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Abstract Selection or calibration of particle property input

parameters is one of the key problematic aspects for the

implementation of the discrete element method (DEM). In

the current study, a parametric multi-level sensitivity method

is employed to understand the impact of the DEM input

particle properties on the bulk responses for a given simple

system: discharge of particles from a flat bottom cylindrical

container onto a plate. In this case study, particle properties,

such as Young’s modulus, friction parameters and coefficient

of restitution were systematically changed in order to assess

their effect on material repose angles and particle flow rate

(FR). It was shown that inter-particle static friction plays

a primary role in determining both final angle of repose

and FR, followed by the role of inter-particle rolling friction

coefficient. The particle restitution coefficient and Young’s

modulus were found to have insignificant impacts and were

strongly cross correlated. The proposed approach provides a

systematic method that can be used to show the importance

of specific DEM input parameters for a given system and

then potentially facilitates their selection or calibration. It is

concluded that shortening the process for input parameters

selection and calibration can help in the implementation of

DEM.
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1 Introduction

In recent years there has been an increase in the application

of discrete element method (DEM), originated by Cundall

and Strack [1], to study granular materials. The importance

of DEM has been demonstrated in different fields spanning

chemical engineering, pharmaceuticals, powder metallurgy,

agriculture and many others. DEM simulations have been

extensively applied to diverse problems in granular processes

such as packing of particles [2–4], flow from a hopper [5–7],

die filling [8,9], fragmentation of agglomerates [10,11], bulk

compression [12–15], flow in a screw conveyor [16,17] and

powder mixing [18–21].

DEM is based on the description of the microscopic con-

tacts between a number of discrete particles. The reliability of

a DEM model depends on the accuracy of the contact model

and the particle property parameters chosen. The choice of

DEM input parameters is still a key limitation and an aspect

of controversy for the effective application of this modelling

tool. Often DEM contact models include the definition of

input parameters that can only be measured with difficulties.

Measuring single particle properties, especially at a small

scale, can be very challenging, costly and time consuming.

Furthermore it can be difficult to relate these measurements

to models implemented in DEM. A few attempts have been

made to measure the Young’s modulus of single particles

[22,23], the yield stress [24] and interfacial energy using

atomic force microscopy [25,26]. A common approach is to

choose the DEM input parameters by calibrating the DEM

model against bulk global measurements and then to adjust

these input parameters until the outputs match the experi-

mental, usually macroscopic, observations [27]. This can be

a very lengthy procedure and does not challenge the lack of

physical understanding in the underpinning model parame-

ters, thus presenting some questions of reliability.
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In order to make trustworthy quantitative rather than qual-

itative predictions, correct input material parameters should

be properly selected and their effect should be properly

understood. Moreover, another key aspect to be considered

is validation of model predictions by experiment [28,29].

Fundamentally, model parameters should act as estimates

for physically meaningful values. In this context, it is impor-

tant to understand which ‘assumed’ material parameters have

the biggest impact on the simulation results. Sensitivity

analysis methods, which aim to understand the impact that

model parameters have on model responses, play a critical

role in this. To achieve this, it is critically important that the

parameters are statistically significant, whether ‘assumed’ or

estimated by numerical solver methods. A common approach

with estimated parameters is to assess uncertainty in parame-

ter estimates using a 95 % confidence interval. The value of

this is influenced by correlation between observations, noise

in the data and degrees of freedom in the estimation process

[30]. When a confidence interval is greater than the estimated

value, the fitting parameter can be seen as indiscriminate from

zero and discounted. In DEM studies, this approach can be

used when assessing the impact of inputs parameters on bulk

model responses; for example the effect of static/rolling fric-

tion coefficients and restitution coefficient on angle of repose

in a sandpile test [31]. In this reference a power law relation-

ship between angle of repose response and inputs parameters

is used but unfortunately the authors do not report statistical

confidence intervals of the fitted power terms.

For more systematic and robust approaches, methods can

be found in other fields such as reaction kinetics [32]. Para-

meter sensitivity on a local and global basis can be analysed

via the parameter sensitivity matrix, S, which comprises the

derivatives of all model responses with respect to model para-

meters:

S =
δ f

δ P
, (1)

where the model response function, f , has size n×m, where

n is the number of observations and m is the number of mea-

sured outputs at each observation. P is a parameter vector of

size k and S is a parameter sensitivity matrix of size nm × k

[33]. Low sensitivity parameters can be systematically iden-

tified as low importance parameters in the model by this

analysis process [34,35]. Cross correlation between para-

meters, which impedes reliable parameter estimates, is also

assessed with these methods [36].

Principal component analysis (PCA) can also be applied

to the sensitivity values of model responses with respect to

model parameters. PCA provides a ranked series of eigenval-

ues which contain contributions from the fitting parameters.

The most important parameters will have a strong contribu-

tion to the largest eigenvalues [37–39]. In DEM, the method

was recently applied in the modelling of a continuous con-

vective mixer [40].

Sensitivity analysis of model outputs with respect to model

parameters can also be applied using the underpinning mech-

anistic equations which are solved in DEM simulations (e.g.,

Hertz–Mindlin equation). Such approaches can demonstrate

the importance of model DEM parameters on a local rather

than bulk scale. These could ultimately be compared to bulk

observations in DEM (e.g., angle of repose) to gauge the

importance of model parameters on multiple scales. This

approach, to the authors’ knowledge, has not been attempted

in the literature.

In this paper, a parameter sensitivity analysis methodology

to understand the importance of the input parameters and/or

their cross-correlation is proposed. The aims for this work

are thus:

• Develop empirical sensitivity analysis methodologies

which relate choice of input parameter values to ‘bulk’

model responses such as angles of repose and flow

rate (FR).

• Develop mechanistically driven sensitivity analysis

methodologies which relate choice of input parameter

values to calculated responses using the fundamental

equations used in DEM (e.g., Hertz–Mindlin equation

outputs).

• Apply approaches to a model system, the sandpile test,

to understand which parameters have the greatest impact

on model responses. Identify which model responses are

key discriminators in this case.

• Evaluate the potential for parameter sensitivity analysis

in the understanding of different particle motion mechan-

ics for a given system, in this case the sandpile test.

In this paper, Sects. 2.1 and 2.2 describe the methodolo-

gies including the DEM method and parameter sensitivity

study approach, respectively. Section 3 presents the back-

ground information on the hopper discharge system under

study including geometric setup, input parameter ranges and

measured outputs. Section 4.1 presents the results from the

DEM simulations for the system under study and includes

general trends and observations. Section 4.2 uses parameter

estimation and sensitivity analysis approaches to understand

the importance of the DEM input parameters in the system

from both an empirical and mechanistic standpoint. Section 5

is the summary of this research.

