is, S= {1, 2, ••• , N}, A is a set of actions labeled by the integers 
a= 1, 2, ••• , K, that is, A= {1, 2, ••• , , p is a transition law 14, that is, 

                           A-

                 E = 1 , p� 0 for i, j E S, k E A , 
                                 J=1 

r = ; i, j E S, k E A) is a set of stage-wise rewards, i3= (gFi; i, j E S, k E A) is a 

generalized accumulator whose value 1.3; is a discount factor depending on transition 
(i, k, j), and t is a translator from R1 to R1. 

   Throughout this paper we call the dynamic programming problem with recursive 
additive system "recursive additive dynamic programming " or simply " recursive 
additive DP ". We sometimes use the convenient notations j3(i, k, j), r(i, k, j) and 

p(i, k, j) in stead of A, r and 14 respectively. 
   When the system starts from initial state s1 E S at 1-st stage and the decision 

maker takes an action a1 E A on this state si, the system moves to next state s, E S 
with probability P(sl, a1, s2) at 2-nd stage and the system yields a stage-wise reward 
r(s„ a„ s2) and a discount factor P(si, a1, s2). 

   However, at the end of 1-st stage the decision maker indeed gets the translated 
reward t(r(s1, a1f s2)). The system is then repeated from the new state s2 E S at 2-nd 
stage. If he chooses an action a2 E A on state s2, it moves to state s3 with probability 

p(s2, a2, s3) at 3-rd stage. Then the system also yields a stage-wise reward r(s2, a2, s3) 
and a discount factor 13(s2i a2, s3) at the end of 2-nd stage, and he really receives the 
discounted reward I3(s1, a1, s2)t(r(s2, a2, s3)) of the translated one t(r(s2, a2, s3)) multiplied 
by a discount factor i3(s1, a1f s2) which was swept at the end of 1-st stage. Similarly 
at the end of 3-rd stage he gets a reward 13(s1i a1, s2)13(s2, a2, sg)t(r(s„ a3, s4)) which is 
discounted one of t(r(s3, a„ s4)) multiplied by 13(s1i a1, s2)p(s2, a2, s3). In general when 
he undergoes the history (s,, a1, s2, a2, ••• , sn, an, sn.,1) of the system up to n-th stage, 
he comes to receive a reward )3(s1i a„ s2)13(s2, a„ s3) ••• 48(sn_1, an_1, sn)t(r(sn, an, sn.„)) at 
the end of n-th stage. Furthermore, the process goes on (n±1)-st stage, (n+2)-nd 
stage and so on. 

   Since we consider a sequential nonterminating decision process, the decision 
maker continues to take actions infinitely. Consequently if he undergoes the history 
h = (s1, a1, s2, a2, •••), he comes to receive the total reward

                 V(h) = t(r(s1, a1, 52))+J3(51, a1, s2)t(r(s2, a2, s3)) 

                       +13(si, a1, s2)/3(s2, a2, s3)t(r(s3, a3, s4)) 

                            •-• H8(si, a1, 53)43(52, a2, 53) 

                            ••• i3(s„..1, an_„ sn)t(r(sn, an, sn+i))+ -. • 

This reward system is illustrated as follows :
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 a, aza3- - - 

Si—.—sz7179-S2p s,r I t91S3.--17S3r 1911,....s,L.1 p sp_,i_.....,0psn+,.___ 

              p(s„ a„ sz)p(sz, az, s3)gs„ a3, s3)i3(sn, an, s.+1) 

        r(s1, a1, sz)r(sz, az, sz)(s„a3,s4),.,'r(sn, an, s„,1) 
                             1`•...,g--0- - - - 

  0©CD 

 1 

     1i4-0 
             i(r(s„ a3, s2))+13(s1, a1, s2)t(r(s2, a2, s3)) 

                                   +19(s1, a1, s2)19(s2, a2, s3)t(r(s3, a3, SO)+ — 

                                                 --FP(s„ a1, s2),8(s2, az, 53) --- ,'(s,,_„ a„_„ sn)t(r(s,„ a„, sn+,)) 

                                                                       + -- 
                Fig. 1. Reward system of recursive additive DP.

It should be noted that C), • and g mean C), r ---> • —> r and a —> respec-

               t(r) ra- b 
tively in Fig. 1. The decision maker wishes to maximize his total expected reward 
over the infinite future. 

