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Abstract The discrete element method has emerged as a
powerful predictive tool for the numerical modelling of many
scientific and engineering problems involving discrete and
discontinuous phenomena. There are nevertheless compu-
tational challenges to resolve before industrial scale appli-
cations can be effectively simulated. This multi-part paper
aims to address some of the theoretical and computational
issues central to achieving this goal. In the first part of this
paper, a simple but generic theoretical framework is estab-
lished for the development of a comprehensive set of scaling
conditions, under which a scaled discrete element model can
exactly reproduce the mechanical behaviour of a physical
model. In particular, three basic physical quantities and their
scale factors can be freely chosen. A special selection leads
to a unique set of scale factors governing an exact scaling,
which also gives rise to the requirement that all the interac-
tion laws employed in a scaled model be scale-invariant. The
subsequent examination reveals that most commonly used
interaction laws, if all material (mechanical and physical)
properties are treated as constant, do not possess such a fea-
ture and therefore cannot be directly employed in a scaled
model. The problem can be solved by treating the scaled par-
ticles as pseudo-particles and by properly scaling the inter-
action laws. The resulting scaled interaction laws become
scale-invariant and thus can be used in a scaled model.
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1 Introduction

The last ten years have witnessed rapidly increasing research
interest in the development of different particle based meth-
ods for a wide range of applications. As one of the dom-
inant particle-based methods, the discrete element method
(DEM) has become firmly established as the most powerful
numerical technique to model many scientific and engineer-
ing problems involving particle/particulate phenomena since
it was originated in the 1970s [1]. The DEM, in its classic
form, represents individual (disjoint) physical particles as
(rigid) elements which interact only along their interfaces.
Although significant advances have been made over the last
two decades in many aspects of discrete element modelling,
some fundamental and practical issues remain to be prop-
erly addressed. Among the computational challenges to be
tackled, the ability of the DEM to simulate industrial- or
macro-scaled problems within a realistic computer time scale
is probably the most pressing issue from the application point
of view.

The problem scale of a physical or discrete element model
may be represented by introducing a scale number, Sn ,
defined as

Sn = D/R

where D and R are the characteristic dimension of the prob-
lem concerned and the characteristic size of discrete elements
used respectively. A scale classification shown in Table 1
may be adopted.

(Micro-scale) problems with less than several million par-
ticles have been routinely modelled by DEM. However, real
industrial applications involve, at least, billions of particles
and such applications, classified as macro-scale problems,
cannot be effectively modelled yet due to the limitation
of computer resources currently available. There are sev-
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Table 1 Scale classification of particle systems

Scale Scale number Sn Typical number
of particles

Micro-scale < 102 < 106

Meso-scale 102–103 106–109

Macro-scale (industrial) >103 >109

eral possible solutions, including parallelisation, continuum
approximations and coarse-graining approaches.

Use of parallel computing platforms to speed up DEM
simulations [2] may be the most straightforward solution.
However, apart from having access to the most powerful par-
allel computing facilities in the world, the required computa-
tional costs for simulating a realistic industrial problem are
still extremely excessive. In the foreseeable future, even the
fast growth of computing power is very unlikely to meet the
ever increasing practical needs.

Continuum approximations offer a different approach
whereby the discrete particle systems are represented as a
continuum medium by applying various homogenisation or
averaging techniques [3]. This approach aims to establish a
set of balance equations with unique and time-varying consti-
tutive models for the problem concerned, which then can be
solved by using standard continuous based numerical tech-
niques such as finite element methods to significantly reduce
the computational costs. Although this is a very promising
approach, and particularly when viewed within a multi-scale
modelling framework, it may not be able to capture all essen-
tial physical characteristics of many granular systems of an
inherent discrete and diversity nature.

On the other hand, coarse graining techniques, a term
borrowed from Molecular Dynamics, have recently gained
some attention as a possible approach to tackle macro-
scale problems, in which particles are artificially enlarged or
(up-)scaled in DEM models. As a result, the number of dis-
crete elements required can be significantly reduced and
the original problems can be solved within a reasonable
time scale. Several versions of coarse-graining are available
[4–6], but they are generally derived in an ad-hoc manner,
and some questions remain to be answered before the tech-
niques can be fully employed.

