NMARZZMIZRY R MY

Kyushu University Institutional Repository

DISCRETE DYNAMIC PROGRAMMING WITH RECURSIVE
ADDITIVE SYSTEM

Iwamoto, Seiichi
Department of Mathematics, Kyushu University

https://doi.org/10.5109/13082

HARIER : BEHEERHZE. 16 (1/2), pp.49-66, 1974-03. RETRIZEHES
N—3 0

HEFIBEMR

.

¥, KYUSHU UNIVERSITY

DISCRETE DYNAMIC PROGRAMMING WITH
RECURSIVE ADDITIVE SYSTEM

By
Seiichi IwaMoTO*

(Received July 15, 1973)

1. Introduction.

In the paper [5], N. Furukawa and S. Iwamoto have defined Markovian decision
processes with a new broad class of reward systems, that is, recursive reward func-
tions, and have studied the existence and properties of optimal policies. Under some
conditions on the reward functions, they have proved that there exists a (p, €)-optimal
stationary policy and that in the case of a finite action space there exists an optimal
stationary policy. These are some generalizations of results by D. Blackwell [3].

In this paper the author defines a dynamic programming problem with a recursive
additive system which is referred to one type of Markovian decision processes with
recursive reward functions defined by the previous authors [5]. This paper gives
an algorithm for finding optimal stationary policies in the dynamic programming
with the recursive additive system in the case of finite state and action spaces.
Furthermore, we give several interesting examples with numerical computations to
obtain optimal policies.

The motivation to consider the dynamic programming problem with the recursive
additive system is the following: If we restrict the “reward” in narrow sense, for
instance, the money in economic systems or the loss in statistical decision problems,
it will be appropriate for us to accept the total sum of stage-wise rewards as a
performance index. That is so-called additive reward system. But many practical
problems in the field of engineerings enable us to interpret the “ reward” in wider
sense. In those problems we often encounter much complicated reward systems that
are more than so-called additive. We have an interesting class of such complicated
reward systems in which we can find a common feature named “ recursive additive”.
By talking about various reward systems belonging to this class at the same time,
we can make clear, as a dynamic programming problem, an important common
property within the class, Our proofs are partially owing to Blackwell [2].

2. Notations and optimization problem.

A dynamic programming problem with a recursive additive system is, in general,
defined by six-tuple {S, A4, p, 7, B, t}, where S is a set of states labeled by the integers

* Department of Mathematics, Kyushu University, Fukuoka.

49

50 S. IwAMOTO

s=1,2,+---,N, that is, S={1,2,---, N}, A is a set of actions labeled by the integers
a=1,2,-,K, that is, A={1,2,-+, K}, p is a transition law p%, that is,

v

_Elp?,:l, P5=0 for i,jES, ke A,

=

r=(rk; 1,785, k= A) is a set of stage-wise rewards, B3=(B; i,j€S, ke A) is a
generalized accumulator whose value B% is a discount factor depending on transition
(i, k, 7), and t is a translator from R' to R'.

Throughout this paper we call the dynamic programming problem with recursive
additive system ‘ recursive additive dynamic programming” or simply “ recursive
additive DP”. We sometimes use the convenient notations J(i, &, j), r(i, k,j) and
b, k, j) in stead of 8%, r¥% and p¥ respectively.

When the system starts from initial state s, €S at 1-st stage and the decision
maker takes an action @, € A on this state s,, the system moves to next state s, S
with probability p(s,, a,, s;) at 2-nd stage and the system yields a stage-wise reward
(s, a,, Sp) and a discount factor B(sy, a,, s,).

However, at the end of 1-st stage the decision maker indeed gets the translated
reward 1(r(s,, a,, S;)). The system is then repeated from the new state s, S at 2-nd
stage. If he chooses an action @, € A on state s,, it moves to state s; with probability
p(s,, a,, s;) at 3-rd stage. Then the system also yields a stage-wise reward (s, a,, Sg)
and a discount factor B(s,, a,, S;) at the end of 2-nd stage, and he really receives the
discounted reward B(s;, a,, S)1(7(s,, @5, S5)) of the translated one #(r(s,, a,, S5)) multiplied
by a discount factor S(si, a,, s;) which was swept at the end of 1-st stage. Similarly
at the end of 3-rd stage he gets a reward B(s;, a,, $5)3(Ss, @s, S9H(r(s,, a5, S,)) Which is
discounted one of #(r(s., @, s,)) multiplied by B(s,, a,, $,)5(ss, a5, Sg). In general when
he undergoes the history (s,, @, Ss, @y, =+, Su, Gg, Sp+1) Of the system up to n-th stage,
he comes to receive a reward B(s;, @y, $5)B(Ss, Qs S3) =+ B(Sn-1, Gno1y SWIHY(Sn, Gn, Speq)) at
the end of n-th stage. Furthermore, the process goes on (n+1)-st stage, (n+2)-nd
stage and so on.