   We assume that he has a complete information on his history consisted of states 

and actions up to date and that he knows not only the stage-wise reward r = (it), 
its translator t = t(.) and the generalized accumulator j3 = (j3) but also the recursive 
additivity of reward system in Fig. 1. 

   Let F denote the (finite) set of all functions from S to A. By a policy, we mean 
a sequence { fl, n =1, 2, --} of functions fn E F. We usually write a policy 7r.= 

{f1,f2, •••}. Using policy 7r means that, if we find the system in state s on the n-th 
day, the action chosen that day is fn(s)E A. A policy {g, f ••} is denoted by 

{g, 7r1. By {gn, n-}, we mean the policy fg, g, ••• , g, f1, f 2, • -1. For 7-c= •••}, we 
define n it for each n by n2r={fn+i,fn+2,•••}. In particular '7C = . A policy {f,f, •••}, 
denoted by P , is called a stationary policy. 

   We associate with each f E F the Nx 1 column vector F(f) whose i-th element 
F(f)(i) is 

                  r(f)(i) = EPVt(rigi)) i= 1, 2, ••• , N 
                                                  1=1
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and (ii) the Nx N Markov matrix P(f) whose (i, j) element P(f)(i, j) is 

                 P(f)(i, j)= p01) x i3;!y) =1, 2, • , N. 

If the decision maker uses policy ••-} and the system is initially in state 
i S, his total expected return from 7 is the column vector 

                        V(7) = 137,(7)F(f.+1) 
                                                        n=0 

where /30(7r)= /, the NxN identity matrix, and for n _� 1 

                    Pn(7) = P(f1)P(f2) 17(.10 . 

That is, i-th element of 17(7) is 

    V (7) (i) = 7(.10(0+ EP{.1"'AirF(f2)(/)+ E Pr.).(1'Plir),370(i)iefiV)F(f 3)(k) 
          J-1j, k=1 

                     E pf."(i)pf.d(j)Ali/2-1(Mpr,;(i)13,51CP- i(h)F(fn)(1)+ 
                                     j, k, • • • ,h,1=1 

   We associate with each f E F the operator L(f) which maps the Nx 1 column 

vector u into L(f)u=47(f)+P(f)u. For any two column vectors u, v we write u _� v 

if every coordinate of u is at least as large as the corresponding coordinate of v, 
and u> v if u �v and u # v. For Nx 1 column vector u=(u1 ,••• , TINY and Nx N 
matrix A=(a“), we use the norms 11 11A-11 defined by !lull = max I ni 

max E I ai I respectively. 
       j=1 

   A policy 77* is called optimal if V(n-*)�-_V(7) for all 7r.

   3. Optimal policies. 

   We now set 
   ASSUMPTION (I). It follows that 0 A < 1 for any (i , k, j) E Sx A X S. 

   We remark that if Assumption (I) is satisfied , we have for any policy 7 and any 
i E S 

 5 V (7)(i)                  1—K*—1—rK* 

where r*= min t(it),r* = max t(ri), K*= minj3and K* = maxP'; . 
     i,k,jk, j i, k , ji, k, 

   Hence Assumption (I) assures the finiteness of the vector V(7) for any policy . 
Furthermore note that Assumption (I) implies the hypotheses in the following Lemmas 

3.2 and 3.3. 

   Under Assumption (I) Furukawa and Iwamoto (Theorem 6.6 (ii) in [5]) have 
proved that there exists an optimal policy which is stationary in the finite state-
and-action space dynamic programming problem with recursive additive functions . 

   In this section we shall give an algorithm for finding optimal policies which is 

stationary. 

   LEMMA 3.1. (i) For any f E F and any policy 7 we have
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                       V(f,  20=  L(f)V(77). 

   (ii) For each _In E F, 1 and any policy 7r we have 

               17(f 1, f2, , f 7,, 7C) = L(f1)L(f2) L(fn)V(7r). 

   PROOF. The proof of this lemma is easy. 
   LEMMA 3.2. (i) If it .� 0 for each (i, k, j) Sx Ax S, then L(f) is monotone, that 

is, u v implies L(f )u L(f )v for each f E F. 

