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Abstract—The Finite Integration Technique (FIT) is a consistent
discretization scheme for Maxwell’s equations in their integral form.
The resulting matrix equations of the discretized fields can be used for
efficient numerical simulations on modern computers. In addition, the
basic algebraic properties of this discrete electromagnetic field theory
allow to analytically and algebraically prove conservation properties
with respect to energy and charge of the discrete formulation and gives
an explanation of the stability properties of numerical formulations in
the time domain.
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1. INTRODUCTION

All macroscopic electromagnetic phenomena occurring in practice
can be mathematically described with the complete set of Maxwell’s
equations. The Finite Integration Technique (FIT) [1] developed
by Weiland in 1977 provides a discrete reformulation of Maxwell’s
equations in their integral form suitable for computers and it
allows to simulate real-world electromagnetic field problems with
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complex geometries. This finite volume-type discretization scheme
for Maxwell’s equations relies on the usage of integral balances
and thus allows to prove stability and conservation properties of
the discrete fields even before starting with numerical calculations.
In particular, such algebraic properties of the discrete formulation
enable the development of long-term stable numerical time integration
schemes or accurate eigenvalue solvers avoiding spurious modes.

Recently, the language of differential forms and concepts of
algebraic topology have been used to study Maxwell’s equations
restricted to lattices, e.g. in [2], [3], [4]. In the resulting discrete
formulations the equations are typically separated in those which
are metric-free, arising from topology, and in those which are
metric-depended. They closely resemble (or paraphrase) those
discrete formulations of the Finite Integration Technique, which are
already established for more than 20 years. This new mathematical
background also triggers a corresponding reinterpretation of modern
conformal Edge-Finite-Element schemes [5] used in computational
electromagnetics, which are usually rather derived starting from
mathematical variational formulations [3].

The first discretization step of the FI-method consists in
the restriction of the electromagnetic field problem, which usually
represents an open boundary problem, to a simply connected and
bounded space region Ω ∈ R3, which contains the space region
of interest. The next step consists in the decomposition of the
computational domain Ω into a (locally) finite number of simplicial
cells Vi such as tetra- or hexahedra under the premise that all
cells have to fit exactly to each other, i.e. the intersection of
two different cells is either empty or it must be a two-dimensional
polygon, a one-dimensional edge shared by both cells or a point. This
decomposition yields the finite simplicial cells complex G, which serves
as computational grid.

Starting with this very general cell-based approach to a spatial
discretization it is clear, that the FI-theory is not only restricted
to three-dimensional Cartesian meshes. It allows to consider all
types of coordinate meshes, orthogonal and non-orthogonal meshes
[6], [7]. Also consistent subgridding schemes (corresponding to a local
mesh refinement including grid line termination techniques) have been
developed [8]. The FI-Technique even extends to non-simplicial cells,
as long as the resulting cell complex is homeomorphic to a simplicial
cell complex. For practical application such general cell complexes,
where the cell edges may be curves, only play a role if they occur as
coordinate meshes.

Note that each edge of the cells includes an initial orientation, i.e.,
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a direction, such that the union of all this cell edges can be described as
a directed graph [9]. Analogously also polygonal facets of the complex
will be associated with a direction.

For the sake of simplicity, however, it is assumed that Ω is brick-
shaped in the following description of the FI-technique and that the
decomposition is given with a with a tensor product grid for Cartesian
coordinates such that we get a cell complex

G := {Vi,j,k ∈ R3| Vi,j,k := [xi, xi+1]× [yi, yi+1]× [zi, zi+1],
i = 1, . . . , I − 1, j = 1, . . . , J − 1, k = 1, . . . ,K − 1}, (1)

where the nodes (xi, yj , zk) are enumerated with the coordinates i, j
and k along the x−, y− and z−axis. This results in the total number
of Np := I · J ·K mesh points for (I − 1) · (J − 1) · (K − 1) mesh cells.