2 Methodologies

2.1 Discrete element method (DEM)

The DEM employed in this work uses the soft-sphere

approach originally developed by Cundall and Strack [1].

123



Comp. Part. Mech. (2015) 2:283–299 285

The motions of individual particles are determined by the

equations of motion, Eqs. (2) and (3). In this work the forces

and torques due to gravity, deformation due to collisions,

and static and rolling friction are considered for a particle i

in contact with particle j as follows:

mi
dvi

dt
=

∑
(

Fn
ij + Ft

ij

)

+ mi g, (2)

Ii
dωi

dt
=

∑
(

Ri × Ft
ij − τ r

ij

)

, (3)

where mi , g, Ii , vi and ωi are, respectively, the mass, grav-

ity vector, moment of inertia, translational velocity and

rotational velocity of particle i. Fn
i j and Ft

i j are the normal

and the tangential forces due to interaction between particle

i and j at the current time-step as depicted in Fig. 1. Ri is the

vector between the centre of particle i and the contact point

where the force Ft
i j is applied. τr

i j is the torque due to rolling

friction.

In this work, an adapted Hertz–Mindlin contact model is

utilised. The contact force can be broken down into normal

and tangential non-linear contact forces, as shown in Eqs. (4)

and (5). They consist of two terms. The first term stands for

the non-linear elastic Hertz model in the normal direction and

the linear elastic Mindlin model in the tangential direction

[41,42]. In both normal and tangential directions a dissipa-

tive term is added to account for energy dissipation during

collisions through inelastic deformation and friction. In the

collision between two spheres i and j represented in Fig. 1,

the normal and tangential forces, Fn
i j and Ft

i j are given by:

Fn
ij = −

4

3
E∗

√

R∗δn
ijδ

n
ij − 2

√

5

6
ψ

√

Cnm∗vn
ij, (4)

t

ij
F j

v

i
v

j

i

g
i
m

n

ij
F

r

ij

i

j

Fig. 1 Schematic representation for the contact between two particles

i and j

Ft
ij = −8G∗

√

R∗δn
ijδ

t
ij − 2

√

5

6
ψ

√

Ctm∗vt
ij, (5)

where E∗ is the equivalent Young’s modulus of the two col-

liding particles, defined by 1
E∗ = 1−v2

i

Ei
+

1−v2
j

E j
, where vi

and vj are the Poisson’s ratios, R∗ is the equivalent radius,

defined by 1
R∗ = 1

Ri
+ 1

R j
, m∗ is the equivalent mass, defined

by 1
m∗ = 1

mi
+ 1

m j
, vn

i j and vt
i j are the normal and tangential

components of the relative velocity at the contact, δn
i j is the

normal contact overlap, given by |δn
i j | = Ri + R j − di j ,

where di j is the distance of the centre of particles, δt
i j is

tangential contact overlap, given by the integral of the tan-

gential relative velocity through the collision time since the

collision starts, i.e., |δt
i j | =

t
∫

0

|vt
i j |dt, Cn = 2E∗

√

R∗δn
i j

and Ct = 8G∗
√

R∗δn
ij are the normal and tangential contact

stiffness, where G∗ is the equivalent shear modulus, defined

as 1
G∗ = 2(2−vi)(1+vi)

Ei
+ 2(2−vj)(1+vj)

Ej
, ψ is the damping ratio

coefficient which is a function of the coefficient of restitution,

ε, given by ψ = ln(ε)/
√

ln2(ε) + π2.

Sufficient tangential forces will cause particles to slip rel-

ative to each other or to other surfaces with which they are

in contact. For non-cohesive particles subject to a constant

normal force, the extent of slippage under tangential force is

determined by:

∣

∣

∣Ft
ij

∣

∣

∣ < µs

∣

∣

∣Fn
ij

∣

∣

∣ , (6)

where µs is the static friction coefficient between particles.

If Eq. (6) is satisfied, the effect of Ft
i j is to cause a small

relative movement, termed ‘microslip’ and Eq. (5) is used as

tangential force. If Eq. (6) is not satisfied, the slip covers all

the area of contact and this can be referred as ‘gross sliding’

[19]. In this case the tangential force is given by Coulomb’s

friction law:

Ft
ij = −µs

∣

∣

∣Fn
ij

∣

∣

∣

δt
ij

|δt
ij|

. (7)

In essence, this means that the tangential force acting on the

particle will be minimum calculated from Eqs. (5) to (7).

The term τ r
i j in Eq. (3) is added to account for the torque

caused by rolling friction. The ‘rolling friction’ is a term used

to define the ‘resistance to rolling’. Rolling resistance is often

introduced to represent the effects of particle shape on rolling.

Different rolling resistance models have been developed and

these models have been recently reviewed by Ooi and col-

leagues [43]. In this work, the elastic–plastic–spring–dashpot

(EPSD) rolling resistance model [43] is used to calculate

the τ r
i j term. τ r

i j,t is the torque at time t and the incremen-

tal torque ∆τ r
i j,t is calculated from the incremental relative
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rotation between two particles ∆ϕr
i j and the rolling stiffness

8G∗
√

R∗δn
i j R∗2.

∆τ r
ij = −8G∗

√

R∗δn
i j R∗2∆ϕ, (8)

τ r
ij,t+∆t = τ r

ij,t + ∆τ r
ij, (9)

∣

∣

∣τ
r
ij,t+∆t

∣

∣

∣ ≤ µrR
∗
∣

∣

∣Fn
ij

∣

∣

∣ , (10)

where µr is the rolling friction coefficient. In this EPSD

rolling resistance model, torque τ r
i j is similar to the loading–

unloading stress–strain curve of an elastic perfectly plastic

material. This advanced model includes the rolling back

curve which makes it applicable to both one way rolling

and cyclic rolling [42]. The EPSD rolling resistance model

is implemented and available in the public release of

LIGGGHTS source codes.

In this work the time step ∆t was selected equal to 10–

20 % of the critical time step TR . TR was estimated based

on the Rayleigh wave speed of the smallest sphere and was

calculated through the equation proposed by Thornton and

Randall [44].

∆t < TR =
π R

√
ρ/G

0.01631ν + 0.8766
, (11)

where ρ is the particle density, ν the Poisson’s ratio.