This multi-part paper aims to address some of the theo-
retical and computational issues central to the effective mod-
elling of macro-scale industrial problems. The first part of
the paper attempts to answer the question of under what con-
ditions a scaled discrete element model can exactly repre-
sent the original physical problem. The second part reviews
existing coarse graining techniques for discrete element mod-
elling of particle systems so as to propose a general and sys-
temic development framework. The third part develops a new
methodology to estimate the solution accuracy.

In our previous work [7], a set of scaling laws for upscaling
of discrete element models are proposed in terms of three sim-
ilarity principles, namely geometrical, mechanical and tem-
poral. The current work is an extension and further enhance-
ment of the approach in that a much simpler and more generic
theoretical framework is established for the development of
a comprehensive set of scaling laws governing the exact scal-
ing of a discrete element model. This will lay the foundation
for the developments in the subsequent parts of the paper.

2 Scaled model: exact scaling conditions

2.1 Physical and scaled models

Consider a general particle system (referred to as the physical
model in what follows) and a possibly scaled discrete element
model (referred to as the scaled model). The physical model
is assumed to comprise particles that have various size dis-
tributions and are (randomly) packed in a domain. The parti-
cles may be subject to the action of external forces (applied
and/or gravitational), or driven by other phases, such as fluid,
electrical or magnetic fields, or by prescribed displacement
and/or velocity on the domain boundaries. The correspond-
ing discrete element model, assumed to have been scaled, is a
geometrically exact representation of the physical problem,
i.e. both models have the same particle number and particle
packing configuration, and the particle sizes and the domains
in the two models are different only by a constant (spatial)
scale factor h.

The scaled model is also assumed to be subjected to the
same loading/boundary conditions as in the physical model.
In what follows, the overbar − will be used to denote a quan-
tity associated with the scaled model. Note that the following
discussions are based on a general 3D setting. The same con-
clusions can be readily obtained by treating a 2D case as a
special 3D case. We further assume that particles are spheri-
cal, but the conclusions to be drawn are generally also valid
for other shaped particles.

Let R and R̄ be the radii of an arbitrary particle in both the
physical and scaled models respectively, and D and D̄ denote
the characteristic lengths of the domains in both models. Then

R̄ = h R; D̄ = h D; S̄n = Sn (1)

i.e. the scale number Sn remains the same for both models.
Therefore, the scaled model satisfies the principle of geomet-
ric similarity as stated in [7].

2.2 Particle strain, stress and interaction laws

A key issue in the modelling of particle systems is to cor-
rectly model the interaction forces between a pair of contact-
ing particles. The interaction laws that describe the forces
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Fig. 1 Representative geometrical features of a sphere

between a pair of particles can be generally expressed in
force-displacement format as:

F = F(u, R, ζ ) (2)

where F is the contact force (vector), either in the normal or
tangential direction; R represents the intrinsic particle length-
scale; u is the overlap/separation/sliding distance of the two
contacting particles whose initial value u0 is chosen such that
the corresponding force is zero, i.e. F(u0, R, 0) = 0; and ζ

represents some internal parameters or state variables, if they
exist. For instance, ζ may be the accumulated ’total’ sliding
distance in the ’plasticity theory’ based Columbic friction
model [8,9], or the maximum pressure experienced in a his-
tory pressure dependent cohesive force model. To facilitate
the subsequent discussion and to focus on key issues, ζ is
ignored.

Introduce the representative length L , area A and volume
V of a particle (for a sphere of radius R, L = 2R; A =
L2; V = A × L = L3. See Fig. 1) and also define the
nominal particle (contact) strain and stress respectively as

ε = u/L; σ(u, R) = F(u, R)/A (3)

Then the interaction law can be equivalently expressed in the
particle stress-strain format,

σ = σ(ε, R) (4)

which is the constitutive model in the classic continuum
mechanics sense. The above particle strain and stress are
defined for each contact with which a given particle is
involved. Note, however, that this strain and stress defini-
tion is a much simplified treatment of the general (averaged)
particle stress and strain of a particle assembly. See [10], for
instance, for the topic.