Since we consider a sequential nonterminating decision process, the decision
maker continues to take actions infinitely. Consequently if he undergoes the history
h=(s, a,, S,, ay, --+), he comes to receive the total reward

V() =t(r(sy, ay, $2))F+B(s1, @y, $)HT(Se, G5, S3))
+B(s1, @y, $:)B(Sz, Ay, ST (S5, A3, S,))
+ o B8y, a1, $)B(Sy, Gy, S5)
o+ B(Sn-1r Gn-1y ST (Sny Ay Spen))+ o+

‘This reward system is illustrated as follows:

Discrete Dynamic Programming with Recursive Additive System 51

a, a, a, —— a, _——

S.

Sz Sz iy 2
b} |7 18
B(sy, @y, s2)
7(S1, @S2 7(Sz @z, S3)

® ® ® ®

ﬁ(sb a21 s!) 48(53) a:n sl)

7(Sa, @3, S4) 7(Sny Gy Sner)
P o - A - -

17 (sy, @y, S2))+B(S1, @y ST (Ss, @5, S35))
+B(51, @3, $2)B(S2. @s, ST (3 Qg SO+

+B(s1, @y, 55)B(S2y @ay S3) - B(Sn-11 Ca-ns S (Sny ay Sn4r))

+ see
Fig. 1. Reward system of recursive additive DP.

r b

| l

It should be noted that @, - and @ mean @, r—> - —>r and a —> & respec-

Lo l

H(r) r a-b
tively in Fig. 1. The decision maker wishes to maximize his total expected reward
over the infinite future.

We assume that he has a complete information on his history consisted of states
and actions up to date and that he knows not only the stage-wise reward r=(r§),
its translator ¢t =1(-) and the generalized accumulator 3= (8%) but also the recursive
additivity of reward system in Fig. 1.

Let F denote the (finite) set of all functions from Sto A. By a policy, we mean
a sequence {f,, n=1,2,:--} of functions f,€F. We usually write a policy ==
{fu, f2 ---}. Using policy = means that, if we find the system in state s on the n-th
day, the action chosen that day is f,(s)e A. A policy {g, fi, /s -} is denoted by
{g,7}. By {g" =}, we mean the policy {g, &, ,8 /1, fs }. For z={f,f, -}, we
define "n for each n by "t ={fn+1, fnss ->*}. In particular z==. A policy {f,f, ---},
denoted by f“, is calléd a stationary policy.

We associate with each f < F the NX1 column vector 7(f) whose i-th element
F(f)(1) is

AW = PP i=1,2, N
=

52 S. TwamoTO

and (i) the NxN Markov matrix P(f) whose (i, j) element P(f)(, 7) is
P(F), j) = phio < 8P ,j=1,2,--,N.
If the decision maker uses policy =={f,, /5 -} and the system is initially in state
1€ S, his total expected return from x is the column vector
V(m)= 3 Pue(fanr),
where 130(,7):1, the Nx N identity matrix, and for n>1

That is, i-th element of V(x) is

V(m)@) =)0+ EP{} - {,“”r(fz)(])%- P{}“ PRV BLI O BRIF(f (k)

+ + z;;, lpfl L)pf7 G ... p{ln_lth)ﬁ{jﬂi\'gﬁz[j) ﬁ,{f—lih);:(fn)(l)_}_
Jok

We associate with each f < F the operator L(f) which maps the NX1 column
vector u into L(f)u=F(f)+P(f)u. For any two column vectors u, v we write u=v
if every coordinate of u is at least as large as the corresponding coordinate of v,
and u>v if uz2v and u#v. For NX1 column vector u=(u, -, uy) and NXN
matrix A={(a;;), we use the norms Ju], |A| defined by |u] =max lu;], J|A) =

1IN

max 2 la;;] respectively.
1IN j=

A policy 7* is called optimal if V(z*)=V(x) for all =.

3. Optimal policies.

We now set

ASSUMPTION (I). It follows that 0 < 8% <1 for any (i, &, j) € SXAXS.