2.2 Parameter sensitivity analysis methods

In this work, a three-level parameter sensitivity study will be

carried out, as shown in Fig. 2. This will allow an understand-

ing of the level of detail required to understand parameter

sensitivity in a DEM model and assess consistency of the

outcomes between the methods.

In Fig. 2, the complexity is seen to increase from Level 1

through 3 as more detailed input information is required for

the sensitivity analysis. The increase in complexity does not

necessarily result in the approach being more time consum-

ing; a topic which is addressed in Sect. 4.2.3.

Fig. 2 Levels of sensitivity analysis utilised in this study

The subsequent Sects. 2.2.1–3 address the methodologies

used in the three levels of parameter sensitivity analysis. The

specifics of the models used as part of these methodologies

are described in the results Sects. 4.2.1–3.

2.2.1 Level 1 method: parameter estimation

Parameter estimation was carried out using Athena Visual

Studio v14.2 © software (Athena Visual Software, Inc.,

Naperville, IL). All empirical models are algebraic equations

in structure and estimation of their parameters can be carried

out explicitly:

yi = fi (ξi ; Pk) + ei , (12)

where yi is a model response, ξi are the process settings (input

variables), Pk are model parameters and ei is model error,

where i ≤ n. A non-linear least squares method was used

to estimate the empirical model parameters. This is owed

to the presence of some non-linear parameters (e.g., power

indices) within the model. The method is also suitable for

single response parameter estimation problems which are

used in this study.

2.2.2 Level 2 method: principal component analysis (PCA)

PCA was carried out using a program developed in Athena

Visual Studio v14.2 © software. The aim of this method is

to understand the relationship between bulk model responses

and associated parameter sensitivities. This is achieved by a

series of transforms of the sensitivity matrix, the output of

which establishes the parameters which have the strongest

impact on model responses.

In all cases the input is based on the parameter sensitivity

matrix, S, as defined in Eq. (1). This matrix differs slightly to

Eq. (1) however and contains (k+1) columns. The additional

(k + 1)th column accounts for a bulk model response in the

system (such as angle of repose) which is analysed against

the sensitivity values.

For this matrix of size nm×(k+1), it is necessary to auto-

scale values in each column (e.g., column size nm for each

column of total (k + 1)). This will enable each parameter

sensitivity range to be explored on a relative level. Auto-

scaling is carried out as follows:

Si,scaled =
Si − Snm,ave

Snm,var
, (13)

where Si is a sensitivity value located in column size nm

where i ≤ nm, Snm,ave is the average sensitivity value in

column nm, Snm,var is the variance of all sensitivity values in

column nm and Si,scaled is the scaled sensitivity value located

in column size nm where i ≤ nm.Across (k+1) columns, this
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leads to an auto-scaled sensitivity matrix, Sscaled . The auto-

scaled matrix can subsequently afford a direct understanding

of the impact of parameter sensitivities on model responses.

Subsequently, matrix Sscaled is computed into a covari-

ance matrix, Q [45]:

Q = ST
scaled Sscaled (14)

where superscript T denotes matrix transpose. Q is then

converted into principal components via the following rela-

tionships:

Q = U�U T , (15)

U QU T = U T UΛU T U = Λ, (16)

where Λ denotes a diagonal matrix of principal components

(eigenvalues) of size k and U is the corresponding eigenvec-

tor matrix with rows corresponding to k. On each row in U,

the eigenvectors correspond to the k parameters in the sys-

tem. Hence the importance of each parameter as a function of

its sensitivity can be identified for each principal component.

2.2.3 Level 3 method: parameter sensitivity matrix analysis

This form of analysis begins with the parameter sensitivity

matrix, S, of size nm ×k, as defined in Eq. (1). The values in

each column (i.e., for each parameter 1, 2, . . . , k) are then

processed and summed into a form known as the norm of the

parameter sensitivity matrix [33]:

norm (S)k =

√

√

√

√

∑

i

(

Pk

δ f

δPk

)2

, (17)

where norm(S)k is the norm of the parameter sensitivity

matrix for parameter 1, 2, . . . , k and i ≤ nm. In effect this

method provides a summated representation of the sensitivi-

ties for a particular parameter in the dataset. Each sensitivity

value is scaled by the value of the parameter itself as a normal-

isation technique. For a system of k parameters, a vector of

norm(S)k values of size k will be generated. The magnitude

of each of the values in the vector can then be compared.

The smallest norm(S)k corresponds to the least influential

parameter in the model.

An extension of parameter sensitivity matrix analysis

involves studying cross correlation of parameters; a further

measure of over parameterisation in a model. In this analy-

sis, each parameter sensitivity column of size nm will be

compared to all other parameters sensitivity columns in the

system. This can be calculated for all parametric interactions

using the following equation [46]:

(CC)k1,k2 =
(ST S)−1

k1,k2

[(ST S)−1
k1,k1 · (ST S)−1

k2,k2]0.5
, (18)

where CC denotes cross correlation coefficient, which is

always in the range −1 < CC < +1, superscript T denotes

matrix transpose and k1 and k2 are the two considered

parameters, respectively. CC values approaching −1 or +1

suggest a strong cross correlation between model parameters.

3 DEM simulations

3.1 Simulation conditions and input parameters

In this study, a flat bottom cylindrical hopper (D =
50 mm, H = 70 mm) was chosen as a simple test case in

order to describe the multi-level sensitivity method approach

implementation of the DEM input parameters. The sys-

tem was implemented using the open source DEM code

LIGGGHTS [47] and was carried out on a four-node high

performance cluster using 64 CPUs (Intel Xeon 2.20 GHz)

and MPI parallelization. As depicted in Fig. 3, an orifice

(d = 15 mm) was in the bottom centre of the cylinder, at a

distance of 70 mm from a plate. The cylinder was filled with

monosized (R = 1 mm) spherical particles (total: ∼14,700)

using a pouring scheme in line with the previous literature

[48,49] and with all the simulations starting from the same

initial packing condition (packing density 56.7 %). The ori-

fice lid was quickly opened and particles began to discharge

under gravity forming a pile of material on the plate beneath.