   (ii) If max 1)51;1 < 1, then for each f F the operator L(f) is a contraction 
                  k, J)=SAS 

mapping on RN with contraction coefficient less than 1, that is, there exists C= max I geil 
                                                                                                k, j 

such that IlL(f)u—L(f)v11 C liu —v11 for any NX1 vectors u, v. 
   PROOF. The first result follows directly from the equality 

                    L(f)u—L(f)v = 15(f)(u—v) . 

Then, the second follows by the inequalities                 

IlL(f)u—L(f)v11 1115(f )11x Ilu—v11 , 

               1115(f )11 max I it I II P(f)II                                            k, j) E SAS 
and 

                P(f)11=1 

where {P(f)(i, j)1= {Pin is the Markov matrix for each f e F. 
  LEMMA 3.3. Let max I i3tiI <1 be satisfied. Then it follows that limL(f1)L(f2)k, jn•. 

"*L(f n)W V(7) for any policy = 17 f 2, ,fn, —} and any w E RN. 
   PROOF. The proof is straightforward and we omit it. 

   Throughout the reminder of this section, we shall discuss analogously according 

to Blackwell [2]. 
   THEOREM 3.1. Let Assumption (I) be satisfied. If V(7r*)�_V(f, r*) for any f e F, 

then 7r* is optimal. 
   PROOF. By Lemma 3.1 (i), our hypothesis is that 

                  V(7r*) L(f) V(7r*) for any f E F. 

By Lemma 3.2 (i), we have for any policyft.f                                     -1,2, ,f., 

               v(7r*) L(f1)L(f2) L(fn)V(7*) n 1 . 

Consequently Lemma 3.3, with letting n—>co, implies that 

                          V(7*) V (7r) . 

Since 77 is arbitrary policy, the proof is complete. 
   THEOREM 3.2. Let Assumption (I) be satisfied. If V(f, 7r) > V(7r), then V(f(-)) 

> V (7r). 
   PROOF. By Lemma 3.1 (i), our hypothesis is that 

                       L(f)V(7r)>V(2r). 

Since Lemma 3.2 (i) holds, that is, operator L(f) is monotone, applying the monotone 
operator L'1(f) yields
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                      Ln( f ) V (7r) .1:1-1(f ) V (7r) , 
so that 

                V( f , r) V( f , 7r) > V(7r) for all n 1 . 

Then letting n--*00, we have by virtue of Lemma 3.3 

                           V(fc"))>V(7r) . 

   Now we have our main results which are analogues of the Howard's policy im-

provement algorithm for the case where depends on (i, k, j) G S x A X S. 
   THEOREM 3.3. Let Assumption (I) be satisfied. Take any f E F. For each i E S, 

denote G(i, f) the set of all k E A for which 

                    /4Mi V(P-))(l)> V(fn(i) 
                                           J=i 

          N 

where 11--Ep/iy(rlb). If G(i, f) is empty for all iE S, then f(-) is optimal. For any 
               j=1 

g E F such that 
   (a) g(i) E G(i, f) for some i and 

   (b) g(i) = f(i) whenever g(i) E G(i, f), 
we have V(g(-))>V(f(-)). 

   PROOF. It follows that 

                V(g, f(-))(i)=F(g)(i)+15(g)V(fn(i). 

Furthermore, V(g, f(-))(i)>V(f(-))(i) if and only if g(i) E G(i, f), and V(g, f(-))(i) = 
V(f(-))(i) if g(i) f(i). Thus if G(i, f) is empty for all iG S, V(f(-))�.V(g, f(')) for 
all g so that, from Theorem 3.1, f(-) is optimal. On the other hand, for any g satis-
fying (a) and (b), we have 

                         V(g, f(-))>V(f(-)) , 

so that, from Theorem 3.2, V(g(-))>V(f(-)). 
   COROLLARY 1. Under Assumption (I), there is an optimal policy which is stationary. 

   PROOF. According to Theorem 3.3, if we take any stationary policy f(-), either 
it is optimal, that is, G(i, f) is empty for all i E S, or it has a stationary improvement 

g(-), that is, G(i, f) is nonempty for some i E S. Since F is finite, there is one which 
has no stationary improvement with finite interations, so that it must be optimal. 