We remark that if Assumption (I) is satisfied, we have for any policy = and any
ieS

[SV@O= e K*’

where 7« =min {(r}), r*=max #(+}), K« =min 84 and K*=max 8.
LEJ ik, j i,k j Lk j

Hence Assumption (I) assures the finiteness of the vector V(rx) for any policy.
Furthermore note that Assumption (I) implies the hypotheses in the following Lemmas
3.2 and 3.3.

Under Assumption (I) Furukawa and Iwamoto (Theorem 6.6 (ii) in [5]) have
proved that there exists an optimal policy which is stationary in the finite state-
and-action space dynamic programming problem with recursive additive functions.

In this section we shall give an algorithm for finding optimal policies which is
stationary.

LEMMA 31. (i) For any fe F and any policy = we have

Discrete Dynamic Programming with Recursive Additive System 53

V(f, m)=L(/)V(x).
(ii) For each f,e F, n=1 and any policy = we have

V(fi for o [@)= LUMDLS) -+ LF)V(E) .

PrOOF. The proof of this lemma is easy.

LEMMA 3.2. (i) If B4=0 for each (i, k,j) € SXAXS, then L(f) is monotone, that
is, u=v implies L(flu=L(f)v for each f < F.

i) If . gn_apcSAsl‘B{?j]<1, then for each f< F the operator L(f) is a contraction
mapping on R’N,]with contraction coefficient less than 1, that is, there exists C:mgx | B%1
such that |L(Hu—L(f)v)| < Cllu—v|| for any Nx1 vectors u,v. "

PROOF. The first result follows directly from the equality

L(f)yu—L(f)v=P(f)(u—v).
Then, the second follows by the inequalities
1L u—Lf Wl S NPT Ju—vll

1PN < max |841IPI
(t, &k, j)=SAS
and
I1PHOI=1,
where {P(f)(i,)}={P{#} is the Markov matrix for each f & F.
LEMMA 3.3. Let max |B4|<1 be satisfied. Then it follows that lim L(f,)L(f)
i,k j n—00

SL(f w=V(x) for any policy m={fy o fn -} and any we R

PROOF. The proof is straightforward and we omit it.

Throughout the reminder of this section, we shall discuss analogously according
to Blackwell [2].

THEOREM 3.1. Let Assumption (I) be satisfied. If V(z*)=V(f, n*) for any fEF,
then m* is optimal,

PROOF. By Lemma 3.1 (i), our hypothesis is that

V(z*)= L(f)V(z*) for any feF.
By Lemma 3.2 (i), we have for any policy ©={fy, 2 =, n =}
V(z*) = L(AH)L(f) -+ L) V(@*) n=1.
Consequently Lemma 3.3, with letting n— oo, implies that
V(iz*)=V(x).

Since 7 is arbitrary policy, the proof is complete.

THEOREM 3.2. Let Assumption (I) be satisfied. If V(f, n)>V(x), then V(f<)
> V(x).

PrROOF. By Lemma 3.1 (i), our hypothesis is that

L(f)V(z) > V().

Since Lemma 3.2 (i) holds, that is, operator L(f) is monotone, applying the monotone
operator L™ *(f) yields

54 S. IwamoTO

LM OV =z L (f)V(x),
so that
V(U™ o) zV(f,m)>V(x) for all n=1.

Then letting n— oo, we have by virtue of Lemma 3.3
V(f) >V(x).

Now we have our main results which are analogues of the Howard’s policy im-
provement algorithm for the case where 8 depends on (i, &, j) € SXAXS.

THEOREM 3.3. Let Assumption (I) be satisfied. Take any f F. For each i€ S,
denote G(i, f) the set of all ke A for which

7o z 5B, V(F)G) > VF=))

where Ff:%pfjt(r{?j). If GG, f) is empty for all i€ S, then < is optimal. For any
Jj=1

g€ F such that

(a) gl)e G, f) for some 1 and

(b) g(D)=/(1) whenever g(i) & G(i, f),
we have V(g®) > V(fe).

