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Abstract

We present a version of the Discrete Element Method considering the particles as rigid polyhedra. The Principle of Virtual

Work is employed as basis for a multibody dynamics model. Each particle surface is split into sub-regions, which are

tracked for contact with other sub-regions of neighboring particles. Contact interactions are modeled pointwise, considering

vertex-face, edge-edge, vertex-edge and vertex-vertex interactions. General polyhedra with triangular faces are considered as

particles, permitting multiple pointwise interactions which are automatically detected along the model evolution. We propose

a combined interface law composed of a penalty and a barrier approach, to fulfill the contact constraints. Numerical examples

demonstrate that the model can handle normal and frictional contact effects in a robust manner. These include simulations of

convex and non-convex particles, showing the potential of applicability to materials with complex shaped particles such as

sand and railway ballast.

Keywords Discrete Element Method · Master-master contact · Polyhedra · Barrier Method · Non-convex

1 Introduction

Modeling of granular materials is challenging, particularly

when trying to represent continuum mechanics behaviour.

Complex constitutive models appear on this context, usually

involving many fitting parameters.

The Discrete Element Method (DEM) provides unique

possibilities to handle micromechanical behavior of granular

media (see [1] for the method origins, [2] for a useful review

of spherical DEM modeling among other topics and [3,4] as

textbooks in molecular dynamics, bringing many similarities

and common strategies of DEM).

Numerous implementations of DEM exist, considering

spherical particles due to their geometrical simplicity. Usu-

ally the computational bottleneck of a DEM solver is associ-

ated with spatial searching/treatment of contact between par-

ticles. Spherical particles are welcome in this context, since

evaluating their overlap/proximity is simple and straightfor-
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ward. When the particle shape deviates from a sphere, usually

contact computation time is strongly increased.

Unfortunately spherical particle modeling is not suffi-

cient for many applications. There are challenging practical

problems of interest that motivate the development of DEM

considering arbitrary-shaped particles, such as sandy soil

and railway ballast mechanical interactions, and hopper dis-

charge problems, just to mention a few examples that are

heavily dependent on the particle shape. Indeed, mechan-

ical macroscale behavior of such materials is evidenced

in packing density, compressibility, critical state friction

angle and other mechanical properties. According to [5], the

macroscale properties result from particle interactions, which

are affected by the particle shape.

When there is a need to consider non-spherical particles in

DEM models, several alternatives can be utilized. Clustering

spheres can be employed, see, e.g. [6]. In [7] normal impact

of quasi-spherical particles is explored. Forming clusters of

tetrahedra with distinct shapes is introduced in the work of

[8]. Clusters of spheres are employed in the context of distinct

integration techniques in [9] and, finally, in [10] a scheme is

proposed that represents surfaces as spheres from a triangular

surface mesh. Clusters of spheres have the advantage of the

simplicity of local treatment of spherical particles, but always

lack continuity in particle curvature and definition of tangents

at the boundary surface. According to [11] this may lead to

clumping ofparticles.
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Another possibility is the usage of polyhedra to describe

particles. In this case, surface singularities (vertices, edges)

are present. This approach may be interesting when real par-

ticulate material consists of such polyhedra.

Modeling of DEM with polyhedra can be found in [12]

and [13], which explore convex and non-convex (by convex

decomposition) polyhedra simulation. In [14] convex poly-

hedra are addressed. In [15] and [16] efforts are presented to

modeling convex and non-convex DEM-based polyhedra. A

complementary alternative to DEM to model polyhedral par-

ticles (among other applications) is the usage of the Contact

Dynamics Method (see, e.g. [17,18]). In this case, one solves

for the velocity function, and imposes the balance of momen-

tum at each time-step. Implicit schemes for time-integration

are available, which permits employing large time-steps. A

review of such method, including a discussion on compar-

isons with DEM and applications for polygons is found in

[19].

When the particle shape is convex, a convenient and

elegant description given by super-ellipsoids was proposed

in [20] and applied to DEM simulations in [21]. Super-

ellipsoids were also addressed in [22]. An initiative for

dealing with the geometry of the particles in a more detailed

way was presented in [23], which describes the called

“granular element method”, as a variant of DEM. It con-

siders each grain’s boundary as described by a non-uniform

rational B-spline (NURBS) surface. This allows DEM to

consider realistic and complex granular shapes. In [11] the

non-convexity of particle shapes is addressed by a par-

ticular contact algorithm (knot-surface, in the context of

non-uniform rational B-splines (NURBS) surfaces), which

permits important advances in correlation with experimen-

tal results of sand specimen tests. Another effort to describe

arbitrary-shaped particles is given in [24], which considers

level set discrete elements.

When establishing a DEM model for applications in which

particle shape plays a role, one can also approximate the

physical behaviour by spherical models. However, in this

case there is the main drawback that rolling resistance models

are needed to achieve the expected macro mechanical prop-

erties, which may lead to problem-dependent calibration.

For more complex particle shapes, particularly involving

non-convex geometries, there is a need to handle contact

detection and in a different, more time consuming way. It

is highly desired, however, to minimize the need for model

calibration parameters. This challenge was addressed in [25],

which shows the importance of particle shapes when consid-

ering shear band evaluation is sand specimen by numerical

simulations. In the context of railway ballast simulation, in

[26] model parameters are discussed for shear tests, as also

addressed in [27] and [28]. In [29] computational strategies

are proposed in the context of railway ballast simulation to

handle numerous contact interactions. Sand material simu-

lation employing clusters of spheres was addressed in [30],

which led to the effort in representing arbitrary shapes, even

composed of spheres. Particle shape is important also for hop-

per discharge simulations. In [31] one can find comparison

of clusters of spheres and polyhedra for hopper experiments,

representing an interesting discussion on the influence of par-

ticle shape and its modeling issues.

1.1 Proposed DEMmodel

Motivated by the need for a realistic shape representation of

particles in the aforementioned problems, a new methodol-

ogy will be developed which includes general polyhedra with

convex and non-convex shapes in a discrete element formu-

lation. The model incorporates numerous pointwise contact

interactions between particles, according to their shape and

orientation. This is achieved by a strategy of division of the

external surface of each particle into sub-regions which are

described by faces, edges and vertices, as natural geometric

components of general polyhedra. All of these entities are

considered during the overall contact search.

Each pointwise contact interaction is addressed by degen-

erations of a specific surface-to-surface treatment, see [32,

33], which is a novel approach in the DEM context. We

provide a novel systematic usage of the master-to-master

degenerated technique, particularly in the DEM context.

This is done by the combination of several kinds of contact

degenerations to handle the possibly numerous interactions

between general polyhedra.

Particles are considered as rigid bodies. A novel treatment

for the contact interface law is proposed. At the interface a

hybrid normal direction law is formulated which is com-

posed of a physically or numerically (penalty) ruled part and

a Barrier-based part. The Barrier-based approach prevents

penetration between particles and creates a thin layer of con-

tact activation, borrowing ideas from molecular dynamics

and collision detection in the context of computer graphics.

The proposed method is tested with basic and complex exam-

ples to show its robustness and generality.

1.2 Nomenclature

In the context of a 3D Euclidean space, the present work uses

the following nomenclature: scalar variables are non-bold

(e.g.: v), vectors are lower-case bold (e.g.: v) and second-

order tensors are upper-case bold (e.g.: V ). Column matrices

(termed as “vectors”) are also lower-case bold and matrices

with more than one column are also upper-case bold. Zero

column-matrices are denoted by os , where s in the number

of rows.

The derivative of a quantity a with respect to a quantity b

is denoted by a,b. The variation of a quantity a is indicated

by δa.
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2 Model description

In present work, discrete elements are named “particles” or

“bodies”, with the same meaning. The time-evolution behav-

ior of a DEM system is obtained by solving the equations of

motion. For rigid bodies the equations of motion are written

using the Newton-Euler description, see, e.g.: [34] and [3].

The dynamical behaviour of each rigid body is ruled by a

set of six differential equations in time. In some applications

rotational part of the motion can be neglected, especially for

very small particles. In such case, only three differential equa-

tions of translational motion have to be used for each body.

In present work translation and rotation are considered for

the description of the particle motion while assuming rigid

body behavior.

In general an analytically integration of the differential

equations of motion is not possible due to complexity and

frequent changes of contributions (forces/moments) acting

on each body. Therefore, one usually has to solve the strongly

coupled set of nonlinear differential equations by adopting a

numerical scheme.

In the present work a weak form is employed to describe

the equations of motion which is equivalent to Princi-

ple of Virtual Work (PVW). This is a common way to

describe a multibody system in nonlinear solid mechanics—

particularly when employing numerical methods to consider

the flexibility of bodies—such as using the Finite Element

Method (FEM)—see, e.g.: [35] and [36].

The general weak form which describes a multibody sys-

tem composed of rigid or flexible bodies is given by:

δWi − δWe + δT + δWc = 0, (1)

where δWi is the total virtual work of internal forces, δWe

is the total virtual work of external loads and the term δT

describes the total inertial contribution to the model. All

mechanical contact interactions are included in δWc. Addi-

tional terms can be considered, such as fluid loads. Each term

in (1) contains contributions stemming from all bodies of the

system.

Let N be the number of particles in the system. With that,

the contributions in (1) can be written as a sum

δWi =
N

∑

B=1

δW B
i

δWe =
N

∑

B=1

δW B
e

δT =
N

∑

B=1

δT B

δWc =
N

∑

A=1

N
∑

B=1
B �=A

δW AB
c , (2)

where the superscript B denotes the virtual work contribution

of body B. The term δW AB
c is related to the virtual work of

the contact interactions for a pair of bodies A and B.

Next, we will detail the methodology employed for the

evaluation of each of the contributions in (2). Based on the

rigid body assumption δW B
i is equal to zero. Section 2.1 will

provide details on the evaluation of δT B , Sect. 2.3 discusses

the external loads and their contributions δW B
e and Sect. 2.4

describes the methodology employed to address contact

between bodies, leading to the contributions in δW AB
c .

2.1 Dynamics of a single rigid body

Details of the contribution δT B related to each rigid body B

are presented in this section. Rigid body motion and its causes

are governed by Newton-Euler equations. As rotations have

to be described in a 3D Euclidean space by distinct tech-

niques (such as rotation vectors and quaternions). We will

here present some details on these aspects, for completeness

of the present work.

2.1.1 Kinematics

We adopt an updated Lagrangian description for the move-

ment of material points. Let P be a generic material point in

a body that is tracked along three successive configurations:

the reference configuration r , the current configuration i and

the next configuration i + 1.

The position of the material point P is denoted by xr ,

xi and xi+1 for configurations r , i and i + 1, respectively.

A general vector quantity ar is associated with the material

point P at the reference configuration. This quantity expe-

riences rigid body rotations when the configuration changes

to i , leading to ai and to i + 1, leading to ai+1.

The translatory motion is given by the kinematic relation

xi+1 = xi + uΔ (3)

where uΔ is the incremental displacement of the material

point P from time ti to ti+1.

The evolution of the vector ar is described by the rotation

tensor as

ai+1 = Qi+1ar . (4)

The multiplicative decomposition of the rotation tensor holds

Qi+1 = QΔ Qi , (5)

permitting the description of partial rotations.

The link between the rotation tensor operator and kine-

matic quantities to describe a rotation is provided by a vector

parameterization, here given by the called Rodrigues rota-

tion vector α. This description has been already employed in
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the context of beams and shell structural models, see, e.g.:

[37–42]) and for rigid bodies in [43]. It was also employed

in the context of spherical particles in [44] and [45].

Let a given rotation with magnitude θ about an axis be

represented by the unit vector e described by the Euler rota-

tion vector θ = θe. For a Rodrigues rotation vector α = α e,

where α = 2 tan (θ/2), the corresponding rotation tensor is

given by

Q = I + 4

4 + α2

(

A + 1

2
A2

)

, (6)

where I is the identity tensor, α = ‖α‖ and A = skew(α).