   COROLLARY 2. Let Assumption (I) be satisfied. Take any f1 E F. Then solve the 
linear equation 

                                  N 

                  vi = 17( f 1)(i) -I- E P(fi)(i, Dvi 1=1, 2, , N 
                                                J=1 

for vi (i E S). Using these values vi (i E S), find the element of G(i, f1) for each i e S. 
If G(i, fi) is empty for all i E S, fr is optimal, and V(fr)(i),vi for all i E S. If 
at least f2(i) E G(i, f1) for some i E S, we obtain an improved policy f r such that 

f2(i) f1) for some i and f2(i) = f1(i) for G(i, f1) empty. We then return to solving 
the linear equation for f2. And again we find the element of G(i, f2) for each iE S. 
If we repeat this procedure, then for some n we have 

                     fn(i) = fni-i(i) for all i G S
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and then  f;,-) is an optimal policy which is stationary. 

   PROOF. The proof follows directly from Theorem 3.3 and Corollary 1. Note 

                                                                     N that, as an example, we can take an initial f,E F such that F(fi)(i)= max Emeitolo.

   4. Application to some additive systems. 

   We now illustrate some interesting examples with numerical computation which 
follow from the discussion in Section 3. 

   EXAMPLE 1. (General Additive System) 
   We say that a dynamic programming problem {S, A, p, r, PI has a general addi-

tive system if t(r) = r for any rE R1 in the recursive additive DP {S, A, p, r, j3, t} 
discussed at Section 2. We call this dynamic programming " general additive DP ". 
In this case we have an optimization problem where our aim is to maximize the 
expected reward of the function 

                    V(h)=r,- -1-13,r,-1-13,13,r3+-1-43432 •••••• 

over the infinite future and to find theoptimalpolicyamongthe all ones, where 
h= (s1,a1,S2t a2, -..), rk = rsaAk.,,=r(sk,ak, sk+1),fik=Asksk+i= 1(Sk, ak, Sk+1), sk S and 
ak E A for k 1. 

   In many financial decision problems, the discount factor gi may depend on 
selected action k E A. Then we have K different discount factors 83                                                                                       ,1,,2, , Pg. 
These problems can be formulated into the general additive DP. 

   In particular, if 0 Pt; IS < 1, then we have a dynamic programming problem 

{S, A, p, r, AI whose objective function is 

                     V(h)=r,- fir,d- 132r3+ ••• ••• . 

We call this dynamic programming "discounted DP ". Furthermore, we can make 
the modified discounted DP's by assigning the translator t(.) the specified function 
such as t(r)= (1 —r)er or t(r)= log r. 

   We have a following data from the Taxicab Problem due to Howard [6].
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                          TABLE 4.1.1. 

                   Data for general additive DP. 

state actiontransitionstage-wisegeneralized 
                probabilityrewardaccumulator 

 ikYli pi/2Y: .3rA? -A 7 -1,313IiI3A13ik3 

      1 1 195 98 98  1110 4 8 
       2 4 4100 100 100 

      1 3 390 90 93    28 2 4 
        16 4 16100 100 100 

      1 1 598 96 98    34 6 4 
       4 8 8100 100 100 

     1185 90 95  21014 0 18 
      22100 100 100 

      1 7 180 80 95    26 16 8 
        16 8 16100 100 100 

      1 1 195 95 95     3 —5 —5 —5        3 3 3100 100 100 

      1 1 175 90 95  
3110 2 8        4 4 2100 100 100 

      1 3 195 70 80  
  26 4 2        8 4 8100 100 100 

      3 1 395 95 95  
  34 0 8         4 16 16100 100 100

Then the policy iteration algorithm (abbreviated, hereafter by PIA) described below 

gives an optimal stationary policy

                       1 

                    f= 1 
                        3 

                            TABLE 4.1.2. 

             Solution by the PIA for general additive DP. 

v1119. 660169. 490 
V2117. 384166. 129 
v3106. 376164. 411 

      VDO 
 111 

f111 STOP 
 133 

VDO/ is the value determination operation. 
PIR \ is the policy improvement routine.

