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Psalm 2 
 

Why do the heathen rage, and the people imagine a vain thing?  
The kings of the earth set themselves, 
 and the rulers take counsel together, 

 against the Lord, 
 and against his anointed, saying,  
Let us break their bands asunder, 

 and cast away their cords from us.  
He that sitteth in the heavens shall laugh: 

 the Lord shall have them in derision.  
Then shall He speak unto them in his wrath, 

 and vex them in his sore displeasure.  
Yet have I set my king upon my holy hill of Zion.  

I will declare the decree: 
the Lord hath said unto me,  

Thou art my Son; this day have I begotten thee.  
Ask of Me, and I shall give thee the heathen for thine inheritance, 

 and the uttermost parts of the earth for thy possession.  
Thou shalt break them with a rod of iron; 

 Thou shalt dash them in pieces 
 like a potter's vessel.  

Be wise now therefore, O ye kings: 
 Be instructed, ye judges of the earth.  

Serve the Lord with fear, and rejoice with trembling.  
Arm yourself with righteousness, lest He be angry, 

 and ye perish from the way, 
 when his wrath is kindled but a little. 

 Blessed are all they that put their trust in Him.  
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SUMMARY 
 

 

Discrete Element Analysis of Granular Materials 
 

During oil and gas production, several years after drilling a borehole, sand 

particles and small sandstone particles start to break away from the borehole 

surface. These particles can damage the transport pipes and other equipment in a 

short period of time. By simulating this borehole behaviour with the thick-walled 

cylinder test, four phenomena were found which cannot be explained by 

conventional continuum mechanics: 

   1. Despite the compressive stress, failure occurs on the micro level due to 

tension cracks. 

   2. These cracks are not diagonal to, but parallel to, the borehole surface. 

   3. These cracks cause two diametrically opposite breakouts. 

   4. The functional failure of the borehole starts at a higher radial pressure than 

predicted. 

In 1979, Cundall developed a computer model, based on the basic elements of 

granular materials, i.e. the grains themselves and their interactions, to describe 

the behaviour of these materials. Lindhout tried, in 1992, to use this model to 

describe the cylinder test. Due to compaction problems, stability problems and 

the large computational time, this could not be achieved. Therefore a new model 

was developed by the author, which does not use the equations of motion, but the 

equations of equilibrium, to calculate the new grain positions. This model can be 

used both for non-cohesive grains (sand) and for cohesive grains (sandstone). 

The results can generally be described by an advanced Mohr-Coulomb model. 

However, there are a few exceptions. 

Firstly, during loading of a granular structure, many contacts between the grains 

will collapse, not due to shear deformation as Coulomb suggests, but due to 

tension failure. Secondly, these micro cracks always occur in the direction of the 

major principal stress, which might be another direction than the observed failure 

surface. In this way, the axial micro cracks form a diagonal failure surface during 

a biaxial test, but  the axial micro cracks in a cylinder test may form a failure 

surface parallel to the borehole surface. 

During the formation of natural sandstone, the difference between the horizontal 

and vertical stress causes anisotropy in the strength behaviour of this material. 

This or other anisotropies may explain the diametrically opposite breakouts. 

The conclusion that a borehole fails at a higher radial pressure than predicted, 

originates from the definition difference between local failure and functional 

failure and the large rest capacity of a thick-walled cylinder.  
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1. INTRODUCTION 
 

This study on the behaviour of granular materials originates from offshore 

engineering. During oil and gas exploitation, several years after the drilling of a 

borehole, sand particles and small sandstone particles start to break away from 

the borehole surface. The number of particles which is transported by the oil or 

gas, can reach such an amount that the transport pipes and other equipment will 

be damaged, in a short period of time, by the scouring of these particles. The 

only solution up till now is to make a new borehole, which is, especially off 

shore, a huge financial loss. 

Therefore laboratory research has been started to get insight into this problem. 

One of the main characteristic tests to simulate the failure of a borehole is the 

thick-walled cylinder test, which consists of a sandstone cylinder of several 

centimetres with an axial borehole in the middle. By radial compression of this 

cylinder four phenomena were found which cannot be explained by conventional 

continuum mechanics. These are: 

   1. Despite the compressive stress, failure occurs on micro level due to tension 

cracks. 

   2. These cracks are not diagonal to, but parallel to, the borehole surface. 

   3. These cracks cause two diametrically opposite breakouts. 

   4. The failure of the borehole starts at a higher radial confining pressure than 

predicted. According to many researchers, like Ewy and Cook (1990 I), the 

measured strength of the borehole surface is even two to four times as high 

as calculated.  

The idea existed that this could be explained by the specific behaviour of 

granular materials, which is lost in continuum mechanics. Therefore the models 

which describe the materials by their basic elements became more popular. 

De Josselin de Jong and Verruijt (1969) have applied an optical method to 

determine the magnitude and the direction of the contact forces between grains, 

by measuring the rotation of polarised light through these grains made of 

photoelastic materials. In this way the local displacements and forces could be 

studied. 

About ten years later, Cundall developed a computer model, named Ball, to 

describe the behaviour of granular materials. This model is based on the basic 

elements of these materials, i.e. the grains themselves and their interactions. It 

can handle both non-cohesive grains and cohesive grains. The method was 

validated by Cundall and Strack (1979) by comparing force vector plots obtained 

from the computer program Ball, with the corresponding plots obtained from the 

photoelastic analysis, which was done by De Josselin de Jong and Verruijt. The 

correspondence between the plots was sufficiently good to conclude that the 

distinct element method is a valid tool for fundamental research. 
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There are two major advantages of computer models in comparison to prototype 

tests. Firstly, all grain displacements, contact forces and micro cracks are known. 

Secondly, one specific sample can be tested many times. One of the major 

problems with Cundall's model was the computational time. According to Ting 

(1989), it is not feasible to simulate more than a few tens of thousands of grains, 

even with the fastest super computers currently available. 

Lindhout (1992) tried to model the cylinder test with Trubal, which is the next 

version of Ball. Due to compaction problems, stability problems and the large 

computation time this could not be done. Therefore this new research project has 

been set up to solve these problems. The idea was that if the quasi-dynamical 

analysis of Cundall, which uses artificial damping, can be replaced by a 

technique which uses the so called finite element method, the model will become 

more useful. 

This model can be used to understand better local stresses and displacements, 

because this micro mechanical analysis can investigate the behaviour of sand and 

sandstone on a very detailed scale. By simulating the actual grain structure, the 

analysis can perhaps bridge the gap between experimental observations and 

theoretical modelling. For Shell, this is of a special importance due to their oil 

and gas production boreholes. If the method is successful there will also be 

interest from other areas, like the mechanics of soft soils, powder technology or 

concrete technology. 

The objective of the present study was to simulate and investigate granular 

mechanical behaviour on a micro scale (elements representing grains) and to 

translate this behaviour into a continuum approach or to determine the limitations 

of such an approach. 
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2. DISCRETE ELEMENT MODELLING 
 

Discrete element modelling, which is also called distinct element modelling, is in 

fact a type of finite element modelling. Every element represents one grain. The 

main difference from the normal finite element modelling is that due to 

deformation some contacts between the grains can be lost and new contacts can 

be made. This causes softening and hardening respectively of the structure. 

Because of this, the global stiffness matrix of the complete structure has to be 

rebuilt constantly. 

For non-cohesive materials there is also a second reason why this matrix has to 

be updated; the behaviour of the contacts, both in the normal and the shear 

direction, is not linear, which means that the stiffnesses, kn  and ks , of these 

contacts, have to be recalculated continuously. 

 

If the boundary conditions of the structure (forces or displacements) are changed, 

then this will effect every grain. All grains will be displaced then in such a way 

that a new force equilibrium is created (quasi-static approach) or a new time step 

is reached (dynamic approach). 

Until recently only the dynamic approach has been worked out, mainly by 

Cundall. His model is based on the equations of motion. In this thesis, mainly the 

quasi-static approach is used, which is based on the equations of equilibrium. 

This approach is completely new. Both models will be worked out for a two-

dimensional rectangular Cartesian (OXY)- field. 

 

 

2.1. Micro modelling 
 

The behaviour of granular structures depends on the individual grains and their 

interaction. In order to be able to model this on a microscopic level, three 

simplifications are made (figure 1). 

The first simplification is made by reducing the number of dimensions. Three-

dimensional computer modelling consumes a lot of time and memory. Besides, 

two-dimensional modelling gains more insight in the results obtained, because of 

its simplicity. 

The second simplification is made to the grain shape. The most common one, a 

circle, reduces the calculation substantially. However, elliptical grains show 

failure at a larger stress ratio than circular grains during a loading test, according 

to Rothenburg and Bathurst (1992). Thus, circular grains will roll easier than 

grains of a more complex shape. 
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1

2

3

 
 

Two-dimensional   Circle shaped    Contact behaviour 

 

Figure 1. Simplifications 

 

Cross sections of several types sandstone, like Fontainebleau Sandstone (David 

and Darot, 1993), make clear that the grains in these sandstones can be well 

described by polygons (figure 2). 

 

 
 

Figure 2. Fontainebleau Sandstone 

 

During the formation of sandstone, the stress in the contacts is so high that the 

quartz material in the contact between the grain particles becomes a little bit 

viscous. Thus, the shear forces slowly fade away in time. Because of this 

creeping behaviour, the lateral stress of a one-dimensional compression test on 

sand increases with time under any stress conditions, according to Yamamuro 

(1996). The contact surfaces become flat in time and will fit more and more. The 

modelling of these sandstones with circular grains, will probably not cause too 

large errors as long as the contact behaviour, i.e. the strength and stiffness 

properties, is well modelled. This is because of the fact that the cemented grains 

in the sandstone will hardly roll. 

The description of the contact behaviour between two grains contains the last 

simplification. This behaviour is divided in three parts: 

   1. Normal deformation. 

   2. Shear deformation. 

   3. Slip or crack. 

All differences between real measurements and model results have to be 

explained by these three simplifications. Non-cohesive granular materials, such 

as sand or powders, and cohesive granular materials, such as sandstone or mortar, 
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will be treated separately, because their contact behaviours are different from 

each other. 

 

 

2.1.1. Contact behaviour of non-cohesive granular materials 
 

The force-displacement relation in normal direction of two non-crushing balls 

was solved by Hertz (1881). The definitions of the used micro parameters are 

presented in figure 3. These parameters are also mentioned in appendix 1, 

Symbol list. 
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Figure 3. Definition of micro parameters 

 

The relation between the normal force F
n
 and the normal displacement n  is 

given by: 

 ( )F M n
n

=
3

2  (1) 

 in which: 

  

( )M
rG

n r r d

r
r r

r r

i j

i j

i j

=
−

= + −

=
+

2 2

3 1

2

µ

µν

   

The grain stiffness M  depends on the shear modulus Gµ  and the Poisson's ratio 

ν µ  of the grain material and also on the average size r  of both grains. The 

reason why this relation is not linear is that the contact surface between the 

grains depends on the deformation, so during loading the geometry is not 

constant. This causes in its way the non-linear stress-strain behaviour of non-
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cohesive granular materials. A verification test of this relation is presented in 

appendix 2, Hertzian contact. 

The force-displacement relation in shear direction between two balls was solved 

by Mindlin and Deresiewicz (1953) and verified by Deresiewicz (1958). The 

shear force F
s
 is proportional to the shear displacement s

h
 for the elastic area. 

 F k s
s s h

=  (2) 

The stiffness in shear direction ks  depends on the normal force: 

 
( )[ ]

k
G rF

s

n

=
−

−

2 3 1

2

2

3

1

3

µ η

µ

ν

ν
 (3) 

But for solving a system of equations, linear relations are necessary, such as: 

 F k n
n n

=  (4) 

So, the stiffness in normal direction k
n
 is not constant because it depends on the 

normal displacement: 

 k M n
n

=  (5) 

Because of this linearisation, the stiffness in shear direction can be related to the 

stiffness in normal direction:  

 k k
s n

= κ ν  (6) 

 in which: 

  κ
ν
νν

µ

µ

=
−
−

3
1

2
 

This means that the relation between the stiffnesses of the normal and shear 

direction depends only on the Poisson's ratio ν µ  of the grain material. 

Slip or plastic deformation occurs when the shear force exceeds, in comparison 

to the normal force, a certain level which depends on the friction f
gg

 between 

two grains: 

 if      then   F f F F f F
s gg n s gg n

> =  (7) 

 in which: 

  f
gg

= tanφ µ  
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2.1.2. Contact behaviour of cohesive granular materials 
 

Since the contact surface between two cemented grains remains more or less 

constant, the force-displacement relation in the normal direction between two 

grains is assumed to be linear: 

 F k n
n n

=  (8) 

The shear force is proportional to shear displacement for the elastic area: 

 F k s
s s h

=  (9) 

The shear stiffness is related to the normal stiffness: 

 k k
s n

= κ ν  (10) 

Crack or plastic deformation occurs when the shear force exceeds a certain level: 

 if       then                    so      F f F F F F f F
s gg n t t s gg n

> + = =0  (11) 

And if a tension force cut-off F
t
 is used, also: 

 if                  then       so      F F break contact F
n t n

< − = 0  (12) 

 in which: 

  f
gg

= tanφ µ  

  F c r c r r
t i j

= =µ µ
2   or   

 

 

2.2. Motion modelling 
 

The modelling of granular structures can be divided in four phases (see figure 4): 

   1. Creation of the particles. 

   2. Calculation of the boundary conditions such as wall displacements. 

   3. Calculation of the grain displacements and the contact forces. 

   4. Saving of wall forces, displacements or other necessary information. 

In phase 1. all grains are randomly placed between the walls with a grain size of 

one percent of its final size. During the next iterations the grains are blown up to 

fill the volume between the walls. 

In phase 2. the displacements of the stress controlled walls and the new stresses 

of the displacement controlled walls will be calculated.  

In phase 3. all grains will be one by one checked and recalculated. In Cundall's 

model, which is based on the equations of motion, this is done every time step. 

This grain calculation in a motion model consists of three parts: 

 

   A. With the two force-displacement relations, 

   
F k n

F k s

n n

s s h

=

=
 

  all forces on one particular grain are calculated. 