PRrROOF. It follows that

V(g F)@) =F(g))+P(&) V(F ™))

Furthermore, V(g, <) (1) > V(f“)(i) if and only if g(i) e G(, f), and V(g, f<) i) =
V(@) if g@)=rf(G). Thus if G@,f) is empty for all i€ S, V(f*)=V(g, /) for
all g so that, from Theorem 3.1, /* is optimal. On the other hand, for any g satis-
fying (a) and (b), we have

V(g f) > V(f*),

so that, from Theorem 3.2, V(g*) > V(f*).
COROLLARY 1. Under Assumption (I), there is an optimal policy which is stationary.
PROOF. According to Theorem 3.3, if we take any stationary policy f*?, either
it is optimal, that is, G(i, f) is empty for all i€ S, or it has a stationary improvement
£, that is, G(i, f) is nonempty for some i< S. Since F is finite, there is one which
has no stationary improvement with finite interations, so that it must be optimal.
COROLLARY 2. Let Assumption (I) be satisfied. Take any f, € F. Then solve the
linear equation

v=FAO+ B, =12, N

Jor v, i€ S). Using these values v, (i€ S), find the element of G, f,) for each i< S.
If G@, f,) is empty for all i€ S, f{ is optimal, and V(f)i)=v; for all ic S. If
at least f,(i) € G(i, f,) for some i€ S, we obtain an improved policy f§ such that
fi) € G(, f1) for some i and f,(i) =f,(i) for G(i, f,) empty. We then return to solving
the linear equation for f,. And again we find the element of G(i, f,) for each i< S.
If we repeat this procedure, then for some n we have

[x@)=fo(®) forall ieS

Discrete Dynamic Programming with Recursive Additive System 55

and then f& is an optimal policy which is stationary.
PROOF. The proof follows directly from Theorem 3.3 and Corollary 1. Note

N
that, as an example, we can take an initial f; € F such that 7(f,)(1) = n}a)s S pht(r k).
1SESN j=1

4. Application to some additive systems.

We now illustrate some interesting examples with numerical computation which
follow from the discussion in Section 3.

ExXAMPLE 1. (General Additive System)

We say that a dynamic programming problem {S, 4, p, 7, 8} has a general addi-
tive system if t(r)=r for any r< R' in the recursive additive DP{S, A4, p, 7, B, t}
discussed at Section 2. We call this dynamic programming “ general additive DP”.
In this case we have an optimization problem where our aim is to maximize the
expected reward of the function

V(h)=r,+ 171+ BiBers+ - + 8.8 - Ba-atat -

over the infinite future and to find the optimal policy among the all ones, where
h=(sy, ay, 85, @3,), 7= r.(sl;kaﬂ: 7(Sky Gay Sker)y Br= .Bg,fskﬂ = B(Sk, Qp, Sk+1), Sk €S and
a,€ A for k=1.

In many financial decision problems, the discount factor 8% may depend on
selected action k= A. Then we have K different discount factors Sy, Bs -, Bx-
These problems can be formulated into the general additive DP.

In particular, if 0<%, =p<1, then we have a dynamic programming problem
{S, A, p,7, B} whose objective function is

V(h):7’1+‘37’2+ﬁ27’3+ +,8n-lrn+ e

We call this dynamic programming “discounted DP”. Furthermore, we can make
the modified discounted DP’s by assigning the translator #(-) the specified function
such as t(r)=(1—7r)e" or t(r)=logr.

We have a following data from the Taxicab Problem due to Howard [6].

56 S. IwaMOTO

TABLE 4.1.1.
Data for general additive DP.
state action transition l stage-wise generalized
probability reward accumulator
i k pE Py Ph rk rk Tk B B B
101 1 95 98 98
1 1 2 1 s 104 & 1 750 00 100
1 3 3 9 90 93
2 6 4 16 8 2 4 1 750 700 100
1 1 5 98 9 98
3 4 8§ 8 ¢ 6 4 1 50 100 100
1

1 1 8 90 95
2 1 - 0 140 18 | 955 o0 100
, 17 1 s 16 s 80 80 95
6 8 16 100 100 100
111 . s 9% 95 95
3 3 3 3 -5 -5 - 100 100 100
111 . 75 90 95
3 1 i 4 2 10 2 100 100 100
1 3 1 9% 70 80
2 g 1 8 6 4 2 100 100 100
3 1 3 % 95 9%
3 4 16 16 4 0 8 100 100 100

Then the policy iteration algorithm (abbreviated, hereafter by PIA)

gives an optimal stationary policy

described below

1

f=11

3

TABLE 4.1.2.
Solution by the PIA for general additive DP.
vy 119. 660 169. 490
Uy 117. 384 166. 129
106. 376 164. 411
vYDO _— PIR~_VDO _~

1 1

f 1 1

1 3

PIR™~,

1

STOP

VDO, is the value determination operation.
PIR Y\, is the policy improvement routine.