D=50 mm

d=15 mm

h= 70 mm

H= 70 mm

Orifice

Plane

Hopper

Fig. 3 Schematic for sandpile test, Orifico v.0
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Table 1 DEM input parameters
Material parameters Symbols Values

Particle density (kg m−3) ρ 2500

Particle radius (m) R 0.001

Young’s modulus particle (GPa) E p 0.02–200a

Young’s modulus wall (GPa) Ew 20

Poisson’s ratio particle vp 0.45

Poisson’s ratio wall vw 0.45

Coefficient of restitution particle–particle εp 0.05–0.85a

Static friction coefficient particle–particle µs,pp 0.05–0.50a

Rolling friction coefficient particle–particle µr,pp 0.05–0.45a

Coefficient of restitution particle–wall εw 0.45

Static friction coefficient particle–wall µs,pw 0.65

Rolling friction coefficient particle–wall µr,pw 0.1

a Range of values

Simulations were terminated when no more particles fell

from the hopper.

Although in the real world there are no particles which

have exactly identical material properties, in this work it is

assumed that all the particles have the same material and

contact properties. In the literature this is a common and

probably a debatable practice which strongly simplifies the

assignment of the DEM input parameters and therefore the

number of conditions to be accounted during the calculations.

The main purpose of this study is to establish a methodology

and the multi-level parameters approach. Hence only four

inter-particle material properties were investigated: Young’s

modulus (E), coefficient of restitution (ε), static friction coef-

ficient (µs) and rolling friction coefficient (µr) as reported in

Table 1. It is recognised that other material parameters may

also have an effect on the bulk particle behaviour during dis-

charging, however to reduce the number of simulations the

other material properties for particles and walls were kept

constant.

3.2 Bulk material behaviour during discharge

Macroscopic bulk behaviours during hopper discharge have

been well investigated by other researchers by looking at

pressure distribution [50], FR [49,51] and contact force

chains [49,52,53]. In this study, FR, repose angles and par-

ticle velocity at the orifice exit were considered as possible

features that could be easily measured experimentally for the

model validation.

3.2.1 Flow rate (FR)

FR is an important characteristic of the material flow out

of a hopper. Figure 4 shows total number (continuous line)

of the discharged particles as a function of the discharging

time, indicating a constant FR between 0 and 3.0 s. The FR
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Fig. 4 Total number of particles and flow rate as functions of dis-

charging time. Conditions for this test are: E = 0.02 GPa, εp =
0.45, µs,pp = 0.25, µr,pp = 0.25

(square points) is defined as the number of discharged parti-

cles divided by corresponding discharging time.

3.2.2 Repose angle

The angle of repose reflects the flow properties of the gran-

ular material and it is associated with inter-particle friction

properties. Figure 5 shows an example for the upper repose

angle α, inside the container, and the bottom repose angle θ

for the discharged particles. These are calculated considering

the ortho-slices along xz and yz planes: α = 1/4(α1 + α2 +
α3 + α4) and θ = 1/4(θ1 + θ2 + θ3 + θ4).

3.2.3 Particle velocity

Once the orifice is opened, particles start to descend driven

by gravity with a flow pattern as shown in Fig. 6a. Typically

using the simulation conditions, there are four discernable
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Fig. 5 Definition of the repose

angles (e.g.,

α = 31.1◦, θ = 28.9◦).
Conditions for this test are: E =
0.02 GPa, ε p = 0.45, µs,pp =
0.25, µr,pp = 0.25

Fig. 6 Measurement on

average particle velocity. Only

particles that are in the selected

window (z = 20–30 mm) are

used in the calculation.

Conditions for this test are: E =
0.02 GPa, ε p = 0.45, µs,pp =
0.25, µr,pp = 0.25

flow zones: (I) plug flow zone: particles sink relatively uni-

formly at the top part of the hopper, (II) converging flow

zone: particles move toward orifice at high velocities, (III)

transition flow zone: between plug flow zone and converging

flow zone, and (IV) static zone: particles stay motionless at

the corners of the hopper. To quantify the velocity for the

discharging particles, the average velocity magnitude near

the orifice was calculated, using a window selection zone

(Fig. 6a). The average velocity near the orifice as a function

of time is shown in Fig. 6b.

Figure 7 illustrates the snapshots obtained from a simula-

tion at different times during discharge, showing the velocity

magnitude and the arrow shows the velocity vector. As the

discharge proceeds, the plug flow zone is being consumed

while the size of converging flow zone remains more or less

the same during the discharging period, t = 0–3.0 s. This

period corresponds to a constant average velocity near the

orifice (Fig. 6b). At about t = 3.5 s, the flow starts to con-

verge from the sides, corresponding to a decreasing average

velocity near the orifice, until there are no more particles

flowing out and the resulting particles form the upper repose

angle.

4 Results: sensitivity parametric study

A parametric study was performed to obtain general trends of

the system under varying input parameters (refer to Sect. 3.1

and Table 1), followed by the multi-level sensitivity analysis

by using the input parameters and output quantities in the

parametric study,

4.1 Parametric studies

4.1.1 Effect of elastic Young’s modulus E

To examine the effect of Young’s modulus E on the flow

behaviour for the discharging particles, we varied Young’s

modulus value in the range of 0.02–200 GPa. With other input

parameters being held constant, three distinct simulations

were carried out at three levels (E = 0.02, 2.0, and 200.0

GPa). Figure 8 shows that E in range of 0.02–200 GPa has lit-

tle influence on the final shape of the pile of material (Fig. 8a),

the average velocity of particle flows near the orifice at 20–30

mm control window (Fig. 8b) and on the FR (Fig. 8c). On the

other hand, the computation time varies enormously with the
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Fig. 7 Typical flow patterns within the container. Conditions for this test are: E = 0.02 GPa, εp = 0.45, µs,pp = 0.50, µr,pp = 0.05

Fig. 8 Effect of Young’s

modulus on: a profile for the

discharged material, b average

particle velocity, and c number

of particles discharged over the

discharging time. Conditions:

ε p = 0.45, µs,pp =
0.50, µr,pp = 0.05

Young’s modulus considering the Rayleigh’s time criteria in

Eq. (11). For example using 32 cores, the computation time

is: ∼0.5 h for E = 0.02 GPa (timestep ∆t = 5 × 10−6 s),

∼3 h for E = 2.0 GPa (timestep ∆t = 5 × 10−7 s), and

∼240 h for E = 200 GPa (timestep ∆t = 5 × 10−8 s). This

implies that a reduction in Young’s modulus E efficiently

speeded up the simulations without altering the bulk flow

behaviour. As commonly reported in the literature, to keep

simulation times short the Young’s modulus has often been

artificially reduced as this would dramatically reduce the sim-

ulation time required. However, the choice for this parameter

is important, and it has been shown that its effect depends

on the actual system that is modelled. Lommen et al. [54]

showed that E in the range of 107–1011 Pa has almost no

effect on the repose angle measurement. In other tests such

as compression and penetration, a distinction can be made.