 



20 

   B. With these forces and the equations of motion (second law of Newton), the 

acceleration of the grain is determined: 

 

F m x

F m y

M I

x

y

=

=

=

∑
∑
∑ φ

 (13) 

  in which: 

   
M

m

=
=

moment on a grain

mass of a grain
 

 For the next time step, the new position of the grain is found with two 

integration steps: 

 

x
m

F

x x dt

x x dt

=

=

=

∑

∫
∫

1

 (14) 

 This integration is not very stable and therefore small time steps and 

damping are necessary. Extra calculation time and less accuracy are the 

result of this. 

 

   C. All contacts of the grain are checked for: 

     I. Plastic deformation (slip or crack). 

 if      then   F f F F F f F
s gg n t s gg n

> + =  (15) 

    where for sand and after cracking: 

 F
t

= 0   

    II. Contact breaking. 

 if      then − >F F break contact
n t

 (16) 

   III. Contact making. 

 if     >        thenn make contact0  (17) 

 

With the new positions, the new forces for part A. can be calculated. In this way, 

for every time step, all contact forces and grain positions are determined. The 

computer models, Ball, Trubal and PFC (particle flow code) from Itasca in 

Minneapolis USA are all based on this method. 
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2.3. Equilibrium modelling 
 

The new model is based on the equations of equilibrium. Only part B in which 

the displacements of the grains are calculated is different from the motion 

modelling: 

 

   A. The first part is the same as the motion model. 

 

   B. In the new approach, equilibrium equations are used instead of equations of 

motion:  

 

F

F

M

x

y

∑
∑
∑

=

=

=

0

0

0

 (18) 

By disregarding time, dynamic problems like explosions, vibrations and 

quakes can not be modelled. The three equations form a 3×3  matrix: 
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  in which: 

 
( )
( )

n

s

c

r

c g/

sin

cos

=

=

=

=

number of contacts per grain

radius of the grain

α

α
  

  and: 

   

∆
∆
∆

x x x

y y y

new old

new old

new old

= −
= −
= −φ φ φ

 

All the forces and stiffnesses on one particular grain are placed in this 

matrix. The displacements, and thus also, the new equilibrium positions of 

the grains, can directly be calculated by Gauss elimination. 

 

   C. The third part is the same as the motion model. 
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Although the equilibrium position is directly calculated, the displacement of a 

grain will effect its neighbouring grains. Therefore several iterations through the 

whole structure are necessary to find the total equilibrium state of the grain 

structure. The computer model Grain, written by the author, is based on this 

method. A structure diagram of this model is given in figure 4. 

 

Grain

sprinkle grains

calculate walls

cycle

first guess grains

move wall

calculate grains

check village (wall)

calculate wall displacement

numbers

grain info

calculate wall pressures

elasto-plastic switch

calculate grain displacement

if  n   = 0 : do nothing

truncate

if  n   = 1 : lateral displ.

if  n   > 1 : equilibriumc

c

c

check contacts

move grain

blow up grains

check village (grain)

check neighbours

check friends

make new grains if necessary

repeat until end of simulation

each n  times displace all grains

do for all walls

each n  times displace walls

collect n   and F  , F  , k  , k  , s  , s , c

i

nc s hs

i

n

for all contacts

if   -n   <  r         : make friends

for elasto-plastic modelling

3 x 3 matrix

if    n    > 0     

if   -F   >  c  .r    : break contact2
µn

if ( 2.i < n   ) elastic otherwise plastici

enlarge new grains if necessary

(1)

(2)

(3)

(4)

(A)

(B)

(C)

k   = 0 for plastic calculationss

: make contact

 
 

Figure 4. Schematic overview of the computer program Grain  
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Because the grains can gain and loose contacts during the simulation, not only 

the calculation of the grains but also keeping track of the grain data and contact 

data is important. It is time consuming to check, each time, all possible grain 

contacts. To avoid this, each grain has a list of the contacts between its 

neighbours and also a list of the grains which are nearby but not connected. 

These are called friends. After the grains are sprinkled between several walls 

(Phase 1), the entire group of grains is considered as a village surrounded by city 

walls. Every grain has to check the complete village in order to make its personal 

list of close friends. This has to be done only once after the creation of the grains 

and every time a grain has been displaced outside his defined friend-area. This 

happens only occasionally. In this way only the friends have to be checked for 

contact-making and the neighbours for contact-breaking. This "book-keeping" is 

explained in appendix 3, Discrete element book-keeping. 

 

 

2.4. Elasto-plastic modelling 
 

In fact, both models calculate the shear deformation s
h
 completely elastically and 

they both cut off the shear forces at shear, as shown in figure 5. 

 

F

F

s

n

tan(     )φµ

s h 

F

F

s

n

tan(     )φµ

s h  
 

Figure 5. Elastic modelling    Figure 6. Elasto-plastic modelling 

 

Especially for a low friction φ µ  and a high shear stiffness k
s
, a large amount of 

iterations are necessary to model the plastic deformations properly. An effective 

solution is to make the shear stiffness k
s
 zero after shear is detected, so that the 

shear force will not increase any more.  If the shear force decreases or the normal 

force increases the stiffness has to return to its former value. This elasto-plastic 

modelling, shown in figure 6, iterates much faster. 

Because the shear deformations are unlimited in the plastic state, the elasto-

plastic modelling causes one particular problem. In the same way as a round 

object, for instance a pen, can also be launched by squeezing it between two 
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finger tips, a grain can be launched, when the plastic state is reached, as shown in 

figure 7. 

δ

δ

u

u

1

2

 
 

Figure 7. Squeezing of a grain 

 

The small displacement δ u
1
 causes a larger displacement δ u

2
. Such a large 

displacement will be divided, just as any large displacement, into several smaller 

steps by the procedure "truncate", to prevent the grain from jumping to an empty 

place without noticing potential geometrical limitations. 

Elasto-plastic modelling has been installed in Grain. With this computer model 

all numerical calculations in the following chapters have been done. 

 

 

2.5. Characteristic tests 
 

Five characteristic tests are standardised in Grain to study the micro-mechanical 

behaviour of cohesive and non-cohesive granular materials. The first three are 

sketched in figure 8, the last two in figure 9. 

The most common test, to measure the Young's modulus E  in the elastic phase is 

the one-dimensional compression test. This compression test can also give the 

Poisson's ratio ν , if the horizontal stresses are known. 

With the confined biaxial test, the strains are prescribed, so volumic 

deformations are easily measured. If shear bands occur then the stresses can 

become not homogeneous, especially for cohesive materials. Therefore this test 

will only be used for non-cohesive materials. 

The unconfined biaxial test is suitable to determine both the Young's modulus E  

and the strength parameters c'  and φ ' . The lateral pressure remains constant 

during loading. Because of the rubber membranes (wall number 2 and 4), shear 

bands can occur. 
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Figure 8. 

 

The simple shear test seems to be, in theory, a simple test for measuring the shear 

modulus and the angle of internal friction in a direct way. In practice the results 

are not always found to be consistent and therefore this test is not so often used 

any more. Characteristic of this test is the rotation of the principal directions 

during shearing. 

In the oil and gas industry, the failure of boreholes is important. The cylinder test 

models this phenomenon. A thick-walled sandstone cylinder with a borehole in 

the middle will be radially compressed until it fails. 
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Figure 9. 
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2.6. Motion versus equilibrium 
 

The main advantage of the motion model is that it can handle dynamic problems, 

although this is not necessary for this particular research. The main advantage of 

the equilibrium model is calculation speed. 

When this research was started in 1993, one of the most used motion models was 

New Trubal (NTB) from Itasca, developed by Cundall. This model had no stress 

controlled walls or membranes and also no circular walls, so the only 

characteristic test which could be used to compare Grain and NTB was the 

compression test. The final results of both models were found to be equal, 

although Grain was much faster. For each iteration step of Grain, 4000 iteration 

steps were necessary with NTB. Because NTB was not able to handle certain 

characteristic tests and needed too much calculation time, only Grain is used to 

do the rest of the numerical simulations in this report. 

 

Two years later (February 1995) a new version called Particle Flow Code (PFC) 

was released by Itasca. It had two major improvements: 

   1. PFC could use stress controlled walls, although in a complicated way. 

   2. The calculation speed was much improved. 

In figure 10 we see an identical unconfined biaxial test on 250 cohesive grains 

done by PFC (motion model) and Grain (equilibrium model). 
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Figure 10. Identical biaxial test on 250 cohesive grains by PFC and Grain 
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Because PFC is a motion model, the sample is oscillating between the two 

horizontal walls. This effect will be less marked during the elastic phase if more 

iterations are used. Although the models are based on different basic principles, 

the final results are quite similar. The only difference now is that PFC uses about 

fifty times more iteration steps than Grain. 

Sometimes the results of Grain and PFC are less identical and if a smaller time 

step is chosen (i.e. more iteration steps), the stress-strain behaviour during failure 

can become very unstable for the motion model as demonstrated in figure 11. 

These are not the only problems of this motion model. Waves propagate too 

slowly: Thus, the dynamic elasticity of an assembly of grains is about 50 percent 

lower than the static elasticity. 

Because of these problems, PFC is not used for doing verification. 
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Figure 11. Instability of PFC model 
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3. NON-COHESIVE GRANULAR MATERIALS 
 

 

3.1. Default parameters 
 

Several characteristic tests have been done to measure the influence of a number 

of specific micro parameters, such as relative density, lateral pressure or internal 

friction, on the macro behaviour of non-cohesive granular materials. Most of the 

tests are carried out on a structure of a thousand grains. The default micro 

parameters are chosen to be representative for sand of dense compaction, as 

presented in table 1. If confusion between micro and macro parameters can 

occur, then the micro parameters are marked with a " µ ". 

 

soil data grain size test parameters 

k
n
 - r  0.1 mm σ

3
 1 bar 

Gµ  1000 MPa type A (B) ∆H

H
 

4 0 10 5. × −  

ν µ  0.16  r

r

max

min

 
4.00 n

i
 20 

f
gg

 0.60 H

W
 

2.50  

(1.00) 

σ
1,max (6

3
× σ ) 

f
gw

 0.00 (∞ )   σ
1,min (3

3
× σ ) 

c'µ  0 kN/m n
g
 1000 

(4000) 

  

 

Table 1. Default micro parameters for sand 

 

The making of a compact sample from a large amount of free grains with low 

grain friction can cost more than a day's calculation time because the continuous 

making and breaking of the contacts, i.e. the updating of the matrix, leads 

continuously to new solutions. Once a sample is created, many tests can be done 

with this sample. These tests seldom take more than one hour.  
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3.1.1. Soil data 
 

The tests on sand are based on the non-linear Hertzian contacts and therefore the 

shear modulus Gµ  is used, instead of the linear spring constant k
n
. The value of 

this shear modulus is not free of controversy. According to the Handbook of 

Chemistry and Physics, it should be about Gµ ≈ ×34 109  Pa  for quartz. If this is 

filled out in Hertz's contact relation, the stiffness of the total grain structure is 

found to be too high. Because of this a lower value of Gµ ≈ ×1 109  Pa  had to be 

chosen, in order to give a more realistic stiffness behaviour. Three analytical 

explanations for this problem do not seem to agree with reality: 

   1. The shear modulus of the grain material cannot be about 30 times smaller, 

because real compression tests on sand grains and on glass pearls (also: 

Gµ ≈ ×34 109  Pa ) show identical macro stiffness behaviour. 

   2. Small ridges on the grain surface with a radius of r r
ridge grain

=
1

2000
 will 

solve the problem analytically (equation 1.), but then the deformation n  of 

the ridge on the grain becomes even larger than the ridge size r
ridge

 itself. 

   3. More complex spheres, for example ellipses, will give a higher strength but 

not a lower stiffness according to Rothenburg and Bathurst (1992). 

This means that the contact behaviour between two grains needs more attention. 

The Poisson's ratio of quartz is about ν µ ≈ 016. . The friction angle is mostly 

between φ µ ≈ °20  and φ µ ≈ °30 . The latter gives a friction between two grains of 

about f
gg

II = ≈tan( ) .φ µ 0 60 . Before a test, the grain friction will be temporarily 

decreased to f
gg

I = 0 0.  to obtain a high density. The friction between grain and 

wall, for all tests, is zero f
gw

= 0 , except for the simple shear test, where no 

shearing is allowed, so f
gw

= ∞ . 
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3.1.2. Grain size 
 

The average grain size is chosen to be r = 0.1 mm. In theory an infinite number 

of grain size distributions can be made, however for most sands the sieve curves 

show a straight line in a logarithmic graph. Those distributions are defined by the 

average grain size r  and the grain size ratio 
r

r

max

min

 as can be seen in appendix 4, 

Grain size distribution. The probability function of this "Type A" distribution is 

illustrated in figure 12. Also a second distribution "Type B" is used, which can 

be described by a linear function. The shape of the sample (i.e. the whole grain 

structure), for all tests, is rectangular 
H

W
= 2 50.  except for the simple shear test in 

which the sample is square: 
H

W
= 100. . All tests are carried out on a sample of a 

thousand grains, because this amount was more than sufficient to get identical 

test results for different samples created with identical micro parameters. Only 

for the simple shear test, 4000 grains were used, because during this test also the 

stresses in the centre of the sample are measured over about a thousand grains. 

 

Type A              Type B 

 

P ( r    r )=P ( r     r )

=f ( r    r ) =f ( r    r )

r
r

r r

rrmax

maxmin

min

1
-

r
r

r r maxmin

r
r

r r maxmin

=

1

<

r
r

r r maxmin

1

<

f( r )  =
rrmax min-

rr
max min×3 3

33
×

r

3
4

 

Figure 12. Probability function: grain size distribution type A and B 
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3.1.3. Test parameters 
 

The default lateral pressure was set at σ
3

0= =.1 MPa 1 bar . The total sample 

deformation of 4% is reached in a thousand load steps: 
∆H

H
= × −4 0 10 5. . Twenty 

iterations per loading step were sufficient to iterate accurately enough to the 

equilibrium state. The cyclic loading of the compression test is between the 3 and 

6 bar. In all cases the depth of a sample is chosen to be equal to the average 

diameter of the grain ( D d r= = 2 ) in order to be able to calculate the stresses. 