After the definition of the grid cell complex G, the further
introduction of the FI-theory can be restricted to a single cell volume
Vn. Starting with Faraday’s law in integral form∮

∂A

�E(�r, t) · d�s = −
∫ ∫

A

∂

∂t
�B(�r, t) · d �A ∀ A ∈ R3, (2)

can be rewritten for a facet Az(i, j, k) of Vn as the ordinary differential
equation

�
e x(i, j, k) + �

e y(i + 1, j, k)− �
e x(i, j + 1, k)− �

e y(i, j, k) =

− d

dt

��
b z(i, j, k), (3)

as shown in Fig. 1, where the scalar value �
e x(i, j, k) =

∫ (xi+1,yj ,zk)

(xi,yj ,zk)
�E ·

d�s is the electric voltage along one edge of the surface Az(i, j, k),
representing the exact value of the integral over of the electric field
along this edge. The scalar value

��
b z(i, j, k) =

∫
Az(i,j,k)

�B·d �A represents
the magnetic flux, i.e., the integral value over the magnetic flux density,
through the cell facet Az(i, j, k). Note that the orientation of the
cell edges will have influence on the signs within (3). It has to be
emphasized that equation (3) is an exact representation of (2) for the
cell surface under consideration.

The integral formulation of Farady’s law (2) is valid for each
single facet A(i, j, k) of G and the discrete approach in (3) naturally
extends to larger facet areas A = ∪A(i, j, k) due to the relation∑∮

A(i, j, k) =
∮
A . The same result will hold for surface integrals. This

motivates the spatial discretization approach by a finite cell complex
chosen within the Finite Integration Technique.



68 Clemens and Weiland

),,( kjiye
�

),,( kjizb

�

�

),1,( kjix �e
�

),,1( kjiy �e
�

),,( kjixe
�

Figure 1. A cell Vi,j,k−1 of the cell complex G with the allocation of
the electric grid voltages �

e on the edges of A and the magnetic facet
flux

��
b through this surface.

Assuming a lexicographical ordering of the electric voltages
�
e (i, j, k) and of the magnetic facet fluxes

��
b (i, j, k) over the whole

cell complex G and their assembly into column vectors in such a way,
that we compose the degrees of freedom first in x−direction, then in
y− and z−direction, we get two vectors

�e := (�e x,n|�e y,n|�e z,n)Tn=1,...,Np ∈ R3Np (4)
��
b := (

��
b x,n|

��
b y,n|

��
b z,n)Tn=1,...,Np ∈ R3Np . (5)

The equations (3) of all grid cell surfaces of the complex G can be
collected in a matrix form

(
. . . . . . . . .

1 . . . 1 . . . −1 . . . −1
. . . . . . . . .

)
︸ ︷︷ ︸

C :=



�
en1

...
�
en2

...
�
en3

...
�
en4


︸ ︷︷ ︸

�e

= − d

dt


...
��
b n
...


︸ ︷︷ ︸

��
b

. (6)

The matrix C contains only topological information on the incidence
relation of the cell edges within G and on their orientation, thus it
only has matrix coefficients Ci,j ∈ {−1, 0, 1}. It represents a discrete
curl-operator on the grid G.

In terms of algebraic topology the discrete curl operator of FIT
is identical to the coboundary process operator that is applied to the
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cochains of degree one, i.e., the degrees of freedom allocated on one-
dimensional cell chains, resulting in a cochain of degree two, i.e., a
degree of freedom connected to a two-dimensional cell-surface [2].

The second discrete differential operator to be considered is the
divergence operator. Its derivation originates from Maxwell’s equation
describing the non-existence of magnetic charges

∫ ∫∫
∂V

�B(�r, t) · d �A = 0 ∀ V ∈ R3, (7)

which is considered for a cell Vi,j,k as shown in Fig. 2.
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Figure 2. This figure depicts the allocation of the six magnetic facet
fluxes which have to be considered in the evaluation of the closed
surface integral for the non-existence of magnetic charges within the
cell volume.

The evaluation of the surface integral in (7) for the depicted brick
cell yields

−��b x(i, j, k)+
��
b x(i + 1, j, k)−��

b y(i, j, k)+
��
b y(i, j + 1, k)

−��b z(i, j, k)+
��
b z(i, j, k + 1)=0,

(8)

which is an exact relation for the considered volume.
Again this relation for a single cell can be expanded to the whole
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cell complex G and this yields the discrete divergence matrix

(
. . . . . .

. −1 1 −1 1 −1 1 .
. . . . . .

)
︸ ︷︷ ︸

S :=



...
��
bm1
��
bm2
��
bm3
��
bm4
��
bm5
��
bm6

...


︸ ︷︷ ︸

��
b

= 0. (9)

The discrete divergence (source) matrix S ∈ RNp×3Np also only
depends on the grid topology just as the discrete curl-matrix C. It
corresponds to the coboundary operator applied to cochains of degree
two (surface degrees of freedom) that yields cochains of degree three,
a degree of freedom connected to a whole cell volume [2].