Equation (6) can applied to write rotation tensors Qi , QΔ

and Qi+1. A convenient formula is available for updating the

rotation vector directly, without usage of (5),

αi+1 = 4

4 − αΔ · αi

(

αΔ + αi + 1

2
αΔ × αi

)

. (7)

The time-derivative of the vector ai+1 can be computed by

considering the previous configuration vector ai as constant.

This follows from the updated Lagrangian description where

a fixed current configuration i can be assumed. The angular

velocity of ai+1 is described by Ω = skew(ω). With some

algebraic work a useful relation between the angular veloc-

ity and the time-derivative of the corresponding Rodrigues

rotation vector can be found, see, e.g. [46],

ω = Ξα̇, (8)

where

Ξ = 4

4 + αΔ · αΔ

(

I + 1

2
AΔ

)

, (9)

with AΔ = skew(αΔ).

2.1.2 Rigid body description

The herein utilized formulation was presented in a completed

form in [43] and is here presented, briefly, for completeness.

The reader interested in more details may refer to the original

paper.

We describe the movement of a rigid body B by a choice

of a material point P , named “pole”. This point does not need

to be in the physical domain of the body, but it has to follow

the rigid body constraints, that is, it experiences a rigid body

movement as if it was a part of the body B. The center of

mass of the body is defined as G.

Based on the above notation the position of the center of

mass is given by

xi+1
G = xi+1

P + bi+1 (10)

Assuming that the vector br changes only its orientation

but keeps its magnitude along time (rigid body assumption)

yields

bi+1 = Qi+1br , (11)

where br is a quantity evaluated at the reference configura-

tion. It denotes the center of mass position with respect to

the pole P . A generic material point within the body is given

by xi+1, such that:

xi+1 = xi+1
P + si+1. (12)

As all material points experience the same rigid body rota-

tion, the update of si+1 is given by

si+1 = Qi+1sr . (13)

Inertia tensor at configuration i + 1 is defined by

J i+1 = −
∫

V

ρ

(

Si+1 Si+1
)

dV . (14)

where ρ is the body material specific mass and Si+1 =
skew(si+1). The inertia tensor J i+1 at configuration i + 1 is

related to the inertia tensor at the reference configuration Jr

by

J i+1 = Qi+1 Jr
(

Qi+1
)T

. (15)

Hence it can be pre-evaluated for any rigid body just using

sr instead of si+1 in (14). Note that we have to consider the

pole P when evaluating Jr and J i+1. Thus, a particular (and

convenient) choice for the pole is the center of mass, which

simplifies the forthcoming equations.

The kinetic energy T B of the rigid body B is

T B = 1

2

∫

V

ρ

(

ẋi+1 · ẋi+1
)

. (16)

By inserting (10)–(15) into (16) the first variation can be

evaluated for the kinetic energy. Using furthermore the angu-

lar velocity relation presented (8) leads after some algebra

to
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δT B = f B
t · δuΔ

P + Ξ T mB
t · δαΔ

P (17)

where

f B
t = m

[

ü + ω̇ × bi+1 + ω ×
(

ω × bi+1
)]

mB
t = ω × J i+1ω + J i+1ω̇ + m

(

bi+1 × ü
)

. (18)

Here m is the mass of the body B, ω is the body angular

velocity, ω̇ is its angular acceleration and ü is the acceleration

of the pole P . For later use, we define the inertial pseudo-

moment µB
t = Ξ T mB

t .

The particular choice of the pole P as the center of mass

simplifies (18) yielding

f B
t = m ü

mB
t = ω × J i+1ω + J i+1ω̇, (19)

which is a more standard representation of the equations of

motion for a rigid body.

Note that the only kinematic variables employed in the

evaluation of δT B are the incremental displacements of the

pole uΔ
P and the incremental Rodrigues rotation parameters

αΔ
P which are the chosen degrees of freedom (DOF). The

time-derivatives of these quantities have to be computed, see

(18). Moreover, updating of the center of mass position bi+1

and of the inertia tensor J i+1 is also necessary. Both are

obtained by the applying the reference configuration values

and the rotation tensor Qi+1, as expressed in (11) and (15).

Alternatively, one may save intermediate values at configu-

ration i and then update employing the partial rotation QΔ.

The inertia tensor is constant for a frame accompanying

the rigid body motion, as employed in classical rigid-body

derivations. However, the primary kinematic variable associ-

ated with rotation herein employed is the Rodrigues rotation

vector, which is easily defined with respect to a fixed frame

(differently from alternative rotation schemes that are natu-

rally described following the body orientation). This choice

makes more natural to work with the rotation tensor and the

angular velocity vector written using the same basis associ-

ated with the fixed frame. This is the reason for what one

must update the rotation tensor, accordingly.

2.2 Time-integration scheme

In present work, we use the Newmark integration scheme, see

e.g. [47]. This is based on approximations for time-variable

quantities as a function of the adopted time-step Δt . Here we

assume that a time-step Δt governs the motion from the cur-

rent configuration i and the next configuration i + 1. Within

the Newmark method approximation formulae are

uΔ
P = Δt u̇i + (Δt)2

2

[

(1 − 2β) üi + 2β üi+1
]

u̇i+1 = u̇i + Δt
[

(1 − γ ) üi + γ üi+1
]

, (20)

where the parameters β and γ determine the behavior of

the integration scheme. Depending on the choice numerical

damping can be introduced or it is possible to generate an

implicit/explicit scheme. Our choice is β = 0.3 and γ = 0.5,

leading to an implicit method with small numerical damping.

Equation (20) can be re-written such that velocity and

acceleration of the unknown next configuration are given as

a function of quantities from the previous configuration and

the unknown current displacement uΔ
P which follows from

the equations of motion, see, e.g.[47]

üi+1 = α1 uΔ
P − α2 u̇i − α3 üi

u̇i+1 = α4 uΔ
P + α5 u̇i + α6 üi , (21)

where the following constants are used: α1 = 1

β(Δt)2 , α2 =
1

βΔt
, α3 = 1−2β

2β
, α4 = γ

βΔt
, α5 =

(

1 − γ
β

)

and α6 =
(

1 − γ
2β

)

Δt .

The proposed Newmark integration method can generally

be applied for nonlinear problems, but lacks conservation of

angular momentum. This drawback can be circumvented, see

[48] and [49], where the Newmark method was modified for

rotations in the context of simulation of beam-like structures

and mechanisms involving joints together with flexible bod-

ies, using Euler parameters. In [39] the modified Newmark

method was reformulated for Rodrigues parameters which

yields

ω̇i+1 = QΔ
[

α1 αΔ
P − α2 ωi − α3 ω̇i

]

ωi+1 = QΔ
[

α4 αΔ
P + α5 ωi + α6 ω̇i

]

. (22)

Equations (21) and (22) are convenient since they can be

employed directly in the expression (17) for the rigid body

contribution to the model weak form. As a result, (17) can

be written at configuration i + 1 as a function of the incre-

mental displacements uΔ
P and incremental rotations αΔ

P . The

time integration is then already embedded. All other quan-

tities involved, such as bi+1 and J i+1 are functions of

the incremental displacements and rotation parameters. The

corresponding values from the previous configuration are

considered to be constant and known.

2.3 External loads

The contribution of the external loads to the virtual work

δWe in (1) stems from each rigid body B, given by δW B
e .
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This term includes the virtual work of forces and moments

δW B
e = f B

e · δuΔ
P + mB

e · δω, (23)

where f B
e is the external force applied at pole P , mB

e is the

external moment applied at pole P . When using the same

variables as in (18) δW B
e is given by the relation

δW B
e = f B

e · δuΔ
P + Ξ T mB

e · δαΔ
P , (24)

which introduces the external pseudo-moment µB
e = Ξ T mB

e

that is energetically-conjugated with δαΔ
P . The pseudo-

moment depends on the amount of rotation experienced by

the pole P , which is embedded in Ξ according to (9).

In the context of DEM, the weight of the particles is usu-

ally an important contribution of the external load. This is

included in our model according to [43]. Weight in a particle

can be represented by a single pointwise load applied at the

center of mass. Since the pole P is arbitrary, one has to con-

sider an equivalent system composed of a force and a moment

applied at P . Considering a body with gravitational mass m

(the same as inertial mass) and the vector ge describing the

gravitational field yields

δW B
e = m ge · δuΔ

P + m Ξ T
(

bi+1 × ge

)

· δαΔ
P . (25)

2.4 Contact between bodies

The treatment of the interaction of many particles is essential

for a successful DEM implementation. Complex strategies

have to be developed, especially for the handling of contact

between general polyhedra that are possibly non-convex. The

main idea is not to assume a single pointwise contact inter-

action for each pair of bodies AB (terms δW AB
c in (2)) but

instead to allow all pointwise contributions composing the

term δW AB
c to interact at the same time.

In the sequence, a master-master contact formulation is

presented to handle single contact pointwise action-reaction.

Next, a strategy to split the external surface of each particle

in sub-regions is proposed, this allows to capture multiple

contacts.

2.4.1 Master-master contact formulation

The master-master contact formulation is presented here for

the particular case of contact between two rigid polyhedra.

The reader interested in more details in the basics of this

method may refer to [50,51], in the context of beam-to-beam

contact.

For a triangular face of a rigid polyhedron at configuration

i + 1 the following surface parameterization is proposed

Γ (ζ, θ) = xi+1
P + Qi+1

(

N1xr
1 + N2xr

2 + N3xr
3

)

, (26)

Fig. 1 Parametric space for the triangular face parameterization

x

y

z

x2

x1

x3

Fig. 2 Triangular face in 3D Euclidean space

where the quantities xi+1
P and Qi+1 relate to the rigid body

kinematics, described in Sect. 2.1. The vertices of the trian-

gular face are denoted by the position vectors xr
1, xr

2 and xr
3 at

reference configuration where the origin is the pole P . Arbi-

trary material points are described on the triangular surface

by the functions N1, N2 and N3

N1 = −1

2
(ζ + θ)

N2 = 1

2
(1 + ζ )

N3 = 1

2
(1 + θ), (27)

where the parameters ζ and θ are chosen from the range

(ζ, θ) ∈ (−1,+1). They define a mapping from the para-

metric space (Fig. 1) to an actual material point in the

three-dimensional Euclidean space (Fig. 2).

Employing this parameterization for both contacting bod-

ies, their external surfaces (faces) are represented locally. The

polyhedra faces are given by ΓA (ζA, θA) and ΓB (ζB, θB).

The parameters (which can be interpreted as convective coor-

dinates) can be organized in vectors cA =
[

ζA θA

]

and

cB =
[

ζB θB

]

. The surfaces depend on the general DOF

organized in vectors, here named as d A and d B which leads

to

d A
T =

[

(uΔ
A )T (αΔ

A )T
]

d B
T =

[

(uΔ
B )T (αΔ

B )T
]

, (28)
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Fig. 3 Parameterized surfaces and gap vector determined by the orthog-

onality relations, from [32]

where the index A or B refers to each of the bodies, thus

defining the incremental displacements and rotations of their

poles, see Sect. 2.1. Hence the rigid body motions of the

external surface of each body are consistent with the assumed

kinematics.

Material points on both surfaces ΓA and ΓB are located

by choosing particular values for the surface parameters.

By inserting all parameters into a single vector c =
[

ζA θA ζB θB

]T
and all DOF of bodies A and B into a single

vector d, such that dT =
[

dT
A dT

B

]

the gap vector

g = ĝ (c, d) = ΓA − ΓB . (29)

can be introduced. We assume that a single pointwise contact

interaction occurs locally between the surfaces ΓA and ΓB .

In the original master-master scheme, there is no preselec-

tion of a material point where contact takes place within the

surfaces. Instead a Local Contact Problem (LCP) is defined to

find the material points in both surfaces where contact occurs.