 

 

3.2. Micro behaviour versus macro behaviour 
 

3.2.1. Relative Density 
 

When free grains are carefully compressed then a loose structure will be created 

with a maximum volume of pores and a minimum of contacts per grains. In this 

case, the relative density will be zero ( R D. .= 0 ). For two dimensions the 

minimum number of contacts needed for creating a stable structure is on average 

three per grain (for three dimensions this will be four).  

By temporarily decreasing of the friction f
gg

I
 between the grains, the sample 

will shear to a denser structure. After compaction the friction will be increased to 

a friction level f
gg

II
 which is necessary for the real test. In this way the relative 

density can be controlled. For a temporary friction of f
gg

I = 0  the highest density 

will be found ( R D. .= 1). A maximum density can also be reached by sprinkling 

the grains one by one. A new grain will always create two new contacts for itself 

and one for both neighbours, so the maximum number of contacts per grain will 

be four (for three dimensions, this will be six). 

 

density: low high 

sample I 3.1 4.1 

sample II 3.0 3.9 

sample III 3.0 3.9 

sample IV 3.1 4.0 

 

Table 2. Number of contacts per grain 

 

Table 2 shows the influence of the density on the average number of contacts per 

grain for eight different samples, made by Grain. The results are as expected. For 
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a low density the number of contacts is: n
c g/

.≈ 3 0  and for a high density 

n
c g/

.≈ 4 0 . 

Figure 13 illustrates that the number of contacts per grain is not constant during a 

confined biaxial test. At failure this number becomes more or less constant 

(n
c g/

.≈ 3 3 ) for all samples. 
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Figure 13. Biaxial test: influence of the density  

on the number of contacts per grain 

 

During loading the number of axial (vertical) contacts increase somewhat, but the 

number of lateral (horizontal) contacts decreases greatly. This can be seen in the 

radar plot in figure 14. The grain-wall contacts are neglected in this plot. Since 

the grain structure used, contains only 4000 grains, there would otherwise be too 

many contacts for which the contact angle is exactly 0, 90, 180 or 270 degrees. 

The decrease in lateral contacts is a sign of failure for granular materials. It 

suggests a failure of the structure by loosening and eventually loss of lateral 

contacts. It seems that granular materials fail because of tension failure. The loss 

of horizontal contacts starts to become clearer when: 

 
σ
σ

1

3

2≈  (A.93) 

just as predicted in appendix 7, Biaxial test: analytical. This will not be the 

maximum strength, because the grains still have to roll over each other for a 

complete failure, which requires a higher loading stress. 
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Figure 14. Number of contacts per volume versus the contact angle 

during a biaxial test 
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The Mohr-Coulomb model gives a relation between the angle of internal friction 

and the strength of a non-cohesive materials: 

 
( )
( )

σ
σ

ϕ
ϕ

1

3

1

1
=

+
−

sin '

sin '
 (20) 

 in which: 

  σ
1

= major principal stress  

  σ
3

= minor principal stress  

The density, which is controlled by the friction during compaction f
gg

I , has a 

major influence on the strength of these samples as can be seen in figure 15. 

Several conclusions can be drawn from these curves: 

   1. Relative density is an important parameter for strength and elasticity. 

   2. A higher density causes a higher angle of dilatancy. 

   3. During failure the samples with low density will hardly consolidate to 

higher compaction. 

Especially for high density samples the angle of dilatancy is quite large. Perhaps 

this is because in a two-dimensional model grains at failure have to roll 

completely over another grain while in the three-dimensional reality grains can 

pass partially sideways. 

 

Bishop (1954) suggests that the analytical solutions of the angle of internal 

friction by Caquot (1934) agree well with several air-dried non-cohesive granular 

materials. According to these solutions the angle of internal friction for a biaxial 

test depends only on the friction between the grains f
gg

: 

   A. Triaxial test, where σ σ σ
2 3 1

= < : ( )sin 'ϕ =
+

15

10 3

f

f

gg

gg

 (21) 

   B. Biaxial test, taking σ σ σ
2

1 3

2
=

−
: ( )sin 'ϕ =

3

2
f

gg
 (22) 

   C. Biaxial test, normal plain strain: ( )tan 'ϕ π
=

2
f

gg
 (23) 

Unfortunately, the following three important facts are not considered in Caquot's 

solution: 

   1. Higher density gives higher strength. 

   2. Less circular shaped grains cause higher strength. 

   3. An infinite grain friction will not give infinite strength. 

This means that Caquot's solution can be called, at best, an incomplete solution. 

A complete analytical solution for the strength of a non-cohesive granular 

material will be hard to develop. 
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Figure 15. Biaxial test: influence of the density 
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3.2.2. Grain friction 
 

One of the most important micro parameters is the internal friction between the 

grains, f
gg

II , after compaction. This parameter marks the transition between 

elastic and plastic deformation on micro level. 

In figure 17, two macro parameters are strongly influenced by an increase of the 

internal friction: 

   1. The strength of the whole structure increases. 

   2. The dilatancy ψ  increases as well. 

 

When the internal friction f
gg

II  is zero, the grain structure will shear under every 

circumstance to the maximum relative density. In this way the structure will 

behave like a fluid and the volume will remain constant. This behaviour is very 

clear in the numerical simulations. 

 

     
 

 No rolling  Rolling without shear  Dilatancy and contact breaking 

 

Figure 16. Failure on micro scale 

 

By contrast, a structure with infinite grain friction can collapse only by the 

rolling of the grains. Triangle contact groups do not roll, but quadrangular and 

more angular contact groups are able to deform despite the infinite grain friction 

according figure 16. These rolling groups will act like rolling wedges, causing an 

increase in pore volume (dilatancy) and a decrease in the number of (especially 

lateral) contacts in the shear bands. This dilatancy will be largest for an infinite 

grain friction, because all wedges will be mobilised, and not one will fail because 

of shearing. 
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Figure 17. Biaxial test: influence of the internal friction 
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Also another conclusion can be drawn from these results. Even if the grain 

friction is infinite, the strength will not be infinite. This means that for structures 

with a low grain friction the strength is mainly determined by this friction, but for 

a high friction the strength is mainly defined by the rolling of the grains. Other 

tests show that if the rotation of the grains is fixed in combination with an infinite 

grain friction, then an infinite strength is found, which is in agreement with the 

previous theory. 

It can be concluded that non-cohesive granular materials fail because of both 

shearing and rolling, but only the rolling of the grains causes dilatancy and 

contact breaking. 

 

 

3.2.3. Poisson's ratio 
 

The Poisson's ratio of quartz is not the main micro parameter to influence the 

macro Poisson's ratio of the total granular structure. The rotation of the grains is 

much more important. Figure 18 shows that a fixed rotation of the grains strongly 

influences the compression test and the biaxial test. 
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Figure 18. Influence of the rotation of grains 
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In reality the rotation of the grains cannot be hindered, but in Grain this is done 

to show the effect of the rolling of the grains. Without the rotation of these grains 

there will be no lateral displacement. In this case, there is no failure in a biaxial 

test and during a one-dimensional compression test the lateral stress will not 

increase if the rotation of the grains is fixed. 

According to the biaxial tests seen in figure 19, the Poisson's ratio has hardly any 

effect on the results. By an increasing Poisson's ratio, only two parameters are 

somewhat changed: 

   1. The Young's modulus E  increases slightly. 

   2. The angle of internal friction φ '  and therefore the strength of the sample 

also increases slightly. 

The macro Poisson's ratio or the lateral strain coefficient is not influenced by the 

micro Poisson's ratio. This macro behaviour is influenced by the rotation of the 

grains. 

 

 

3.2.4. Lateral pressure 
 

Four tests were done with different lateral pressures on an identical sample. The 

results are shown in figure 20. There are only two macro parameters which are 

influenced by an increase of the lateral pressure: 

  1. The stiffness E  increases. 

  2. The dilatancy ψ  decreases fractionally. 

The angle of internal friction φ '  and the lateral strain coefficient at the beginning 

of the test which can also be called the Poisson's ratio ν
begin

, are more or less 

constant. 

 

σ
3
 φ '  ν

begin
 ψ  

1 bar 30.2º 0.17 14.2º 

2 bar 31.6º 0.12 11.7º 

3 bar 31.4º 0.12 10.4º 

4 bar 31.6º 0.12   9.8º 

 

Table 3. Biaxial test on sand: influence of the lateral pressure 

 

Despite the non-linear contact behaviour, the results can be described quite well 

with the advanced Mohr-Coulomb model which is discussed in appendix 5, Two-

dimensional continuum model. 
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Figure 19. Biaxial test: influence of the Poisson's ratio 
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Figure 20. Biaxial test: influence of the lateral pressure 
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The Young's modulus is not constant but depends on the stress. This stiffness 

behaviour of non-cohesive materials has been found in appendix 7, Biaxial test: 

analytical: 

 E E
ref

ref

50

0=








σ

σ

β

 (A.89) 

 in which: 
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This theoretical solution is in good agreement with the numerical results of the 

Young's modulus found by Grain, listed in table 4. 

 

σ
3
 E

50
 (Grain)  E

50
 (theory)  

1 bar 48.2 MPa 50.8 MPa 

2 bar 65.2 MPa 64.0 MPa 

3 bar 76.4 MPa 73.3 MPa 

4 bar 84.1 MPa 80.7 MPa 

 

Table 4. Young's modulus versus lateral pressure 
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3.2.5. Average grain size and shear modulus 
 

There is a direct relation between the average grain size, the stress, the shear 

modulus (non-cohesive materials) or spring constant and micro cohesion 

(cohesive materials). In the computer model Grain the grain sizes can be scaled 

by a factor n  without changing the contact forces, but also the forces can be 

scaled without changing the grain sizes and without any displacements. Table 5 

shows the scale factors of the other parameters. 

 

scaling: r  F  

r  n  - 

F  - n  

σ  1 2n  n  

Gµ  1 2n  n  

k d
n

 1 2n  n  

c'µ  1 2n  n  

 

Table 5. Scale factors for grain or force sizing  

 

This means that the average grain size has absolutely no influence on the macro 

behaviour of the granular material. It will only influence the forces on micro 

scale. Hence, the results of non-cohesive tests for other shear moduli can be 

found by changing the stresses instead. 

 

 

3.2.6. Grain size distribution 
 

Four samples were made with different grain size distributions, but with an 

identical average grain size. Figure 21 demonstrates that the distribution has 

hardly any influence on the behaviour of the sample during a biaxial test. Only 

the strength increases somewhat with a wider grading of the grain sizes. 

Two conclusions can be drawn from these curves: 

   1. The grain size distribution is not very important. 

   2. A thousand grains are sufficient to make good reproducible samples, 

especially for the elastic zone. 
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Figure 21. Biaxial test: influence of the grain size distribution 
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3.3. Continuum modelling 
 

 

3.3.1. Compression test 
 

Since the biaxial test is covered in detail, it is interesting to see if other 

characteristic tests can be described with the same macro parameters. If the 

numerical vertical stress σ
1
 in a compression test is compared with the vertical 

stress σ
1,theory

 (dashed line in figure 22) calculated with a Young's modulus 

depending on the stress: 

 E E
ref

ref

50

0=








σ

σ

β

 (A.89) 

 in which: 

  

β

σ σ σ σ

σ

=

=
+

≈

= =
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ref ref
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then it is clear that the theory describes the numerical results quite well. 

Sometimes the Young's modulus is written as a function of vertical stress like 

this: 

 E E
ref

v

ref

50
3

3

4
=









σ

σ

β

 (24) 

because the vertical stresses are normally better known than the average pressure. 

 

compression test biaxial test 

E
ref

 44.4 MPa 44.4 MPa E
ref

 

β   0.333 0.333 β  

( )σ σ
3 1 begin

 0.18 0.17 ( )ε ε
3 1 begin

 

( )σ σ
3 1 end

 0.35 0.33 ( )ε ε
3 1 end

 

 

Table 6. Compression test versus biaxial test 
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For a two-dimensional continuum model the Poisson's ratio is equal to the lateral 

stress coefficient of the compression test and the lateral strain coefficient of the 

biaxial test: 

 ν σ
σ

ε
ε

=






 =







3

1

3

1compression biaxial

 (A.19+22) 

Unfortunately, these coefficients at the beginning of the test are not identical to 

those at the end of a test, so a constant Poisson's ratio cannot be defined. 

Nevertheless, the lateral strain coefficient found at the beginning as well as at the 

end of the compression test are almost equal to the lateral stress coefficients of 

the biaxial test. 

During compression, the stress ratio 
σ
σ

1

3

 increases constantly, but it can never 

exceed a certain level according the failure criterion: 
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Therefore the lateral stress coefficient in the end is limited by the failure criterion 

as well: 
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 ≈







 =

end end

 (26) 

This causes the bending curve of the lateral stress coefficient in figure 22, as it 

approaches this asymptotic limit. 
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Figure 22. Compression test: Young's modulus and  

Lateral stress coefficient 
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The relative density of the structure in the compression test of figure 23, is very 

important. Low density samples will react less stiffly and will have continuously 

irreversible deformation during cyclic loading, which finally leads to a higher 

density. 
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Figure 23. Compression test: influence of the density 

 

What is very interesting, is the lateral stress coefficient in figure 24. For the 

virgin load path, as well as for the unload path and the reload path, this 

coefficient starts low and ends high, which means that there is a jump in between 

these paths. Because of this, the unload paths are different from the reload paths. 

Therefore a very small hysteresis loop can be seen in the curve of the lateral 

stress σ 3 . The surface of this loop represents the energy loss during the plastic 

deformation.  
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Figure 24. Compression test: Lateral stress coefficient 

 during cyclic loading 
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3.3.2. Confined versus unconfined test 
 

The unconfined biaxial test is in theory a different test than the confined biaxial 

test, because the stresses and not the strains are prescribed. Therefore the 

macroscopic failure mechanisms of both tests can be different, for example, shear 

bands can influence the stresses in a confined biaxial test. But as figure 25 

shows, the curves of the stress behaviour for the confined biaxial test and the 

unconfined test are almost equal. For an unconfined biaxial test, it is more 

complicated to measure the volumic deformations, which makes the confined 

biaxial test more useful for non-cohesive granular materials. 
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Figure 25. Confined biaxial test and unconfined biaxial test are equal 

 

 

3.3.3. Shear band development 
 

Two questions are often heard in discussions about shear bands. The first is about 

the thickness and the second about the direction of the shear band.  