   However the PIA for discounted DP with same transition probability and same 

stage-wise reward as general additive DP yields an optimal stationary policy
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 '  2  ' 

                   g= 2 . 
                               , 2 , 

                         TABLE 4.1.3. 
        Solution by the PIA for discounted DP with it a--_-- O. 90. 

v191. 257119. 439121. 653 

V297.551134.479135.306 

V389.967121.927122.837 
                                          ---,

,,-----....„.„ 

1122 

g 1222 STOP 

1222

   EXAMPLE 2. (Multiplicative Additive System) 
   We say that a dynamic programming {S, A, p, r} has a multiplicative additive 

system if A= r for any (i, k, j) E SAS and t(r) = r in the recursive additive 
DP{S, A, p, r, p, t}. We call this dynamic programming " multiplicative additive DP ". 
Then, the reward system is given as follows :

aia2a3an 

SiP
,PElS2S2S3ill.S2PS4EVS4SnSn+smilieSn+1                                                                         -- 

      r(s3, a1, s2) 
                        r(s2, a2, s3) 

                           0r(s,, a„ s4) 
                                                  0r(s„ an, sni.,) 

  r(s„ al, s2)M 

               +r(si, al, s2)r(s2, a3, s3) .... 
                                                                                                                       I...... 

                                       -Er(si, a3, s2)r(s2, a2, ss)r(s3, a3, s4) 

                                                                         + .. 

                                                    d-r(si, th, s2)r(s2, a2, s3) — r(s., a. sn+) 

                                                                                                            +,. .. 

             Fig. 2. Reward system of multiplicative additive DP.

This case leads us to maximization the expected value of the function 

                    V(h)=ri-Frir2d-rir2r3+ d-r1r2 ••• rn_irn+ •• • 

where rk and h have the same meanings as Example 1. Then, Assumption (I) means 

0 < 1 for any (i, k, j) E SAS. 

   The stage-wise reward r in the following data satisfies Assumption (I).



58S.  IwAmoTo

                           TABLE 4.2.1. 

                 Data for multiplicative additive DP. 

state action transition stage-wise generalized 
               probabilityrewardaccumulator 

 i k PiAPNP/13rf,rik it4it Pt 

1 11 1 1 1 1 2         2 4 4 2 5 5 

    21 3 3 2 1 1           16 4 16 5 10 5 

    31 1 5 1 3 1          4 8 8 5 10 5 

      11 7 1 9  2 10 
        22 10 20 10 

                                                Mei =it for 
        1 7 1 2 4 2  

    216 8 16 5 5 5(z, k, j) E SAS 

    31 1 1 1 1 1            3 3 3 20 20 20 

       1 1 1 1 1 2 
3 1         4 4 2 2 10 5 

    21 3 1 3 1 1           8 4 8 10 5 10 

        3 1 3 1 1 2           3 
          4 16 16 5 20 5

The calculations by PIA are shown in the following :

                 TABLE 4.2.2. 

Solution by the PIA for multiplicative additive DP. 

vi0.69900.7938 
V21.30912.6198 

v30.58760.6434 
        ...----'"----,_,„...--' ----,, 

 1-11 

f 122 STOP 
111

Then we get an optimal stationary policy 

                            1                f =[2 
                            1 for this multiplicative additive DP. But the optimal one for discounted DP with 

  0.95 is 
                                           2'                    g =[ 2 . 

                                             2-
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                         TABLE 4.2.3. 

       Solution by the PIA for discounted DP with pfi :_=_-: O. 95. 

v19.164112.512912.7511 
v29. 474713. 305313. 4382 
v39. 098512. 670512. 8101 
        ----"'----....,,....„..--4----,,,„.....---,---..._, 

1122 

g 1222 STOP 

1122

   EXAMPLE 3. (Divided Additive System) 
   We say that a dynamic programming {S, A, p, r} has a divided additive system 

if Ail; 1/71i for any (i, k, j) E SAS and t(r) = r in the recursive additive DP{S, A, p, 
r, 13, t} . We call this dynamic programming "divided additive DP ". Then, we have 
the following reward system :

a1aza3an 

S1szszs3s,s,S4sns.+1s.+1 

 P0PlaP0-- — — P 

      r(s1, a1, s3)r(sz, a3, s3)r(s 3, a3, s,) 
                                                                                    r(s., a., s,,,.,) 

              0 

                      0 
                                                                                                                                                   _____• ••

•...            r(s,, a„ sa) 
                                                                              ...... 0 

                                    r(s,, a3, s3)                                                           -I- 
             r(s3, a3, s3)...... .. 