They conclude that when applying a particle Young’s modu-

lus reduction in models related to the bulk stiffness and bulk

restitution, shearing behaviour, and the interaction between

materials and boundaries, users should be cautious and ver-

ify their approach. A more logical way is supposed to verify

the effect of Young’s modulus reduction for other input para-
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Fig. 9 Effect of restitution

coefficient εp on: a profile for

the discharged material, b

repose angle (bottom angle θ )

versus the coefficient of

restitution, and c flow rate versus

the coefficient of restitution.

Simulations in b and c were

conducted at µr,pp = 0.45

meters combinations at least covering the corner and centre

points in the design of simulations (DoSs) space. However,

this was not addressed in the current scope due to computa-

tion source limitation.

As the model outputs shown in Fig. 8 were shown to be

insensitive with respect to E, the smallest value of this para-

meter could be chosen purely on the basis of reducing compu-

tational time. A simulation matrix was constructed for all sub-

sequent simulations and the parameter levels chosen within

this matrix were: µs,pp = 0.05, 0.15, 0.25, 0.50, µr,pp =
0.05, 0.25, 0.45, and εp = 0.05, 0.45, 0.85. A full factor-

ial design approach was used comprising 4×32 = 36 distinct

simulations in total. Coverage of µs,pp was extended to four

levels due to the significance of this parameter in our pre-

test simulation outcomes. This effect will be subsequently

discussed.

4.1.2 Effect of coefficient of restitution

Figure 9a shows the profiles for the discharged pile simulated

with different coefficients of restitution for both low (µs,pp =
0.15 µr,pp = 0.05) and high (µs,pp = 0.5 µr,pp = 0.45) fric-

tion coefficients. Varying restitution coefficient in the range

of εp = 0–0.45 does not lead to any obvious difference in the

shape of the discharged pile. However, when εp increases to

0.85 the profile does slightly change. Figure 9b, c show that

the restitution coefficient has little influence on the bottom

repose angle or on the FR. For the repose angle, at a lower fric-

tion level, the repose angle increases as restitution coefficient

increases, at higher friction levels the repose angle decreases

as the coefficient of restitution coefficient increases. For FR,

which can be considered as an inverse variable against repose

angle, the influence behaves in an opposite manner. There is

almost no effect of the coefficient of restitution on the flowa-

bility for a medium εp value. It is apparent that the effects

of friction and coefficient of restitution are cross correlated.

An investigation of the cross correlation of the parameters in

the system is thus imperative and this will be presented in a

following section.

4.1.3 Effect of static and rolling friction coefficients

Figure 10 shows the effect of the static and rolling friction

coefficients on the profile for the discharged pile, on the

repose angle and on the FR. From Fig. 10a, it can be seen

that with increasing of static friction or rolling friction the

height of the sand pile increases and the width of sandpile

decreases. It also could be seen that the effects of static and

rolling friction have a combination effect. When the static

friction µs,pp is low (µs,pp = 0.05), the effect of rolling

friction is not significant; when the static friction µs,pp is

high (µs,pp = 0.5), the effect of rolling friction is more sig-

nificant. Even when µr,pp is very low (µr,pp = 0.05), the

effect of static friction is significant. This implies that the

effect of rolling friction is secondary to that of static fric-

tion. In effect, the repose angle increases with increasing

of static friction (Fig. 10b) or rolling friction (Fig. 10d). The

FR decreases as the static friction coefficient and to a lesser

extent, the rolling friction coefficient, are increased. Simply,

and evidently, the flowability of granular materials decreases

as inter-particle friction coefficients increase. The effect of

static friction appears to be stronger than that of the rolling

friction, upon the comparison of the slopes of the curves;

indicating a stronger effect of the flowability of the gran-

ular materials. Moon et al. [55] reported that friction must
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Fig. 10 Effect of static and

rolling friction coefficients: a

profile for the discharged

material, all the simulations run

with constant εp = 0.45, b

repose angle θ versus static

friction coefficient, c flow rate

versus static friction coefficient,

d repose angle θ versus rolling

friction coefficient, and e flow

rate versus rolling friction

coefficient

be included in every simulation because it dissipates energy,

reduces grain mobility, and increases overall collision rate.

It can clearly be seen that from the simple case here

presented, a parametric DEM study without using a robust

statistical approach could lead to major complications when

trying to compare or evaluate the effect of the input parame-

ters on output results. This would be even more challenging

if higher number of input parameters were required as more

complex contact models were considered.

4.2 Parameter sensitivity studies

4.2.1 Level 1 analysis

In Sect. 4.1, 36 distinct sandpiles were simulated using the

DoSs matrix. The measured top (α) and bottom (θ) angle of

repose observed at the end of the simulation were fitted to

the following power law relationship:

α or θ = A · εb
p · µc

s,pp · µd
r,pp, (19)

where A, b, c and d are fitted empirical constants. For each

parameter estimation procedure, all four measured angles

for the top and bottom angles of repose were included in the

fitting, rather than the average. This enabled an understanding

of the impact of angle variance for each of the 36 simulations

to be understood in context of the fitting. Parity plots for the

results of the fitting process are shown in Fig. 11.

As part of the above parameter estimation results, a lack of

fit analysis was carried out to assess the impact of measured

angle differences (the so-called ‘experimental error’) against

model error. The variance ratio (model error:experimental

error) was found to be 9.02 and 122.3 for the upper and lower

angles of repose, respectively. This is significantly above the

critical t-value threshold at 95 % confidence for this system

of ±1.96. Therefore it can be concluded that the parameters

estimated in the model are influenced by differences between

the input parameter set points rather than variances between

the four angles at individual measurements.

Table 2 below reports the estimated parameters from the

fitting process and their associated 95 % confidence intervals.

Larger magnitudes of power indices imply a greater depen-

dency of model responses with respect to the corresponding

material parameters.

The results in Table 2 suggest that µr,pp and µs,pp both

play a significant role in determining the final repose angle
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Fig. 11 Parity plots for top and

bottom angles of repose in the

sand-pile test. Blue squares, red

squares green squares purple

squares denotes first, second,

third and fourth angle

measurements, respectively.