Mülhaus and Vardoulakis (1987) have measured the width of a shear band with 

X-ray photographs of  a fine sand and a medium sand. They have found values of 

respectively 18.5 and 13 times the mean particle diameter. Figure 26 shows a 

numerical simulation of an unconfined biaxial test. The displacements of all four 

thousand particles are drawn. Here a shear band is found of about 5 times the 

average grain diameter. Maybe it is only that thin because of the small ratio 
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between the diameters of the smallest and largest grains or maybe this is caused 

by the circle shaped grains instead of a more complex sphere. 

A second point of interest is the direction of the shear band. Figure 26 shows the 

grain displacements of two different unconfined biaxial tests from 5% to 10% 

deformation. The sample on the right had no wall friction, so the weakest areas 

were at the top and the bottom, only there the grains bend away at failure. The 

sample on the left had its weakest point in the middle because of the 

reinforcement caused by the shear stresses at the walls. A clear shear band is 

formed in the centre with a direction of θ = °± °52 2 . This is the same as 

suggested by the advanced Mohr-Coulomb theory, namely: 

 θ ψ
= °+ = °+

°
≈ °45

2
45

14 2

2
52

.
 (27) 

 

 
With wall friction         Without wall friction 
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Figure 26. Unconfined biaxial test: displacements of the grains 
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3.3.4. Simple shear test 
 

In Cambridge a shear apparatus was developed by Roscoe (1970) in which (as 

well as possible) a pure angle deformation was imposed. This test, which is 

called the simple shear test is described in appendix 5, Two-dimensional 

continuum model. Three different failure mechanisms have been suggested for 

this test: 

   1. Horizontal shearing, by analogy with the shear law of Coulomb. 

   2. Vertical shearing, according to De Josselin de Jong (1992). 

   3. Lateral contact failure, according to the author. 
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Figure 27. Failure mechanisms 

 

If failure occurs by exceeding the maximum shear stress in a certain direction, 

which is suggested by the Coulomb criterion, then only the stress and 

deformation fields of the horizontal and vertical failure mechanisms can be both 

static and kinematic admitted. In that case, the horizontal stress during failure has 

to be, for the horizontal mechanism: 

 
( )
( )

σ
φ
φ

σ
xx yy

=
+
−

1

1

2

2

sin '

sin '
 (28) 
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and for the vertical mechanism: 

 
( )
( )

σ
φ
φ

σ
xx yy

=
−
+

1

1

2

2

sin '

sin '
 (29) 

When the horizontal stress does not meet these particular values in any (artificial) 

way, no failure can occur according to this Coulomb criterion. This cannot be the 

case. 

If failure takes place by the breaking of the contacts in the direction of the minor 

principal stress, because tension forces can not be absorbed on micro level, then 

only lateral contact failure can occur. This also means, that the shear direction 

can not be obtained from the Coulomb line, because failure does not depend on 

micro shear failure but on micro lateral contact breaking. This statement can 

easily be verified with Grain, by comparing the average rotation of the grains γ µ  

with the rotation of the vertical walls γ . The ratio of these rotations during 

failure is for the horizontal, vertical and lateral mechanism respectively equal to: 

 
γ
γ

µ = 0 0 10 0 5. . .  or    or   (30) 

The dashed line in figure 29 shows that the lateral failure mechanism is the only 

correct one (
γ
γ

µ ≈ 0 5. ). During failure, up to 25% of the contacts are broken, 

which fits with this mechanism as well. Also the equal double sliding of the 

Mohr-Coulomb model will explain the 50% grain rotation, as suggested in 

appendix 5, Two-dimensional continuum model, but this model cannot explain 

the loss of contacts. 

For the correct performance of the simple shear test one has to consider two 

boundary conditions: 

   1. Because of dilatancy during the plastic phase the horizontal and vertical 

strains will not remain at zero. A fixed height or width of the shear box will 

cause increasing wall forces. Therefore the walls have to be stress 

controlled. 

   2. A constant shear strain (ε ε γ
xy yx

= =
1

2
) has to be imposed on the complete 

wall. This means that the grains are not allowed to shear over the wall, so 

the friction between grain and wall has to be infinite ( f
gw

= ∞ ), but even 

then the grains can roll away, which must be prevented by glueing the 

grains to the wall. 

 

The curves in figure 28 show the effect of neglecting this last boundary condition 

( f
gw

= 0 60. ). Because of shearing between grain and wall, moments are 

developed at the walls (eccentricity of e H≈ ×01. ), which cause a non-

homogeneous stress field in the simple shear apparatus. This was made clear by 



56 

Allersma (1987). In his simple shear tests the normal stress distribution was far 

from constant. The shear stress inside a sample, however, appeared to be not so 

much influenced by the incorrect boundary conditions. Therefore much better 

results are obtained if the stress is measured in the interior of a sample. 
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Figure 28. Simple shear test: influence of incorrect boundary conditions 

 

The following table shows the results of the simple shear tests with constant 

boundary conditions, presented in figures 29 and 30. The results obtained can be 

predicted quite accurately with the results of the previous biaxial tests, although 

the shear modulus is somewhat too small. 

 

Test: G
ref

 φ '  ψ  

Biaxial 19.5 MPa 30.2°  14.2°  

Simple shear I 18.1 MPa 28.6°  16.9°  

Simple shear II 16.7 MPa 32.4°  14.5°  

 

Table 7. Simple shear versus biaxial test 
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Figure 29. Simple shear test I: σ σ
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= = 1 bar  
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Figure 30. Simple shear test II: σ σ
xx yy

= =1 2 bar ,   bar  



59 

For the second simple shear test, one phenomenon is more difficult to explain 

with the continuum theory. The maximum shear stress of the horizontal wall is 

higher than the maximum shear stress of the vertical wall. According to the 

continuum theory these should be equal, although the maximum stress of the 

horizontal wall is expected to be larger than the vertical wall because of the 

larger lateral pressure. 

For both simple shear tests it is found that, during the elastic phase and the 

plastic phase, the major principal direction is similar for the (inside) stresses and 

the total strains ( β βσ ε= ). This coaxial behaviour is presented in the figures 31 

and 32. In order to calculate the principal direction of the strains, the strains ε
xx ,0

 

and ε
xx ,0

 at the beginning of the test have to be known. These were calculated 

with equation (A.9). The theoretical major principal direction during failure, 

based on the wall stresses, is solved analytically in appendix 5, Two-dimensional 

continuum model: 

 
( )
( )cos( )

sin( ')
2

1β
φ

σ σ

σ σ
=

− −

+
yy xx

yy xx

 (A.14) 

 So: 

  β = °45  for simple shear I 

  β = °64  for simple shear II 

 

With this coaxial relation between stress and strain for the elastic deformation 

( β βσ ε= ) and the plastic deformation ( β βσ ε= ), also the results of a true simple 

shear test can be predicted. In a true simple shear test the horizontal strain 

(ε
xx

= 0) is kept constant, instead of the horizontal stress (σ
xx

= 0 ). In figure 33 

the results of a true simple shear test with Grain are compared with the 

continuum theory, described in appendix 5, Two-dimensional continuum model, 

using the parameters of simple shear test I. The almost perfect prediction with 

this bi-linear continuum model suggests that during failure the rolling of the 

grains will be on average in the direction of the minor principal stress. In other 

words, granular materials behave coaxial because the grains escape in the 

direction of the lowest resistance. 

The double sliding model of De Josselin de Jong (1971), which is also mentioned 

in appendix 5, shows that granular materials (can) behave non-coaxial if failure 

occurs because of shear failure. The fact that non-coaxiality cannot be found 

agrees with the conclusion earlier made, that granular materials will fail not 

because of shear failure but because of tension failure. 
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Figure 31.  Simple shear test I: principal directions 
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Figure 32.  Simple shear test II: principal directions 
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Figure 33. True simple shear test: Theory versus Grain 
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4. COHESIVE GRANULAR MATERIALS 
 

 

4.1. Default parameters 
 

In order to gain some insight into the failure mechanism and the moment of 

failure of cohesive granular materials, several unconfined biaxial tests were 

modelled with Grain. The default micro parameters are chosen as representative 

for sandstone of dense compaction, as listed in the following table: 

 

soil data grain size test parameters 

k
n
 1 MN/m r  0.1 mm σ

3
 10 bar 

Gµ  - type A  and B ∆H

H
 

4 0 10 5. × −  

ν µ  0.16  r

r

max

min

 
4.00 n

i
 20 

f
gg

 0.60 H

W
 

2.50  

(3.00) 

- - 

f
gw

 0.00   - - 

c'µ  100 MPa n
g
 1000 

(4000) 

  

 

Table 8. Default micro parameters for sandstone 

 

 

4.1.1. Soil data 
 

The tests on sandstone are based on the linear contact equations, so the linear 

spring constant k
n
 is used for all contacts. In practice this spring constant is very 

difficult to measure. Therefore an arbitrary value is chosen. The Poisson's ratio of 

quartz is about ν µ ≈ 016. . The friction angle is about φ µ ≈ °30 , so the friction 

coefficient between two grains will be f
gg

II = ≈tan( ) .φ µ 0 60 . Before cementation, 

this friction coefficient will be temporarily decreased to zero f
gg

I = 0 0.  to obtain a 

sample of high density. The friction coefficient between grain and wall, for all 

tests, is zero f
gw

= 0 . The cohesion c'µ  is unknown and is chosen to be 100 MPa 

in order to give the sample more or less the same strength as Castlegate 

sandstone. 
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4.1.2. Grain size 
 

Both the exponential (Type A) and the linear (Type B) grain size distributions of 

the previous chapter (about non-cohesive granular materials), were used for the 

modelling of cohesive granular materials. The shape of the sample for all tests 

was rectangular, 
H

W
= 2 50. , except for the thick-walled cylinder test in which the 

ratio between the radii of the inner surface and outer surface 
r

r

1

3

3 00= . . Most of 

the tests were done on a sample of a thousand grains, because this number was 

more than sufficient to get identical test results for different samples created with 

identical micro parameters. A few tests were carried out on four thousand or ten 

thousand grains. 

 

 

4.1.3. Test parameters 
 

The default lateral pressure was chosen to be σ
3

= =10 bar 1 MPa . The total 

deformation of 2% was reached in half an hour on a normal personal computer 

with 500 load steps: 
∆H

H
= × −4 0 10 5. . Twenty iterations per loading step were 

sufficient, most of the time, to iterate accurately enough to the equilibrium state. 

In all cases, the depth of the sample was chosen to be equal to the average 

diameter of the grain ( D d r= = 2 ) in order to calculate the stresses. 

 

 

4.2. Micro behaviour versus macro behaviour 
 

4.2.1. Number of grains and shape influence 
 

Several biaxial tests were done to find out how many grains are necessary to 

describe a representative part of a sandstone sample with homogeneous boundary 

conditions.  These are registered in table 9. Figure 34 shows that the stress-strain 

behaviour of sample A with 250 grains differs from the samples B, I and C with 

more grains, so at least 500 grains are necessary to describe a homogeneous 

loaded sample. The stiffness and the strength of the samples with at least 500 

grains are all quite similar. To minimise error, all biaxial tests in this report were 

carried out on at least a thousand grains. The percentage of broken contacts is 

reflected by the dashed line in the same figure. 



64 

A stout sample shows in figure 35 identical stress-strain behaviour in comparison 

to the three different slender samples I, II and III.  This means that the shape of a 

sample does not influence the failure behaviour. 

 

Sample n
g
 H W  

A 250 2.5 

B 500 2.5 

I 1000 2.5 

II 1000 2.5 

III 1000 2.5 

stout 1000 0.4 

C 4000 2.5 

 

Table 9. Different samples 

 

The results of the compression tests, confined biaxial tests and unconfined 

biaxial tests can be described with the Mohr-Coulomb theory and these tests all 

give comparable results for the Young's modules and the Poisson's ratio. These 

parameters are listed in the table below. At the beginning of a test, the measured 

values are slightly lower than just before failure, because new (non-cohesive) 

contacts are formed during the compression of a sample. These contacts cause an 

increase in the total stiffness. The elastic parameters listed in the table below are 

measured both for type A and type B grain size distributions.  

 

Test: E  [GPa] ν  

Compression 3.9 - 4.2 0.11 - 0.13 

Confined Biaxial 3.8 - 4.2 0.04 - 0.19 

Unconfined Biaxial 3.9 - 4.2 - 

 

Table 10. Young's modules and Poisson's ratio 
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Figure 34. Biaxial test: different number of grains 
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Figure 35. Biaxial test: different shapes 
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4.2.2. Grain size distribution 
 

In reality, it is complicated to make two identical sandstone samples with only 

different grain size distributions. This is modelled with Grain to study the 

influence of the distribution. Figure 36 shows the Mohr circles at failure for the 

two different distribution types.  
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Figure 36. Mohr-Coulomb lines 

 

Distribution type A contains more small grains than large grains, while 

distribution type B is linear.  For both grain size distributions the moment of 

failure of the samples can be accurately described by the Mohr-Coulomb 

parameters c'  and φ ' . The different distributions cause only a negligible 

difference in the strength of the samples. This means that both the average force 

and the deviation of the forces do not depend on the grain size distribution, 

because the formation of micro cracks depends on this average contact force and 

its deviation . 