                                                              r(s3, a3, s,)                                                      + 
r(s„ a„ s,)r(s3, a„ s3) 

                                                                 r(s„,a.,s.+3)  
                                                                           r(s„ a3,sz)r(sz,a3,s3)—r((sn -i, a.-3, sn+t) 

                                                                                                                         ± ... ..

                  Fig. 3. Reward system of divided additive DP. 

              v  H
ere means 

                       uv 

We have an optimization problem whose objective function is the expected return 

of the function 

             V(h) = ri+  r2 + r,+...+   , 
                            ri rir2 

where h = (s1, a1, s2, a2, • •.), rk = rs:sk+i for k 1.
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   A dynamic programming problem {S, A, p, r, t} is called "modified divided 
additive DP " if i3 1/r; for (i, k, j) E SAS in recursive additive DP{S, A, p, r, 9, t}. 
Then in the modified divided additive DP 

             V(h)„r1+  t(r2)t(r3)t(rn)                                                                                           d_ "..                          r1 r1r2r1r2 •-• rn-i 

We can see, in Bellman's book ([1], Chap. I), an example of modified additive DP, 

which is restricted to the finite horizon and deterministic case. 

   If r!i> 1 for any (i, k, j) E SAS, then Assumption (I) is statisfied. The stage-
wise rewards in the following satisfy Assumption (I).

                            TABLE 4.3.1. 

                   Data for divided additive DP. 

state action transition stage-wise ' generalized 
                probabilityreward j accumulator 

 i kPIAPI/2Pik3rikirit11,3181i PitPik3 

1 11 1 1 3 6 7         2 4 4 2 5 5 

    21 3 3 7 11 6           16 4 16 5 10 5 

    31 1 5 6 13 6          4 8 8 5 10 5 

         11 17 21 19  2 
10       22 10 20 10 

                                                                       — 
rikj         1 7 1 7 9 26  

        2            16 8 16 5 5 25 for (i,j,k) 

          1 1 1 21 21 21           3 
         3 3 3 20 20 20 

        1 1 1 3 11 7  3 1 
        4 4 2 2 10 5 

         1 3 1 13 6 11           2 
         8 4 8 10 5 10 

        3 1 3 6 21 7       3 
4 16 16 5 20 5

The calculation by PIA for this divided additive DP is given as follows :

                         TABLE 4.3.2. 

           Solution by the PIA for divided additive DP. 

v14.84297.339311.8020 

v24.52888.341712.2804 
V34.95677.287811.2934 

      ---'' ---,,,--„,„,,, 

1322 

f 1333 STOP 
1322
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   We have an optimal stationary policy 

 2  ' 

                        f= 3 

                                       , 2 , 

   On the other hand, if transition probability p and state-wise reward r are the 

same as ones for this divided additive DP respectively, the optimal stationary policy 

for discounted DP with discount factor 13 = 0.95 is 

                                               2'                   g =[ 2 . 
                                           2, 

Following table shows this calculation :

                           TABLE 4.3.3. 
       Solution by the PIA for discounted DP with 4i =-=- 0. 95. 

vi29. 164132. 196932. 3873 
v229. 474732. 942633. 0489 
v329. 098532. 334832. 4463 

        .----"'----..„„___-------,„...„___...--,----...,,,, 

1122 

g 1222 STOP 

1222

   EXAMPLE 4. (Exponential Additive System) 
   We say that a dynamic programming {S, A, p, r} has an exponential additive system 

if pti= et for any (i, k, j) SAS and t(r) = r in the recursive additive DP {S, A, p, 
r, /3, t}. We call this dynamic programming " exponential additive DP ". The reward 
system of the exponential additive DP is just describled by Fig. 3 except for 

replacing CD) by 2). Here means eu•v ----> C). In this case, we have 

                                                eu+v • w 

                 V(h) = erl• 7'2+ eri+r2 •r3+ 

where h = (s1, a1, sz, a2, • • •), rk= rsAk+i for k� 1. Moreover, if t(r) = (1-7-)er, p = 
for any (i, k, j) E SAS in recursive additive DP, we have another objective function 

                    V'(h) = (1.--r1)erld-(1-7'2)erl+r2+(1—rs)er1+r2+r3 

                                             ±(1_roeri+r2+•••+rn+ 

We call this dynamic programming {S, A, p, r}' " modified exponential additive DP ". 
In these exponential additive DP's, Assumption (I) means r < 0 for any (i, k, j) E SAS.
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   We can find an example of modified exponential additive DP in Bellman's book 

([1], Chap. III). The stage-wide rewards illustrated in the following table satisfy 
Assumption (I).