The discretization of the remaining two Maxwell equations within
the Finite Integration Technique requires the introduction of a second
cell complex G̃ which is dual to the primary cell complex G. For the
Cartesian tensor product grid G the dual grid G̃ is defined by taking
the foci of the cells of G as gridpoints for the mesh cells of G̃.

For more general, eventually unstructured, cell complexes G it
is also possible to take the cell barycenters as boundary vertices for
definition of the dual grid cells of G̃ [6], [3].

With this definition it can be ensured that there is a one-to-one
relation between the cell edges of G cutting through the cell surfaces
of G̃ and vice versa. Along the edges L̃k of the so defined dual grid
cells we integrate the magnetic field intensities resulting in a magneto
motive force

�

hk =
∫
L̃k

�H · d�s with the physical unit Ampére. On the

cells surfaces of G̃ the dielectric fluxes and the electric currents are
allocated in analogy to electric grid voltages and magnetic facet fluxes
on G.

Hence the complete integral of the charge density within a dual
cell Ṽ can be related to a discrete charge onto the single grid point of
the primal grid G placed inside Ṽ .

The discretization of Ampére’s law in integral form∮
∂Ã

�H(�r, t) · d�s =
∫ ∫

Ã

(
∂

∂t
�D(�r, t) + �J(�r, t)

)
· d �A ∀Ã ∈ R3 (10)
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~

Figure 3. This figure shows the spatial allocation of a cell and a dual
cell of the grid doublet {G, G̃}.

can be performed for an arbitrary facet Ã of a dual grid cell Ṽ in
complete analogy to Faraday’s law by summing up the magnetic grid
voltages in order to obtain the displacement current and the conductive
current through the considered cell facet.

Finally, Gauss’ law in integral form can be discretized for the dual
grid cells. Both these discretizations for the dual grid cell complex
will result in matrix equations featuring the topological grid operators
C̃ for the dual discrete curl and S̃ for the dual discrete divergence.
For the cell complex pair {G, G̃} the complete set of discrete matrix
equations, the so-called Maxwell-Grid-Equations (MGE) is now given
by:

C�e = − d

dt

��
b, C̃

�

h =
d

dt

��
d +

��
j , (11)

S
��
b = 0, S̃

��
d = q. (12)

Irrotational electromagnetic fields in Ω can be represented as
gradient-fields of scalar potentials according to Poincare’s lemma.
Within the context of the FI-Technique one deals with electric grid
voltages allocated on the cell edges. To represent these as difference
of two nodal potential values, discrete potential values Φ(i, j, k) are
allocated onto the intersecting grid mesh points of G, such that the
relation

−Φ(i + 1, j, k) + Φ(i, j, k) = �ex(i, j, k) (13)

holds. Collecting these discrete potential values and their relation (13)
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into vectors Φ over the whole cell complex G, one obtains the relation
�e = −GΦ, (14)

where the discrete gradient matrix G = −S̃T indeed is the negative
transpose of the dual discrete divergence operator. Analogously, the
same procedure can be applied using magnetic potentials on the cell
vertices of the dual cell complex G̃ to derive the discrete gradient
matrix −ST for the irrotational dual magnetic grid voltages with
�

h = −G̃Ψ(= STΨ), where Ψ is a magnetic scalar nodal potential
vector.

A discretization has been performed for Maxwell’s equations only
so far, as the computational domain has been artificially bounded
and the information that these equations hold is only about integral
state variables which are either allocated on points (potentials), edges
(voltages), surfaces (fluxes) or the cell volume (charges). The resulting
equations are an exact representation of Maxwell’s Equations on a grid
doublet.

The approximation of the method itself enters when the integral
voltage- and flux state-variables allocated on the two different cell
complexes are to be related to each other by the constitutive material
equations. In the case of the simple Cartesian tensor product grid the
two cell complexes G and G̃ are dual orthogonal and represent a so-
called Delaunay-Voronoi-grid doublet. Here the directions associated
to the facet and to the dual edge penetrating this facet are identical.
In addition with the one-to-one correspondence of the facets and their
penetrating dual edges this will result in discrete material matrix
relations