 

Type  c'  φ '  

A 9.3 MPa 22° 

B 9.6 MPa 22° 

 

Table 11. Cohesion and angle of internal friction 
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4.2.3. Contact forces 
 

In the appendix 7, Biaxial test: analytical, it can be seen that the average normal 

and shear forces for biaxial tests are given by the equations A.73: 

  

F F c s

F F cs

n

II

n

I

s

II

n

I

,

,

α

α

σ
σ

σ
σ

= +








= −








2 1
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1

3
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 (A.73) 

 in which: 

  F
V

n d
n

I

c

= 2 3
σ

 

 or: 

  F
d

n
n

I

c v

= 2

2

3
σ

/

 

These analytical solutions for the average normal and shear forces (dashed lines 

in the figure below) in relation to the angle between the contact and the 

horizontal axis, are in good agreement with the average forces found by 

simulating a sandstone sample of 1000 grains at 10 MPa loading pressure with 

Grain. 
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Figure 37. Biaxial test: average normal and shear forces 
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The radar plot of these forces in figure 38 shows that the normal forces measured 

are almost identical to the analytical solution, however the average normal force 

of the vertical contacts seems to be somewhat too large. This is because there are 

relatively more vertical contacts due to the horizontal walls. The shape of the 

curve of the shear forces is correct, but the forces are in general 20% too low. 

This is probably because of the high correlation ( r = 0 44. ) between the shear 

forces and the square of the contact length, whereas the analytical solution 

assumes no correlation. 

The average normal force will always be positive i.e. pressure forces. Still, it is 

found that failure always occurs due to local tension failure. This means that not 

only the average value of the normal force is important, but also the deviation of 

the forces. So, to determine the moment of failure, the influence of the deviation 

of the forces should also be determined.  

The normal forces are, especially for the lateral (horizontal) contacts, very small. 

During loading the deviation of the forces increases, while the average normal 

force of the horizontal contacts remains constant. So the lateral contacts are 

expected to collapse first due to tension failure. This means that mainly axial 

(vertical) micro cracks are expected, since the cracks are perpendicular to the 

broken contacts. 

 

Fs

Fn

 
 

Figure 38. Biaxial test: average normal and shear forces 
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4.2.4. Failure mechanism 
 

One of the most interesting phenomena of the failure of a sandstone sample is the 

nucleation and growth of a crack. Therefore this is made visible with Grain. 

Figure 39 shows the failure mechanism of a cohesive granular material during a 

biaxial test in detail. If cemented contacts are broken, then a thick line 

perpendicular to the contact is drawn. The horizontal walls are also represented 

by thick lines, the rubber vertical membranes are not shown. 

 

     
 

Phase A       Phase B        Phase C  

 

Figure 39. Failure mechanism of a cohesive granular material 

 

The failure mechanism of this cohesive granular material can be divided into 

three phases: 

A. During loading more and more contact forces become negative as predicted 

in the previous paragraph. The contacts do not break due to shear failure as 

Coulomb suggests but due to tension failure, because the deviation of the 

forces increases during loading, while the average force of the horizontal 

contacts remains constant. 

B. A crack weakens the surrounding area and increases the probability of a 

new crack in this area (second order effect). In this way a failure surface is 

formed. Although this surface is diagonal, the micro cracks are mainly 

vertical, which means that mainly horizontal contacts are broken. This 

phenomenon was also found for concrete and mortar by Stroeven (1973). 

Failure was caused for these materials by axial tensile (cleavage) cracks. 

C. Grains with broken contacts act as rollers between the lower and upper part 

of the sandstone. The resistant vertical force becomes less and less. 
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During the failure of a sample, several failure surfaces can also be formed as 

presented in figure 40. 

 

 
 

Figure 40. Micro cracks during a biaxial test 
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Figure 41 shows the displacements of the 2000 grains of a sandstone structure 

after failure. A second failure surface can also be seen, as in most cases, one 

surface is dominant. 

 

 
 

Figure 41. Displacements during a biaxial test on 2000 grains 
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Figure 42 presents the rotations of the grains in a sample of 4000 grains. Before 

the test all the radial lines on the grains were pointing upwards. These lines 

indicate that only the broken grains within the shear band(s) are rolling.  

 

 
 

Figure 42. Failure surface during a biaxial test on 4000 grains 
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4.3. Continuum modelling 
 

The appendix 7, Biaxial test: analytical, shows that both the stiffness behaviour 

and the strength behaviour of cohesive granular materials can be described with 

the Mohr-Coulomb model. With the analytical solution of the average forces, the 

stiffness behaviour of rock samples has been solved. The Young's modulus and 

the Poisson's ratio of cohesive granular materials are given by: 
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This yields for the default situation: 
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 (31) 

The elastic behaviour of the numerical sandstone simulations registered in table 

9. can be described by: 

 
E =

=
4 13

01

.

.

 GPa    

ν
 (32) 

The analytical values are based on the assumption that the grains do not rotate, 

which is only the case on average. Therefore, the prediction for the Young's 

modulus is 26% too high, and the Poisson's ratio 26 % too low. If the rotations 

are fixed in Grain, then indeed a negative Poisson's ratio of ν = −0 07.  is found. 

This means that also the rotations of the grains influence the elastic behaviour of 

the sample in an important way. For some sands with a high density, a negative 

Poisson's ratio is found, which is officially possible. This means that in these 

particular cases the grains will hardly rotate.  

Using the numerically measured Poisson's ratio a more accurate Young's 

modulus is found: 
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d
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 (A.85) 

So, 
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74 

The strength of a cohesive material depends on the contact strength and the 

normal force distribution. This distribution at isotropic compression (
σ
σ

1

3

1= ) is 

far different from the distribution during loading (
σ
σ

1

3

1> ). At a certain moment, 

even a small number of forces becomes negative (tension). These are the forces 

causing the final failure. These tension forces only occur in the lateral contacts 

( α < °10 ). For a certain axial and lateral stress level the amount of broken 

contacts becomes too large to bear the axial load. This is the beginning of failure. 
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Figure 43. Biaxial test: normal force distribution 

 

Appendix 7, Biaxial test: analytical, shows that the failure behaviour of the 

cohesive granular materials can also be described with Mohr-Coulomb. The 

angle of internal friction is constant and does not even depend on the contact 

force distribution. The cohesion depends only on the strength of a single contact 

and on the number of contacts per micro volume: 
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So, in this case: 
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The deviation with the measured angle of internal friction (φ '= °22 ) and 

cohesion (c' .= 9 6 MPa ) of table 11 is not too large. So, an analytical relation 

between the micro parameters and the macro parameters is found for cohesive 

granular materials. 

To summarise, it is analytically demonstrated that both the elastic behaviour and 

the moment of failure can be described with a Mohr-Coulomb model, though 

failure does not occur due to shear failure as Coulomb suggests, but due to the 

tension failure of the lateral contacts. So, the "angle of internal friction" can 

better be called "angle of lateral tension". 
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4.4. Cylinder test 
 

 

4.4.1. Grain versus reality 
 

During radial compression tests on real thick-walled cylinders four phenomena 

were found which could not be explained by the Mohr-Coulomb continuum 

model described in appendix 5: 

   1. Failure occurs on micro level due to tension cracks. 

   2. These cracks are not diagonal to but parallel to the borehole surface. 

   3. These cracks cause two diametrically opposite breakouts. 

   4. Functional failure starts at a higher radial pressure than predicted. 

One of the goals of the present research is to find the reasons for these anomalies. 

Therefore both the cylinder test and the biaxial test were simulated with Grain. 

All cylinder tests were carried out on exactly the same material as the former 

biaxial tests. The only difference with the previous samples is the number of 

grains which in this case were, one, four or ten thousand. 

Just like real cylinder tests, the phenomena mentioned also occurred in the 

cylinder tests with Grain. The following figure shows the micro cracks in a thick-

walled cylinder sample of a thousand cohesive grains made by Grain. 

 

 

 

Figure 44. Tension cracks in a cylinder of 1000 grains 
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After failure many micro cracks (thick lines) parallel to the inner surface are 

found. These are all caused by tension failure. 

The first two phenomena, the tension cracks and their direction, are already 

explained in the previous chapter. Local tension forces can be created only by 

pressure forces and, especially for the contacts in the direction of the minor 

principal stress, the average normal force is relatively very low. Therefore mainly 

micro cracks in the direction of the major principal stress are expected, which 

means parallel tension cracks. In this chapter, the reason why thick-walled 

cylinders fail at a higher compressive stress than predicted will be explained. 

 

 

4.4.2. Radial pressure at failure 
 

The stresses in the sandstone sample during the cylinder test depend on the axial 

and radial pressures. This has been solved analytically in the appendix 8, 

Cylinder test: analytical, for a continuum model with a constant Young's 

modulus. The axial, tangential and radial stresses are found to be: 
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With these equations the radial pressure at failure can be calculated using the 

failure criterion of Mohr-Coulomb: 

 ( ) ( )sin ' 'cos 'φ σ σ φ σ σ
1 3 1 3

2+ + = −c  (A.13) 

The strength parameters c' .= 9 3 MPa  and φ '= °22  (Type B grain size 

distribution) were already determined with biaxial tests. For the cylinder test, the 

lateral stress at the inner surface is zero (σ
3

0= ), so the tangential stress at 

failure will be: 

 σ σ φ
φtt r a
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27 6 MPa  (34) 

The ratio between the radii of the inner surface and the outer surface remains 

constant: 

 
a

b
=

1

3
 (35) 

The radial pressure at failure depends both on this ratio and the tangential stress 

at the inner surface: 
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So, the radial pressure at failure of this cylinder (Type B) is expected to be: 

  P
r

= 12 3.  MPa  

However, the cylinder test on four thousand grains with Grain seems to fail at a 

pressure of about 29.7 MPa, which is much higher than the predicted value. 

This happened also with a sample of ten thousand grains (Type A) where 

P
breakout

= 30 2.  MPa  (figure 45) instead of 12.7 MPa. 

There are two reasons for this large deviation. Firstly, the influence of edge 

effects is neglected. Secondly, there is a definition difference between local 

failure and functional failure.  

Local failure is the moment the strength of a material in a certain area starts to 

reduce. Because the pressure-strain relation of a cylinder test has no maximum, 

the moment when the first cluster of grains starts to break out of the inner surface 

wall, is normally assumed to mark the radial pressure at failure. This is the 

moment the borehole looses its function. This functional failure happens at a 

much higher pressure because of the large rest capacity of a thick-walled cylinder 

test. 
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Figure 45. Cylinder test on 10,000 grains: 

 Radial pressure and percentage of broken contacts 
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But, in fact, this is not the real moment of failure of a cylinder. In the former 

biaxial tests failure occurred at a percentage of broken contacts of about 

n
c broken,

= 1% . In a cylinder, cracks occur only near the borehole in an area of 

about 10% of the total cylinder surface. The cylinder has failed when 1% of the 

contacts in this particular area is broken. From this point P
failure

 on, more and 

more contacts start to break and the cylinder stiffness and the gradient of the 

curve start to decrease. Therefore this point has to be the radial pressure at 

failure. 

If a borehole is loaded with a radial pressure which is in between this local 

failure pressure and the functional failure pressure, no breakouts can be seen, but 

much lasting damage is done to the borehole. 

 

 

4.4.3. Surface stresses 
 

Figure 46 shows the tangential and radial stresses in a cylinder of four thousand 

grains at a radial pressure of P
r

= 14 2.  MPa . The lines with the markers represent 

the stresses measured by Grain, with the sum of the contact forces as mentioned 

in the appendix 6, Micro-macro relation: 

 ( )σ
ij i k j k

k

n

V
d F

c

=
=

∑1

1

, ,
 (A.41) 

Unfortunately, local strains cannot be measured in this way, by summation of the 

contact displacements over the contacts, according to the same appendix. 

The dotted line in figure 46 is the analytical solution for a sample of constant 

elasticity. The dashed line shows the numerical solution based on the local (not 

constant) elasticities. 

If the stresses of this analytical solution for a sample of constant elasticity are 

compared with the results of Grain then the analytical solution seems to predict 

the stresses quite accurately, except for the fall in the tangential stress at the 

surfaces. This fall can also be seen in the numerical simulation work of Thallak 

(1992). 

This fall occurs because there are less contacts at the surface of a sandstone 

sample than average. Only at a distance of two times the average grain radius can 

this edge effect be considered negligible. In theory the number of contacts per 

volume n
c v/

 is zero at the surface, 50% of the average value at a distance of one 

grain radius, and at a distance of two radii (one diameter), the amount of contacts 

is almost average. Figure 47 shows this in a cross-section of the cylinder of 4,000 

grains, with a gauge of 51 times the average grain radius. 
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Figure 46. Tangential and radial stresses in the cylinder 
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Figure 47. Number of contacts per volume 

 from the inner surface to the outer surface 
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In appendix 7, Biaxial test: analytical, a linear relation between the Young's 

modulus and this number of contacts per volume is found: 

 E n
k

d
c v

n=
+/

κ
κ

ν

ν 1
 (A.83) 

This relation has been used to calculate the local Young's moduli. With a 

numerical finite element model, the stresses in the cylinder can be calculated 

using these moduli. Because of the lack of contacts at the surface, the Young's 

modulus will be lower, which explains the fall in the stresses. The numerical 

prediction of the stresses in figure 46, is almost equal to the stresses in Grain, 

even at the surfaces. So, because of a lack of contacts at the boundaries the 

Young's modulus and therefore also the tangential stress will be lower. This 

effect will take place only in a thin layer near the inner surface: a r a d< < + . In 

this area not only are the stresses lower but there are also hardly any lateral 

contacts to break, so failure does not start at the surface ( r a≠ ) but just 

underneath ( r a d= + ). This layer of lower tangential stress is so thin, that it will 

only increase the strength of the cylinder with 4,000 grains by about 34 percent 

and the cylinder of 10,000 grains by about eighteen percent: 
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In reality the borehole is relatively large (a d>> ) so most of the times this edge 

effect can be neglected. 

This theoretical prediction of the radial pressure at failure P
r a d, +  is quite close to 

the pressure P
r failure,

 found by Grain. The first breakout will be found at a higher 

pressure. 