(Color figure online)
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Table 2 Parameter estimation

results for power law model

fitting to relate DEM input

parameters to angle of repose

responses

Parameters Upper angle of repose (α) Lower angle of repose (θ)

Estimates 95 % Confidence interval Estimates 95 % Confidence interval

A 49.53 1.77 49.40 1.25

b (→ εp) 0.04 0.01 0.01 0.01

c (→ µs) 0.22 0.02 0.23 0.01

d (→ µr) 0.15 0.01 0.16 0.01

Fig. 12 Estimated power dependencies of varied DEM model parame-

ters on particle flow rate out of the hopper as a function of discharging

time. Error bars denote asymptotic 95 % confidence intervals calculated

from the parameter estimation process

in each simulation whilst εp has a very weak influence. The

values of µs,pp is considerably more significant than µr,pp

in determining the lower angle. This result is consistent with

the findings in [31].

In addition, the impact of model parameters in the sim-

ulation matrix can be assessed against FR at various points

during the simulations. Using the hopper FR measurements

(number of particles s−1) as exemplified in Fig. 3, the power

law relationship in Eq. (19) was applied at time points,

t = 1, 2, 3, 4 s during the simulation. Estimated parame-

ters from this analysis are shown in Fig. 12.

The results in Fig. 12 show a clear dependency of FR on

µs,pp throughout the discharging time, whilst µr,pp and εp

remain insignificant in their contribution. The role of µs,pp

also appears to shift with time. Initially, choice of µs,pp value

has a negative power influence on FR (i.e., larger µs,pp results

in a slower FR) however this shifts to a positive relationship

towards the end of the discharging time. This suggests that

the particle flow mechanism out of the hopper changes; this

is a shift from core flow under gravity to flow from the sides

of the hopper.

To investigate further, the FR profiles (e.g., Fig. 4) were

analysed for a smaller range of experiments. The five simu-

lations chosen encompassed the high-low values for µs and

µr (0.05 → 0.50 and 0.05 → 0.45, respectively) as well as

a centre point (µs,pp and µr,pp = 0.25). To model the flow

profiles and discriminate further behaviours as a function

of DEM inputs parameters, the following three-parameter,

time-dependent empirical model was set up:

FR(t) =
FR0

1 + (K · t)n
, (20)

where FR denotes flow rate, FR0 is the estimated initial FR

at time t = 0 s, K is a characteristic time for the onset of FR

decrease, n is the rate of decline of the FR. The results for

the five analysed simulations are shown in Fig. 13 below:

Examination of Fig. 13 shows the time-dependent model

approach describes the simulation trends well in all cases.

The results of the parameter estimates for the model appli-

cation are shown in Table 3.
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Fig. 13 Particle flow rate out of the hopper versus discharging time for

five select simulations. εp = 0.45 in all cases; solid lines denote model

prediction using Eq. (20)

Table 3 Parameter estimation results for fitting of time-dependent

empirical model to flow rate data

µs,pp µr,pp FR0 (s−1) K (s−1) n (–)

0.05 0.05 4830 ± 84 0.322 ± 0.004 9.43 ± 0.87

0.5 0.05 3340 ± 77 0.231 ± 0.001 15.3 ± 2.60

0.25 0.25 3500 ± 96 0.254 ± 0.004 14.9 ± 2.61

0.05 0.45 4720 ± 89 0.317 ± 0.004 10.6 ± 1.15

0.5 0.45 3160 ± 156 0.242 ± 0.006 17.8 ± 3.85

In Table 3, a significantly higher FR0 parameter is esti-

mated in the simulations using µs,pp = 0.05 in comparison

to µs,pp = 0.25 and 0.5. This again shows the strong

influence of µs,pp on the system but also suggests that the

impact of µs,pp on this result is non-linear as the differences

between µs,pp = 0.05 and 0.25 are considerably greater

than µs,pp = 0.25 and 0.50. Accordingly, the K parameter

matches the estimates for FR0; faster initial flows result in a

faster emptying of the central core leading to an earlier onset

of FR decline.

In addition, the rate of decline index, n, shows an influence

of µs,pp. Where µs,pp = 0.05, this rate is much slower

than the other results, suggesting it takes longer for the side

sections of the hopper to empty. This is logical as in the

µs,pp = 0.05 systems, a greater final magnitude of particles

are found to have flowed out of the hopper by the end of the

simulation; an observation matched by a smaller final upper

angle of repose.

Average particle velocity against discharge time at the ori-

fice window was also investigated in the same manner as

particle FR. Between different parameter combinations, the

differences in particle velocity during the constant FR period

were much less clear. This was owed to lower signal to noise

ratio and also smaller differences in magnitude of velocity

between the simulations. As a result total FR of particles was

chosen as a clearer descriptor to characterise differences in

simulation outputs as a function of parameter choice.

4.2.2 Level 2 analysis

In this analysis, an approach is taken whereby bulk observed

parameters (e.g., FR, angle of repose) are analysed as a func-

tion of sensitivities derived from the equations of motion

for mass [Eq. (2)] and moment of inertia [Eq. (3)]. In order

to understand the mathematical structure of these sensitivi-

ties, Eqs. (2) and (3) are firstly re-examined as functions of

εp, µr,pp and µs,pp as follows:

mi
dvi

dt
=

∑
(

Fn
ij + Ft

ij

)

+ mi g = f (ε, µs) , (21)

Ii
dωi

dt
=

∑
(

Ri × Ft
ij − τ r

ij

)

= f (ε, µs, µr ) . (22)

In Eq. (22), µs acts as a function due to the influence on

the value of Ft
i j as a result of the relationship in Eqs. (6),

(21) and (22) can be expanded using the expressions for Fn
i j

as Ft
i j as defined in Eqs. (4) and (5). Response sensitivities

of Eqs. (21) and (22) can be calculated analytically by differ-

entiating these expressions with respect to the parameter of

interest (εp, µr,pp and µs,pp):

d
(

mi
dvi
dt

)

dP
=

d
(

∑

(Fn
ij + Ft

ij) + mi g
)

dP
, (23)

d
(

Ii
dωi
dt

)

dP
=

d
(

∑

(Ri × Ft
ij − τ r

ij) = f (ε, µs, µr )
)

dP
.

(24)

The analytical descriptions of the sensitivities in Eqs. (23)

and (24) are extensive, and also contain velocity (vn
i j and vt

i j )

and overlap (δn
i j and δt

i j ) inputs, which can vary significantly

on an individual particle basis over a given simulation. Hence

for the Level 2 analysis, which aims to link bulk observa-

tions to fundamental model structure, a pragmatic approach

is taken utilising simplified, general form descriptions of the

response sensitivities with respect to the input parameters.