Further define a particle strain (contact) energy func-
tion, Es(u, R), that is associated with the interaction force
F(u, R) as

Es(u, R) =
u∫

0

F(u, R)du (5)

Similarly, the particle strain (contact) energy density func-
tion can be defined as

es(R, ε) = E(u, R)

V
=

ε∫

0

σ(ε, R)dε (6)

while for a multi-contact case,

es(R, ε) =
∑

i

εi∫

0

σi (εi , R)dε (7)

where the subscript i is used to denote a quantity for the i-th
contact with which the particle is involved.

In addition, two more energy densities can be defined for
each particle: the kinetic energy density: ek = mv2/2 V =
ρv2/2 where m, V and v are the mass, volume and velocity
of the particle respectively; and the total energy density: e =
es + ek .

2.3 Exact scaling conditions

In what follows, a complete set of scaling conditions under
which the scaled model can exactly represent the behavior
of the original physical model will be established. In our
previous work [7], the conditions are expressed in terms of
the three similarity principles, whereas the conditions here
are derived from the governing equations in a straightforward
manner, based on simple unit conversions of all the physical
quantities involved in both physical and scaled models. These
conditions must be satisfied to ensure that the results obtained
in the scaled model can be exactly scaled back to obtain the
results for the physical model and vice versa, and therefore
define a set of exact scaling laws.

2.3.1 Governing equations

The mechanical motion of the particle system is fully gov-
erned by Newton’s second law. The governing equation for
an arbitrary particle can be generally expressed as:

mü(t) + Fd(t) + Fint (t) = Fext (t) (8)

where m is the mass of the particle; Fd is the damping force
accounting for any energy dissipation in the system; Fint is
the resultant of all the interaction forces from other particles
or other phases defined by interaction laws; Fext is the (resul-
tant) external force applied if any; and ü is the acceleration,
where u can be viewed as the displacement/position. The
same equation can be written for the particle in the scaled
system as:
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m̄ ¨̄u(t) + F̄d(t) + F̄int (t) = F̄ext (t) (9)

The exact scaling laws establish the conditions required
to guarantee the equivalence between the physical system
and the scaled model, i.e. the two sets of Eqs. (8) and (9)
are mathematically equivalent, or simply differ only by a
constant factor.

In the classic dimensional analysis [11,12], a set of non-
dimensional quantities are sought from which a set of scal-
ing laws can be identified. Although some insightful non-
dimensional parameters may emerge from this approach, the
procedure may not be straightforward, and particularly, dif-
ferent sets of non-dimensional parameters may be derived for
different applications and in different ways. The same com-
ments also apply to some earlier work on the development
of scaling laws for particle systems [13].

Our previous work [7] takes a relatively simple approach,
in which a set of scaling laws is identified by ensuring that
all the corresponding forces involved in both models are pro-
portional:

m̄ ¨̄u
mü

= F̄d

Fd
= F̄int

Fint
= F̄ext

Fext
= λ (constant) (10)

A more straightforward approach is adopted in this work,
which aims to directly establish the unit conversion or scale
factors of individual physical quantities involved between the
physical and scaled models. Let q be an arbitrary physical
quantity in the system. A scale factor λq for q is solved such
that

q̄ = λqq (11)

The entire set of scaling laws will be defined when the scale
factors for all the physical quantities are determined.

2.3.2 Independent quantities

Physical quantities are not all mutually independent but inter-
dependent. There are only a few independent or basic quan-
tities for a physical system, from which all other quantities
can be derived.

The scaled computational model provides an opportunity
to choose a different set of basic quantities from the con-
ventional SI system. Furthermore, two different sets of the
fundamental units can also be assigned to the basic quantities
for both physical and scaled models. As a result, other phys-
ical quantities can be expressed in terms of the chosen basic
quantities and of their respective units in the two models. The
exact scaling laws are to determine the unit conversion or
scale factors for all the relevant physical quantities between
the two models.

It is well known that there are three basic quantities
for mechanical systems without considering other physical
phases, such as thermal, electrical and magnetic, in the SI sys-

tems: Length [L], Mass [M] and Time [T] (where [.] denotes
the dimension of a physical quantity, following the common
convention), but other selections of three basic quantities are
possible. After the three basic quantities are chosen, their
corresponding conversion or scale factors between the phys-
ical and the scaled models can be arbitrarily set in principle.
The other quantities are dependent on the basic quantities,
and their conversion or scale factors will be automatically
fixed when the three basic scale factors are defined through
multiplicative conversion factors.