 

   Theory Grain  

n
c
 Type P

r a,
 P

r a d, +  P
r failure,

 P
r breakout,

 

  4,000 B 12.3 MPa 16.5 MPa 15.3 MPa 29.7 MPa 

10,000 A 12.7 MPa 15.0 MPa 15.7 MPa 30.2 MPa 

 

Table 12. Pressure at failure: Prediction versus Grain 

 

Although the bi-linear Mohr-Coulomb model predicts the radial pressure at local 

failure quite well, this model is inappropriate for predicting the radial pressure at 

functional failure, because it can not handle hardening and softening behaviour. 

According Papamichos and Van den Hoek (1995) a tri-linear Cosserat-Mohr-

Coulomb model with hardening and softening gives much better predictions 

concerning functional failure than the conventional continuum models. 
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4.4.4. Cylinder wall breakouts 
 

Laboratory observations of borehole breakouts in several sandstones show very 

often stable breakout shapes, according to Zheng et all (1989) and Ewy and Cook 

(1990 II). In the default cylinders made with Grain, breakouts occur all along the 

borehole surface, but the two diametrically opposite breakouts never occur. 

Maybe this phenomenon depends on the history of a natural sandstone. During 

formation of sandstone the vertical effective stress is about two times higher than 

the horizontal stresses and sometimes also the stress of one horizontal direction is 

larger than the stress of the other perpendicular horizontal direction. These 

different stresses cause different contact forces. Thus, the horizontal contact 

forces will be smaller than the vertical ones. Therefore a horizontal contact will 

form in time a smaller cemented contact surface. In other words, the found macro 

cohesion will be smaller for triaxial samples loaded in the direction of gravity 

than for samples loaded perpendicular to this direction. This can be an 

explanation for the mentioned breakouts. In figure 48 the micro cohesion of the 

horizontal contacts is made two times smaller than the micro cohesion of the 

vertical contacts. A uniform radial pressure of 11.2 MPa is sufficient to create 

two opposite breakouts in this anisotropic sample.  

 

 
 

Figure 48. Two opposite breakouts in a cylinder of 10,000 grains 
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4.5. Three point bend test 
 

A familiar test to measure the strength of a concrete beam is the three point bend 

test. This test is simulated in Grain with a small beam 

(h l d× × = × ×39 8.  cm  102.5 cm 2.00 cm) containing a thousand grains. Just 

like the cylinder test the beam will fail on the edge but this beam has no rest 

capacity, so a sudden failure will occur. 

One of the problems of a real concrete beam is the small number of (gravel) 

particles and contacts so the assumption of a homogeneous material, which is 

necessary for a continuum approach, is not completely valid. The smaller the 

number of particles, the larger the deviation of a group of test results will be. As 

the results of table 13 show, the predicted vertical load at failure is indeed far 

from the numerical simulated value. 

 

Bending test vertical load 

predicted (analytical) 27 kN 

measured (numerical) 43 kN 

 

Table 13. Vertical load at failure 

 

Just before failure, the compressive forces (black lines) in the beam in figure 49, 

show a very clear arch from the left support upwards to the vertical load and 

downwards to the right support. The underside of the beam shows mainly 

horizontal tensile forces (grey lines) with small vertical compressive forces, 

which is analogous with the formation of local lateral tensile forces in the biaxial 

test. In other words, the results are as expected. 

In addition, the crack (thick black lines) in the beam in figure 50, formed during 

failure, starts at the bottom of the beam and grows from weaker area to weaker 

area, which are the larger pores. A crack can also lead to a dead end if the area 

above the crack is too strong. A nice detail is the last remaining contact in the 

failure surface causing a few high tensile and compressive forces on the right of 

the failure surface. 

It is remarkable, that the micro cracks have the same direction as this failure 

surface, which is also the case for the cylinder test but which is definitely not the 

case for biaxial tests. Nevertheless, the micro cracks are always in the direction 

of the major principal stress, i.e. the axial direction. 
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Figure 49. Concrete beam before failure 
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Figure 50. Concrete beam after failure 
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5. CRYSTAL STRUCTURES 
 

A particular case in cohesive granular materials is the crystal structures in which 

all the grains are having the same size. Because of this, these materials have a 

completely regular structure, which causes different behaviour than normal 

cohesive granular materials. 

 

 
 

Figure 51. Crystal structure 

 

On a crystal structure of 15 21 16 20 635× + × =  grains, a biaxial test was done to 

show this behaviour. The structure has almost the same parameters as sandstone. 

The only difference with the previous tests on cohesive granular materials is that 

in this case all grains have the same size, so 
r

r

max

min

= 1. Because of this, crystal 

structures belong both to the logarithmic grain size distribution (Type A) and the 

linear distribution (Type B). 

The grains all have six contacts in specific directions. All contacts form 

triangular micro structures, so not one quadrangular structure is formed. These 

quadrangular structures were the fundament of failure of non-crystalline 

structures, because they caused tension failure in the contacts in the direction of 

the minor principle direction. That is the reason why crystal structures fail at 
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higher axial stress and via a different failure mechanism. Even though all micro 

parameters are equal to those of sandstone, this crystal structure is extremely 

strong. Figure 52 shows that the sample fails only at 417 MPa! 
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Figure 52. Biaxial test on a crystal structure of 635 grains 

 

In appendix 9, Crystal: analytical, it is found that during the elastic phase of a 

biaxial test there are only three types of contact forces in this crystal, and these 

are solved by: 
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The following figure shows that the numerical results of the contact forces is 

close to the analytical prediction (dashed lines). 
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Figure 53. Biaxial test: Contact forces in a crystal structure 

 

The stiffness ratio, κ ν , is just above one so the horizontal force F
t

'  will never 

become negative, and as a result of this, tension failure can never occur. The 

second criterion for failure is the shear failure, but since the shear force increases 

even more slowly during loading than the normal force, this will happen at a very 

high axial pressure. Therefore this crystal is much stronger than a non-crystal 

sample with identical micro parameters. 
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6. CONCLUSIONS AND RECOMMENDATIONS 
 

 

6.1. Conclusions 
 

1. Models based on equilibrium will give the same results for quasi-static 

problems as models based on motion. 

 

2. Models based on equilibrium will iterate faster, but cannot be used for 

dynamic problems unlike models based on motion. 

 

3. The results for non-cohesive granular materials can be described with an 

advanced Mohr-Coulomb model. 

 

4. The results for cohesive granular materials can be described with a Mohr-

Coulomb model, but due to softening behaviour only until the plastic phase 

(breaking).  

 

5. An analytical relation between the micro behaviour and the macro 

behaviour is found for cohesive granular materials. 

 

6. Although the Coulomb line describes the moment of failure of a granular 

material quite well, the failure does not occur due to shear failure as 

described, but due to local tensile failure on a microscopic level, which is 

causing micro cracks in the axial direction. 

 

7. Diametrically opposite breakouts near the borehole surface are probably 

caused by anisotropy in the strength behaviour of the sandstone. 

 

8. Boreholes fail at a higher radial pressure than predicted, because of the 

definition difference between local failure and functional failure and the 

large rest capacity of a thick-walled cylinder test. 
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6.2. Recommendations 
 

It was never meant to model a complete geotechnical construction like a dike or a 

tunnel with discrete elements. One hand filled with sand contains one billion 

grains already, so the present computational facilities will always be insufficient 

to model this. Discrete element modelling has been developed to obtain insight 

into the micro behaviour of granular materials, in order to improve the continuum 

models of these materials. A few thousand grains are sufficient to model a 

homogeneous loaded sample. Since several tens of thousands of grains can be 

handled on a normal computer, it has no meaning to increase this number of 

grains. A more fruitful approach would be to improve the three simplifications 

made at the beginning of this research: 

    - A three-dimensional model will probably not gain many additional insights, 

but will make the results more realistic. 

    - A non-cohesive grain structure with more complex grain shapes reacts more 

strongly than a structure with circular grain shapes.  

    - A better description of the contact relation, which can perhaps be obtained 

from laboratory tests, will give more accurate simulations. 

These improvements will cost much work, but may not gain that many additional 

insights. Besides, the behaviour of the discrete models can quite accurately be 

described by an advanced Mohr-Coulomb model. Therefore the question whether 

this amount of work can be justified must be settled first. 
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1. Symbol list 
 

 D  : Depth of structure   = =d r2  

 E   : Young's modulus 

 F   : Force 

 G   : Shear modulus 

 H  : Height of structure 

 O   : Surface of structure 

 P   : Pressure 

 R D. . : Relative density    =
−
−

e e

e e

max

max min

  in which: e
V

V

pores

grains

=  

 V   : Volume of structure 

 W  : Width of structure 

 

 c   : Cos ( )α  

 c'   : Cohesion 

 d   : Distance between centres of two grains 

 e   : Total volumic strain  = ε
tot

 

 f
gg

 : Friction between two grains ( )= tan φ µ  

 f
gw

 : Friction between grain and wall 

 k   : Contact stiffness, spring constant 

 n   : Normal displacement 

 n
c
  : Number of contacts 

 n
g
 : Number of grains 

 n
c g/

 : Number of contacts per grain 

 n
c v/

 : Number of contacts per micro volume (d 3 ) 

 n
i
  : Number of iteration per load step 

 n
v
  : Number of micro volumes per total volume = V d/ 3  

 r   : Radius of grain 

 s   : Sin ( )α  

 s
h
  : Shear displacement 

 u   : Displacement 
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 α   : Angle between contact and x-axis 

 β   : Angle between major principal direction and x-axis 

 γ   : Angle deformation or rotation 

 ε   : Strain 

 κ ν  : Ratio between stiffness in normal and shear direction 

 ν   : Poisson's ratio 

 σ   : Stress 

 φ '   : Angle of internal friction 

 ψ   : Angle of dilatancy 

 

 ×
n
 : In normal direction 

 ×
s
 : In shear direction 

 ×
xx

 : In horizontal direction 

 ×
yy

 : In vertical direction 

 ×
rr

 : In radial direction 

 ×
tt
 : In tangential direction 

 ×
tot

 : In total 

 ×
0
 : Average value, so: =

× + ×
1 3

2
 

 ×
1
 : In major principal direction, often: ×

yy
 

 ×
3
 : In minor principal direction, often: ×

xx
 

 ×µ  : Of grain material itself, not whole structure 

 ×   : Average value or expectation value 

 ×   : Derivative value 

 ×
I
 : During first phase (i.e. isotropic compression) 

 ×
II

 : During second phase (e.g. biaxial test) 

 ×
e
 : During elastic phase 

 ×
p
 : During plastic phase 
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2. Hertzian contact 
 

To verify the contact equation by Hertz, a compression test was done on a ball of 

hard polystyrene foam with a radius of r = 74 6. mm. The elasticity parameters 

are measured with a triaxial test (σ
3

0= ) on a cube of the same material: 

  

E
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non virgin
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=
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0 22
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The Young's moduli remain very constant during the test. The figure below 

shows that the prediction of non-virgin compression by Hertz is about 30% too 

high all the time, but the shape of the non-linear behaviour is correct. 
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Figure A.1. Hertzian contact relation of a polystyrene ball 
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3. Discrete element book-keeping 
 

A complex part of discrete element modelling is the book-keeping of all grains, 

walls, contact numbers and their corresponding data. During simulation of a 

granular material new contacts can be made and other contacts can be lost, what 

leads to continuous updating of all information. The method which is used in 

Grain will be explained here.  

In general there are two types of arrays: one for the contact information and 

another for the grain and wall information. In the contact arrays the state of the 

contact (off, shear, non-cohesive or cohesive), the numbers n
low

 and n
high

 of both 

grains on both sides of the contact, the forces F
n
 and F

s
 and the shear 

deformation s
h
 are stored. For instance the array of contact number 3 in figure 

A.2. will be: 

 

contact  state  n
low

 n
high

 F
n
 F

s
  s

h
 

3 shear  -1 3 +... + −/ ... + −/ ... 

 

Table A.1 Information on contact 3 

 

N

N

N
F

F
F

F

 

1 2 3
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9

-1

4

12 13

7
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2322

 
 

Neighbours and Friends 

Grain numbers   Contact numbers 

 

Figure A.2. 
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The grain and wall arrays contain two parts. In the first part, the data of the grain 

itself are stored: the present position co-ordinates x y, ,φ  and size r  of the grain, 

the position x y
0 0
,  of the grain, when the last friends backup (F) has been made. 

The second part contains the contact numbers towards the neighbour grains (N) 

and the friend grains which are the grains nearby but not connected (F) to this 

grain. For grain 3 this last part will be: 

 

neighbours 3 7 8    n
c

= 3 

friends 2 7 9 5  n
f

= 4  

 

Table A.2 Information on grain 3 

 

Notice that for the neighbours, not the neighbour numbers are registered, but the 

number of contacts between the grain and its neighbour. In this way, the contact 

data can be found. When a contact is broken, the contact number must be 

removed from the arrays of the grain and its neighbour and both grain numbers 

must be placed in each other's friend arrays. Only the neighbours have to be 

checked for contact breaking and the friends for contact making. The friend array 

will be updated in the procedure check village when a grain moves too far away 

from its original position x y
0 0
, . 

The advantage of this method is that only the necessary data is stored and the 

contact checking is minimal. 
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4. Grain size distribution 
 

100%

0%

Z (r)

r rmaxmin

ln (r)

 
 

Figure A.3. Sieve curve 

 

In theory an infinite number of grain size distributions can be made, however for 

most sands the sieve curves show a rather straight line: 

 
( )

( ) ( )

Z r
r

Z r c c r r r r

=
≤

≈ + ≤ ≤

weight of grains 

weight of all grains

      for      
1 2

ln
min max

 (A.1) 

The weight of a grain can be described by: 

 w c r=
3

3  (A.2) 

Therefore the probability density function for these sands will be: 

 f
r r

r r r
r r r=

−
≤ ≤max min

max min

min max

3 3

3 3 4

3
        for       (A.3) 

The corresponding grain size distribution can be described with a random 

generator: 

 [ ]r
r

r r

r r
x x= −

−















 =

−
1

0 1
3

3 3

3 3

3

min

max min

max min

~ ~ ..      with      random  (A.4) 

This distribution is specified by only two parameters, such as the minimum rmin  

and maximum rmax  grain size or the grain size ratio M  and the average grain 

size r : 

 

M
r

r

r r
M

M

=

=
−
−

max

min

max

( )

( )

3 1

2 1

2

3

 (A.5) 

The average grain size is not necessarily equal to the mean grain size: 
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r

r

M

M50

1

2
=

+
 (A.6) 

Beside this exponential distribution "Type A", also a linear distribution "Type B" 

is used: 

 ( ) [ ]r r r r x x= + − =
min max min

~ ~ ..      with      random 0 1  (A.7) 

This distribution is also specified by the grain size ratio M  and the average grain 

size r : 

 

M
r

r

r r
M

=

=
+

max

min

min

1

2

 (A.8) 
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5. Two-dimensional continuum model 
 

 

5.1. Stress-strain relation 
 

For comparison of the numerical results obtained with a continuum model, the 

advanced Mohr-Coulomb model was chosen. The two-dimensional stress-strain 

definitions are a little bit different from the three-dimensional definitions, simply 

because there is no third dimension (ν
zz

= 0 ). Therefore the law of Hooke will 

become: 

 

ε
ε
ε

ν
ν

ν

σ
σ
σ

xx

yy

xy

xx

yy

xy

E

















=
−

−
+

































1
1 0

1 0

0 0 1

 (A.9) 

(The dot above the symbol implies the material time derivative.) 