The mathematical appearance of these derivatives is shown

in Table 4.

In Table 4, it is seen that µr and µs take the form of sim-

ple linear functions whilst the function for εp is distinctly

non-linear and also has a more complex derivative function.

These derivatives are utilised in the generation of the two

parameter sensitivity matrices for the PCA; one for the equa-

tion of motion for mass and moment of inertia, respectively.

Each matrix therefore comprises 4 columns (3 parameters

and 1 bulk response) and 36 rows to account for all para-

meter combinations in the DoSs. Equations (25) and (26)

below illustrates the appearance of the sensitivity matrix, Si ,
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Table 4 Generalised

appearance and derivatives of

input parameter functions in the

fundamental DEM equations

Parameters General form in both

equations

Derivative of general

form (δ f/δPk)

General derivative in

equation of motion

for mass [Eq. (21)]

General deriva-

tive in equation of

motion for moment

of inertia [Eq. (22)]

εp
lnεp

((lnεp)2+π2)0.5

lnεp

((lnεp)2+π2)0.5

µs ·π2

(εp ·((lnεp)2+π2))1.5

µs ·µr ·π2

(εp ·((lnεp)2+π2))1.5

µs µs 1
lnεp

((lnεp)2+π2)0.5

µr ·lnεp

((lnεp)2+π2)0.5

µr µr 1 0
µs ·lnεp

((lnεp)2+π2)0.5

Table 5 Impact of DEM

parameters in terms of equation

of motion for mass and moment

of inertia derivatives on final

bottom angle of repose (θ) in

simulations

Equation of motion Eigenvalues Eigenvectors

Principal components εp µs µr

Mass Λ1 = 9.63 0.05 −0.90 0

Λ2 = 0.72 −0.99 −0.08 0

Moment of inertia Λ1 = 2.36 −0.04 −0.46 0.88

Λ2 = 1.34 0.02 −0.88 −0.46

which is utilised in the PCA approach described in Sect. 2.2.2.

In both matrices, the examples include the bottom angle of

repose response, θ, for n simulation outputs:

⎡

⎢

⎢

⎣

∂
(

mi
dvi
dt

)

∂εp,1

∂
(

mi
dvi
dt

)

∂µs,1

∂
(

mi
dvi
dt

)

∂µr,1
θ1

∂
(

mi
dvi
dt

)

∂εp,n

∂
(

mi
dvi
dt

)

∂µs,n

∂
(

mi
dvi
dt

)

∂µr,n
θn

⎤

⎥

⎥

⎦

, (25)

⎡

⎢

⎢

⎣

∂
(

Ii
dωi
dt

)

∂εp,1

∂
(

Ii
dωi
dt

)

∂µs,1

∂
(

Ii
dωi
dt

)

∂µr,1
θ1

∂
(

Ii
dωi
dt

)

∂εp,n

∂
(

Ii
dωi
dt

)

∂µs,n

∂
(

Ii
dωi
dt

)

∂µr,n
θn

⎤

⎥

⎥

⎦

. (26)

Results from the PCA when analysing the bottom angle

of repose are shown in Table 5. In Table 5, the first two prin-

cipal components from the analysis are shown (subsequent

components were negligible in magnitude). For the equa-

tion of motion for mass, the first principal component is

considerably larger than the second and is dominated by a

strong relationship with µs,pp. For the equation of motion for

moment of inertia, the first and second principal components

are comparable in magnitude, the first showing the greatest

contribution from the µr,pp eigenvector and the second from

µs,pp. Across both model responses, εp has a very minor role

in determining the angle of repose result. These results are

highly comparable with the findings from the model results

shown in Table 2.

The PCA method was also applied the FR data analysed

in Sect. 4.2.1. µs,pp was again found to be a key eigenvector

in the main principal components when considering both the

contact and inertial models. Using a snapshot of the flows

after 1 and 4 s for analysis, it was found that the µs,pp eigen-

vector values were positive at 1 s discharge time and negative

at 4 s discharge time. This distinct shift in correlation between

µs,pp and the FR response is consistent with the empirical

model findings in Fig. 12.

4.2.3 Level 3 analysis

As with the Level 2 analysis, the Level 3 approach utilises the

derivatives of the fundamental DEM equations in Eqs. (2) and

(3). The key difference is that the full analytical derivative

descriptions derived from Eqs. (23) and (24) are used in this

analysis rather than the generalised form used in the Level

2 analysis (see Table 4). As a result, input variables such

as overlap distance (δn
i j and δt

i j ), velocity (vn
i j and vt

i j ) and

angular velocity (ωi j ) are needed as inputs for the sensitivity

calculations using these derivatives.

To achieve the above, the Level 3 analysis does not rely on

using the bulk model responses that were used in the Level

2 analysis. Instead, the analysis relies on selecting a range

of feasible velocities and overlaps that could feature within

the system under study. An estimation of the range of values

found for these variables in the sand-pile test was ascertained

by analysis of a selection of outputs files taken from the

simulation matrix used in this study. The input variable levels

chosen for calculation were found to be thus:

• vn
i j = 0.0001, 0.01 and 1 m s−1,

• vt
i j = 0.0001, 0.01 and 1 m s−1,

• ωi j = 0.01, 1 and 100 rad s−1,

• δn
i j and δt

i j = 0.1, 1 and 10 % of particle diameter.

In the above, δn
i j and δt

i j are set equal in all cases. This

approach is referred to as an a priori approach as these values

can, in theory, be input into this analysis prior to running any
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Fig. 14 Normalised norms of

the parameter sensitivity matrix

for µr,pp, εp, E and µs,pp

using different combinations of

µr,pp and µs,pp values: a

equation of motion for mass

response, and b equation of

motion for moment of inertia

response

DEM simulations, to gauge model response sensitivities. The

analysis in this section was carried out in Microsoft Excel.

The input parameter combinations for the five simulations

analysed in Fig. 12 were used in this analysis. This was done

for simplicity, as these simulations exemplify the important

parameters in the system. For each of the five simulations,

the above input variables were applied to the model response

sensitivities in all possible combinations (34 = 81 in total).

Derivatives for equations of mass and moment of inertia were

calculated with respect to εp, µs,pp, µr,pp and E. Young’s

modulus was included despite the fact that it was previously

shown to be insignificant over the range tested. This was done

to provide an additional cross check for effectiveness of the

Level 3 analysis method.