Initially it is considered that both surfaces are locally smooth.

The LCP is defined for a fixed set of DOF d̄. Then, one has to

find the set of convective coordinates c̄ =
[

ζ̄A θ̄A ζ̄B θ̄B

]T

such that the conditions

r4 =

⎡

⎢

⎢

⎣

ΓA,ζA
·g

ΓA,θA
·g

−ΓB,ζB
·g

−ΓB,θB
·g

⎤

⎥

⎥

⎦

= o4, (30)

are valid. Here ΓA,ζA
, ΓA,θA

, ΓB,ζB
, ΓB,θB

are tangent vec-

tors of the surfaces. The conditions in (30) are interpreted

as orthogonality relations, meaning that the gap vector is

orthogonal to both surfaces, see Fig. 3.

The solution of the LCP yields the point of contact inter-

action between the surfaces. For the definition of interface

forces at the contact point it is useful to define the contact

normal n as a quantity which depends on the gap vector g

n = g

‖g‖ . (31)

So far the strategy is restricted to smooth surfaces because

(30) uses information from the tangent directions of the sur-

faces. In case of singularities (such as the edges and vertices

of polyhedra) one cannot define tangent directions uniquely.

Instead, it is necessary to employ the sub derivative concept.

A strategy to handle singularities using the LCP degen-

eration was proposed in [32] and [33]. The basic idea is to

alleviate selected orthogonality relations from (30). In a sys-

tematic way [32] defined a degenerative operator P s

cs = PT
s c, (32)

where cs is the vector with degenerated parameters, which

dimension is s ∈ N|1 ≤ s ≤ 4. With adequate choices of

the degenerative operator, the requirement of orthogonality

in selected directions can be alleviated, thus creating an ade-

quate geometrical treatment for contacts involving surfaces

with singularities, such as the faces of a polyhedron. The

LCP can be re-written after its degeneration as, see details in

[32],

rs = PT
s r4 = os . (33)

2.4.2 LCP degenerations

Discrete element models with polyhedra have complex con-

tact interactions. These are vertex-to-face, edge-to-face, face-

to-face, edge-to-edge, vertex-to-edge or vertex-to-vertex

interactions. The special case of a face-to-face contact inter-

action deserves more discussion. As the faces are planar by

definition, the only possibility for a face-to-face interaction

needs parallel faces with anti parallel external normal direc-

tions nA and nB , see Fig. 4a. This would yield a continuous

contact in the intersecting areas, see Fig. 4b. The new idea

is, to approximate this continuous contact by a set of point-

wise contact interactions involving the singularities of the

faces, as shown in Fig. 4c for the case of edge-to-edge and

vertex-to-face interactions. In the following we will use the

representation depicted in Fig. 4c. A similar strategy is also

applied for the edge-to-face interaction, not illustrated here,

but with an equivalent pointwise contact force representa-

tion, involving vertex-to-face or edge-to-edge interactions

(see example 1 in Sect. 3.1).

This special treatment reflects the fact that a perfect

parallel approaching of faces is not only improbable, but

any disturbance on parallelism actually would lead to a

description of pointwise contact(s) involving neighboring

singularities (edges or vertices), as shown in Fig. 4c. There-

fore, in the DEM context this seems to be the best choice.

Next the different kinds of degeneration are discussed. The

analytical solution of each LCP degeneration can be found

in the “Appendix”.
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nA

nB

B

A

(a) External normal directions nA

and nB

B

A

(b) Distributed contact load

B

A

(c) Pointwise contact interactions

Fig. 4 Pair of parallel triangular faces in contact

Vertex-to-face

In this case, the material point assumed as contact-candidate

(a vertex) is known in one surface. As an example: if the

vertex is xr
1 in ΓA in the reference configuration, the param-

eters ζA = −1 and θA = −1 are already known and fixed.

Contrary, in surface ΓB , no a priori values of parameters

are known. This solution can be systematically treated by

the master-master formulation with the special degenerative

operator

PT
s =

[

0 0 1 0

0 0 0 1

]

. (34)

The geometric interpretation of this degenerated LCP is the

solution of the orthogonal projection of a vertex onto a face.

In this case, the contact normal direction is parallel to the

external normal direction of the face.

Edge-to-edge

In this case no material points are assumed as contact can-

didate a priori. However, the edges are associated with

particular values of the parameters. For example, in a surface

ΓA the edge connecting vertices xr
1 and xr

2 can be considered

in reference configuration. With that θA = −1 is known a

priori. In surface ΓB , considering also the edge connecting

the corresponding vertices xr
1 and xr

2 leads to the already

known value of θB = −1. Based on that knowledge the LCP

can be solved by employing the degenerative operator

PT
s =

[

1 0 0 0

0 0 1 0

]

. (35)

The geometric interpretation refers to the solution of the

minimum distance between two lines in space. The contact

normal direction is not related to any face external normal in

this case. Instead, it is determined by the LCP solution, disre-

garding some orthogonality relations from the original LCP

in (30) by using the proper degenerative operator defined in

(35).

Vertex-to-edge

In this case one vertex is a material point candidate for con-

tact in a surface, while in the edge it is already chosen. As

an example, if the vertex under analysis is in ΓA and its

coordinate is given by xr
1 in the reference configuration, the

parameters ζA = −1 and θA = −1 are known and fixed.

If the edge of interest is the one connecting xr
1 and xr

2 in

the reference configuration on surface ΓB this leads to the

known value of θB = −1. Therefore, the LCP is a single-

variable problem, in which the only parameter still not chosen

is ζB . The treatment by master-master contact formulation is

systematized in this case using the following degenerative

operator:

PT
s =

[

0 0 1 0
]

. (36)

The geometric interpretation of this case is the orthogonal

projection of a point (the vertex) onto a line in space (con-

taining the edge). As in previous case, the contact normal

direction is not related to the external normals of the faces.

It is determined by the LCP solution using the proper degen-

erative operator defined in (36).

Vertex-to-vertex

In this case both vertices are already taken as the material

points candidate to contact. Hence the vertex xr
1 in ΓA relates

to the parameters ζA = −1 and θA = −1 which are known.

Analogously, for the vertex in ΓB denoted by xr
1 in the ref-

erence configuration, the parameters ζB = −1 and θB = −1

are known. Hence no LCP has to be solved for this point-to-

point contact (similar to node-node FEM descriptions). The

contact normal direction follows directly from the direction

of the vector connecting both vertices.

Remark The discussed examples of degenerations are given

for particular cases of vertices (e.g.: xr
1) and edges of surfaces

(e.g.: connecting the points xr
1 and xr

2). However, all vertices

and edges may be described by such particular choices, just
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changing the numbering sequence for the selected vertices

within a given parameterization.

2.4.3 Surface splitting in sub-regions

To make practical use of the results in the Sect. 2.4.2, a strat-

egy can be established in which the external surface of each

body is split into sub-regions. Each of these sub-regions will

be associated with a local parameterization ΓA in body A and

ΓB in body B. After this split, pairs of ΓA and ΓB are investi-

gated, in order to address possible contacts. The sub-regions

are denoted by Ai and are part of surface of the body A, with

1 ≤ i ≤ NA, where NA is the number of sub-regions in body

A. Analogously we define the sub-regions B j for the body B,

with 1 ≤ j ≤ NB , where NB is the number of sub-regions

in body B.

The idea is illustrated in Fig. 5, where two polygons are

divided in sub-regions. The left one has sub-regions A1 to A5

associated with edges and A6 to A10 associated with vertices.

The right one has sub-regions B1 to B4 associated with edges

and B5 to B8 associated with vertices.

In the context of DEM with polyhedric bodies, the sub-

regions are: (i) faces; (ii) edges and (iii) vertices. These have

to be defined for each polyhedron. The contact check involves

investigation between all sub-regions of a polyhedron against

all sub-regions of another one. This strategy is quite gen-

eral and works for arbitrarily shaped polyhedra, possibly

non-convex. However, the associated computational cost is

high because many sub-problems have to be solved. Figure 6

depicts a non-convex polyhedron, with sub-regions of faces,

edges and vertices. Even with its non-convexity, it can be

addressed by the proposed strategy.

A sub-region does not only consist of polyhedron faces,

but also of edges and vertices. When evaluating the LCP for

a pair of sub-regions the associated degeneration scheme has

to be selected. Note however, not all pairs of sub-regions

have a LCP to be solved. As already pointed out, pairs of

face-to-face and edge-to-face are not considered.

A
A4

A6

A5

A3

A2

A1
A7

A8A9

A10
B

B4

B5

B3

B2

B1
B6

B7
B8

Fig. 5 Example of sub-regions on two polygons

Fig. 6 Example of a non-convex polyhedron with sub-regions for con-

tact treatment: faces, edges and vertices

Fig. 7 Approaching of a vertex

of a body B towards a body A

inducing a vertex-edge

interaction A1A3

B1

A2

x

z

y

2.4.4 Valid solutions of LCP

After obtaining the solution of a given LCP (see “Appendix”),

one has to check if the set of parameters c̄ lies within the valid

range of the parameterization of both surfaces ΓA and ΓB (see

the valid parametric space in Fig. 1). For parameters outside

the valid range a contact interaction is not further considered

for this sub-region.

As an example, consider the approach of a vertex in ΓB ,

named a sub-region B1 towards the body A. Body A has

sub-regions defined on its external surface. Some of them

are depicted in Fig. 7. In this case, depending on the position

of B1, its orthogonal projection onto the faces A1 and A2

may result in a solution which is outside the valid range.

However, the projection of B1 onto the edge A3 leads to a

valid contact-candidate, with its orthogonal projection falling

in a valid range. This interaction describes a vertex-to-edge

case.

Another example relates to the approach of two pyramids

A and B shown in Fig. 8. In this particular case, the approach

induces a contact interaction of their apexes. Depending on

the trajectories of sub-regions A1 and B1, the vertex-to-vertex

case may lead to the only valid solution.

Testing the four possibilities of degenerations as presented

in Sect. 2.4.2 has two drawbacks. The first one is related to the

computational cost, because one needs to define sub-regions

for all faces, edges and vertices of all polyhedra considered

in the DEM model. This leads to a high number of geomet-

ric entities to be tested. The second drawback relates to the
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B1A1

x

z

y

Fig. 8 Approaching of a pyramid body A towards a pyramid body B

by their apexes inducing a vertex-vertex interaction

B1

A1

A2

A3x

z

y

Fig. 9 Interaction between a vertex B1 of a body B and a concave

region of a body A

possibility of simultaneous validity of more than one LCP

considered for a single pointwise solution. A simple example

for such scenario is shown in Fig. 9 which exhibits a vertex

B1, as a sub-region of a body B approaching a concave region

of a body A. The sub-regions of body A in this case are the

faces A1 and A2 and the edge A3. The LCP, interpreted as

the orthogonal projection of the vertex B1 onto the other geo-

metric entity on A in this case yields valid parameters for all

three tests. Therefore, in case of contact occurrence, more

than one pointwise action-reaction check is needed for B1.

This avoids penetration properly.

Remark A contact hierarchy can be introduced to circum-

vent such difficulties. Strategy rules can be created to favor

some contact interactions against others, depending on the

expected geometric case. A simple (and preliminary) discus-

sion of such idea is employed in the sixth numerical example,

but the topic is worth of further discussions.

Even with the mentioned drawbacks we see our strategy as

promising because it is able to detect any kind of contact inter-

action between convex and non-convex polyhedra, including

a natural description of multiple pointwise contacts in one

polyhedron, which is essential for DEM to handle multiple

interactions due to local concavities. In order to make this

approach practical and feasible, a robust strategy for detect-

ing possible contact pairs of sub-regions on bodies A and B

are necessary. These ideas are expanded in Sect. 2.5.