��
d = Mε

�e +
��p,

��
j = Mκ

�e ,
�

h = Mν
��
b − �m, (15)

featuring only diagonal matrices for diagonal or isotropic material
tensors [10]. Here Mε is the permittivity matrix, Mκ is the (usually
singular) matrix of conductivities, Mν the matrix of reluctivities and
��p and �m arise from permanent electric and magnetic polarisations.
Within these matrix equations the relations of the degrees of freedom
corresponding to the two grid complexes G and G̃ are described,
coupling edge degrees of freedom, so-called discrete 1-forms, with dual
facet degrees of freedom, so-called discrete 2-forms. In differential
geometry an isomorphism, which maps a 1-form onto a 2-form (in the
manifold R3), is called a Hodge operator. Hence the material matrices
of the FIT can be dubbed as discrete Hodge operators [3] and contain
the metrical information of the MGE, i.e., they contain the averaged
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Figure 4. The coupling of the degrees of freedom on G and G̃ is
performed in the constitutive material equations. Here, an electric
grid voltage �em allocated on an edge Lm ∈ G is coupled to a facet
flux

��
jm allocated on a dual cell facet Ãm ∈ G̃. This process involves

an averaging of the four cell permittivities κ1, . . . , κ4 to a value κ̄m
for the facet area Ãm. The coupling constitutive relation then reads as
jm = κ̄mem, involving a mean current density jm =

��
jm/

∫
Ãm

dA and
an averaged electric field intensity em = �em/

∫
Lm

ds.

information of the material and on the grid dimensions [10] (See Fig.
4). Since the four MGE in (11) and (12) are exact and contain only
topological information, the discretization error is found to be located
in the discrete constitutive material equations [10], [3].

For instance, with the definition of a maximal length of the grid
cell edges h of the Cartesisian grid doublet (G, G̃) the result for the
coupling of the electric currents and the electric grid voltages an entry
of the diagonal material matrix of conductivities is derived from∫ ∫

Ãm

�J · d �A∫
Lm

�E · d�s
=

∫ ∫
Ãm

κdA∫
Lm

ds

+O(hl)

≈ κ̄

∫ ∫
Ãm

dA∫
Lm

ds

= (Mκ)m,m =

��
jm
�em

(16)
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for a corresponding pair of a grid voltage �em along the edge Lm ∈ G

and the facet flux
��
jm through the facet Ãm ∈ G̃. Here the error

exponent l has a value l = 2 in the case of non-uniform grid spacing or
if the cell conductivities κi have a different value, otherwise l = 3 holds
[11]. The material matrix of permittivities is derived analogously.

Coordinate axis parallel orthogonal grids, where each cell is filled
with only one material as shown in Fig. 4, will lead to the problem
of staircase approximations of curved boundary surfaces. To overcome
this problem sophisticated schemes are available with FIT for improved
geometry approximation and material averaging inside the cells such
as the triangular filling technique [12], the tetrahedral filling technique
[13], [14] or the Perfect Boundary Approximation technique [15]. They
allow to use computationally efficient, structured Cartesian grids, while
at the same time reducing the geometry approximation error of the
method (Fig. 5).

Figure 5. Both figures show an example for the averaging process of
the cell material properties for the dual cell facet Ã in the presence
of partial cells fillings, here for the case of different electric conductive
materials within the cells. Figure a) on the left depicts the situation
for triangularly partially filled cells, Figure b) on the right features
tetrahedral cell subvolumes. If |Ãi| is the area of Ã cutting the cell
subvolume filled with κi the averaged value for the conductivity on Ã
is given with κ̄ = 1/|Ã|

∑6
i=1,i�=3 κi|Ãi|. Note that in both cases the

cell subvolumes with κ3 are not considered in the averaging process.

It should be noted that for non-orthogonal cell complexes the
one-to-one correspondence of cell facets and dual cell edges will not
necessarily coincide with a one-to-one relation of the corresponding flux
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and voltage degrees of freedom. The resulting material matrices of the
Nonorthogonal Finite Integration Technique (N-FIT), are symmetric,
but no longer diagonal [7], [16], [17]. A treatment of dispersive,
gyrotropic and non-linear material properties within the FI Technique
results in numerical schemes which typically concentrate on suitable
modifications of the material matrices [18], [19], [20], [21].

The basic idea for the derivation of the material matrices in
FIT, as depicted in Fig. 4, is originally motivated by physical
considerations. The derivation of the discrete Hodges operators for
Edge-Finite-Element schemes, however, with their origin in variational
formulations, involves the element-by-element quadrature of the
Whitney edge shape functions we [22], given here e.g. for the mass
matrix of conductivities on a tetrahedral element grid with

(Mκ)FE
i,j =

∫
A
κwei · wej dA. (17)

As in the N-FIT case, the resultant material matrices of the
discrete constitutive equations will be symmetric (and eventually badly
conditioned for obtuse edge angles) and non-diagonal. An artificial re-
diagonalization of these matrices with so-called lumping techniques is
explained in [22] for tetrahedral meshes.