However the PIA for discounted DP with same transition probability and same
stage-wise reward as general additive DP yields an optimal stationary policy

Discrete Dynamic Programming with Recursive Additive System 57

2
=| 2
2
TABLE 4.1.3.
Solution by the PIA for discounted DP with 8 = 0. 90.
vy 91..257 119. 439 121. 653
vy 97. 551 134. 479 135. 306
v 89. 967 121. 927 122, 837
1/' ~. . - \2 7 \2
g 1 2 2 2 STOp
1 2 2 2

EXAMPLE 2. (Multiplicative Additive System)

We say that a dynamic programming {S, A,,r} has a multiplicative additive
system if BE=rf for any (i, k,j)SAS and #(»)=r in the recursive additive
DP{S, A, p,7, B,t}. We call this dynamic programming “ multiplicative additive DP ”.
Then, the reward system is given as follows:

ay a, ag an
Sy ,—L, Sz S _,—L| Ss Ss |"L| S Sy Sp Sn41 Sa+1
r —_———— r —-——
N g By L By 3B
7(sp ay, ;)

7(S2, @z, Ss)

7(Se @3, S4)

7(Sas @ny Snar)

|

(51, ay, S2)

+r(sy, a3y 7S, Gy S3) .

+(sy, a5, 52)7(s,, Gy, $)7(Sy @y, 5,)

+'~

+7(Sy, Gy, $)7(Say Gz S3) *+* 7(Sny Ty Snea)

+e.,

Fig. 2. Reward system of multiplicative additive DP.

This case leads us to maximization the expected value of the function
V() =rtrretbnrryt o by o Tt e

where 7, and /& have the same meanings as Example 1. Then, Assumption (I) means
0=r% <1 for any (i, k, j) = SAS.
The stage-wise reward 7% in the following data satisfies Assumption (I).

58 S. IwAMOTO

TABLE 4.2.1.
Data for multiplicative additive DP.
state action transition stage-wise generalized
probability reward accumulator
i k Py Py P &) h £ 5 % 5
1 1 1 1 1 2
! ! 2 i 4 | 2 5 5
, |13 s |2 1 1
16 4 16 5 10 5
3 B A I T S
4 8 8 5 10 5
1 1 7 1 9
2 1 2 0 10 20 10
171 2 4 g | fhETHfer
2 16 8 16 5 5 5 (i k) ESAS
3 2o 1 oy 111
3 3 3 20 20 20
BRSNS S S I T
3 1 i 4 2 2 10 5
2 1 3 1 3 1 1
8 4 8 10 5 10
80 3 1 12
8 1 16 16 5 20 5
The calculations by PIA are shown in the following:
TABLE 4.2.2.
Solution by the PIA for multiplicative additive DP.
vy 0. 6990 0. 7938
vy 1. 3091 2.6198
V3 0. 5876 0. 6434
- ~ .
f 1 2 2 STOP
1 1

Then we get an optimal stationary policy
1
f=| 2
1
for this multiplicative additive DP. But the optimal one for discounted DP with
B=0.95 is
2
g=| 2
2

Discrete Dynamic Programming with Recursive Additive System 59

TABLE 4.2.3.
Solution by the PIA for discounted DP with ﬂfj_=_0. 95.
vy 9.1641 12. 5129 12. 7511
Vy 9, 4747 13. 3053 13. 4382
Vg 9. 0985 12. 6705 12. 8101
. - ~ . - ~.) 7 ~)
g 1 2 2 2 STOP
1 1 2 2

ExaMpLE 3. (Divided Additive System)

We say that a dynamic programming {S, 4, p,r} has a divided additive system
if Bf;=1/r¥% for any (i, k, j) € SAS and #)=r in the recursive additive DP{S, 4, p,
7, B, t}. We call this dynamic programming “ divided additive DP”. Then, we have
the following reward system:

a a: ay a,
$, J_‘ s, s, ’_‘_‘ S Ss r—L $ S Sn Sat1 Sat+1
{0 “]*-~&——ﬂ rpE
7(Sy, Gy, S3) LONEN 7(Sa @ S,)
7(Spy @y Sne1)
D
| ®
7(sy, @y, Sp) e,
...... ~&
7(Sy, @y, Ss) .
+ 7(sy, @y, S) "

+ 7(S3, @3, S4)
7(s1, @y, SI7(S2 Gy, 53)

' (5w @ Snar)
7(S1y @y, 52)Y(S3, @z, Sg) =+ 7{(Sp-1y Uty Sner)

Fig. 3. Reward system of divided additive DP.

v
Here ©® means -

s

gl —

We have an optimization problem whose objective function is the expected return
of the function

V(h):rlq_.;f._l_ri_i_ I £ SR ,

172 ViV =** ¥p-a

a
where h=(s,, ay, S,, s, **+), r,,=r,,,f,k+l for k=1.