2.4.5 Contact detection

Once the LCP is solved, one needs to check for contact and to

enforce the associated contact constraint. Many approaches

are available for the latter, such as the penalty method,

Lagrange multiplier approaches, the augmented Lagrangian

method, among others, see, e.g.:[36]. Usually one needs to

detect the penetration between bodies in order to activate a

contact constraint in the model. A scalar gap quantity with a

sign is used for that, as in classical master-slave schemes.

In the master-master contact formulation, the kinematic

quantity available to detect contact is the gap g. Its norm can

be evaluated and defines a scalar gn = ‖g‖. This quantity is

always positive and cannot solely be used to detect penetra-

tion between bodies, but defines only their proximity level.

However a simple dot product test of the contact normal at

configurations i and i +1 can be used, as shown in [32]. This

leads to the evaluation of ni ·ni+1. If the result is negative, an

inversion in the direction of the gap has taken place between

configurations i and i + 1 which indicates a penetration.

This strategy has been used in [32] for contact detection

when employing the master-master formulation. However, in

the present context it is not sufficient. A contact pair could

slide from one sub-region pair to a neighbor sub-region. In

this case, the normals at time ti and ti+1 belong to different

sub-regions and thus the above evaluation does not make any

sense. Similar problems occur for thin bodies or vertices at

cone tips and other cases. An enormous complexity is related

to a robust contact search in the context of general non-convex

polyhedra. Especially in DEM where thousands of different

cases have to be resolved at every time step. To overcome

these difficulties the barrier method is applied, which never

permits penetration, but fulfils the contact constraints in a

weak sense.

We present next the contact contributions to be included

in weak-form. The interface laws described in Sect. 2.4.7,

provide details on the strategy for an implementation of the

barrier method.

2.4.6 Contact contributions to the weak-form

After establishing sub-regions of each body as introduced in

Sect. 2.4.3 one can write

δW AB
c =

NA
∑

i=1

NB
∑

j=1

δW AB
i j , (37)

where δW AB
i j are the contributions from each pair of sub-

regions i j of a pair of bodies AB to the weak form.

Next, the terms δW AB
i j are addressed based on the master-

master contact formulation with its degenerations, including

normal and frictional contributions. The presentation is short,

more details can be found in [32] and [33].

The contact contribution δW AB
i j can be split into

δW AB
i j =

(

δW AB
i j

)n

+
(

δW AB
i j

)d

+
(

δW AB
i j

) f

, (38)
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where
(

δW AB
i j

)n

is the contribution of the elastic terms in

normal direction,
(

δW AB
i j

)d

is the contribution due to damp-

ing in normal direction and, finally,
(

δW AB
i j

) f

represents the

friction part. All terms are nonzero only if the contact pair

AB with sub-regions i and j is active. Activation of a con-

tact pair follows the discussion in Sect. 2.4.5, which will be

revisited in Sect. 2.4.7.

Next, the contributions
(

δW AB
i j

)n

,
(

δW AB
i j

)d

and
(

δW AB
i j

) f

are discussed. They refer to the contact between bodies A and

B with sub-regions i and j . For the ease of notation, these

indices are omitted in the following and only used when nec-

essary.

The elastic term related to the normal direction yields

(

δW AB
i j

)n

= f n · δgi+1 = − fnδgn (39)

where the elastic contact force is given by f n = − fnni+1

and the gap in normal direction by δgn = δ‖gi+1‖ = δgi+1 ·
ni+1. The negative sign reflects the way of contact treatment

with the barrier method. Note, the smaller gn , the larger is

fn . Details are discussed in Sect. 2.4.7.

Damping in normal direction is given by

(

δW AB
i j

)d

= f d · δgi+1 = fd ni+1 · δgi+1 = fdδgn, (40)

where the damping force is given by f d at the contact point.

At this point it is convenient to introduce the relative veloc-

ity in normal direction for the contact pair at configuration

i + 1, which is derived in [33] and leads to

ġn =
(

gi+1
,d

ḋ
)

· ni+1 (41)

This kinematical quantity has to be employed for the evalua-

tion of f d in Sect. 2.4.7. It is also possible to define a vector

quantity for the relative velocity

ġn = ġnni+1 =
[

ni+1 ⊗ ni+1
]

gi+1
,d

ḋ. (42)

Friction contributions are related to tangential kinematics

of the master-master contact which was developed in [33].

The quantity gi+1
t , resembles the tangential gap at config-

uration i + 1. This term quantifies the sliding amount in

tangential direction. It is updated when contact takes place

between configurations i and i + 1. The increment of the

tangential gap is given by

gΔ
t =

[

I − ni+1 ⊗ ni+1
]

ĝ
(

ci , di+1
)

. (43)

With this increment the accumulated tangential gap at con-

figuration i + 1 can be computed

gi+1
t = gΔ

t + QΔ
c gi

t , (44)

where QΔ
c is a rotation tensor to account for rigid body

rotations experienced by the contact normal/tangent from

configuration i to i + 1.

Note that in present contact formulation the interpretation

of the tangential direction of a contact pair needs no definition

of a tangential direction of contacting surfaces. Instead, it is

defined by a projection to the tangential direction using the

normal ni+1 in (43). Therefore, it can handle singularities

such as edge-to-edge contact or other particular cases in a

natural and straightforward way, which is fundamental for

the robust algorithmic treatment within DEM.

With that, the friction contribution to the weak form yields

(

δW AB
i j

) f

= f t · δgi+1
t , (45)

where f t is the friction force. The variation of the tangential

gap at configuration i + 1 can be evaluated in a similar way

as the time-derivative of such quantity at configuration i +1.

Following [33] we obtain

ġt = −gi+1
,c Dḋ

δgi+1
t = −gi+1

,c Dδd (46)

The operator D can be found in [32] and denotes the relation

between δc and δd, which depends on the solved LCP. There-

fore, contact degeneration plays a role within evaluation of

D, see [32],

D = −P s

(

PT
s r4,c P s

)−1
PT

s r4,d . (47)

The degenerative operator P s has to be selected according

to the degeneration, see Sect. 2.4.2, and the derivatives r4,c

and r4,d are obtained differentiating Eq. (32).

Remark The consistent linearization of the weak form

involves relevant geometric terms. Indeed, one can evalu-

ate δgi+1 consistently employing the operator D as follows:

δgi+1 = gi+1
,c Dδd + gi+1

,d
δd. (48)

With that, the LCP constraint information is embedded in the

solution of the global model. This is essential for achieving

quadratic convergence in the Newton-Raphson Method, as

discussed in Sect. 2.6.
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2.4.7 Interface law in normal direction

Contact constraints can be exactly enforced by techniques

such as the Lagrange multiplier method, with the drawback

of extra unknowns in the model, the Lagrangian parameters.

As an alternative, a popular choice is the penalty method,

which permits penetration in a controlled manner, ruled by a

penalty stiffness parameter. In this case, no extra unknowns

are introduced. Instead, numerical problems like bad condi-

tioning of equations systems can occur, which are related to

the contact stiffness. Both techniques need a computation of

the penetration within each contact region.

As discussed in Sect. 2.4.5, the complexity to detect

penetration is very high for polyhedral particles. The main

difficulty stems from the need to check for pointwise contact

occurrence between sub-regions. This local search needs to

be performed for many pairs of sub-regions, leading gen-

erally to multiple interactions, possibly involving concave

contact regions when evaluating the gap g. A different solu-

tion to treat contact problems relies on a technique, the barrier

method, that does not permit penetration. Instead, it detects

contact based on proximity between bodies. This method is

frequently employed by Computer Graphics community, see,

e.g.: [52] and [53].

The basic idea of the barrier method is to enforce the

contact constraint by introducing a gap-dependent barrier

function in the model potential. This function assumes very

large values when two bodies (proximity) approach each

other closely. The first variation of the barrier potential leads

to a term in the weak-form, seen in (39). It yields an expres-

sion for elastic force f n = − fnni+1 in normal direction.

The magnitude of fn follows from an evaluation of the bar-

rier function, which is always active, or active only when two

bodies come close. Similar treatments exist from the physical

point of view when one is interested in very small geo-

metric scales. In this context, in molecular dynamics forces

stem from potentials, such as the Lennard-Johnes, potential,

see, e.g.: [54]. The main advantage is that no penetration

occurrence is needed to activate a contact constraint but only

proximity of two or more bodies.

Based on such ideas we propose a compliance law for the

contact behavior in normal direction. The law can translate a

local physical behavior of contact (such as e.g. Hertz contact

[55]) or can be interpreted as a numerical way to enforce con-

tact constraints approximately—such as in a penalty-based

approach.

The interface law will provide nonzero contact forces only

within the proximity level gn < ḡn . With that, one avoids

the possibility of spurious contact forces exerted between

bodies located arbitrarily distant. The value ḡn is an activa-

tion threshold. Moreover, a very large force stems from the

barrier method when gn → 0. But we need to keep a physi-

cal/numerical control when the interface law is activated for

not too close proximity levels. This can be achieved by a

hybrid interface law composed of two parts: (i) a physically

or numerically ruled part for not too close proximity values

(from the activation threshold value until a certain fraction

of it) and (ii) a barrier-based part when the bodies come very

close, to avoid penetration

fn =

⎧

⎨

⎩

0 if gn ≥ ḡn

ǫ1 (ḡn − gn)
n1 if ¯̄gn ≤ gn < ḡn

ǫ2g
n2
n + c2 if gn < ¯̄gn

(49)

where ǫ1 and n1 are parameters to establish the part (i) of

the compliance law, ¯̄gn is a proximity threshold to change

from part (i) to part (ii) of the compliance law. We define
¯̄gn = f ḡn , where f ∈ R|0 < f < 1. The parameter n2

is associated with the intensity of the barrier function. The

remaining parameters ǫ2 and c2 are chosen to ensure the

matching conditions

fn

( ¯̄gn−
)

= fn

( ¯̄gn+
)

d fn

dgn

∣

∣

∣

∣ ¯̄gn−

= d fn

dgn

∣

∣

∣

∣ ¯̄gn+

, (50)

resulting in

ǫ2 = −
ǫ1n1

(

ḡn − ¯̄gn

)n1−1

n2
¯̄gn

n2−1

c2 = ǫ1

(

ḡn − ¯̄gn

)n1 − ǫ2
¯̄gn

n2
. (51)

Within the law in (50) we achieve a smooth transition

between parts (i) and (ii) of the interface law, which yields

good numerical behavior. One can choose parameters for the

part (i) to recover a Hertzian compliance law, which is the

basis of many DEM implementations for spheres see, e.g.

[44,56,57], and for super ellipsoids see, e.g. [20,21]. One

can also recover in part (i) a simple penalty-based linear law.

Examples in Fig. 10 illustrate such interface laws.

When employing the proposed interface law, a threshold

value ḡn for activation of the contact parameter has to be

selected. This can be visualized as a thickness of a con-

tact skin to be superimposed on all surfaces of the bodies.

For smaller value of ḡn less alteration is introduced in the

geometry for contact detection/evaluation. The value of ḡn

is also linked to the desired contact stiffness (ruled by ǫ1).

The choice of smaller ḡn is usually combined with larger ǫ1.

Otherwise, only the barrier part of the interface law will be

experienced by the bodies, which does not take advantage

of the hybrid aspect of the interface law. Thus, the choice

of parameters has to be a compromise between the desired

(usually small) ḡn and the contact stiffness. This is similar

to the relation between contact stiffness and allowed pene-
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(a) Interface law considering parameters ǫ1 =
15000, n1 = 1.5, n2 = −1, ḡn = 0.1, f = 0.2
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(b) Interface law considering parameters ǫ1 =
100000, n1 = 1, n2 = −2, ḡn = 0.01, f = 0.4

Fig. 10 Examples of hybrid interface laws showing in blue the part (i)

and in red the part (ii)
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Fig. 11 Critical time-step Δtc considering interface law of Fig. 10b,

considering forces in N, displacements in m and an equivalent mass of

156.594 kg

trations, when referring to contact formulations that permit

penetrations (for example the penalty method).