It is noted that there are different possible selections of
the basic quantities and the corresponding scale factors, each
leading to a different, but equivalent set of scale factors and
thus different scaling laws.

In our work, mass density [ρ] replaces mass as a basic
quantity, but length and time remain as the other two basic
quantities. The corresponding scale factors for these three
quantities, λL , λM , λρ are specifically chosen as:

λL = h; λM = h; λρ = 1 (12)

i.e. the length scale factor is the same as the (spatial) scale
factor h as expected; the temporal (or time) scale is the same
as the spatial factor; while the density is kept the same for
both systems. The advantages of such a special choice of the
basic scale factors will become apparent later.

2.3.3 Derived quantities and scale factors

After the three basic quantities and the corresponding scale
factors are defined, it is a simple exercise to work out the
scale factors for all the derived quantities. Table 2 lists com-
monly used physical quantities in particle systems, their scale
factors and dimensions in terms of the three chosen basic
quantities. The quantities are also grouped, in an ad-hoc
manner, into several categories including: basic, geometri-
cal, kinematic, dynamic and material. The list is, however, by
no means exhaustive, and additional quantities can be read-
ily added if needed. Except for angle and strain, other non-
dimensional quantities are not included in the table because
they remain dimensionless and the scale factors are equal to
one.

The best way to work out the scale factor for a quantity
is to express its dimension in terms of the basic quantities
and then to convert the dimensions to the scale factors. For
instance, for mass, using M = ρV gives

[M] = [ρ][L]3; λM = λρλ3
L = h3 (13)

and for force, using F = ma gives

[F]=[M][L][T ]−2 =[ρ][L]4[T ]−2; λF =λρλ4
Lλ−2

T =h2

(14)
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while for Young’s modulus E , consider the relationship
between the axial force F and the axial displacement u of
a 1D bar with Young’s modulus E , cross-section A and
length L:

F = E A

L
u

which leads to

[E] = [ρ][L]2[T ]−2; λE = λρλ2
Lλ−2

T = 1 (15)

Note that Table 2 is compiled for 3D cases. A similar table
can be obtained for 2D cases by the fact that the characteris-
tic length, area and volume of a particle can be collectively
described for both 2D and 3D cases as

L = 2R; A = Lnd−1; V = AL

where nd is the number of spatial dimensions concerned.
Table 2 shows that some quantities have the scale factors

equal to one. These are the direct consequence of the particu-
lar choice of the three basic quantities and their scale factors
and lead to some desirable results. In addition, a few remarks
on some subtle issues deserve to be made.

Remark 1 (Equivalence of particle energy density evolution)
Utilising the particle kinetic and strain energy (volume) den-
sities, ek and es , defined for a particle in Sect. 2.2, and further
defining ed = ∫

Fd du/V (where u is the displacement, and
V is the volume of the particle) as the total energy (volume)
density dissipated, and w = ∫

Fext du/V as the total work
done per volume by all the external forces acting on the par-
ticle, the governing Eq. (8) for a particle can be re-written in
an equivalent, energy rate balance format as

ėk + ėd + ės = ẇ (16)

The unity of the scale factors for ek and es from the table (and
obviously the same for ed and w) indicates that the energy
densities per particle are identical between the physical and
scaled models, ensuring an exact scaling between the two
models.

Remark 2 (Partial scaling for interaction laws) The funda-
mental feature that governs the the exact scaling of interaction
laws is dictated by the conclusion that the scale factors for
particle strain and stress are unity, as shown in the table.

Table 2 also lists some selected physical quantities that
may be involved in most particle systems. Except for mass or
mass density, the other quantities are mainly used in particle
interaction laws. This gives rise to two possible approaches
to imposing the exact scaling conditions on interaction laws.
In the first approach, the required scale factors are applied
consistently across to all the quantities involved, and this
seems to a desirable approach. Nevertheless, in practice, most
of material and model parameters in an interaction law are

Table 2 Selected physical quantities, symbols, dimensions and scale
factors

Quantity name Symbol Dimensions Scale
factor (λ)