This means that during the elastic phase the Mohr circle for the strains has the 

same shape as the one for the stresses, although its size is 
1+ ν

E
 times larger and 

the distance to the centre is multiplied by a factor 
1− ν

E
. 

 

222 2β
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ε σxxxx

ε σyyyy

ε σxy
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, E εσxx xx

, E εσyy yy

, E εσyx yx  
 

Figure A.4. stresses and strains during the elastic phase 
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The stresses can be described by: 

 

σ σ σ σ σ α

σ σ σ σ σ α

σ σ σ α

xx

yy

xy

= + − −

= + + −

= −

1

2 1 3

1

2 1 3

1

2 1 3

1

2 1 3

1

2 1 3

2

2

2

( ) ( ) cos( )

( ) ( ) cos( )

( ) sin( )

 (A.10) 

The strains can be described in a similar way, thus: 

 

2 2
2

2 2
2

ε
ε ε

ε
ε ε

α

σ
σ σ

σ
σ σ

α

ε

σ

xy

yy xx

xy

yy xx

xy

yy xx

xy

yy xx

−
=

−
=

=
−

=
−

=

tan( )

tan( )

 (A.11) 

During the elastic phase the principal directions for the (incremental) stresses and 

for the (incremental) strains are equal which is called coaxiality: 

 α α α α β βσ ε σ ε σ ε= = =   so:      or:    (A.12) 

Failure occurs according to Coulomb: 

 ( ) ( )sin ' 'cos 'φ σ σ φ σ σ
1 3 1 3

2+ + = −c  (A.13) 

At failure of a non-cohesive granular material, the major principal direction will 

be: 

 
( )
( )cos( )

sin( )
2

1β
φ

σ σ

σ σ
=

− −

+
yy xx

yy xx

 (A.14) 

During the plastic phase the increments of the strains can be described by: 

 

[ ]
[ ]
( ) ( ) cos( )

( ) ( ) cos( )

( ) sin( )

ε ε µ µ α

ε ε µ µ α

ε ε µ α

xx

yy

xy

= − − +

= − + +

= +

1

2 1

1

2

1

2 1

1

2

1

2 1

1 1 2

1 1 2

1 2

 (A.15) 

 in which: 

 µ ε
ε

ψ
ψ

= −








 =

+
−

sin( )

sin( )

3

1

1

1
p

 

 because: 

 sin( )ψ ε ε
ε ε

=
+
−

3 1

3 1

 

If the increments of the stresses σ  are zero and the plastic deformation remains 

coaxial ( β βσ ε= ) throughout the plastic phase, like this: 

 
2 2

2
σ

σ σ
ε

ε ε
αxy

yy xx

xy

yy xx
−

=
−

= tan( )  (A.16) 

then the plastic deformations are defined by: 

 
sin( ) cos( )

sin( ) cos( )

sin( ) cos( )

sin( )

ε
ε

ψ α
ψ α

ε
ε

ψ α
α

xx

yy

yy

xy

=
+
−

=
−

−
2

2

2

2
   and    (A.17) 
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5.2. Characteristic tests 
 

For the confined biaxial test, unconfined biaxial test and the compression test, the 

orientations of the principal stresses are equal to the x- and y-axis: 

 
× = ×

× = ×
1

3

yy

xx

 (A.18) 

The elasticity parameters can be obtained from the confined or unconfined 

biaxial test (σ
3

0= ) during the elastic phase, as follows: 

 

E

tot

=

= −

= −

σ
ε

ν ε
ε

ε
ε

1

1

3

1

1

1

 (A.19) 

 in which: 

  ε ε ε
tot

= +
1 3

 

 

σ
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1

3
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Figure A.5. bi-linear idealisation of a 2-D biaxial test 
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In the case of non-cohesive granular materials we also know for the plastic phase 

that: 

 

sin( ')φ

σ
σ
σ
σ
σ σ
σ σ

=
−

+

=
−
+

1

3

1

3

1 3

1 3

1

1  (A.20) 

 sin( )ψ ε
ε ε

=
−
tot

tot
2

1

 (A.21) 

The compression test (ε
3

0= ) remains elastic: 

 

( )E = −

=

1 2 1

1

3

1

ν σ
ε

ν σ
σ

 (A.22) 

For non-cohesive granular materials the Young's modulus depends on the stress: 

 E E
ref

ref

=








σ

σ

β

0  (A.23) 

 in which: 

  σ
σ σ

0
2

=
+

yy xx
 

The simple shear test (σ
xx

= 0 ) can be solved with the same parameters: 

 τ γ= G  (A.24) 

 
( )

( )
( )sin 'φ

σ σ τ

σ σ

τ
σ

σ σ

=
− +

+

= =

yy xx

yy xx

yy xx

2
24

                    if:         

 (A.25) 

 in which: 

 ( )
G

E

xy

=
+

=

2 1

2

ν
γ ε

 

The true simple shear test (ε
xx

= 0) is more complicated because the horizontal 

stress increases during failure. The nine unknown components of the stress, 

elastic strain and plastic strain ( ,σ ε ε
e p
 and ) can be solved with the three elastic 

equations (A.9), the three test equations: 
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 ( ), ,

, ,

σ

γ ε ε

ε ε

yy

xy e xy p

xx e xx p

=

= +

+ =

0

2

0

 (A.26) 

and the three plastic equations A.13, A.16 and A.15 (Coulomb, coaxiality and 

dilatancy), in this case: 

 ( ), , ,

, ,

σ σ

ε ε ε

ε ε

xy xx

xy p yy p xx p

xx p yy p

D

F

J

J

=

= −

=
+
−

2

1

1

 (A.27) 

 in which: 

  

( )
( )

D

F

J F

F

yy xx

xy

xy

yy xx

yy xx
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=
+ − −

=
−

= + + >

= − + <

σ φ σ φ
σ

σ
σ σ

ψ σ σ

ψ σ σ

( sin ( ')) ( sin ( '))

sin

sin

1 1

4

2

1

1

2 2

2

2

      if     

      if     

 

Which gives us the incremental stresses and strains of the true simple shear test: 

 
( )
( )

sin

sin

,
ε
σ

ψ
ψ

yy p

xy
ED

F

F
=

+ +
− −











1 1 2

1 2

2

2
 (A.28) 

 and: 

 

( ) ,

,

γ
σ

ν ε
σ

ε
σ

ν ε
σ

σ
σ

xy

yy p

xy

yy

xy

yy p

xy

xx

xy

E
F

ED

ED

D

=
+

+ +










= − +

=

2 1 1

1

 (A.29) 
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5.3. Double sliding 
 

The plastic deformation of several soil models is based on sliding. Sliding means 

essentially that the stresses and therefore also the shapes of the sliding parts 

remain constant. So, there will be no total volume change, or with other words 

the dilatancy is zero. 

If failure of a soil occurs by shear sliding, then there are, because of symmetry, 

two directions in which the maximum shear stress is reached. This idea led to the 

double sliding model proposed in 1959 by De Josselin de Jong. In figure A.6. 

only the left failure surfaces (type A) are shown. 

 

α3

α1

σ1

σ3

θ

 
 

Figure A.6. Sliding causes an axial and lateral rotation 

 

In the same way also a right sliding (type B) can occur. If both the left and the 

right slidings cause a same amount of deformation (a b= ) then the axial rotation 

and the lateral rotation will be zero: 

 if           then    a b= = =α α
1 3

0  (A.30) 

Figure A.7. shows such a double sliding failure in a simple shear test. To meet 

the boundary conditions, the sample requires a free rotation of: 

 α γ
free

=
1

2
 (A.31) 

In case of equal double sliding, the principal directions of the incremental strains 

and the principal directions of the stresses are identical ( β βσ ε= ). This is called 

coaxiality. 
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Figure A.7. Simple shear test according to Mohr-Coulomb 

 

De Josselin de Jong (1971) also published his idea to allow the two deformations 

to be unequal, so: 

 a b≠  (A.32) 

 in which: 

  
a

b

≥
≥

0

0
 

The rotation of the axial direction (figure A.8.), caused by the left sliding, is then: 

 
( ) ( )

( ) ( )
( )

tan
( ).cos

( ).sin .cos

( ).cos

α
θ

θ θ

θ

1

2

2

1
=

−
− −

≈ −

a b

a b

a b

 (A.33) 

and the rotation of the lateral direction, caused by the left sliding, will be: 

 
( ) ( )

( ) ( )
( )

tan
( ).sin

( ).sin .cos

( ).sin

α
θ

θ θ

θ

3

2

2

1
=

−
+ −

≈ −

a b

a b

a b

 (A.34) 

These two rotations are not the same, which cannot be corrected with a free 

rotation. This means for an unequal double sliding that the plastic deformations 

are not coaxial. 

With a deformation of: 

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )( )

ε θ θ

ε θ θ

ε θ θ

11

33

13

2 2

2

= +

= − +

=
−

−

a b

a b

a b

sin cos

sin cos

cos sin

 (A.35) 
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and a shear band angle of: 

 θ π φ= +
1

4

1

2
 (A.36) 

the angle of non-coaxiality i  between the major principal directions of the stress 

and strain is defined by: 

 ( ) ( )tan tan2
2

13

11 33

i
a b

a b
=

−
= −

−
+

ε
ε ε

φ  (A.37) 

So, there is a wide range of solutions: 

 − ≤ ≤ +
1

2

1

2
φ φi  (A.38) 

which means for a sliding model there is not a uniqueness at collapse.  
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Figure A.8. Axial and lateral rotation 
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6. Micro-macro relation 
 

 

6.1. Stress 
 

If a region with volume V  is considered, with an on microscopic level non-

uniform stress state, σ µij ,
 , which is in equilibrium, then the average stress σ

ij
 is 

defined by: 

 σ σ µij ij

VV
dV= ∫

1
,

 (A.39) 

By using the Gauss's divergence theorem (Drescher and De Josselin de Jong, 

1972), this can be written as: 

 ( )σ
ij i k l j k l

l

n

k

n

V
u F

c gg

=
==
∑∑1

11

, , , ,

/

 (A.40) 

 in which: 

  

n

n

u

F

g

c g

i k l

j k l

=

=

=

=

 number of grains

 number of contacts per grain

 i - component of the l  contact vector of the k  grain

 j - component of the l  contact force of the k  grain

th th

th th

/

, ,

, ,

 

The summation of the contact forces over all the contacts can be done at once: 

 ( )σ
ij i j

k

n

kV
d F

c

=
=

∑1

1

 (A.41) 

For a two-dimensional x-y field, this will give, for circular grains: 

 [ ]( )σ
xx n s

k

n

kV
d c F scF

c

= +
=

∑1 2

1

 (A.42) 

 [ ]( )σ
yy n s

k
k

n

V
d s F scF

c

= −
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∑1 2

1

 (A.43) 

 [ ]( )σ
xy n s

k
k

n

V
d scF c F

c

= −
=

∑1 2

1

 (A.44) 

 [ ]( )σ
yx n s

k
k

n

V
d scF s F

c

= +
=

∑1 2

1

 (A.45) 

 in which: 

  

V

F

F

n

s

=
=
=

volume of a structure

normal force

shear force

 

 and: 
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( )
( )

s

c

d

=

=

=
=

sin

cos

α

α
distance between centres of two grains

lenght of a contact

 

After every iteration in Grain, the stresses are calculated in this way. It was found 

that these stresses are almost perfectly equal to the boundary stresses. 

 

 

6.2. Strain 
 

Since a relation has been found between the macro stresses and the micro forces 

(σ
ij ij

F⇔ ) and a relation between the micro forces and the micro displacements 

( F n
ij ij

⇔ ), only the relation between the micro displacements and the macro 

strains (n
ij ij

⇔ ε ) has to be found to solve the relation between the macro 

stresses and the macro strains (σ ε
ij ij

⇔ ). Therefore the micro-macro relation of 

the strains can be a key to the complete stress-strain relation. 

 

   

h
h

dn

s
n

dh

α

 
 

Two-dimensional grain structure   Diamond definitions   

 

Figure A.9. 

 

If a two-dimensional grain structure is considered, then the whole surface O  can 

be divided in diamonds with a surface: 

 ( )O d h
k n k

=
1

2
 (A.46) 

So, the total surface of the grain structure will be: 

 ( )O O d h
k

k

n

n k
k

nc c

= =
= =

∑ ∑
1 1

1

2
 (A.47) 
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With this, the macro strains can be written as: 

 ( )ε δ δ δ δ
ij i j j i i j j i k

k

n

O
d h d h h d h d

c

= + + +
=

∑1 1

21

 (A.48) 

If the macro strains would only depend on δ d , so h  is assumed to be constant 

(δ h = 0 ), then the strains can be solved: 

 [ ] [ ]( )ε δ δ
xx n h n s

k
k

n

O
d h c s sch s h

c

= + +
=

∑1 1

2

2 2

1

 (A.49) 

 [ ] [ ]( )ε δ δ
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n

O
d h s s sch c h
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∑1 1
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 (A.50) 

 in which:   

  

O

d n

s
h

=
= =
=

surface of grain structure

normal displacement

shear displacement

δ
δ

 

This relation has been found by Kruyt (1994) as well: 

 ( )ε δ δ
ij i

c

j

c

j

c

i

c

c OO
d h d h= +

∈
∑1 1

2
 (A.51) 

The micro-macro relation for the strains seems to be found. But for a two-

dimensional isotropic compression test (δ s
h

= 0 ), it becomes clear that h  is not 

constant enough. 