Figure 10(b) shows an example of interface law that is

adopted in example 6, Sect. 3.6. In order to estimate the max-

imum time-step to that is allowed in an explicit integration

scheme, one evaluates the Courant criterion. By representing

the contact pair of two particles as an equivalent mass-spring

oscillator, the tangent stiffness can be obtained as kc = − d fn

dgn

and an equivalent mass is estimated by mc. A rough esti-

mate for the critical time-step is then given by Δtc = 2
√

mc

kc
.

Figure 11 shows that this critical time-step achieves small

time increments when a close gap is experienced during con-

tact. In present work we employ an implicit time-integration

scheme, thus no critical time-step has to be respected and

the computation can be run with much larger time steps, as

demonstrated in the numerical examples.

When addressing contact with the barrier method, one

cannot permit penetrations, which would not make physical

sense. However, when solving the nonlinear system (1) by

the Newton-Raphson Method, it is possible to find (wrong)

solutions that include penetration between bodies. Then, one

needs an efficient way to verify occurrence of penetration.

This can be done at the end of each converged time-step, by

executing the simple test ni · ni+1. The result has always to

be positive, for all contact pairs that are present in the model.

In case of a negative value, one has to discard such solution

and to use a smaller time-step to find a valid one.

Damping model for normal direction

Damping in normal direction is classically related to the

coefficient of restitution, which is a measure of the energy

dissipated when contact-impact has taken place. Here we fol-

low the alternative way, which describes damping as viscous

dissipation. This is common in many DEM applications, see,

e.g.: [56–58] and [21]. Here we use the model from [21], but

do not assume Hertzian contact. We create a damping ratio

input for the model, leading to a instantaneous viscous damp-

ing coefficient (dashpot-model). Damping is evaluated in a

consistent way with our proposition of interface law the elas-

tic contact force in (49).

The viscous damping force is evaluated using

fd = 2ζ

√

− d fn

dgn

m Am B

m A + m B

ġn (52)

where ζ is the desired damping ratio and
d fn

dgn
depends on

the interface law, see (49). The desired level of damping

is a choice to match a known experimental data, as in the

case of the coefficient of restitution, when modeling contact-

impact by distinct approaches. The negative sign inside the

square root is inserted because the required derivative of the

normal elastic force with respect to the proximity gn is always

negative. The parameters m A and m B are the masses of the

contacting bodies.

The damping force f d in (40) is given by

f d =
{

fd ni+1 if
(

f n + fd ni+1
)

· ni+1 ≤ 0

− f n if
(

f n + fd ni+1
)

· ni+1 > 0
, (53)

which ensures that the total normal contact force ( f n + f d )

is always compressive, as in [21]. The damping force in (52)

represents a simple way to introduce a desired damping ratio

ζ for an equivalent linear spring-dashpot oscillator at each

instant.
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Note that a given input of ζ does not necessarily repre-

sent the classical behavior of a mass-spring-dashpot model

(for example ζ = 1 leading to a critical damping ratio).

Indeed, the viscous damping can change when expressed by

(53). Moreover, in the present context we may have multi-

ple simultaneous contact forces between bodies. In this case,

the employed equivalent mass evaluation could be improved,

thus imagining that each contact pair would have its own

damping related to the masses of the pair. We decided not to

propose such a refinement in our damping model, to keep it

simpler. However, this topic is worth an investigation, but out

of the scope of present work. Thus, ζ may be seen as an equiv-

alent input parameter to reach a desired level of damping,

which is defined similarly to a classical mass-spring-dashpot

model, but having distinct particularities.

2.4.8 Interface law in tangential direction

The classical Coulomb law is introduced to model friction

in each contact point. The friction force follows from a rhe-

ological model for the tangential direction based on elastic

and damping contributions. This comprises a model, already

applied for sphere-to-sphere contact in [57]. We employ

enhancements as proposed in [33].

For a given contact pair the tangential gap and the relative

velocity can be evaluated and used to compute a trial friction

force composed of an elastic part f e
t and a viscous part f d

t

f e
t = ǫt gi+1

t

f d
t = ct ġt , (54)

where ǫt is a tangential penalty stiffness and ct is a tangential

viscous damping coefficient. The trial friction force is given

by

f tr
t = f e

t + f d
t . (55)

Both, f e
t and f d

t lie in the tangent plane of contact (I −
n ⊗ n ), defined by normal direction n. However, forces f e

t

and f d
t are not necessarily parallel.

The magnitude of the friction force is limited by Coulomb’s

law. When the current contact status is sticking, no sliding

occurs in next configuration if ‖ f tr
t ‖ ≤ μs fn , where μs

is the static friction coefficient. In this case, contact keeps

in sticking status. Otherwise, a sticking to sliding transition

takes place.

When the current contact status is sliding, sticking occurs

in next configuration if ‖ f tr
t ‖ ≤ μd fn , where μd is the

dynamic friction coefficient. Then, a transition sliding to

sticking takes place. Otherwise, sliding keeps active.

Next to the Coulomb inequality test the tangential force is

updated. For a sticking contact status the update is f t = f tr
t .

When sliding occurs, the friction force is given by f t =
μd fn t i+1, where

t i+1 = f tr
t

‖ f tr
t ‖

(56)

is the sliding direction.

Finally, one has to update the tangential gap gi+1
t for the

next step when sliding occurs. This has to be done in such a

way that this quantity holds the “recoverable part” of sliding

tendency. Here we adopt the rheological model proposed in

[33], which considers only the elastic part of friction for a

possible update of gi+1
t . One has to check if ‖ f e

t ‖ > μ fn ,

where μ = μs if the contact status is sticking and μ = μd ,

otherwise. If this inequality holds, sliding in the elastic part

of friction is given by:

gslide
t = gi+1

t − μd fn

ǫt

f e
t

‖ f e
t ‖

. (57)

Then, the following updating formula follows:

(

gi+1
t

)

updated
= gi+1

t − gslide
t = μd fn

ǫt

f e
t

‖ f e
t ‖

(58)

If ‖ f e
t ‖ ≤ μ fn no sliding takes place in the elastic part of

friction model.

Note that the status of sliding or sticking for the contact is

ruled solely by the inequality test employing f tr
t . Thus the

composed friction model with elastic and damping parts has

to be used. The proposed update for sliding in (57) consider-

ing only f e
t exhibits some numerical advantages discussed

in [33].

2.5 Global contact-search

The computational bottleneck of numerical solutions using

DEM is related to contact search and contact evaluation.

The heavy computational cost stems from (2), which shows

the double summation associated with all possible contact

contributions. In our formulation the scenario is even more

complex, because for each contribution δW AB
c one needs to

seek possible interactions between sub-regions of bodies, as

expressed in (37). Therefore, the number of contact candi-

dates is very high in practical problems involving general

polyhedra.

To make the model computational feasible, the global

contact-search has to be enhanced, in order to avoid eval-

uations of contact candidates that are far away from each

other. Different global search strategies were developed in

the last years, involving, e.g. bounding volume (BV) overlap-

ping search and combined Verlet and Linked-Cell schemes.
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2.5.1 Bounding volumes overlapping

A first level of BV is defined for bodies, considering only

spheres as shown in Fig. 12a. This provides a quick search,

for overlapping/proximity between such spheres and permits

to eliminate non-strong candidates. Our strategy here is to

always construct inflated BV’s, ruled by an inflation factor.

Then, in case of overlapping, proximity is detected. Other-

wise, no contact is considered between the tested bodies.

Once overlapping is detected in the first-level BV search,

a second level is entered, in which a BV is defined for each

sub-region of the that overlapped in the first BV search. In

this context, we consider oriented and inflated BVs for each

geometric entity: (i) faces have a triangular prismatic BV, (ii)

edges have a cylindrical BV and vertices have spherical BV.

An inflation factor is introduced for each defined BV. Again

a search for overlap is started. In the positive case, a pair of

sub-regions becomes a strong (probable) contact-candidate.

Otherwise, no contact is considered. Examples of BVs for

geometric entities are shown in Fig. 12b–d.

Only the strong contact-candidates are checked for contact

using the methods in Sect. 2.4 which results in contributions

to the weak form (38).

(a) Inflated global spher-
ical BV enclosing a tetra-
hedron

(b) Example of a face
sub-region inflated BV

(c) Example of an
edge sub-region BV,
non-inflated in the edge
direction but only with
an established radius

(d) Example of vertices
sub-region BV with an
established radius

Fig. 12 Examples of BV employed for global contact-search

2.5.2 Combined Verlet and linked-cell schemes

Both levels of BV overlapping search are computationally

costly . Particularly, the second-level (sub-regions) includes

elaborated BV. Due to numerous expected tests in large scale

practical problems, one has to improve the contact-search

even more.

Instead of checking all combinations of BV overlapping

at each time increment, a list of probable contact-candidates

can be established by a simple neighboring search. Only the

candidates from such lists are worth of a closer investigation

employing the inflated BV overlapping search. These lists are

based on a Verlet scheme [54]. In the first level, they are gen-

erated considering the distance between pairs of body poles,

as reference points, together with the radius of the inflated

BV. In the second level, the centroid of each sub-region BV

is taken as a reference, together with a pre-computed cut-off

size. Proximity between sub-region BV is checked, therefore

establishing a Verlet list also for the second search level. This

process saves substantial computational time when compared

to an all-to-all search.

A second scheme to save computational time while pur-

suing a global contact search is related to the establishment

of a Linked-Cell scheme. The basic idea stems from molec-

ular dynamics applications (see, e.g.: [4]). Spatial cells are

defined as regions in space. Each body is associated with a

cell, according to its current location (in our case, a reference

point of the body is considered). Then, an enhanced search

is performed considering only neighboring cells as candi-

dates for a body located in a given cell. This leads to another

list for enhancing spatial search, not based in each particle

neighborhood, but as a spatial search to organize particles in

groups, based on their current locations and associating them

to cells.

Both Verlet and Linked-Cell schemes were implemented

independently, and also in combined ways. The more effi-

cient scheme is problem dependent. The reader may refer

to [59] and [60] for some comparisons, as well as for some

details on how to enhance the numerical implementation.

2.6 Global solution

A strategy for the overall model integration is derived on the

basis of (1). We consider a system with N bodies. Each of the

bodies has reference point (pole) P , with which six DOF are

associated (incremental displacements uΔ
P and incremental

rotations αΔ
P .

To begin the time-integration, we have to assume an ini-

tial status for all possible contact interactions. No overlaps

between bodies are considered in the initial (reference) con-

figuration. This is essential for the usage of the contact normal

interface law and the barrier method which cannot handle

overlaps but proximity between contact surfaces.

123



368 Computational Particle Mechanics (2022) 9:353–380

We start the simulation with an initial global contact

search as discussed in Sect. 2.5. Considering only the strong

contact-candidates, the LCP and contact contributions are

evaluated. When gn < ḡn , according to the normal interface

law expressed in (49), an active contact pair is established. It

has nonzero contributions to the weak form. All the nonzero

contributions of (38) are inserted into (37) and thus all con-

tact contributions are included in (1).

2.6.1 Set of equations for the global model

To perform the time-integration, we have to write (1) for a

given time instant. Following the scheme of section 2.2 the

still unknown (next) configuration i + 1 has to be consid-

ered. Thus, incremental DOFs appear together with current

(known) values at configuration i . A 6N -dimension global

vector of DOFs a is introduced

aT =
[

uΔ
1

T
uΔ

2

T
... uΔ

N

T
αΔ

1

T
αΔ

2

T
... αΔ

N

T
]

, (59)

where uΔ
B and αΔ

B (B = 1, ..., N ) are the incremental DOFs

describing the motion of each rigid body. Analogously, it is

possible to write a similar vector for the virtual quantities

δaT =
[

δuΔ
1

T
δuΔ

2

T
... δuΔ

N

T
δαΔ

1

T
δαΔ

2

T
... δαΔ

N

T
]

,

(60)

where δuΔ
B and δαΔ

B are virtual quantities associated with

each DOF.

