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The lattice Boltzmann equation �LBE� has shown its promise in the simulation of microscale gas flows. One
of the critical issues with this advanced method is to specify suitable slip boundary conditions to ensure
simulation accuracy. In this paper we study two widely used kinetic boundary conditions in the LBE: the
combination of the bounce-back and specular-reflection scheme and the discrete Maxwell’s scheme. We show
that �i� both schemes are virtually equivalent in principle, and �ii� there exist discrete effects in both schemes.
A strategy is then proposed to adjust the parameters in the two kinetic boundary conditions such that an
accurate slip boundary condition can be implemented. The numerical results demonstrate that the corrected
boundary conditions are robust and reliable.
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With the rapid development in microelectromechanical
systems �MEMS�, gas flows associated with microdevices
have received particular attention over the last decade �1,2�.
One of the most important features of microscale gas flows is
that gases usually possess a relatively large Knudsen number,
Kn=� /H, where � represents the mean-free path of the gas
and H is the smallest characteristic length of the device. As
Kn is above a critical value, the continuum assumption will
break down and the classical Navier-Stokes equations cannot
directly be applied to this type of high-Knudsen number
flows. In contrast, since the Boltzmann equation was derived
without invoking the continuum assumption, it can be used
to model rarefied gas flows ranging from the continuum re-
gime �Kn�0.001� to free molecular regime �Kn�10� �3�.
Therefore, the Boltzmann equation is a good starting point
for developing reasonable numerical methods for microscale
gas flows. Accordingly, a variety of Boltzmann-equation-
based methods, such as the finite-difference method �4�, the
discrete-velocity method �6�, the gas-kinetic scheme �5�, and
the lattice Boltzmann equation �LBE� method �7�, have been
proposed for simulating microscale gas flows from different
viewpoints.

The LBE, which is a discrete approximation to the con-
tinuous Boltzmann equation, has recently been recognized as
one of the most promising approaches for simulation of mi-
croscale flows �8–21�. It should be recognized, however, that
most previous LBE models virtually correspond to the
Navier-Stokes equations in the macroscopic scale. When
these models are applied to near-continuum flows �Kn
�0.1�, in which the bulk flow remains continuous, suitable
slip boundary conditions must be specified to capture pos-
sible boundary effects on the flow behavior. Therefore, the
development of slip-boundary conditions is a critical issue
for the simulation of near-continuum gas flows with the LBE
method.

Two basis types of kinetic boundary condition have been
proposed for LBE in simulation of microscale gas flow: one
is the discrete Maxwellian boundary condition �DMBC�
�22�, which is a straightforward discretization of Maxwell’s
diffuse-reflection boundary condition in kinetic theory; the
other is the combination boundary condition �CBC� �23�,
which combines the no-slip bounce-back and the free-slip
specular-reflection schemes. Some improved version of the
two basic boundary conditions were also proposed recently.
For instance, Tang et al. generalized the original fully
diffusive DMBC by introducing a numerical accommodation
coefficient to adjust the degree of slip �13�, while Sofonea
and Sekerka proposed several versions of the DMBC
for some finite-difference LBE models �14�. The CBC
scheme was also generalized and analyzed by Sbragaglia and
Succi �17� recently, and was extended to a straight wall lo-
cated at arbitrary location between lattice nodes by Szalmás
�24�.

Recently, it was shown that the CBC and DMBC schemes
both correspond to a second-order slip-boundary condition
�17,25�. However, the relationship between the DMBC and
CBC is still unknown. There is also another important ques-
tion about the DMBC and CBC: It is understood that there
exist so-called discrete effects in the LBE, which must be
minimized to capture correct fluid dynamics behavior. For
example, the relaxation time in the LBE must be modified to
account for the numerical viscosity �26�, and the forcing
term must include a factor dependent on the relaxation time
�27�. Therefore, it is natural to ask whether such discrete
effects also exist in the DMBC and CBC, and if any, how the
effects can be minimized. The objective of this work is two-
fold: to identify the inherent relationship between the DMBC
and CBC; and to examine whether there exist discrete effects
in these two types of kinetic boundary condition.