                            TABLE 4.4.1. 

                   Data for exponential additive DP. 

state actiontransitionstage-wisegeneralized 
             probabilityrewardaccumulator 

 ikNi PA pi3riki rik2 rAiSiki PA Pit 

11——       1 1 1112        2 4 4255 

        2        1 3 32 1—1                        16 4 165 10 5 

 3——       1 1 5131        4 8 85 10 5 

     11719  210 —— 
          221020 104,9ikj --=et 

        17 1242for (i,k,j)  2 — 
       16 8 16555 

 3—_       1 1 1111         3 3 320 20 20 

      1 1 2112  31 
      4 4 42 10 5 

      1 3 1311   2 — —        8 
4 810 5 10 

      3 1 3112  3  
       4 16 165 20 5

   The optimal policy for the exponential additive DP which is stationary is given 

as follows: 

                                 TABLE 4.4.2. 

                 Solution by the PIA for exponential additive DP. 

               vl —1. 0831 
               V2 —1. 0807 

               v3—1. 0868 

    22 

       f 33 STOP 
    22 

Moreover, we obtain following tables :
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                   TABLE 4.4.3. 
 Solution by the PIA for discounted DP with it  0.95. 

         v1-2. 1503 
     v2—2. 0935 
     v3—2. 2093 

  22 

  g 33 STOP 
  22 

                   TABLE 4.4.4. 

Solution by the PIA for modified exponential additive DP 
               with t (r) (1 — r) er 

    v19. 8747 
     v210. 3750 
    v39. 3211 

  22 
  h 33 STOP 

  22

   Of course the transition probability mi and stage-wise reward rti are common 
in these three DP's. 

   Note that each optimal policy is common one ;

                [2 '                         f=g=h=3 
                                                2, 

and that policy iteration algorithm converges at first cycle respectively. 

   EXAMPLE 5. (Logarithmic Additive System) 

   We say that a dynamic programming {S, A, p, r} has a logarithmic additive system 

if 1311 =log rfi for any (i, k, j) e SAS and t(r) = r in the recursive additive DP {S, A, 

p, r, 43, t} . We call this dynamic programming "logarithmic additive DP". The reward 
system of logarithmic additive DP is just described by Fig. 3 except for replacing 

                             w 

           1 0 by ®. Here, CD means (log u)v —> ®.Then, we have 

           i 

                       (log u)(log v)w 

             V(h) = rid- (log r1)r2-1-(log r1)(log r2)r3 

                          + •-• +(log r1)(log r2) ' • • (log r„,)r,i+ •-• , 

where h= (s„ a1, s2, a2, • •.), rk= ro:sk+i for k � 1. Moreover, if t(r) = log r, A = log rt.! 
for any (i, k, j) m SAS in recursive additive DP, we have another logarithmic additive
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DP where objective function is the expected return of the function 

           V'(h) = log ri+(log ri)(log r0+(log ri)(log r2)(log r3) 

                            ••• +(log ri)(log r2) ••• (log r 7,)+ ••• . 

We call this dynamic programming " modified logarithmic additive DP ". If 1 rf;G e 

for any (i, k, j) SAS, then Assumption (I) is satisfied for these logarithmic additive 

DP's. The following data satisfies Assumption (I).

                          TABLE 4.5.1. 

                 Data for logarithmic additive DP. 

state actiontransitionstage-wisegeneralized 
               probabilityrewardaccumulator 

                Pill PA PA rik r rik3Nik Ri2Pik3 

            11
41                          4 1122.3 2.7 2.4 

         1 3 3      2
16 4 162.7 2.3 2.6 

            11
85                          8      342.5 2.4 2.6 

      11  2102
. 2.3 2.4       22= log riki 

       1 7 1for (i,k,j)     2
16 8 162.6 2.4 2.7 

         1 1 1      3
3 3 32. 4 2. 1 2. 5 

         1 1 1  31
4 4 22.6 2.5 2.7 

         1 3 1      2
8 4 82.7 2.6 2.4 

         3 1 3      3
4 16 162.6 2.7 2.5

   The PIA yields optimal policies associated with logarithmic additive DP, dis-
counted DP with P'1; /3 = 0.95 and discounted DP with t(r) = log r, 0.95 respec-
tively.