Now the weak form (1) can be written as

δaT r = 0, (61)

where the 6N -dimension vector of residuals r was introduced

rT =
[

r1
f

T
r2

f

T
... r N

f

T
r1
μ

T
r2
μ

T
... r N

μ

T
]

, (62)

where each term r B
f and r B

μ (B = 1, ..., N ) represents a

contribution given by

r B
f = f B

t − f B
e + f B

c

r B
μ = µB

t − µB
e + µB

c . (63)

The inertial contributions f B
t and µB

t stem from (18) and the

external loads contributions f B
e and µB

e follow from (24).

The terms f B
c and µB

c represent contact contributions, stem-

ming from each contact pair between sub-regions related to

(38).

The weak form (61) is valid for arbitrary δa. This leads

to a nonlinear system of 6N equations, with 6N unknowns.

The solution is obtained by applying the Newton-Raphson

Method. For that, one needs to obtain the consistent lineariza-

tion of the residual (62), with respect to the unknowns. The

solution of the nonlinear system of equations completes a

single time-step evaluation within the Newmark method in

Sect. 2.2.

2.6.2 Consistent Linearization

This process usually leads to cumbersome algebraic work.

Alternatively (as we did here), one can employ automatic dif-

ferentiation techniques, leading to automatic code generation

for such complex expressions. Here the tool AceGen is used,

see [61]. For the automatic differentiation, one needs to use a

symbolic computational framework to define all the expres-

sions necessary to evaluate the residual (62). All expressions

must be defined as a function of the model unknowns (in our

case, the displacements and rotations). With that, the AceGen

tool is able to automatically evaluate the partial derivatives

of all quantities with respect to the model unknowns (DOF),

and perform their consistent linearization. The total con-

sistent linearization is composed of contributions stemming

from each particle, which are independent of each other, and

of contact terms, which couple pairs of particles. Our strat-

egy was to separate such effects both for residual evaluation

and also for its consistent linearization. For each particle,

one has to write the contributions f B
t , f B

e , µB
t , and µB

e .

In such quantities, the time-derivative quantities have to be

written following the Newmark adopted scheme, yielding

only expressions dependent on the model DOF. Program-

ming these expressions in the AceGen tool, one can evaluate

the necessary linearizations. The contribution of each parti-

cle is included on a global residual and global tangent by a

procedure similar to done in the FEM, when including local

influences of an element into the global system of equations.

The consistent linearizations of contact terms follow a

similar procedure. One has to write f B
c and µB

c as a func-

tion of DOF and use the same tool to perform the consistent

linearization. After, the contact contributions are included

on a global residual and global tangent. As each contact

contribution involves DOF of two particles, such contribu-

tions are the responsible for the overall system coupling

between particles. There are efficient ways of programming

the AceGen tool to provide directly the residual and its con-

sistent linearization, using potentials (when available) or

pseudo-potentials, instead of defining directly the residual

and claiming its linearization. The reader can found more

details of such techniques in [61].

Remark The obtained system of nonlinear equations couples

DOFs of different bodies due to contact contributions. As

contact occurrences obey a physical neighborhood, the con-

sistent linearization of r , represented by a tangent stiffness

matrix, has a sparse structure. This permits saving memory
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and solution time while solving each Newton-Raphson itera-

tion, within a time-step. Hence solution techniques employed

when solving nonlinear FEM models can be applied. Hence

it was possible to implement the DEM in the Giraffe platform

that was developed for FEM, see [62], also aiming for future

coupling of FEM and DEM models.

2.6.3 Night owl contacts

In the contact detection we speculate that non-overlapping

BV at configuration i would not be responsible for active

contact pairs at configuration i + 1. This has to be checked,

however, by a second global search at the end of the time-

step, after a converged solution has been achieved. All new

overlapping BV found are tested to investigate if they repre-

sent active contacts, when gn < ḡn , according to the normal

interface law expressed in (49). If no active new contact is

found, the speculation has been correct and one can advance

to the next time-step, already using the just-obtained list of

strong contact-candidates. Otherwise, one has to recompute

the current time-step solution, considering additionally the

new contacts in the model (we call these as “night owl con-

tacts”).

Obviously, night owl contacts are undesirable, since they

require time consuming re-evaluation of the time-step. How-

ever, the speculation may be well assertive when considering

large enough inflation factors for BV, which are related to the

expected body velocity and assumed time-steps. Too large

inflation factors are not efficient, since many strong contact-

candidates are elected, leading to high computational cost

for their evaluations with numerous zero contributions to the

model. With that, one may expect an optimal computational-

efficiency by choosing the smallest inflation factor, which

leads to rare occurrence of night owl contacts. This may be

estimated prior to simulation considering expected velocities

to be experienced by the bodies which lead to distances that

a body can travel within the next time step and employed to

calculate the inflation of each BV. Similar ideas of specula-

tion while looking for contact between bodies are found in

[63] in the context of graphics computing.

3 Numerical examples

The discrete element model was implemented in the Giraffe

platform, an in-house C++ code, initially conceived for FEM

models, but extended to encompass DEM implementations

[62]. A new modulus for automatic contact search with

the above discussed strategies was implemented. Specific

codes for evaluating contributions to the global problem as in

Sect. 2.6 were implemented in MathematicaTM. AceGen [61]

provided automatic differentiation, optimization and auto-

matic code generation in C++ and then implemented in the

Giraffe platform.

The considered examples rely on definitions of bodies and

boundaries. The geometry description for the boundaries is

similar to the bodies. Therefore, they are composed of tri-

angular regions. The interaction body-to-boundary is treated

the same way as in the case body-to-body.

3.1 Block falling on the ground

In this example a single cube is falling on the ground. No

damping is considered in the impact occurrences, in order to

prof conservation of mechanical energy.

The cube, has external normals of faces given in the

local directions ±e1, ±e3 and ±e1 × e3. Each cube face

is composed of two triangular regions, for contact detec-

tion/treatment purposes, employing the surface parameter-

ization proposed in (28). The ground is flat. All numerical

data considered are shown in Table 1.

Distinct initial orientations are proposed for the block,

leading to the cases:

(a) The block is aligned such that its center of mass is posi-

tioned exactly above a given vertex. Successive impacts

between this vertex and the ground occur and no rotation

is induced to the block. Results are shown in Fig. 13.

(b) The block is aligned such that its center of mass is

positioned exactly above the center of a given edge.

Successive impacts involving pointwise forces on the

vertices of such edge occur, representing the line-to-

face interaction by two pointwise forces. No rotation

is induced to the block. Results are shown in Fig. 14.

(c) The block is aligned such that its center of mass is posi-

tioned exactly above the center of a cube face. Successive

impacts involving pointwise forces on the vertices of that

face occur, representing the face-to-face interaction in a

pointwise manner. No rotation is induced to the block.

Results are shown in Fig. 15.

(d) The block is aligned such that the contact force changes

its angular momentum when it collides with the ground.

Successive (bouncing) impacts occur involving distinct

vertices and the ground, inducing a composition of trans-

lational and rotational movements to the block. Results

are shown in Fig. 16.

For all cases one can observe conservation of mechanical

energy, due to the absence of dissipative effects. To achieve

that in simulations, an adequate time-step guideline (max-

imum) was chosen, enough to integrate the contact-impact

interactions with reasonable precision. The contact parame-

ter ḡn defines the so-called contact skin as an offset in the

block. In this case, the chosen value represents 1% of the

cube edge size.
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Table 1 Numerical data for example 1

Block data

Mass 2 kg

Edge length

(cube)

0.1 m

center of mass

initial height (z

direction)

0.2 m

Initial orientation

(a)

e1 =
(√

6
3

, 0,
√

3
3

)

e3 =
(

−
√

6
6

,−
√

2
2

,
√

3
3

)

Initial orientation

(b)

e1 = (1, 0, 0)

e3 =
(

0,
√

2
2

,
√

2
2

)

Initial orientation

(c)

e1 = (1, 0, 0)

e3 = (0, 0, 1)

Initial orientation

(d)

e1 =
(

−
√

2
2

, 0,
√

2
2

)

e3 =
(√

3
3

,
√

3
3

,
√

3
3

)

Environment and solution data

Ground height (z

direction)

0.0 m

Gravitational

field (-z

direction)

9.81 m/s2

Simulation

duration

1.0 s

Time-step 2.5E-5 s

Contact data

ǫ1 1E7 N/m

n1 1

n2 -2

ḡn 0.001 m

f 0.1

ζ 0.0

μs 0.0

μd 0.0

ǫt 0.0 N/m

ct 0.0 N.s/m

3.2 Pile of blocks

In this example a set of blocks is analyzed, which fall in ver-

tical direction under gravity load, forming a pile. A set of ten

blocks is considered, each one modeled as in the previous

example. The blocks are located such that they will touch on

top of each other, after forming the pile. Their initial center of

0.0 0.2 0.4 0.6 0.8 1.0
t s0.00

0.05

0.10

0.15

0.20

0.25

0.30
z m

(a) center of mass height vs. time (b) Initial orientation

0.0 0.2 0.4 0.6 0.8 1.0
t s0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Energy J

Potential

Kinetic

Mechanical

(c) Energy vs. time

Fig. 13 Results for the block of example 1(a)
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(a) center of mass height vs. time (b) Initial orientation

0.0 0.2 0.4 0.6 0.8 1.0
t s0.0

0.5

1.0
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2.0

2.5

3.0

3.5

Energy J

Potential

Kinetic

Mechanical

(c) Energy vs. time

Fig. 14 Results for the block of example 1(b)

mass positions and orientations can be found in Table 2. Sig-

nificant energy dissipation is introduced to obtain a final state

that is static. The contact properties are depicted in Table 2. A

proper time-step was considered, in order to handle correctly

the contact-impact scenarios.

Figure 17 shows the final configuration of the formed pile.

The red arrows demonstrate contact normal forces acting on

the blocks. Their length is proportional to the force mag-

nitude. Note that the face-to-face interactions are handled

by the model of equivalent pointwise forces on the edges
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(a) center of mass height vs. time (b) Initial orientation
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Fig. 15 Results for the block of example 1(c)
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Fig. 16 Results for the block of example 1(d)

as described in Sect. 2.4.2 and illustrated in Fig. 4. Fig-

ure 18 depicts the time-series of the reaction between pile

and ground in z direction, illustrating a series of impacts

that the bottom block experiences. When the system finally

comes to rest (static configuration) the magnitude of reaction

in z direction equals the total weight of the set of blocks.

Table 2 Numerical data for example 2

Blocks data

Mass 2 kg

Edge length

(cube)

0.1 m

center of mass

initial heights

(z direction)

and associated

initial

orientation (A)

or (B)

0.3; 0.7; 1.1; 1.5; 1.9

[m] (A) 0.5; 0.9;

1.3; 1.7; 2.1 [m]

(B)

Initial orientation

(A)

e1 =
(√

2
2

,
√

2
2

, 0
)

e3 = (0, 0, 1)

Initial orientation

(B)

e1 = (1, 0, 0)

e3 = (0, 0, 1)

Environment and solution data

Ground height (z

direction)

0.0 m

Gravitational

field (-z

direction)

9.81 m/s2

Simulation

duration

0.65 s

Time-step 1.0E-5 s

Contact data

ǫ1 1E7 N/m

n1 1

n2 −2

ḡn 0.001 m

f 0.1

ζ 0.7

μs 0.4

μd 0.2

ǫt 1E6 N/m

ct 1E3 N.s/m

3.3 Sliding of a block

This example proposes a scenario to test the friction model.