We start our analysis with the extension of LBE from
continuum flows to near-continuum flow. Without loss of
generality, we consider the isothermal D2Q9 BGK-LBE
�two-dimensional nine-velocity� model �26�,*zlguo@mail.hust.edu.cn
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f i�x + ci�t,t + �t� − f i�x,t� = −
1

�
�f i − f i

�eq�� + �tFi, �1�

where �f i�x , t� : i=0,1 , . . . ,8� are the discrete distribution
function associated with the gas molecules moving with the
discrete velocities �ci : i=0,1 , . . . ,8� at position x�L and
time t �L being a regular square lattice with spacing �x
�see Fig. 1��; �t is the evolution time increment,

Fi=wi �1− 1
2� � �

ci−u

cs
2 +

�ci·u�ci

cs
4 � ·a is a forcing term accounting

for the body force a �27�; f i
�eq�=wi� �1+

ci·u

cs
2 +

�ci·u�2

2cs
4 − u·u

2cs
2 � is

the discrete equilibrium distribution function that depends on
the density �=�i f i and velocity �u=�ici f i+0.5�ta. Here,
wi’s are given by w0=4/9, w1=w2=w3=w4=1/9, and
w5=w6=w7=w8=1/36; the parameter cs relates to the lattice
speed c=�x /�t and the temperature T as cs

2=RT=c2 /3, with
R the gas constant.

The discrete velocity set and the discrete equilibrium dis-
tribution functions given above can ensure that the D2Q9 is
accurate for solving the Navier-Stokes equations. However,
this LBE model cannot be directly applied to flows beyond
the slip region. Even for near-continuum flows, the LBE
should also be modified to account for the rarefaction effects.
First, it is noted that in simulation of continuum flows, the
relaxation time is determined by the Reynolds number. In
contrast, in microscale gas flows the characteristic dimen-
sionless number is the Knudsen number Kn. Therefore, the
relation between the relaxation time in the LBE and the
Knudsen number must be given appropriately first.

The relaxation time � in the BGK LBE model can be
related to the mean-free path � of the gas as �28�
��−0.5��t=� /c*, where c* is a certain microscopic velocity
to be determined. The choice of c* is rather diverse in the
literature. The most widely used choice is the lattice speed c
�9,11,13–17,25�, and the mean molecular velocity
�8RT /��1/2 is also used by some researchers �13,18�. When-
ever c* is used, it must satisfy the “consistent requirement”
�28�: in the continuum limit, the relation ��−0.5��t=	 / p
must be fulfilled, where 	 and p are the viscosity and pres-
sure of the gas, respectively. Guo et al. have shown that in

order to match such a requirement one must choose
c*= ��RT /2�1/2 �28�. With this choice, we can obtain the re-
lationship between � and Kn as

� = 0.5 +�2


�

Kn

�
, �2�

where � is the ratio of the lattice spacing to the characteristic
length �=�x /H, 
 is a model-dependent constant defined as
c=�
RT �
=3 for D2Q9�.

The second important issue in the extension of LBE to
near-continuum flows is how to specify kinetic boundary
conditions. In the DMBC, a numerical accommodation coef-
ficient � can be introduced to control the degree of slip �13�.
The accommodation coefficient is similar to that used in gas
kinetic theory, and in most of the existing applications it
indeed takes the physical values used for the Boltzmann
equation. However, as will be shown later, such a choice is
questionable due to discrete effects. Unlike the DMBC, the
CBC slip-boundary condition is realized by adjusting the
fraction of the bounce-back part.

We now examine the CBC and DMBC. To simplify
the analysis, we consider a unidirectional gas flowing
over a flat surface �Fig. 1� in which � is a constant, v=0, and
�x
=0 for any variable 
. After collision at time t, the
unknown distribution functions, f2, f5, and f6, can be
determined from the boundary conditions: f2= f4

*

+2r�w2c2 ·uw /cs
2, f5=rf7

*+ �1−r�f8
*+2r�w5c5 ·uw /cs

2, and f6

=rf8
*+ �1−r�f7

*+2r�w6c6 ·uw /cs
2 for CBC �r being the

bounce-back fraction�; and f2=�f2
�eq��uw�+ �1−��f4

*, f5

=�f5
�eq��uw�+ �1−��f8

*, and f6=�f6
�eq��uw�+ �1−��f7

* for
DMBC �� being the accommodation coefficient�. Here uw is
the wall velocity, f i

*= f i+
1
� �f i− f i

�eq��+�tFi is the postcollision
distribution function. With these conditions, we can obtain
that

u2 =
1 − 2� + 2r�� − 2�
1 − 2� + 2r�� − 1�

u1 +
6�2� − 1� + r�8�2 − 20� + 11�
�2� − 1��1 − 2� + 2r�� − 1��

�ta

�3�

for the CBC, and

u2 =
1 − 2� + ��� − 2�
1 − 2� + ��� − 1�

u1

+
6�2� − 1� + ��4�2 − 10� + 11/2�

�2� − 1��1 − 2� + ��� − 1��
�ta �4�

for the DMBC. It is interesting to note that if we set
r=� /2, Eqs. �3� and �4� become identical, meaning that un-
der this condition, the CBC and DMBC are equivalent.