Category

Length L [L] h Basic

Time T [T ] h Basic

Density ρ [ρ] 1 Basic

(Spatial) Position X [L] h Geometrical

Angular position,
angle of
rotation

θ [1] 1 Geometrical

Area A [L]2 h2 Geometrical

Volume V [L]2 h3 Geometrical

Displacement,
Overlap etc

u [L] h Kinematic

Velocity v [L][T ]−1 1 Kinematic

Acceleration a [L][T ]−2 h−1 Kinematic

Angular velocity θ̇ [T ]−1 h−1 Kinematic

Angular
acceleration

θ̈ [T ]−2 h−2 Kinematic

(Natural)
Frequency

ω [T ]−1 h−1 Dynamic

Force F [ρ][L]4[T ]−2 h2 Mechanical

Moment Mo [ρ][L]5[T ]−2 h3 Mechanical

Stiffness k [ρ][L]3[T ]−2 h Mechanical

Strain ε [1] 1 Mechanical

Stress σ [ρ][L]2[T ]−2 1 Mechanical

Kinetic energy
(volume)
density

ek [ρ][L]2[T ]−2 1 Mechanical

Strain energy
(volume)
density

es [ρ][L]2[T ]−2 1 Mechanical

Energy (volume)
density

e [ρ][L]2[T ]−2 1 Mechanical

Mass M [ρ][L]3 h3 Material

Young’s modulus E [ρ][L]2[T ]−2 1 Material

Surface tension κ [ρ][L]3[T ]−2 h Material

Surface energy
density

γ [ρ][L]3[T ]−2 h Material

Viscosity
(dynamic)

η [ρ][L]2[T ]−1 h Material

Viscosity
(kinematic)

ν [L]2[T ]−1 h Material

often viewed, either conveniently or mistakenly, as constant,
and therefore the same values are used for both physical
and scaled models. This leads to the second partial scal-
ing approach in which only the geometrical and kinematical
related quantities are scaled properly, while all the mate-
rial (mechanical and physical) properties, such as stiffness,
Young’s modulus, surface energy, surface tension and viscos-
ity etc, are treated as constant and thus the actual values in the
SI systems are used. Unsurprisingly, this apparently incon-
sistent approach will violate the scale-invariant property of
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some interaction laws and lead to some serious modelling
issues. The full implications of this partial scaling approach
will be addressed in the next section.

Remark 3 (Total computational costs) Assuming that the
same time-stepping integration scheme will be adopted for
solving both physical and scaled models, it is not difficult to
deduce that the scale factor for the time step �t associated
with the time-stepping scheme should be λ�t = λT = h,
which implies that the same number of time steps are required
in the scaled model as in the physical model. In other words,
the same computational costs will be involved in solving
both physical and scale models, and thus the exact scaling
offers no computational cost savings. In order to reduce the
computational costs for a large scale problem, some non-
exact scaling approaches, such as coarse-graining, has to be
employed, which will be the main theme of Part 2 of this
paper.

3 Scale invariance of interaction laws and
pseudo-interaction laws

Table 2 indicates that both particle strain and stress, as defined
in Sect. 2.2, remain the same for any scale factor h, i.e. they
are scale invariant. Since the particle strain and stress are
related to the overlap (or other contact related geometrical
quantities) and the contact force which are defined by inter-
action laws, all the interaction laws must therefore also sat-
isfy certain conditions. More specifically, consider the gen-
eral stress-strain form of an interaction law σ = σ(ε, R).
Since the particle strain ε is dimensionless and independent
of the scale factor h to ensure that the particle stress σ is also
independent of the scale factor, the function σ(ε, R) must
be dependent only on the strain and be independent of the
particle intrinsic length R:

σ(ε, R) = σ(ε) (17)

An interaction law satisfying the above condition is termed
scale-invariant. As discussed in the preceding section, all
interaction laws will be scale-invariant if all the quantities
involved in the model are scaled according to the scaling
conditions that have been established. However, when all the
material properties in interaction laws are viewed as con-
stant, some interaction laws will violate the scale-invariant
property.

3.1 Scale-invariant check for interaction laws

Now the scale-invariant property of some commonly used
interaction laws in discrete element modelling will be exam-
ined under the condition that all physical parameters are
constant. Those interaction laws that are found to be scale-

invariant can be safely employed in a scaled model without
any modification, while this is not the case for those laws that
are not scale-invariant.