A block (the same cube as considered in example 1) rests

initially on a flat surface. This configuration is shown in 19a,

which exhibits the normal force components evenly dis-

tributed on the four vertices touching the surface. Table 3

summarizes the model characteristics, including the contact

data with a high friction coefficient.

An external force in direction i is applied at the block,

leading to a motion. The force magnitude is linearly ramped
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Fig. 17 Pile of blocks formed at the end of the simulation of example

2. Red arrows show contact normal forces applied on the blocks (arrow

lengths are proportional to their magnitudes)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
t s0

5000

10000

15000

20000

25000
Fz N

Fig. 18 Normal force reaction Fz between pile and ground while the

pile of blocks is being formed

up in time (from 0 to 0.8 s), leading to force values from

0 to 16 N. We consider three distinct application points for

the force which are described by an extra point (node) in the

model, defined as rigidly-connected to the block. This addi-

tional node increases the number of DOFs, but is constraint

to the body motion. The associated equations are solved by

the Lagrange multiplier method, see [39] and [43]. With this

procedure it is possible to apply forces/moments at any point

of the body and not only at the defined pole P . Based on this

formulation the following cases are simulated:

(a) Force applied at the bottom face centroid of the block:

this case does not introduce a toppling tendency to the

block. As long as the external force increases, the friction

forces react, also increasing their magnitude. Friction is

evenly distributed on the four vertices, see Fig. 19(b).

This leads to the expected overall result for the total

friction force applied on the block, as shown in Fig. 20.

When the maximum tangential force (Coulomb limit) is

reached, the friction force is constant and the block starts

moving (dynamic friction takes place).

(b) When the external force is applied at block center of

mass toppling can occur. As long as the external force

increases, the tangential forces due to stick increase in

magnitude. Differently from the previous case, now the

normal forces differ at the vertices, to fulfil static moment

equilibrium. We define a leading edge of the block which

is the base edge related to the positive direction of i and a

trailing edge which is the opposite one. The leading edge

vertices endure larger normal forces, while at the trail-

ing edge the forces are smaller, see Fig. 19(c). Hence,

the Coulomb limit for friction leads to different tangen-

tial reactions for vertices located on leading and trailing

edges. When the maximum available friction is reached

at the trailing edge, there is still stick friction at the lead-

ing edge, leading to a sudden friction force redistribution.

However, as the block is still in stick mode, the trailing

edge recovers its friction in next instants. This process

leads to small fluctuations over time in the friction force.

When both, trailing and leading edge vertices reach the

static Coulomb friction limit, see Fig. 20, motion starts

and the fluctuations no longer exist because the friction

coefficient keeps the value of μd for all pointwise inter-

actions. Even with the toppling possibility, the available

friction was not enough in this loading case to topple the

block.

(c) In the last case, the external force is applied at the block

top face centroid. This case has a similar behavior as case

(b), having again a tendency of toppling. However, when

the force reaches a certain level toppling occurs, when

the block is still sticking to the surface. Figure 19d shows

the block configuration just when toppling starts (note

the absence of contact forces at the trailing edge). During

toppling, friction forces invert their direction and assume

even zero values because the block looses contact with

the ground for a while due to inertia effects at the end of

the simulation.

The results in Fig. 20 demonstrate consistency between

the simulated cases and the expected physical results. The

repeatedly sudden drops of the friction level, followed by its

recoveries in cases (b) and (c) are a result of the transition

between stick and slip states. We did not assume a smoothing

in the transition from μs to μd . Hence when the friction force

reaches the Coulomb limit, there is a non-smooth hang in the

friction coefficient dropping suddenly, independently of the

occurrence of a motion. This behaviour can be improved
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(a) Initial configuration (b) Case (a): at instant 0.6 s

(c) Case (b) at instant 0.3 s (d) Case (c) at instant 0.6 s

Fig. 19 Initial configuration and contact reactions for selected instants

for the cases a, b and c of example 3. Red arrows relate to contact

normal and friction forces and blue arrows denote the external force
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Fig. 20 Total friction force Rx in direction i applied at the block
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Fig. 21 Total friction force Rx in direction i applied at the block (when

setting μs = μd = 0.8)

in future works by introducing a smooth transition from μs

to μd based on the relative velocity at the contact interface

which is common in the context of FEM contact models.

When solving such example considering the same value for

the static and dynamic friction coefficients, such oscillations

in friction force no longer appear, as depicted in Fig. 21.

Table 3 Numerical data for example 3

Environment and solution data

Gravitational field (-z direction) 9.81 m/s2

Simulation duration 0.8 s

Time-step 1.0E-4 s

Contact data

ǫ1 1E7 N/m

n1 1

n2 -2

ḡn 0.001 m

f 0.1

ζ 0.9

μs 0.8

μd 0.6

ǫt 1E6 N/m

ct 1E3 N.s/m

Fig. 22 Tetrapod-shape body laying on the ground. Red arrows show

the friction forces applied on the body when trying to twist it about

direction k

3.4 Tetrapod body experiencing a twist

A body with tetrapod shape is an example of a non-convex

polyhedron. The data describing the body are summarized in

Table 4. Furthermore, its stereolithography (stl) CAD file is

provided as a supplementary material. We consider that the

tetrapod initially rests on the ground under gravity loading,

as depicted in Fig. 22. Due to the body-ground interaction

vertical reaction forces are present in each touching point,

having the same magnitude. These forces balance self-weight

of the tetrapod. As an additional external load, we consider

a moment applied at the body center of mass, trying to intro-

duce a rotation in direction +k (twist). This external moment

is aligned in direction +k, and its magnitude is linearly

ramped during the simulation duration of 2 s, in the range

from 0 to 750 N.m.
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Table 4 Numerical data for example 4

Environment and solution data

Gravitational field (-z direction) 9.81 m/s2

Simulation duration 2.0 s

Time-step 1.0E-3 s

Tetrapod body data

Volume 0.078297 m3

Circumscribed sphere radius 0.84759 m

Inertia polar moments (volume) 0.0049944 m5

Specific mass 2000 kg/m3

Contact data

ǫ1 1E5 N/m

n1 1

n2 -2

ḡn 0.01 m

f 0.4

ζ 0.9

μs 0.5

μd 0.5

ǫt 1E5 N/m

ct 1E3 N.s/m

Contact between the tetrapod body and the ground is dis-

tributed on 3 vertices, as shown in Fig. 22. When applying the

external moment load, the tetrapod body keeps in static equi-

librium, due to friction occurrence, as indicated in Fig. 22 by

red arrows. As the external moment increases its magnitude,

friction also increases, up to the Coulomb limit, when finally

the system exhibits a transition from statics to dynamics, and

the tetrapod body starts to twist.

Fig. 23 shows the reactive moment induced by friction

forces, which balances the external moment up to the instant

approximately 1.6 s, when the Coulomb limit is achieved.

From this instant on, the induced reactive moment keeps

constant. Note that in this case we did not consider a differ-

ence between static and dynamic friction coefficients, which

would result in a drop of such reactive friction moment, when

twisting starts.

3.5 Box of blocks

The interaction between several bodies are discussed in this

example. First, we establish an initial positioning for a set

of 564 identical particles. Each one has the same geom-

etry as the cube proposed in the first example. The cubes

are initially positioned without overlapping, having arbitrary

orientations, as shown in Fig. 24a. We define four planar

bounding surfaces, depicted also in Fig. 24 which form a

0.5 1.0 1.5 2.0
t s

- 700

- 600

- 500

- 400

- 300

- 200

- 100

0
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Fig. 23 Reactive moment induced by friction forces along time for

example 4

Table 5 Numerical data for example 5

Environment and solution data

Gravitational

field (-z

direction)

9.81 m/s2

Phase 1

simulation

duration

(bodies

packing)

2.0 s

Phase 2

simulation

duration (pack

collapse)

3.0 s

Time-step range

(automatic)

1.0E-5 s to

1.0E-3 s

Contact data

ǫ1 1E7 N/m

n1 1

n2 -2

ḡn 0.001 m

f 0.1

ζ 0.2

μs 0.4

μd 0.2

ǫt 1E6 N/m

ct 1E3 N.s/m

box. The bottom of the box is a square with side length 1.0

m. Table 5 summarizes environment and solution data, such

as contact data considered for body-body and body-boundary

interactions.

From the initial state the particles move inside the box

under gravity, forming the pack shown in Fig. 24b.

A second phase of the simulation follows by removing

the lateral walls of the box inducing the pack to collapse.

The particles are spread on the ground. Fig. 25 depicts a

sequence of selected configurations assumed by the model
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(a) Initial configuration for the bodies (with arbitrarily gener-
ated orientations)

(b) Obtained pack of 564 block bodies

Fig. 24 Initial configuration and solved pack of bodies for the example

5

as long as the time advances, until the final configuration has

been achieved (static). Note that some blocks close to the

middle of the pack still form a small pile at the end of the

simulation which is related to friction.

We employed here an automatic time-stepping, which

adapts the time-step value according to difficulties for conver-

gence encountered during the solution. This adaptive scheme

is ruled by a guideline of time-step range.

Active contact pairs were monitored along the evolution

of the simulation in time. Fig. 26 demonstrates for the second

phase (pack collapse) of the simulation the number of active

body-to-body and body-to-boundary contacts. All contacts

are handled automatically by the implemented solver, con-

sidering the contact degenerations proposed in Sect. 2.4.2.

3.6 Box of tetrapod-shape particles

This example considers the collapse of a pack of tetrapod-

shape particles (the same as presented in example 4).

Handling particles of this shape within a DEM simulation

is quite complex, since the tetrapod has thin tips and concave

regions. Thin tips are difficult to deal with in contact algo-

rithms that are based on the computation of penetrations,

because spurious contact detection can occur. Our scheme

takes advantage of the barrier-based normal interface law,

making this treatment much simpler and leads to a proper

scheme for handling contact of thin tips. Moreover, concav-

ities are challenging due to difficulties to deal with multiple

pointwise contacts, as discussed in the scheme shown in

Fig. 9. Therefore, we see the tetrapod-shape particles as an

interesting test for the new approach to the treatment of con-

tact discussed in this paper.

To establish a initial pack of tetrapod bodies, the following

steps are performed

(a) establishment of an initial configuration with a set of

1005 bodies with no overlapping and assuming arbitrary

orientation, similar to example 5, see Fig. 24a;

(b) dropping of all bodies in the box, also similar to the

procedure shown in Fig 24b. This process leads to a first

pack of bodies. However, in this case we would like to

obtain a more compact packing, thus additional steps are

followed;

(c) moving of lateral walls of the box towards the center of

the pack, thus forcing the bodies to adjust their position

and increasing the height of the pack. The final shape of

the box bottom is a square with side length 7.0 m;

(d) turning off the friction forces, as an artificial feature for

compaction. This forces the particles to reorganize, fill-

ing many voids, due to absence of friction;

(e) turning on the friction force again and letting the pack

come to rest as shown in Fig. 27a. This represents the

initial configuration for the simulation of the pack col-

lapse.

For the evaluation of the pack collapse, we removed sud-

denly the lateral walls of the filled box shown in Fig. 27(a).

We performed a simulation of 7.0 s duration considering

only gravitational field as source of external loads (in direc-

tion −k) with magnitude 9.81 m/s2. The boundary is defined

only by the ground, considered as a flat surface. The contact

model for all interactions has the same properties considered

in example 4, as shown in Table 4.

Figure 27b depicts an intermediate configuration after 3.0

s of the simulation and Fig. 27c shows the final configuration

obtained, after 7.0 s. The same final configuration may be

seen in a lateral view in Fig. 28, which shows the interesting

characteristic of interaction of tetrapods. Many interlockings

occur due to their particular shape. Figure 29 depicts the

number of active contact pairs along time, both considering

body-to-body and body-to-boundary interactions.