               TABLE 4.5.2. 

Solution by the PIA for logarithmic additive DP. 

   v,19. 2080 

   v219. 1090 

   v319. 7274 

 33 

 f 11 STOP 
 11
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                  TABLE 4.5.3. 

Solution by the PIA for discounted DP with tVii 0. 95. 

    vl 51. 7705 
    v251.7635 

    v351.8369 

  33 

  g 11 STOP 
  11 

                  TABLE 4.5.4. 

   Solution by the PIA for modified discounted DP 
            with plij = 0. 95, t(r) =log r 

    vl19. 0064 
    v219. 0025 
    v319. 0318 

  33 
 h 11 
  11

   In these three DPs we have a common optimal stationary policy 
                                          '3 

                           f =g=h-= 1 . 
                               1 

   Throughout above five examples, we have a remark that the ranges of the value 
rt; for (i, k, j) m SAS are (—co, 0), [0, 1), (1, cc ) , [1, e) corresponding to exponential 
additive, multiplicative additive, divided additive and logarithmic additive DPs 
respectively. By virtue of these examples, it is natural that we call p=-(pw a 

generalized accumulator.

   5. Additional comments. 

   In this section we will show that the recursive additive DP satisfying Assump-

tion (I) can be reduced to a DP with an absorved state. We will give some com-
ments on recursive additive DP. 

   Let {S, A, p, r, j3, t} be a recursive additive DP satisfying Assumption (I). Let 

0 E S be a fictitious state and Ko={1}. That is, the set of available actions at state 
0 consists of a single action 1. We define S, A, ,-p- and 77- as follows : 

                     - ---svfol , 

                A= {1CO3 A, A, ••• , A} , 
                                          N factors 

           {TOO = 1                Tiii=RO = 1 — j;Pitigjfor (i, k) E Sx A , 
                   1315 =NAfor (i, k, j) Sx AxS ,
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                   0for (i, k) = (0, 1) , 

                        k 

                  ttt E xjt(r f=) for (i, k) E SX A . 
                                        = S 

Then in a new-defined DPI, A,T,F1 the stage-wise reward F (Ft) does not depend 
on next state j E S but the set of available actions depends on current state i E S. 

   LEMMA 4.1. Let {S, A, p, r, 13,0 be a recursive additive DP satisfying Assumption 

M. Then, A, p, F} is a DP with an absorved state 0. Furthermore any policy it 
in recursive additive DP{S, A, p, r, /3,0 can be extended to the policy 17 in reduced 
DP{S, A, T, F1 such that 

                V (7c)(i) =17(77)(i) on S , i (ir)(0) = 0 . 

Conversely, any policy 7T- in reduced DP{S, A, p, 77-} can be regarded as a policy r in 
recursive additive DP{S, A, p, r, J3, t} such that 

                    17W(i) = V (r)(i) on S . 

In this case V(77)(0) = 0 is trivial consequence. 

   PROOF. Let P be NX N stochastic matrix andff.=rxPo]                                           be (N+1) x (N+1)                    L 

matrix. Then we have Pn= [ ix PO for each n� 1. The proof is an immediate 
consequence of this result. The details are ommitted. 

   It should be noted that the generalized accumulator 13 = (i3/1) in recursive additive 
DP is embedded into the transition law 15= (g) of reduced DP. Hence it is rather 
difficult to get five examples in Section 4 from the reduced one. 

   There is a kind of sensitivity analysis as follows : Is there any relation between 

general additive DP {S, A, p, r,13} and recursive additive DP {S, A, p, r, AO? In other 
words, what is a sufficient condition on t = t(•) for optimal policy in the former to 
remain optimal in the latter? The analysis of this sensitivity will require a detail 
analysis of Howard's policy iteration algorithm.

   Acknowledgement. The author wishes to express his hearty thanks to Professor 

T. Kitagawa and Doctor N. Furukawa for some useful comments.
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