For a given combination of parameters, this yielded a para-

meter sensitivity matrix of 81 × 4 for each of the two model

responses. These matrices were then analysed using the norm

of the parameter sensitivity matrix shown in Eq. (17), as

opposed to the PCA approach. The authors note that PCA

could be used here, but the norm of the parameter sensitivity

matrix is demonstrated instead to show the applicability of

conveniently lumping sensitivities to deliver the same level

of understanding as was shown in the Level 2 analysis.

To demonstrate the importance of each parameter, the

norms of the parameter sensitivity matrix were themselves

normalised for both of the model responses. Figure 14 shows

the result of this process for all five simulation conditions.

In Fig. 14, µs,pp is clearly seen to be the dominant para-

meter when considering the equation of motion for mass,

regardless of the five input parameter conditions. For inertia

model response, the dominant parameter is µr,pp, although

a smaller but significant contribution is seen from µs,pp.

Both outcomes are consistent with the semi-empirical find-

ings using the PCA method. Prior to normalisation, it is noted

that the sensitivities for µs,pp in the equation of motion for

mass are, on average, two–three orders of magnitude greater

than those of µr,pp in the equation of motion for moment of

inertia. This would suggest that a shift in parameter values

has a much greater impact on contact force calculations in

this system, rather than torque, thus showing the dominance

of µs,pp in the sandpile test under study.

To further understand parameter significance in the sys-

tem, the levels of cross-correlation between the parameters

can also be assessed using Eq. (17) and are reported in

Table 6.

In addition to the small contribution that E and ε p make to

the sensitivity of the responses within the DEM simulation,

the two parameters are also completely cross correlated. The

other parameter relationships for both model responses show

no significant cross correlation over the test conditions used

to calculate the sensitivities. This is important for the µs,pp

and µr,pp relationship in the equation of motion for moment

of inertia; µs,pp is shown to play a minor role in this instance

and here is confirmed to be largely free of influence from

µr,pp. The cross correlation matrix was very similar when

the other parameter combinations investigated in Fig. 14 were

used as inputs.

It is observed that the three levels of analysis used all point

to very similar conclusions, namely that µs,pp has the largest

impact on the DEM simulation, whether it be via bulk obser-

vation analysis or the use of a priori inputs to underpinning

models applied in DEM. Consistent observations between

the methods are also true for the roles of µr,pp and εp.

In terms of computational time, the Level 3 approach is

the fastest to implement. Once the user has set up a cal-

culation method for the various derivatives and sensitivities

for the system, parameter significance can be quickly ascer-

tained over a range of overlaps and velocities. Parameters

themselves however have to be changed between each assess-

ment. The drawback to the Level 3 lies in the selection

of appropriate input velocities and overlaps. This ideally

should be scoped from DEM simulation results, as was car-

ried out in this paper. Levels 1 and 2 approaches are more

time consuming as they require the completion of lengthy

DEM simulations to obtain the bulk outputs, but the sen-

sitivity analysis process is much faster and can factor all

combinations of input parameters explored simultaneously.

In essence, a combinatorial approach between these methods
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Table 6 Example

cross-correlation matrix for

µr,pp, εp, E and µs,pp

parameters for test conditions

when µr,pp = 0.05, εp =
0.45, E = 2 × 107 Pa and

µs,pp = 0.5

Equation of motion for mass response Equation of motion for moment of inertia response

µr,pp εp E µs,pp µr,pp εp E µs,pp

µr,pp 0 0 0 0 µr,pp 1 0 0 0

εp 0 1 0 0 εp −0.344 1 0 0

E 0 −1 1 0 E 0.344 −1 1 0

µs,pp 0 −0.147 0.147 1 µs,pp 0.499 −0.090 0.090 1

could be fruitful. A small matrix of initial DEM simulations

could be used to scope system behaviours and feed into the

Level 3 analysis. Understanding from this can then inform

a select number of targeted DEM simulations where input

parameters are varied. These can then be analysed using the

Levels 1 and 2 approaches. Concerning the matrix operations

for all three levels, these usually require just a few seconds

using aforementioned statistics analysis commercial pack-

ages.

5 Conclusions

In this study, we proposed the application of a statistically

driven methodology to understand the impact of DEM input

parameters, such as Young’s modulus (E), restitution coef-

ficient (εp), static friction coefficient (µs,pp) and rolling

friction coefficient (µr,pp), on the bulk response for a sim-

ple system. The repose angle and FR and FR bulk responses

were found to show significant differences as a function of

choice of input parameters, whilst average particle velocity

at the hopper orifice was found to be much less sensitive. The

link between input parameter and output responses has been

considered at three levels of complexity, using a statistical

approach. The statistical analysis results showed consistency

with the DEM direct observations. For example, it was shown

that static friction coefficient µs plays a primary role on

both angle of reposes and FR, followed by a less but still

significant role for the rolling friction coefficient µr . The

restitution coefficient εp was found to have an insignificant

impact for this system. These observations are likely to be

dependent on the system of study and their relative impor-

tance may be different on a case by case basis. The proposed

statistical analysis method could be very helpful to evalu-

ate more complicated systems including a higher number of

input parameter.

A practical routine has been presented to investigate the

link between bulk behaviour and single particle properties at

three levels:

• Level 1 The simplest models or functions are built to

describe the link between input parameters and output

bulk responses. The empirical relations contain quali-

tative and quantitative relations between the input and

output quantities. Practically, after carrying out the para-

metric DEM simulations under a full factorial DoSs,

parameter estimation method can be used to work out

the empirical equations. For a sandpile example, repose

angle or FR can be expressed as α or θ or FR = A · εb
p ·

µc
s,pp · µd

r,pp.

• Level 2 parameter sensitivity coefficients were derived

from fundamental equations applied in DEM simulations

(e.g., Hertz–Mindlin). A parameter sensitivity matrix was

constructed and linked to the bulk observations from the

DoSs. PCA is used to find the weight of the contribution

from each parameter, which is implied by the eigenvec-

tors of the sensitivity matrix.

• Level 3 parameter impact sensitivity on the intrinsic phys-

ical model response (e.g., contact force and torque) can

be analysed, again using the parameter sensitivity matrix.

Cross-correlation coefficients between parameters can be

obtained from the covariance matrix of the parameter sen-

sitivity matrix. In this approach, a priori checks can be

made before running simulations to indicate which para-

meters should be best understood. This provides better

preliminary indications of which parameters should be

measured and where the calibration or material proper-

ties measurements effort should be focused. This has the

potential to reduce computation time and avoid produc-

ing misleading results from simulations.
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