From the LBE �1�, we can obtain that the streamwise
velocity u satisfies ��uj+1−2uj +uj−1�=−a�x

2, where
�=cs

2��−0.5��t. It is clear this is nothing but a central finite-
difference discretization of the Navier-Stokes equation
��yu+a=0. Again, this demonstrates that the D2Q9
LBE is only a solver for the Navier-Stokes equations. For
Poiseuille flow, the finite-difference equation gives that
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FIG. 1. �Color online� Lattice and boundary arrangement in the
D2Q9 model. The solid wall is placed at j=1/2. The discrete ve-
locities of D2Q9 are c0= �0,0�, c1=−c3=c�1,0�, c2=−c4=c�0,1�,
c5=−c7=c�1,1�, and c6=−c8=c�−1,1�.
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uj =4u0yj��1−yj��+us, where yj�= �j−0.5��x /H, u0=aH2 /8�,
and us is slip velocity at the wall. Substituting u1 and u2 into
Eq. �3�, we can obtain

Us ª
us

u0
=

2�1 − r��2� − 1�
r

� +
4�2� − 1�2 − 3

3
�2, �5�

which indicates that the pure bounce-back scheme �r=1�
also generates a nonzero slip velocity proportional to �2,
which is consistent with the result of previous studies �8�.
Based on Eq. �2�, we can also rewrite Eq. �5� as

Us =
4�1 − r�

r
� 6

�
Kn +

32

�
Kn2 − �2 �6�

=
4�2 − ��

�
� 6

�
Kn +

32

�
Kn2 − �2. �7�

Equations �6� and �7� show that the slip velocity includes
three parts: a first-order slip proportional to Kn, a second-
order slip proportional to Kn2, and a numerical part depend-
ing on the number of grid numbers �recall that �=�x /H�.

Equation �7� shows that for a fully diffusive boundary
��=1�, the nondimensional slip velocity is Us=5.528Kn
+10.186Kn2−�2. On the other hand, gas kinetic theory gives
that for a fully diffusive boundary the slip velocity is �3�
Us=4.586Kn+7.804Kn2. This means that contrary to the in-
tuition implied in previous studies �13,14,22�, the DMBC,
which is a straightforward discretization of the continuous
Maxwell’s boundary condition, does not lead to the same
result as that of the continuous one even with the same ac-
commodation coefficient. Such a difference is due to the dis-
crete effects: the additional �2 term comes from the finite
size of the lattice, and the inconsistencies in the terms pro-
portional to Kn and Kn2 originate from the discretization of
the molecular velocity space. It can be speculated that such
effects can be reduced by refining the lattice and increasing
the symmetry of the discrete velocity set. It is also noted that
even as �→0, the slip velocity predicted by the LBE with
the discrete boundary conditions is over 20% for all Kn�0
in comparison with that of the kinetic theory due to the dis-
crete effects.

Let us now focus on how to correct the discrete effects
to implement an exact slip-boundary condition in LBE. A
usually adopted boundary condition for near-continuum
flows is the second-order slip boundary condition, us

=A1�� �u
�n

�
wall

−A2�2� �2u
�2n

�
wall

, where n is the unit normal vec-
tor of the boundary pointing into the flow, and A1 and A2 are
two parameters relating to the gas-wall interactions. It
can be shown that for Poiseuille flow the Navier-Stokes
equations with this boundary condition yield a slip velocity
Us=4A1Kn+8A2Kn2. Therefore, in order to realize the above
second-order boundary condition in LBE, we should choose
the bounce-back fraction r in the CBC �or � /2 in the
DMBC� as

r = 	1 +��

6

 �2

4Kn
+ A1 + �2A2 −

8

�
�Kn
�−1

. �8�

It is clear that r or � depends on not only the given boundary
condition, but also on the lattice size and the Knudsen num-
ber. It is also noted that the relaxation time � influences on
the correctness of the boundary conditions implicitly. Actu-
ally, with Eq. �2� we can rewrite the first term �2 /4Kn in the
square brackets of Eq. �8� as 6Kn/��2�−1�2. Therefore, for
a given Kn, different choices of � �depending on the lattice
size used� results in different values of r or �. In fact, the
influence of � on the boundary condition was already ob-
served in the study of the purely bounce-back scheme �i.e.,
r=1� for the no-slip boundary condition �A1=A2=0� about
ten years ago �29�. In this case, there is always a nonzero slip
unless �=0.5+�3/4�0.933. Such an unphysical slip has
also been reported in the study of gaseous microscale flows
�10�.