2. ALGEBRAIC PROPERTIES OF THE MATRIX
OPERATORS

One of the essential properties of the discrete representation of
Maxwell’s equations by the boundary path and surface integral
approach (hence Finite Integration) lies in the discrete analog to the
vectoranalytical equation

div curl = 0, (18)

given with the matrix equations

SC = 0, (19)

S̃C̃ = 0, (20)

for the cell complex doublet {G, G̃}. These relations result from the
fact, that for all grid cells the calculation of the discrete divergence
S consists in the summation of the flux components. For these flux
components any grid voltage (left-multiplied with the discrete curl-
matrix C) is each considered twice with different sign in the curl-
summation giving the zero divergence result of the overall summation
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(See Fig. 6). This argument from algebraic topology, where it is also
used to derive the vectoranalytical identity (18) [23] directly transfers
with FIT in the discrete electromagnetism, where it holds for the
primal grid G and for the dual grid complex G̃ and has been early
recognized to be essential for conservation and stability properties.

Figure 6. This sketch of the cell Vi ∈ G demonstrates the complex
property SC = 0 of the grid incidence matrices C and S. The electric
grid voltage �ek allocated on the boundary edge Lk occurs once with
a positive and once with a negative sign in the curl-summation of the
magnetic fluxes

��
bj1 and

��
bj2 .

An important property of the Finite Integration Technique follows
from the duality of the grid cell complexes G and G̃ given with the
relation of the discrete curl-matrices [24]

C = C̃T . (21)

Transposition of the equations (19) and (20) in combination with
the identity (21) results in the discrete equations

C̃ST = 0, (22)

CS̃T = 0, (23)

both corresponding to the vector-analytical identity

curl grad ≡ 0. (24)

With (22) and (23) we see that discrete fields represented as gradients
of nodal potential vectors as in (14) will be exactly irrotational also on
a discrete level.
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The matrix equations (19), (20), (22) and (23) include only the
incidence relations of the grid topology and do not contain any metrical
notions [25]. They represent the typical so-called complex property of
the simplicial grid cell complex [23]. The background mathematical
connection between the discrete matrix identities (19)–(23) to the
vectoranalytical identities (18) and (24) becomes readily available,
when the degrees of freedom in the Finite Integration Technique are
considered as discrete differential forms in which case the discrete grid
topology matrix operators have the same effect as Cartan’s differential
operator, which yields the vector-analytical operators curl, grad,div
(Cf. [2]).

3. ALGEBRAIC PROPERTIES OF THE DISCRETE
FIELDS

With the complex properties (19)–(23) and relation (21) arising from
the duality of the dual grid doublet {G, G̃} important existence and
uniqueness results can be derived for the discrete grid fields by simply
applying theoretical results from linear algebra.

An important feature of the FI-Technique as spatial discretization
scheme for Maxwell’s equations is the build-in continuity equation

S̃(C̃
�

h) = S̃
(

d

dt

��
d +

��
j
)

= 0, (25)

which corresponds to the analytic continuity equation

div
(

∂

∂t
�D + �J

)
= 0⇐⇒ d

dt
q + S̃

��
j = 0. (26)

The discrete continuity equation ensures that no spurious charges
will occur. Such non-physical charges would result in static fields
contaminating discrete transient field solutions.

If electromagnetic field processes are calculated in time domain,
energy conservation of the time and space discrete system becomes
of paramount importance. If this condition is violated, a necessary
prerequisite for a long-term stable time integration of electromagnetic
wave-propagation phenomena without artificial numerical damping is
not available. For the FI-Technique the proof of this condition was
given in [24], [26] for resonator structures with perfectly conducting
walls.