60 S. IwanmoOTO

A dynamic programming problem {S, A, p, 7, t} is called “modified divided
additive DP” if 8% =1/r¥% for (i, k, j) € SAS in recursive additive DP{S, 4, p, 7, 5, t}.
Then in the modified divided additive DP

ey M) H(re) oy Hr)
Vi) =n+ "y + ity + + Yi¥y ot Voo +
We can see, in Bellman’s book ([17, Chap. I), an example of modified additive DP,
which is restricted to the finite horizon and deterministic case.

If r£>1 for any (i, k,j) = SAS, then Assumption (I) is statisfied. The stage-

wise rewards in the following satisfy Assumption (I).

TABLE 4.3.1.
Data for divided additive DP.

state action transition stage-wise generalized

probability reward accumulator

i k J A U % rk vk v sk Bk Bk
1 1 1 3 6 7
1 1 2 4 4 2 5 5
2 18 8y 7116
16 4 16 5 10 5
5 11 5 | 6 18 6
4 8 8 5 10 5
1 1 17 21 19

E 1 2 0 0 20 10 i = L
U yk
1 7 1 7 9 26 v

2 16 8 16 5 5 25 | for (i,j, k)
3 1 1 1 21 21 21
3 3 3 20 20 20
ooy 1oy 31 7
3 1 1 1 2 2 10 5
5 18 1 36 1
8 4 8 10 5 10
3 1 3 6 21 7
3 4 16 16 5 20 5

The calculation by PIA for this divided additive DP is given as follows:

TABLE 4.3.2.
Solution by the PIA for divided additive DP.
vy 4. 8429 7. 3393 11. 8020
vy 4, 5288 8. 3417 12. 2804
vy 4, 9567 7. 2878 11. 2934
" ~. ~.
1 3 2 2
f 1 3 3 3 STOP

Discrete Dynamic Programming with Recursive Additive System 61

We have an optimal stationary policy

2
f=|3
2
On the other hand, if transition probability p% and state-wise reward r¥; are the

same as ones for this divided additive DP respectively, the optimal stationary policy
for discounted DP with discount factor 8=0.95 is

2
g=|2
2
Following table shows this calculation:
TABLE 4.3.3.
Solution by the PIA for discounted DP with ﬁijO. 95.
vy 29.1641 32.1969 32,3873
Uy 29, 4747 32. 9426 33. 0489
Vg 29. 0985 32. 3348 32. 4463
. / \) /’ \) /‘ \)
g 1 2 2 2 STOP
1 2 2 2

EXAMPLE 4. (Exponential Additive System)

We say that a dynamic programming {S, 4, p, r} has an exponential additive system
if B =e¢" for any (i, k, j) € SAS and #(r) = in the recursive additive DP {S, 4, p,
7, B,t}. We call this dynamic programming ‘‘ exponential additive DP”. The reward

system of the exponential additive DP is just describled by Fig. 3 except for
w

l

replacing @ by . Here ® means e¢*-v — ®. In this case, we have

l

Py
I/(h):rl+eTl.72+eT1+"'2.ra+ ces +e"1+72"'7‘n—1.rn+ e

. k
where h=(sy, ay, S5, @y,), ¥y =73k,,, for k=1. Moreover, if #(r)=(1—")e", Bf=e"ti
for any (i, %, j) € SAS in recursive additive DP, we have another objective function

VI(h) = (1—r)e"+(1—ryemtt 24 (1 —ry)em1 72473
-+ e +(1_rn)erl+"2+"‘+7n+

We call this dynamic programming {S, 4, p, 7}’ “ modified exponential additive DP ”.
In these exponential additive DP’s, Assumption (I) means 7% <0 for any (i, &, j) € SAS.

62 S. IwaMoTO

We can find an example of modified exponential additive DP in Bellman’s book
({17, Chap. III). The stage-wide rewards illustrated in the following table satisfy
Assumption (I).