Figure 2 shows the dependence of r on Kn and � for the
fully diffusive case �A1=2� /��, A2= �1+2�2� /�, with �
=1.016�. It is seen that r changes in a wide range in order to
realize the same fully diffusive boundary condition, depend-
ing on both the lattice and the Knudsen number. It is noted
that for a given �, there exists a critical Knudsen number,
Knc, above which the rapid change in r with Kn becomes
gradual. It is also observed that r�0.5 for relative large val-
ues of Kn, implying that more molecules should be bounced
back than specular reflected. On the other hand, r�0.5 for
small values of Kn, i.e., more molecules are specular re-
flected. Such adjustments are reasonable: it is seen from Eq.
�6� that Us�r=0.5� will be larger than that of the theoretical
one if Kn is large enough, and therefore in order to minimize
the fictitious slip, one should increase the nonslip or bounce-
back portion in CBC. On the other hand, for small values of
Kn Us�r=0.5� could also be smaller than the theoretical one
because the term proportional to �2 always has a negative
contribution, and therefore the slip or specular-reflection por-
tion should be enhanced. The above analysis also indicates
that the CBC has a wider parameter range than that of the
DMBC: In the case that r or � /2 should be greater than 0.5,
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FIG. 2. Dependence of r on Kn and � for the fully diffuse
walls.
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the CBC is still reasonable but the DMBC is unphysical
since � should always be smaller than 1.

We now examine the above theoretical results by applying
the D2Q9 LBE to the Poiseuille flow in a channel with
height H. The flow is driven by a constant body force
a=10−5. First, the dependence of Us against r �or �� and Kn
in the CBC �or DMBC�. Simulations are performed on a
lattice with �=1/32, and periodic boundary conditions are
applied at the inlet and outlet of the channel. The simulated
slip velocities as a function of r and � for Kn=0.1 are shown
in Fig. 3. It is seen that the numerical predictions are in
excellent agreement with the theoretical results given by Eqs.
�6� and �7�.

The discrete effects in the CBC are also examined. Simu-
lations are carried out with Kn=0.2 and on three lattices with
�= 1

4 , 1
8 , and 1

32, respectively. The channel walls are assumed
to be fully diffusive, and the bounce-back fraction r is deter-
mined from Eq. �8� for each �. The simulated velocities are
shown in Fig. 4. Clearly, the LBE results are in excellent
agreement with the analytical solution in all cases, even with
only four grid points. For comparison, the results with
r=0.5 are also shown. Some apparent grid-dependent devia-
tions from the exact velocity profiles are observed. These
results demonstrate that it is necessary to correct r to make
the realization of the boundary condition more accurate.

In summary, we have shown that like in the LBE, discrete
effects also exist in the two widely used kinetic boundary
conditions CBC and DMBC, which lead to significant devia-
tions in predicting the flow behavior with the LBE from the
exact solution. We have also shown that the discrete effects
can be minimized by adjusting the bounce-back fraction in

the CBC and the numerical accommodation coefficient in the
DMBC, depending on the Knudsen number, the specified
boundary condition, and the lattice used. Numerical results
demonstrate that these corrections are essential to ensure ac-
curate simulation of microscale gas flow behavior. Although
the results present in this work are for the BGK-LBE, the
analysis method employed here can also be applied to other
LBE models. Actually, during the review process of this pa-
per, we have made a similar analysis about the CBC and
DMBC for the generalized LBE with multiple relaxation
times �MRT� �30�. It is again found that some discrete effects
still exist in the boundary conditions in that case. However,
due to the use of multiple relaxation times, the correction
method to minimize the discrete effects is quite different
from the present one given by Eq. �8�: in the MRT-LBE, the
bounce-back portion r only depends on A1 appearing in the
second-order boundary condition, and is irrelevant to Kn, A2
and �; on the other hand, one of the relaxation times must be
chosen according to Kn, A2 and � in order to realize the
exact boundary condition. This fact indicates that discrete
effects in boundary condition may be a general problem in
LBE models, but the correction methods may be different for
different models.
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