The transformation into frequency domain for the Maxwell-Grid-
Equations in (11) with �e(t) = Re(�eeiωt) for a situation without lossy
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materials (Mκ = 0) and without external current excitation (
��
j
e = 0)

yields

C�e = −iω ��
b, (27)

C̃Mν
��
b = +iω Mε

�e . (28)

Combining these equations a general real-valued algebraic eigenvalue
problem is obtained with the homogeneous curlcurl equation

C̃MνC
�e = ω2 Mε

�e . (29)

Additional normalization with �e , := M1/2
ε

�e of equation (29) results
in a typical real-valued eigenvalue problem

(M1/2
ν CM−1/2

ε )T (M1/2
ν CM−1/2

ε )�e , = ω2 �e ,
. (30)

With the additional assumption of symmetric and positive definite
material matrices Mν and Mε, the symmetry of this algebraic
eigenvalue problem directly yields that all eigenvalues ω2 of the curl-
curl system matrix have to be real-valued and nonnegative. Thus a
discrete field solution in time domain, which can always be decomposed
into a linear combination of such undamped loss-free eigensolutions,
will neither grow nor decay in time.

Another important property of the curlcurl equation without
losses becomes apparent by left-multiplication of the discrete
divergence matrix S̃

S̃C̃MνC
�e = ω2 S̃Mε

�e . (31)

Due to relation (20) of the grid incidence matrices the equation

ω2 S̃Mε
�e = 0, (32)

is obtained. In case of singly connected metallic boundaries of the
computational domain (32) allows the two possible solutions for the
dielectric facet fluxes

��
d = Mε

�e [27], [24]:

��
d :

{
ω2 �= 0 : S̃

��
d = 0

ω2 = 0 : S̃
��
d �= 0

. (33)

For situations in which the boundaries of perfectly electrically con-
ductive regions of the computational domain are not singly connected,
there are also non-trivial solutions

��
d for which both S̃

��
d = 0 and
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ω2 = 0 will hold.

The original problem (29) is real-valued and symmetric and thus
for simple topologies of the computational domain the eigenvectors �e ,

i
can be normalized such that they build an orthogonal set where

�e ,H
i

�e ,
j = δij (34)

will hold. This allows the definition of two orthogonal vector subspaces
of the R3Np which span the vectorspace of solutions of the curlcurl
equation

LCurl-Curl = Lω ⊕ L0. (35)

This result for the eigenvalue problem yields that all rotational dynamic
modes (ω �= 0) in Lω are orthogonal to the irrotational static discrete
solutions for ω2 = 0.

In order to numerically control the static eigenmodes of the
curlcurl matrix, it can be enhanced to a discrete ∇2-equation. In
this case a generalized Helmholtz-equation is considered following the
analytical identity

∇×∇×−∇∇· = −∇2. (36)

A direct consideration of the ∇2-matrix on the grid cell complex
pair {G, G̃} in analogy to the analytical case is not possible, since in
practice usually non-uniform material distributions have to be taken
into account. The generalized Helmholtz-grid-equation reads as[

C̃MνC + D1S̃TD2S̃D1

]
�e = ω2 Mε

�e . (37)

Depending on the proper choice of the diagonal matrices D1 and D2

in the added grad-div operator D1S̃D2S̃TD1 it is possible to achieve a
discretization of the ∇2-equation for homogeneous materials [24]. Such
a possible choice consists in the definition D1 := Mε and D2 := k·D−1

Ṽ
,

where DṼ is the diagonal matrix of dual cell volumes of G̃ and k is a
scaling factor [24]. An alternative interpretation of the matrix D2 as
diagonal norm matrix is discussed in [28] with the choice of

D1 := Mε +
1
iω

Mκ,

D2 := DδD−1

Ṽ
D−1

<µ>D−1
<ε+ 1

iω
κ>

D−H
<ε+ 1

iω
κ>

, (38)
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where the diagonal matrix (Dδ) with coefficients in {0, 1} specifies
the cell vertices in regions of G, on which the grad-div operator
is to be considered and especially blending out nodes in perfectly
electrically conducting material. The diagonal matrix DṼ contains the
information on the cell volumes of the dual grid G̃ and the diagonal
matrices D<ε+ 1

iω
κ> and D<µ> contain the material information of the

complex permittivities and permeabilities averaged over these dual cell
volumes.

The background to the choice of (38) for the norm matrix lies in
possibly bad condition numbers of the complete ∇2-matrix resulting
from the different ways in which non-isotropic and inhomogeneously
distributed dielectric und permeable materials are considered in both
the curlcurl matrix and the grad-div matrix. In the special case of
magneto-quasistatic situations, ε + 1

iωκ numerically reduces to 1
iωκ

within the diagonal matrices of (38) and the addition of the effective
grad-div matrix MκS̃TD2S̃Mκ to an eddy current formulation allows
to explicitly enforce the magneto-quasistatic continuity equation S̃

��
j =

0 within the whole conductive domain (Cf. [29]).
The eigenvalue problem of the discrete grad-div matrix

D1S̃TD2S̃D1
�e = γ2Mε

�e , (39)

can be analyzed in the sense of equation (29) and then the eigenmodes
for the trivial eigenvalue γ2 = 0 correspond to the rotational
eigenvectors and those of the eigenvalues γ2 �= 0 correspond to the
irrotational eigenvectors for simple problem topologies.