(1) Linear (spring) contact law F = ku. This is the most
commonly used (normal) contact law where k is the (normal)
stiffness coefficient. The corresponding particle strain-stress
relation has different forms for 2D and 3D cases as follows:

σ(ε, R) =
{

kε for 2D

kε/L for 3D
(18)

It is clear that if the coefficient k is assumed to be constant,
the linear contact law is scale-invariant for 2D problems but
not for 3D. In other words, when the linear contact law is
employed in a scaled 3D model, the coefficient k must not
be a constant but be related to the particle radius R.

(2) The Hertzian contact law (for 3D). The normal contact
force between two linear elastic spheres of radii R1 and R2

is given by [14]

F = 4E
∗

3
(R

∗
u3)1/2 (19)

where R
∗

is the effective radius:

1

R∗ = 1

R1
+ 1

R2

and E
∗

is the effective Young modulus:

1

E∗ = 1 − ν2
1

E1
+ 1 − ν2

2

E2

in which E1, E2 are the elastic moduli and ν1, ν2 the Pois-
son’s ratios associated with each body. The corresponding
strain-stress form is

σ(ε, R) = 4E
∗

3
ε3/2 (20)

where the characteristic length is taken to be L = R
∗
. Clearly,

the form is particle size independent. Thus it is concluded that
the Hertzian contact law is scale-invariant for 3D spherical
particles.

(3) Coulomb friction models. The classic Coulomb model
states that the friction force Ft can be calculated as

Ft = −μFn u̇t/‖u̇t‖ (21)

where μ is the coefficient of friction, Fn is the magnitude
of the normal contact force and u̇t is the tangential con-
tact velocity. Obviously, this friction model will be scale-
invariant if Fn is scale independent.

A regularised version of the classic Coulomb model
(Fig. 2) is, however, often adopted in DEM [8]:

Ft = − u̇t

‖u̇t‖

{
kt ut ; kt ut < μFn

μFn; kt ut ≥ μFn
(22)
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Fig. 2 Classic and regularised Coulomb friction models

where ut is the accumulated tangential displacement or slid-
ing distance, and kt is the tangential stiffness coefficient
which is normally a constant. Following the same argument
as in the linear contact law above, it can be concluded that the
regularised Coulomb model is scale-invariant for 2D cases
but not for 3D cases.

(4) Viscous damping model. A damping force or a similar
mechanism needs to be included in the DEM formulation to
account for energy dissipation in particle systems. A viscous
damping model is most commonly used for both local and
global damping, in which the damping force is defined as

Fd = 2mωξv (23)

where m is the (contact or effective) mass; ω is the natural
frequency (if properly defined); and ξ is the damping ratio,
a non-dimensional constant. It is easy to verify based on
Table 2 that the viscous damping model is scale-invariant.

(5) Contact models for adhesive elastic particles. There
are two commonly used contact models for two adhesive
contacting spherical particles: The JKR and DMT models
[14–17]. The former is more suitable for soft particles, while
the latter is more appropriate for hard particles. The JKR
model states that the normal contact force between two con-
tacting adhesive elastic spheres can be expressed as (see also
Fig. 3):

Fn = 4E
∗
a3

3R∗ −
√

8π�γ E∗a3 (24)

where a is the contact radius; �γ = γ1 + γ2 − γ12 is the
surface energy in which γ1,2 are the adhesive surface energy
per unit of area for both surfaces respectively, and γ12 is the
interfacial surface energy. The first term on the right hand
side of the formula corresponds to the standard Hertzian con-
tact force and the second term is the contribution from the
particle adhesion. Converting the formula to the stress-strain
form will show that the first term is scale-invariant as already
established, but that the second term is not. Therefore, the

Fig. 3 Hertz and JKR models

Fig. 4 Liquid bridge force between two wet spheres

JKR model is not scale-invariant. A similar conclusion can
be drawn for the DMT model.