TABLE 4.4.1.
Data for exponential additive DP.
state action transition stage-wise generalized
probability reward accumulator
i k i b »k rk rk rk 85 BL B8k
1 1 1 1 1 2
! 1 2 4 4 | T2 T35 T
) 1 3 3 2 1 1
16 4 16 T 5 T 5
3 11 5 13 1
4 8 8 5 10 5
1 1 7 1 9
_ — —_—— —_— —— k
2 1 2 0 3 10 20 10 pli=els
1 7 1 2 4 for (i, k,5)
2 % 8 16 | 5 "5 5
3 111 1 11
3 3 3 T 20 T 20 20
11 2 ! 1 2
3 1 4 1 a 27 T10 5
5 1 3 1 3 11
8 4 8 1 5 10
3 r 3 | _r 1 2
3 1 16 16 5 T 20 5

The optimal policy for the exponential additive DP which is stationary is given
as follows:

TABLE 4.4.2.
Solution by the PIA for exponential additive DP.
v —1.0831
Uy —1. 0807
Vs —1. 0868
— ~
2 2
f 3 3 STOP
2 2

Moreover, we obtain following tables:

Discrete Dynamic Programming with Recursive Additive System 63

TABLE 44.3.
Solution by the PIA for discounted DP with g} = 0. 95.
vy —2.1503
s —2. 0935
vy —2.2093
- ~
2 2
g 3 3 STOP
2 2
TABLE 4.44.

Solution by the PIA for modified exponential additive DP
with t(r)=(1-r)e”

12 9. 8747
vy 10. 3750
V3 9. 3211
— ~
2 2
h 3 3 STOP
2 2

Of course the transition probability p% and stage-wise reward v are common
in these three DP’s.
Note that each optimal policy is common one;

2
2

and that policy iteration algorithm converges at first cycle respectively.

ExAMPLE 5. (Logarithmic Additive System)

We say that a dynamic programming {S, 4, p, 7} has a logarithmic additive system
if ff,=logrk for any (i, k,j) = SAS and #{r)=r in the recursive additive DP {S, 4,
b, 7, B, t}. We call this dynamic programming “logarithmic additive DP”. The reward

system of logarithmic additive DP is just described by Fig. 3 except for replacing
w

l

® by ©. Here, ©® means (logu)v — ©. Then, we have

l

(log w)(log v)w
V(h) =r,+(og r)r,+-(log r(log 7)7,
+ -+ +(log r))(log 73) -+ (log 77+ -,

where h=(s, 8y, 83, a,), "y =73k, for k=1. Moreover, if {(r)=logr, B =logrl
for any (i, k, j) = SAS in recursive additive DP, we have another logarithmic additive

64 S. IwamMoTO

DP where objective function is the expected return of the function
V’(h) =log r,+(log r,)(log ;) +(log 7,)(log 7,)(log 73)
+ -+ +(ogr)(logr,) -+ (log rp)+ -

We call this dynamic programming “ modified logarithmic additive DP”. If 1 =7} <e
for any (i, k, j) € SAS, then Assumption (I) is satisfied for these logarithmic additive
DP’s. The following data satisfies Assumption (I).

TABLE 45.1.
Data for logarithmic additive DP.
state action transition stage-wise generalized
probability reward accumulator
i k pE P4 P& rk ook T & P &
1 1 1
1 1 = i _4— 2.3 2.7 2.4
1 3 3
2 6 1 18 2.7 23 26
1 1 5
3 < 8§ & 2.5 2.4 2.6
1 1
2 1 5 0 '2— 2.7 2.3 2.4 i’j’ = log ri’;
) 1 7 1 26 07 for (i,%,7)
16 8 16 i 2.4 .
1 1 1
3 =3 T3 T3 2.4 2.1 25
3 1 SEEE S 2 5
1 2 2 .6 2.5 2.7
1 3 1
2 % i & 2.7 2.6 2.4
B 1 3 -
3 1 16 16 2.6 2.7 25

The PIA yields optimal policies associated with logarithmic additive DP, dis-
counted DP with 8% = $8=0.95 and discounted DP with #(r)=logr, 8% =0.95 respec-
tively.

TABLE 4.5.2,
Solution by the PIA for logarithmic additive DP.
vy 19. 2080
Vg 19. 1090
Vg 19. 7274
— ~
3
f 1 1 STOP

Discrete Dynamic Programming with Recursive Additive System 65

TABLE 4.5.3.
Solution by the PIA for discounted DP with 3% =0.95.
vy 51. 7705
Vg 51. 7635
V3 51. 8369
— ~ 3
g 1 1 STOp
1 1
TABLE 4.5.4.