The eigenvectors of the non-trivial eigenvalues γ2 �= 0 of (39) span
a subspace Lγ ∈ R3Np , which coincides with the vectorspace Ω0 in
case of problem topologies with singly connected, perfectly electrically
conducting boundaries. Thus the range of the ∇2-matrix can be
written as a direct sum

L∇2 = Lω ⊕ Lγ . (40)

It should be noted that the eigensolutions of (39) in Ωγ are no solutions
of discrete electromagnetism, but nonetheless they may be considered
as physical solutions of the discrete, stationary Schroedinger equation.
In a free space region of the computational domain and with the
appropriate choice of the matrices D1 and D2 the generalized ∇2-
matrix in (37) becomes identical to the one achieved with a Finite
Difference discretization of the Laplacian [24], as shown in Fig. 7.



Discrete electromagnetism with FIT 81

Figure 7. In the sketches 1a) to 1c) the curlcurl operator C̃MνC
is described: 1a) corresponds to

��
b = C�a , in 1b) the facet fluxes

��
b

are coupled to the magneto-motive forces on G̃ by
�

h = Mν
��
b and 1c)

shows, how the dual discrete curl applied to these line integrals yields
the flux trough the dual facet:

��
d = C̃

�

h. The sketches 2a)–2d) explain
the discrete grad-div operator D1S̃TD2S̃D1 : 2a) applies a discrete
Hodge operator

��
d = D1

�e and yields the fluxes trough the facets of G̃
shown in 2b). The following application of a discrete divergence yields
the space a charge in each dual cell of G̃ : q = S̃

��
d. With Φ = D−1

Ṽ
q the

inverse of these cell volumes yields nodal potentials Φ on the nodes of
G. The discrete gradient of the potential values yields grid voltages on
G as depicted in 2c): �e = S̃TΦ. In 2d) these edge degrees of freedom
on G are coupled with dual facet fluxes

��
d applying

��
d = D1

�e as in 2a).
Figure 3) on the right shows the matrix stencil of the generalized ∇2-
matrix C̃MνC+D1S̃TD2S̃D1 for a vertical component of �e , where D1

and D2 are chosen such that the active matrix entries resemble those
of a 7-point Finite Difference matrix stencil for the ∇2-operator.

4. DISCRETE FIELDS IN TIME DOMAIN

So far the Maxwell-Grid-Equations only have been considered in the
time continuous and space-discrete case, in which they represent large
systems of ordinary differential equations and for which the Finite
Integration Technique can be considered as a vertical method of lines
[30]. For numerical calculations in time domain it is also necessary to
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discretize the time axis of the electromagnetic process:

f(t), t ∈ [t0, tn] −→ f(ti), ti ∈ [t0, tn], i = 0, . . . , n (41)

Note that the stability and charge conservation laws which were so
far proven to hold for the time continuous case now also depend
on the properties of the chosen numerical time marching schemes.
However, the FI-theory allows also to prove these properties for a
number of existing numerical schemes. Alternative formulations of
other discretization approaches will not necessarily feature these time
and stability properties and thus may become inaccurate or unstable
within long term time integrations.

Time discrete energy conservation can be shown for the explicit
FDTD leapfrog scheme [31] and for certain implicit second order
Newmark-type time marching schemes [32, 33] applied to a given initial
value problem with the homogeneous, non-lossy electric wave-equation

Mε
d2

dt2
�e(t) + C̃MνC

�e(t) = 0, �e0 := �e(t0),
�e ′0 := �e ′(t0). (42)

Conservation of a discrete energy [31] can be shown to hold in a
time discrete sense with the relation
�en+1,TMε

�en+1 +
�

hn+1,TDµ

�

hn+1 = �en,TMε
�en +

�

hn,TDµ

�

hn (43)

with the implicit two-step Crank-Nicolson scheme [34] and the one-
step Averaged-Acceleration-scheme [11]. Within these FDiTD (Finite
Difference implicit Time Domain) schemes [35] the time discrete
solutions for both the magnetic and the electric grid voltages

�

h and �e
are evaluated at the same time, whereas the explicit Leapfrog method
also considers a dual-staggered grid for the time-axis.