(6) Liquid bridge force between two wet spheres (3D). The
cohesive force between two adjacent spheres (assuming the
same size) due to the capillary effect is normally described
by [18]

F = 2πκ R sin φ sin(φ + θ)︸ ︷︷ ︸
surface tension

+π R2�p(R, u, φ, θ) sin2 φ︸ ︷︷ ︸
hydrostatic pressure

(25)

where κ is the surface tension of the liquid; φ is the half
filling angle; θ is the solid-liquid contact angle; and �p is the
pressure difference across the air-liquid interface depending
on R, φ, θ and u (which is now the separation distance of the
two spheres, s) (see Fig. 4) and is normally determined by
the Laplace–Young equation [20]. The corresponding strain-
stress form reads

σ(ε, R)=[
πκ sin φ sin(φ+θ)+ π

4
�p∗(ε, φ, θ) sin2 φ

]
/L

(26)

where �p∗ is a dimensionless pressure independent of the
particle size R and dependent on the particle strain ε and thus
is scale-invariant. Nevertheless, the presence of the character-
istic length L in (26) indicates that the liquid bridge induced
cohesive force is not scale-invariant in 3D cases. Again, this
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highlights a potential problem when a liquid bridge force
model is used without modifications in a scaled model involv-
ing wet particles.

(7) Van der Waals forces between two spheres [19]. For
modelling very fine particles, Van der Waals forces may play
a very important role, and collectively represent weak inter-
molecular bonding (attractive) forces between two particles
at a microscopic level. The so called Hamaker model is often
applied in DEM for fine particle simulations, which states
that the attractive force between two spheres is given by

F = AR
∗

6u2 (27)

where A is the Hamaker constant; R
∗

is the equivalent radius
of the two spheres, as defined in the Hertz model above; and
u is the separation distance of the two spheres. Converting it
into the stress-strain form will reveal that the Hamaker modle
is stress-strain form reads

σ(ε, R) = A

6R∗ 3
ε2

(28)

(8) Hydro-dynamic forces acting on spheres. When a fluid-
particle interaction problem such as a fluidised bed is simu-
lated by coupling DEM and fluid solvers, the hydrodynamic
forces acting on a particle from the fluid flow may need to
be determined by using some empirical formula. The drag
force acting on a sphere in a fluid flow, for instance, can be
expressed as

Fd = 1

2
ρ f v

2cd A (29)

where ρ f is the mass density of the fluid; v is the relative
speed of the sphere to the fluid; A is the cross-section area
of the sphere; and cd is called the drag coefficient. Clearly
the scalability of this drag force equation entirely depends on
the corresponding features of cd . There are many empirical
formulae available for cd and only the well-known Ergun Eq.
[21] for a sphere in a packed particle bed is discussed below:

cd = 1 − ε

2ε3

(
150

1 − ε

Rep
+ 1.75

)
(30)

where ε is the void fraction of the solid particles, and Rep is
the particle Reynolds number defined as

Rep = dv

ν
(31)

in which d is the diameter of the sphere and ν is the kinematic
viscosity of the fluid. Because Rep is proportional to the
particle diameter, and the speed v is scale-invariant, it can be
concluded that the Ergun coefficient cd is not scale-invariant
and thus the corresponding drag force Eq. (29) is also not
scale-invariant.

The scalability of additional particular interaction laws
can also be assessed in a similar fashion.

3.2 Pseudo-particles and pseudo-interaction laws

The scale-invariance assessment conducted in the preceding
subsection reveals that most of commonly used interaction
laws are not scale-invariant which is required for an exact
scaling when all the material properties in interaction laws
are viewed as constant. This means that when such interac-
tion laws are used in their current forms in a scaled DEM
model, the results obtained from the model cannot be prop-
erly scaled back to the physical model, and therefore may
be incorrect. This is a serious problem that has not been
well recognised by some DEM practitioners. The problem
can be overcome, however, by introducing so called pseudo-
particles and pseudo-interaction laws.

The particles in a physical problem are real, while the par-
ticles used in the scaled DEM model are not, and thus can
be called pseudo-particles. A non-scale-invariant interaction
law means that it is valid only for the actual sized particle in
the physical model. Consequently, when such an interaction
law is applied to a scaled or pseudo particle, the interaction
law has to be modified such that the resulting pseudo form
satisfies the scale-invariant requirement. To meet this require-
ment, the scale factor h has to be present in the modified form.
An interaction law that has undergone such a modification is
thus termed the pseudo- or scaled interaction law and can be
written in a general form as

F̄ = F̄(ū, R̄, h) (32)

where F̄, ū and R̄ are the force, displacement and size of the
particle in the scaled model respectively. A scaled interaction
law should reduce to its original form when h = 1. In some
cases, it may be more convenient to use the actual size of a
physical particle as a reference size, together with the scale
factor, in the scaled interaction law. A few examples are given
below to illustrate this scaling procedure.