The total strain is defined as: 

 ε ε ε
tot xx yy

= +  (A.52) 

The theory above will give for the isotropic compression test: 

 ( )ε δ
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O
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c

=
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 (A.53) 

although the correct answer is: 
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 (A.54) 

So, the error is 100%. It has to be concluded that this solution was not correct 

because the influence of δ h  was neglected. The problem is that h  does not only 

depend on the contact itself but also on the positions and therefore the 

deformations and the rotations of the surrounding grains. This means that the 

micro-macro relation for the strains is far more complex than the micro-macro 

relation for the stresses. 
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7. Biaxial test: analytical 
 

 

7.1. Normal and shear forces 
 

During a biaxial test, the average normal force F
n ,α  in a specific direction α in 

the first quadrant will, because of symmetry, be equal to the average forces of the 

other quadrants: 

 F F F F
n n n n, ,( ) ,( ) ,( )α π α π α α= = =− + −  (A.55) 

The function  

 ( )F F Ac Bs
n n,α = +2 2  (A.56) 

in which A  and B  are constants, holds this symmetry. 

This is also the case for the shear force F
s,α , although the direction of the forces 

and so the sign changes per quadrant:  

 F F F F
s s s s, ,( ) ,( ) ,( )α π α π α α= − = = −− + −  (A.57) 

The function bellow holds this description: 

 ( )F F Qsc
s s,α =  (A.58) 
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Figure A.10. Normal and shear force versus contact angle 

 

During phase I, isotropic compression (σ σ
xx yy

= ), the shear forces are taken as 

zero (Q = 0 ): 
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 (A.59) 
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During phase II, the loading phase, the forces can be described as: 
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 (A.60) 

If F
n

II  is the average normal force then: 

 A B+ = 2  (A.61) 

So the normal force can be expressed as: 

 [ ]( )F F x Ac A s x
F

F
n

II

n

I n

II

n

I,α = + − =2 22 with    (A.62) 

The alteration of this force is: 

 [ ] [ ]( )∆ F F F F Ax c x Ax s
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n
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Horizontal force equilibrium for a contact yields: 
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which solves the shear force: 
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In the isotropic phase I, a certain average stress σ
0

 is expected: 
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 (A.66) 

The horizontal stress σ
xx

 and the vertical stress σ
yy

 are equal to the average 

stress σ
0
: 

 σ σ σ σ
xx yy c n

I

V
n dF= = = =

3 0

1

2
 (A.67) 

So: F
V

n d
n

I

c

=
2

3
σ

 (A.68) 

 

The analytical relations of F
n

II

,α  and F
s

II

,α   have been found. These can be checked 

by probabilistic analysis. 
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Table A.3. shows the expectation value E  for several goniometric functions. 

 

E  1 2 3 4 

1/2 s2  c2    

3/8 s4  c4    

1/8 s c2 2     

1/16 s c2 4  s c4 2    

0 s  sc3  s c3  s c3 3  

 

Table A.3. Expectation values 

 

If these are filled out in the relations of F
n

II

,α  and F
s

II

,α  mentioned in (A.42) and 

(A.43), the stresses are found: 
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And in the same way: 
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 (A.69) 

As long as there is no correlation between d , nc  and α, the analytical solution for 

the biaxial test is correct. 
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During the loading phase II of the biaxial test the lateral pressure σ
3
 remains 

constant: 
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So: x
F

F

n

II

n

I
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+1
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 (A.71) 

Due to symmetry, the part [ ]Ax
c

s
−1

3

 in F
s

II

,α  must be zero, so: 
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x

=
1

 (A.72) 

The average forces can now be simplified to: 
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 in which: 
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7.2. Elastic behaviour of cohesive materials 
 

The average normal and shear forces were found to be: 
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The alterations of these forces since the isotropic compression are: 
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So, the deformations will be: 
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Figure A.11. Contact definitions 

 

If the grains do not rotate, then the contact definitions will give us: 
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With this, the strains can be solved as: 
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which will give: 
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And in the same way: 
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In this way, it is demonstrated that cohesive granular materials can be described 

by a Young's modulus and a Poisson's ratio: 
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Which can also be written as: 
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The elasticity is almost equal to the result of Bathurst and Rothenburg (1988): 
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The number of contacts depends on the volume and the grain sizes, so it is better 

to rewrite this equation. 
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The contact ratio n
c v/

 depends only on the number of contacts per micro volume. 

For the isotropic compression, the normal and shear forces are: 
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In the same way, an identical Young's modulus is found: 
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7.3. Elastic behaviour of non-cohesive materials 
 

The stiffness between two grains is not constant for non-cohesive materials: 
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The average stiffness depends on the average pressure σ
0
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This can be filled out in the solution for cohesive structures:  
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 (A.88) 

which gives for non-cohesive materials: 
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 in which: 

  

( )

σ

β

κ
ν
ν

σ

ν
κ

κ

ν
µ

µ

µ

µ

ν

ν

ref

c v

c

v

c

ref

ref

c v

n
n

n

d n

V

E
G

n

=

=

=
−
−

= =

=
−











 +

1 bar

1

3

3
1

2

3 1

2

1

3

2

3

/

/

 
So, the stiffness behaviour does not depend on the average grain size. 
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7.4. Failure of cohesive materials 
 

The relation between the strength of a granular material and its micro parameters 

has always been one of the most difficult problems in the field of theoretical 

discrete element mechanics. This is because not only average events are 

important, but also the probability that an event will occur. This also applies to 

the failure behaviour of cohesive granular materials. When the first cracks appear 

during a loading test, total failure will not directly occur; the contacts of the 

surrounding grains will take over the load of the broken contacts. Only when a 

particular amount of cracks per volume has weakened the area in such that it 

cannot handle any more load, does total failure occur. One single crack is 

sufficient to cause a chain reaction in the formation of new cracks, which results 

in very sudden, total failure of the structure. The normal force distribution in the 

lateral direction at that moment is schematised in figure A.12. 
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Figure A.12. Probability of micro failure per volume 

 

The average normal force and the contact strength are described by: 
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The amount of contacts per volume which have to be broken for a total failure is 

illustrated by the shaded surface in the figure. Once this surface has passed the 

micro failure criterion, the granular structure is broken. 
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If the percentage of the contacts is small then the beginning of this surface can be 

registered by a factor β   times the increase of the axial stress: 

 ( )e = = −β σ β σ σ∆
1 1 3

 (A.91) 

During loading and at failure the average normal force in the direction of the 

minor principal stress is constant ( F F
n

II

n

I

,α = =
0

), so failure takes place at: 

 e c r F
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I= +µ
2  (A.92) 

These two relations can be combined to: 
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This form is equal to the Mohr-Coulomb criterion: 
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This means that cohesive granular materials (except regular structures such as 

crystals) will fail according the Mohr-Coulomb criterion with: 
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The angle of internal friction is completely constant and does not depend on the 

contact force distribution or the grain size distribution. The cohesion depends 

only on the cohesion between two contacts cµ  and the compaction of the 

granular structure n
c v/

. 
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8. Cylinder test: analytical 
 

The stresses in a thick-walled hollow cylinder sample during the test depend on 

the axial and radial pressures, but also on the shape of the sample. For a 

continuum model these stresses can be solved analytically. 
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Figure A.13. Cylinder test   Figure A.14. Equilibrium of element    

 

The sum of the radial forces on the equilibrium element is zero: 
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r∑ = 0  (A.96) 

which gives: 
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Axial symmetrical loading can be denoted: 
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so, the strains can be written as: 
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The shear deformations in the directions of the principal stresses are all found to 

be zero: 
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With the two constants of Lamé: 
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and the total volumic strain: 
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one can express the main stresses: 
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The mains shear stresses are all zero: 

 τ µ ε µγ
rz rz rz
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By filling out equations (A.99) and (A.102) in (A.103), and these last three 

equations in (A.97), the basic differential equation is found: 
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The last part is zero, so (A.105) can be simplified: 
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The general solution of this differential equation is: 
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The other directions are: 
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t
= 0  (A.108) 

 u D z C
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where A, B, C and D are integration constants, to be determined from the 

boundary conditions. The general expression for the volume strain, 

corresponding to the solution is: 
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 (A.110) 



125 

The main stresses can be expressed as: 
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The boundary conditions are: 

  For r a= :   σ
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= 0  

  For r b= :   σ
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zz z

P=  

In this case the constants A, B  and D are given by: 
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If the pressure stresses are taken positive then they will become: 
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The stresses at the inner surface (r = a) are: 
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Figure A.15. Stresses at the inner surface of the cylinder 
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The stresses at the outer surface (r = b) are: 
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Figure A.16. Stresses at the outer surface of the cylinder 
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One can see that failure will always occur at the inner surface of the cylinder 

( r a= ) and that the vertical load P
z
 is not important for failure as long as: 

 0
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9. Crystal: analytical 
 

One of the most basic structures, in which tension forces can be created only by 

compressive forces, is drawn below. 
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Figure A.17. Basic structure 

 

If shear forces do not exist, then the horizontal contact force F
t
 can become 

negative, if the vertical force is too large: 
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Figure A.18.  

 

If we build up a whole crystal out of this structure without neglecting the shear 

force, then the horizontal stress for each grain is found to be: 
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in which the volume for each grain: 
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Summation over the six contacts, as listed in the table, will give: 
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in which the constant C depends on the grain radius: 
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 (A.118) 

In the same way the vertical stress and the shear stress are found: 
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Table A.4. Contact forces on one grain 

 

For the horizontal boundary, we know: 
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which is equal to the vertical stress we found before. For the vertical boundary, 

this is different: 
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These result are not equal to the horizontal stress we found before. This means 

that edge actions are formed, especially on the vertical boundaries. 
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During phase I, isotropic compression (σ σ
xx yy

= ), the shear forces are zero, so 

the contact forces can be solved: 
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During phase II, for example the biaxial test, the shear forces do not remain zero. 

But because of symmetry, another third relation between the deformations of the 

contacts can be found: 
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Figure A.19. Contact deformations 

 

which is: 
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The following three equations describe the contact forces of the grains, which are 

not near the boundaries, during loading: 
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 or: 
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For a biaxial test the lateral pressure σ
xx

 is constant ( ∆σ
xx

= 0 ), so: 
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In practice, the stiffness ratio κ ν  is slightly larger than one, so tension forces will 

never occur and the crystal has a negative Poisson's ratio. The crystal will not fail 

because of tension failure, but because of shear failure which will take place at a 

much higher pressure. This is why crystals structures can be extremely strong. 
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SAMENVATTING 
 

 

Discrete Elementen Analyse van Granulaire Materialen 

 

Tijdens de productie van olie en gas beginnen, enkele jaren na het maken van een 

boorgat, zanddeeltjes en kleine zandsteenbrokjes los te breken van het 

boorgatoppervlak. Deze deeltjes kunnen in een korte tijd de transportleidingen en 

installaties grote schade toebrengen. Door simulatie van het boorgatgedrag met 

de dikwandige-cilinderproef, zijn er vier fenomenen gevonden die niet met de 

conventionele continuümmechanica kunnen worden verklaard: 

   1. Ondanks de drukspanningen, ontstaat het bezwijken op microniveau ten 

gevolge van trekscheuren. 

   2. Deze scheuren staan niet diagonaal op, maar lopen parallel aan, het 

boorgatoppervlak. 

   3. Deze scheuren veroorzaken twee lijnrecht tegenoverliggende uitbraken.  

   4. Het functionele bezwijken van het boorgat begint bij een hogere radiale 

drukspanning dan voorspeld. 

Om het gedrag van granulaire materialen te beschrijven, ontwikkelde Cundall in 

1969 een computermodel die gebaseerd is op de basiselementen van zo'n 

materiaal, namelijk de korrels zelf en hun interacties. Lindhout heeft in 1992 

geprobeerd om met dit model de cilindertest te beschrijven. Als gevolg van 

compactieproblemen, stabiliteitsproblemen en de lange computerrekentijd kon 

zijn doel niet worden gehaald. Daarom is er een nieuw model ontwikkeld door de 

schrijver, die niet de bewegingsvergelijkingen maar de evenwichtsvergelijkingen 

gebruikt om de nieuwe korrelposities te berekenen. Dit model kan zowel voor 

niet-cohesieve korrels (zand) als voor cohesieve korrels (zandsteen) worden 

gebruikt. De resultaten kunnen in het algemeen goed worden beschreven met een 

verbeterd Mohr-Coulomb model, hoewel er een aantal uitzonderingen zijn.  

Ten eerste zullen, tijdens het belasten van een granulaire structuur, veel contacten 

tussen de korrels bezwijken. Niet door schuifdeformatie, zoals Coulomb 

suggereert, maar door bezwijken op trek. Ten tweede ontstaan deze 

microscheuren altijd in de richting van de grootste hoofdspanning, hetgeen een 

andere richting kan zijn dan het waargenomen bezwijkoppervlak. Zo vormen de 

axiale microscheuren tijdens een biaxiaalproef een diagonaal bezwijkoppervlak, 

maar de axiale microscheuren in een cilinderproef kunnen een bezwijkoppervlak 

parallel aan het boorgat vormen. 

Tijdens het ontstaan van een natuurlijk zandsteen veroorzaakt het verschil in 

horizontale en verticale grondspanningen een anisotropie in de sterkte-

eigenschappen van het materiaal. Dit kan de twee tegenoverliggende uitbraken 

verklaren. De conclusie dat een boorgat bij een hogere radiale spanning bezwijkt, 

komt door een verschil in definitie tussen lokaal bezwijken en functioneel 

bezwijken en de grote reststerkte van een dikwandige-cilinder. 
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