In examples 5 and 6, we used an automatic time-stepping

solver to guide the solution. The solver adjusts automatically

123



376 Computational Particle Mechanics (2022) 9:353–380

(a) Configuration obtained after 0.4 s of removal of box lateral
walls

(b) Configuration obtained after 0.8 s of removal of box lateral
walls

(c) Configuration obtained after 3.0 s of removal of box lateral
walls

Fig. 25 Configurations obtained after removing the box lateral walls

causing the pack collapse
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Fig. 26 Contact monitoring report for example 5 showing the active

contacts only

the time-step size according to success or not while trying

to find Newton-Raphson convergence. When contact-impact

takes place, convergence difficulties are faced and the solver

has to decrease the time-step for successful integration. In

systems with high dissipation level such as examples 5 and

6, one can expect an appropriate solution to be obtained with

this time-stepping strategy, even without a strict control of

energy dissipation in each single impact occurrence (as we

did in example 1). This approach is only possible when solv-

ing the dynamics equations with an implicit solver, which has

no upper-bound for the time-step. To set the solver time-step

guidelines, however, one needs to use information based on

the physics of the problem, as a reference for the time-step

range.

Figure 30 shows time evolution of the kinetic energy of

the system for example 6, demonstrating the expected result

during the pack collapse: an initial increase of the system

kinetic energy (during the pack dismounting), followed by

the system kinetic energy drop to zero, as long as the particles

find their new static position on the ground or above other

particles, forming a pile.

Figure 31 shows the time-steps employed during the

implicit solution. One can see clearly that smaller time-steps

were required only between 1.0s and 2.0 s, which coincides

with the peak in the kinetic energy. During this simulation

contact interactions experienced a very small gap, achieving

0.001ḡn or even smaller values, leading to a very high con-

tact stiffness in (49). An explicit integration scheme would

have needed a time step smaller than Δtc = 10−5 s, as can

be seen in Fig. 11. Therefore, using data from Fig. 31, the

average time-step of Δt = 8.2 · 10−4 s is 82 times higher

than Δtc. With that, even with the higher computational cost

of each time-step integration of an implicit scheme, the prac-

tical used time-step value leads to a brake even in computing

time and the implicit scheme has advantages of more control

on energy and yields very large time steps when the system

is close to a static response. As a reference of computational

solving time, the step (e) of this example (pack collapse) takes

about 4 hours to complete in a CPU Intel Xeon W-2135 3.7

GHz with 6-cores.

Due to the complex shape of the tetrapods, one may face

much more difficulties in this example for achieving con-

vergence within each time-step. The main challenge was

related to the description of the contacts, particularly in con-

cave regions. Scenarios such as the one shown in Fig. 9

are frequently found and can lead to co-existence of multi-

ple pointwise interactions in concave regions. Moreover, the

search for equilibrium in Newton-Raphson iterations may

lead to alternating patterns of switching on/off some contact

pairs, due to entering/exiting their range of validity of pro-

jection (LCP solution). We succeeded in circumventing such

problem in the presented example by specific contact hierar-

chy rules, constructed to foresee some problematic scenarios.
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(a) Initial package containing 1005 tetrapod-shape bodies

(b) Configuration obtained after 3.0 s of removal of box lateral
walls

(c) Configuration obtained after 7.0 s of removal of box lateral
walls

Fig. 27 Configurations for the box of tetrapods

Fig. 28 Lateral view of the final configuration obtained after collapsing

the box of tetrapods

As an example, one may inactivate a vertex-to-edge contact

in particular cases, when facing concave edges. When con-

tact has already been established between a given vertex and
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Fig. 29 Contact monitoring report for example 6 showing the active

contacts only
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Fig. 30 System kinetic energy vs. time for the simulation of the pack

collapse (example 6)
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Fig. 31 Employed time-step vs. time for the simulation of the pack

collapse (example 6)

both neighboring faces of a concave edge, one may inacti-

vate a possible vertex-to-edge contact, such as in the example

of Fig. 9. Similar ideas were also implemented for vertex-

to-vertex interactions. One may inactivate a vertex-to-vertex

contact when some of the attached faces or edges to a ver-

tex have already presented an active contact region with the

another vertex.

This kind of geometric-based observations, thus trans-

formed into a set of rules to switch off automatically some

detected contacts, improves substantially the convergence of

the Newton-Raphson iteration within each time-step, because

it avoids alternating patterns of switching on/off in contact

regions. Here we see need for further research and improve-

ments of the method, especially an in-depth investigation of

the above mentioned rules, which is a pure geometrical mat-

ter.
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4 Conclusions

We propose in present work a discrete element method

considering particles as general rigid polyhedra. Our main

novelty is related to the contact treatment, where constraints

are set up for multiple pointwise interactions between parti-

cles. We presented a strategy of splitting the external surface

of each particle into a collection of sub-regions associated

with geometric entities: vertices, edges and faces. Combina-

tions of sub-regions form contact pairs. Each one is treated

considering a distinct degeneration of a basic surface-to-

surface formulation. The strategy is able to handle contact

involving bodies with complex and general shapes, includ-

ing thin tips and concave regions, as demonstrated in the

numerical examples.

We propose a novel interface law for the normal con-

tact treatment by a composition of a penalty-based and a

barrier-based law, with the advantage of avoiding penetra-

tion between particles, but instead allowing a controlled level

of proximity. For frictional cases, we employed a Coulomb-

based treatment, considering distinct static/dynamic friction

coefficients.

The proposed formulation was implemented considering

an automatic contact detection scheme based on inflated

bounding volumes overlapping, associated with each consid-

ered geometric entity. Each particle has a bounding volume

and a set of sub-bounding-volumes, which are assumed to be

contact-candidates. Only strong-candidates are investigated

by the introduced Local Contact Problem. This leads to a

computationally feasible scheme, even when numerous nec-

essary contact and proximity tests are involved.

We expect high potential for application of the present

method to practical engineering problems, especially, in

which the particle shape is important.
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Appendix

For presentation of the analytical LCP solutions, we consider

that the current absolute positions of triangular faces vertices

are given by x1A, x2A, x3A (face A) and x1B , x2B and x3B

(face B).

Vertex-to-face

Here we consider a vertex in the face A named x A, pro-

jected onto the face B. One may find an analytical solution by

proposing for face B the alternative parameterization, fully

compatible with (28):

ΓB (ζB, θB) = ζB t1B + θB t2B + bB, (64)

where:

t1B = 1

2
(x2B − x1B)

t2B = 1

2
(x3B − x1B)

bB = 1

2
(x2B + x3B) . (65)

The associated set of orthogonality relations are

[

(x A − ΓB) · t1B

(x A − ΓB) · t2B

]

= o2, (66)

which permit the straightforward evaluation of the solution

of the LCP given by ζ̄B and θ̄B .

The same ideas are applied when projecting a vertex from

face B onto a face A, just adapting the presented equations,

accordingly.

Edge-to-edge

Here we consider an edge in face A connecting the vertices

x1A and x2A and an edge in face B connecting the vertices

x1B and x2B . One may propose the curve parameterizations

γA and γB for such edges:

γA (ζA) = ζA t A + bA

γB (ζB) = ζB t B + bB (67)

where:
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t A = 1

2
(x2A − x1A)

bA = 1

2
(x1A + x2A)

t B = 1

2
(x2B − x1B)

bB = 1

2
(x1B + x2B) . (68)

Note that these parameterizations are compatible with such

edges as part of surfaces described by (28).

The associated set of orthogonality relations are

[

(γA − γB) · t A

(γA − γB) · t B

]

= o2, (69)

which permit the straightforward evaluation of the solution

of the LCP given by ζ̄A and ζ̄B . One can employ this solution

for any edge of face A and any edge on face B, just adapting

a list with the sequence of vertices.

Vertex-to-edge

Here we consider a vertex in face A named x A, projected

onto an edge in face B. One may find this analytical solution

by proposing for face B the alternative parameterization for

the edge γB , as already pointed out in (67). In this case the

only orthogonality relation to be fulfilled is:

(x A − γB) · t B = 0 (70)

The same ideas are applied when projecting a vertex from

face B onto a an edge on face A, just adapting the pre-

sented equations, accordingly. Moreover, one may employ

this solution for any edge of a face, just adapting a list with

the sequence of vertices.
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7. Kačianauskas Rimantas, Tumonis Liudas, Džiugys Algis (2014)

Simulation of the normal impact of randomly shaped quasi-

spherical particles. Granular Matter 16(3):339–347

8. Zhao Bo, An Xizhong, Zhao Haiyang, Gou Dazhao, Shen Lingling,

Sun Xudong (2020) DEM simulation on random packings of binary

tetrahedron-sphere mixtures. Powder Technol 361:160–170

9. Irazábal Joaquín, Salazar Fernando, Santasusana Miquel, Oñate

Eugenio (2019) Effect of the integration scheme on the rotation of

non-spherical particles with the discrete element method. Comput

Particle Mech 6(4):545–559

10. Smeets Bart, Odenthal Tim, Keresztes Janos, Vanmaercke Simon,

Van Liedekerke Paul, Tijskens Engelbert, Saeys Wouter, Van

Oosterwyck Hans, Ramon Herman (2014) Modeling contact inter-

actions between triangulated rounded bodies for the discrete

element method. Comp Methods Appl Mech Eng 277(2014):219–

238

11. Lim Keng Wit, Krabbenhoft Kristian, Andrade José E (2014) On

the contact treatment of non-convex particles in the granular ele-

ment method. Comput Particle Mech 1(3):257–275

12. Govender Nicolin, Wilke Daniel N, Kok Schalk, Els Rosanne

(2014) Development of a convex polyhedral discrete element simu-

lation framework for NVIDIA Kepler based GPUs. J Comput Appl

Math 270:386–400

13. Govender Nicolin, Wilke Daniel N, Pizette Patrick, Abriak Nor

Edine (2018) A study of shape non-uniformity and poly-dispersity

in hopper discharge of spherical and polyhedral particle systems

using the Blaze-DEM GPU code. Appl Math Comput 319:318–336

14. Nassauer Benjamin, Liedke Thomas, Kuna Meinhard (2013)

Polyhedral particles for the discrete element method: Geometry

representation, contact detection and particle generation. Granular

Matter 15(1):85–93

15. Smeets Bart, Odenthal Tim, Vanmaercke Simon, Ramon Herman

(2015) Polygon-based contact description for modeling arbitrary

polyhedra in the Discrete Element Method. Comp Methods Appl

Mech Eng 290:277–289

16. Zheng Fei, Jiao Yu Yong, Sitar Nicholas (2018) Generalized

contact model for polyhedra in three-dimensional discontinu-

ous deformation analysis. Int J Numer Anal Methods Geomech

42(13):1471–1492

17. Jean M (1999) The non-smooth contact dynamics method. Comp

Methods Appl Mech Eng 177(3–4):235–257

18. Moreau JJ (1999) Numerical aspects of the sweeping process.

Comp Methods Appl Mech Eng 177(3–4):329–349

19. Dubois Frédéric, Acary Vincent, Jean Michel (2018) La méthode de

la dynamique des contacts, histoire d’une mécanique non régulière.

Comptes Rendus Mecanique 346(3):247–262

20. Wellmann Christian, Lillie Claudia, Wriggers Peter (2008) A con-

tact detection algorithm for superellipsoids based on the common-

normal concept. Eng Comput (Swansea, Wales) 25(5):432–442

21. Wellmann Christian, Wriggers Peter (2012) A two-scale model

of granular materials. Comp Methods Appl Mech Eng 205–

208(1):46–58

22. Zhao Yongzhi, Lei Xu, Umbanhowar Paul B, Lueptow Richard M

(2019) Discrete element simulation of cylindrical particles using

super-ellipsoids. Particuology 46:55–66

23. Andrade José E, Lim Keng Wit, Avila Carlos F, Vlahinić
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