First consider the linear contact model F = ku which is
not scale-invariant for 3D cases as established earlier. This
means that k has to be considered as the one which is partic-
ularly chosen only for the physical problem concerned, and
therefore the same value cannot be used for a scaled model.
However, if k is also scaled to be hk, it gives rise to the follow-
ing scaled linear contact law which is now scale-invariant:

F̄ = hkū (33)

The liquid bridge model (26) is taken as the second example.
The scaled model can be written as

F̄ = [2πγ R̄ sin φ sin(φ + θ)

+π R̄2�p(R̄, ū, φ, θ) sin2 φ] h (34)

which is obtained by multiplying the original form by the
scale factor h. Similarly, the Hamaker model (27) should be
scaled to
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F̄ = h2 AR̄
∗

6ū2 (35)

For hydrodynamic force calculations, the particle Reynolds
number defined by Eq. (31) should remain the same after
scaling:

Rep = d̄v

hν
(36)

Other non-scale-invariant interaction laws can also be prop-
erly scaled to become scale-invariant in a similar fashion.

Note that the same modified form of an interaction law can
be obtained directly from the original form by applying the
scaling conditions in Table 2 to all the material parameters
involved but not to the geometrical or kinematic quantities.

4 Concluding remarks

The present work has developed a simple but powerful and
generic theoretical framework for establishing a comprehen-
sive set of scale factors under which a scaled discrete element
model can exactly reproduce the mechanical behaviour of a
physical model. The whole framework is based on directly
dealing with the governing equations for general particle sys-
tems. In particular, three basic physical quantities, differ-
ent from the conventional SI system, can be freely chosen.
In addition, the scale factors of these three basic quantities
between both physical and scaled models can also be arbi-
trarily set. As addressed earlier, different selections of three
basic quantities and their corresponding scale factors will
lead to different sets of scale factors. This offers a possibility
to develop the most appropriate scaling model for a given par-
ticle problem. Although the development is for mechanical
systems only, other physical phases such as thermal, mag-
netic and electrical can be readily included and tackled in a
similar fashion.

A particular set of three basic quantities has been chosen
in which mass density replaces mass to be a basic quantity,
and the three basic scale factors are also specially tuned to
derive a unique set of scale factors for the physical quan-
tities encountered in discrete element modelling of particle
systems. The direct consequence of such a selection is that
the artificially defined particle stress and strain must be inde-
pendent of the spatial scale factor h, which further leads to
the conclusion that all the interaction laws to be used in a
scaled model must be scale-invariant. The subsequent exam-
ination reveals that, if all material (mechanical and physical)
properties are treated as constant, most commonly used inter-
action laws do not possess such a feature essential to achieve
an exact scaling, and therefore cannot be directly used in a
scaled model. This problem has been overcome by treating
the scaled particles as pseudo-particles and by properly scal-
ing the interaction laws. The resulting scaled interaction laws

become scale-invariant and thus can be employed in a scaled
model.

It is worth mentioning that the scale-invariance of the
particle stress and strain and the subsequent scale-invariant
requirement for all the interaction laws are not unique to
our particular choice of three basic quantities and their scale
factors, but can also be obtained from other selections. For
instance, if force F is chosen to be a basic quantity instead
of density ρ, and the corresponding scale factor is set to be
λF = h2, the same scaling conditions as listed in Table 2 and
thus the same scaling laws can be retained. In fact, the scale-
invariance must serve as a necessary condition for achieving
an exact scaling in all cases.

Nevertheless, it is also revealed that no computational
gains can be obtained from an exact scaling. Basically,
enforcing all the exact scaling conditions is computationally
equivalent to the modelling of the original physical prob-
lem without any scaling. Consequently, techniques such as
coarse-graining have to be utilised to reduce the scale num-
ber Sn of the discrete element model and thereby reducing
the whole computer costs to a reasonable level. The next part
of this three-part paper will address some fundamental issues
associated with the coarse-graining technique.
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