Solution by the PIA for modified discounted DP
with ,B{?j =0.95, t(r)=logr

v 19. 0064
Vs 19. 0025
Vs 19. 0318

— ~

ol

h 1 1

1 1

In these three DPs we have a common optimal stationary policy
3
f=g=h=|1
1
Throughout above five examples, we have a remark that the ranges of the value
r¥ for (i, k,j) € SAS are (—oo,0), [0,1), (1,), [1, e) corresponding to exponential
additive, multiplicative additive, divided additive and logarithmic additive DPs
respectively. By virtue of these examples, it is natural that we call §=(8%) a
generalized accumulator.

5. Additional comments.

In this section we will show that the recursive additive DP satisfying Assump-
tion (I) can be reduced to a DP with an absorved state. We will give some com-
ments on recursive additive DP.

Let {S,A4,p,7, B,t} be a recursive additive DP satisfying Assumption (I). Let
0e S be a fictitious state and K,={1}. That is, the set of available actions at state
0 consists of a single action 1. We define §, A, ? and 7 as follows:

S=SuU{0},
Z:{Km Ay Av Tty A} y
oo

N factors
550 =1,
Ply=1 Ph=1-B4pl; for (i k)eSx4,
Bt = B for (i, k,j)e SXAXS,

66 S. IwamoTO

0 for (1, k)=(0,1),
Spyt(rk) for (1, B)e SxXA.
=S

Then in a new-defined DP{S, 4, p,7} the stage-wise reward 7= (7¥) does not depend
on next state j & S but the set of available actions depends on current state 1< S.

LEMMA 41. Let {S, A,p,r, B,t} be a recursive additive DP satisfying Assumption
(I). Then, {S, A,p,7} is a DP with an absorved state 0. Furthermore any policy n

in recursive additive DP{S, A, p,r,B,t} can be extended to the policy 7 in reduced
DP{S, A, p,7} such that

Vim)@)=VE(GE) on S, V(@(0)=0.

Conversely, any policy # in reduced DP{S,A,p,7} can be regarded as a policy = in
recursive additive DP{S, A, p, r, 8,t} such that

V(@@ =V(x)(i@) on S.

In this case V(7)(0)=0 is trivial consequence.
PROOF., Let P be NXN stochastic matrix and 15=[)1C g] be (N+1)X(N+1)

matrix. Then we have 13"=[}C P(’?] for each n=1. The proof is an immediate

consequence of this result. The details are ommitted.

It should be noted that the generalized accumulator 8=(8%) in recursive additive
DP is embedded into the transition law p=(p%) of reduced DP. Hence it is rather
difficult to get five examples in Section 4 from the reduced one.

There is a kind of sensitivity analysis as follows: Is there any relation between
general additive DP{S, A, p,7, 8} and recursive additive DP{S, 4, 9,7, 8,1}? In other
words, what is a sufficient condition on t=1*(-) for optimal policy in the former to
remain optimal in the latter? The analysis of this sensitivity will require a detail
analysis of Howard’s policy iteration algorithm.

Acknowledgement. The author wishes to express his hearty thanks to Professor
‘T. Kitagawa and Doctor N. Furukawa for some useful comments.

References

{17 R. BELLMAN, Dynamic Programming. Princeton Univ. Press. (1957).

[2] D. BLACKWELL, Discrete Dynamic Programming. Ann. Math. Stat., 33, (1962), 719-726.

[3] D. BrackweLL, Discounted Dynamic Programming. Ann. Math. Stat., 36, (1965), 226-
235.

{4] D. BLACKWELL, Positive Dynamic Programming. Proc. Fifth Berkeley Symp. Math.
Statist. Probability, Vol. I, Univ. of California, Press. Berkeley, California, (1967),
415-418.

[5] N. Furukawa and S. IwamoTo, Markovian Decision Processes with Recursive Reward
Functions. Bull. Math. Statist., 15, No. 3-4 (1973), 79-91.

[6] R.A. HowarRD, Dynamic Programming and Markov Processes. M.I. T. Press, Cam-
bridge, Massachusetts, (1960).

[7] R.E. STRAUCH, Negative Dynamic Programming. Ann. Math. Stat., 37 (1966), 871-890.