For magneto-quasistatic problems the condition ‖d/dt ��d‖∞ �
‖
��
j ‖∞ results in the omission of the displacement currents d/dt

��
d. A

corresponding transient magneto-quasistatic formulation described in
[35] and [36]

Mκ
d

dt
�a + C̃MνC

�a =
��
j e (44)

is based on the modified magnetic vector potential �a = −
∫ �edt with

��
b = C�a . The charge conservation of the magnetic field is analogously
provided by the choice of the vector potential �a itself and the matrix
relation (19) with

S
��
b = SC�a = 0. (45)
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The discrete magneto-quasistatic continuity equation (25) reduces to
S̃
��
j = 0, corresponding to Kirchhoff’s law of a zero current balance

at nodes of electrical circuits, if one artificially restricts the currents
allocated on the dual cell facets to the corresponding one-dimensional
edges of the primary grid.

Thus external excitation currents
��
j e must be of vanishing

divergence, which is the case for excitation coils with closed loops or
stationary current fields modelled in G. This also prohibits the use of
antennas as excitation sources within these formulations, since discrete
charges would have to be considered at their ends. In addition, in the
conducting regions this magneto-quasistatic continuity equation S̃

��
j =

−S̃Mκ
d
dt

�a = 0 corresponds to a gauging of the vector potential, which
takes into account possible jumps in the components of the vector
potential normal to interfaces of materials with different conductivity.
A time discretization of the non-gauged transient magneto-quasistatic
formulation (44) with a θ-one-step method [33] yields a consistently
singular system of equations[

1
θ∆t

Mκ + C̃MνC
]
�an+1 =[

1
θ∆t

Mκ +
1− θ

θ
C̃MνC

]
�an +

��
j n+1
e +

1− θ

θ

��
j n
e , (46)

which have to be solved repeatedly. Nonlinear ferromagnetic material
behaviour modelled in Mν(

�an+1) can be tackled with linearization
techniques and the resulting linear systems will have a similar structure
to (46) [37]. Left multiplication of (46) with S̃ shows that the continuity
equation for the eddy currents will be enforced in a time discretized
sense with

S̃Mκ
�an+1 = S̃Mκ

�an = . . . = S̃Mκ
�a0

. (47)

Note, that for the magneto-quasistatic formulation with its continuity
equation S̃

��
j = 0 also the condition d/dtq = 0 is implied from

the discrete continuity condition of the complete set of Maxwell-
Grid-Equations. The result d/dtq = 0 provides, that no spurious
irrotational solution parts will accumulate in �a in the non-conductive
regions arising from the spatial discretization itself. If in addition
a solution method for the consistently singular system (46) with a
weak gauging property, as featured by e.g. the conjugate gradient
method [35], is applied with a zero start vector of the iteration, the
relation S̃D�an+1 = 0 will hold for exact arithmetics. Thus the charge
conservation property of the FI Technique also becomes an integral
part of the non-gauged formulation (44) itself.
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5. CONCLUSION

The Finite Integration Technique is a discretization method which
transforms Maxwell’s equations onto a dual grid cell complex, resulting
in a set of discrete matrix equations. The degrees of freedom
collected in the vectors of this discretization scheme, typically consist in
physically measurable, integral quantities such as voltages, currents or
charges. This discretization approach results in sparse integer matrices
C, C̃,S, S̃ which only contain information on the incidence relations of
the dual cell complex. This mere restriction to topological information
of the simplicial grid is responsible for the typical complex property
SC = 0 and S̃C̃ = 0. In connection with the relation C = C̃T

due to the duality of the grid pair and with symmetric and positive
definite material matrices the topologically related relations of these
incidence matrices allow to prove energy and charge conservation of
the spatially discretized formulations. For the homogenous undamped
curlcurl equation a real-valued spectrum with orthogonal subspaces for
static and dynamic eigenmodes was shown to exist. In addition, the
algebraic properties of the MGE of FIT also allow to prove charge and
energy conservation within time discrete schemes such as the explicit
Leapfrog FDTD scheme or certain second order implicit methods.
Implicit time integration schemes can also be applied to non-gauged
magneto-quasistatic formulations, which yield singular matrix systems
that still can be numerically tackled due to their consistency given
with the FIT approach. These results clearly distinguish these time
integration schemes from many alternative methods which do not
rely on space and time stability and thus may become unstable or
inaccurate within long term calculations.
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