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Elastoplastic shock wave propagation in a one-dimensional assembly of spherical metal particles is presented by extending well-
established quasistatic compaction models. The compaction process is modeled by a discrete element method while using elastic
and plastic loading, elastic unloading, and adhesion at contacts with typical dynamic loading parameters. Of particular interest is
to study the development of the elastoplastic shock wave, its propagation, and reflection during entire loading process. Simulation
results yield information on contact behavior, velocity, and deformation of particles during dynamic loading. Effects of shock wave
propagation on loading parameters are also discussed. The elastoplastic shock propagation in granular material has many practical
applications including the high-velocity compaction of particulate material.

1. Introduction

The dynamic response of the granular media has become
increasingly important in many branches of engineering. It
includes material processing involving dynamic compaction
and material processing, as well as acoustics and wave
propagation in geomechanics. The granular matter shows
discrete behavior when subjected to static or dynamic
loading [1–3]. The dynamic wave propagation in granular
media shows distinct behavior from the wave propagation
in continues media [1]. Shukla and Damania [4] discuss the
wave velocity in granular matter and shown experimentally
that it depends upon elastic properties of the material
and on geometric structure. Similarly, Shukla and Zhu [5]
investigate explosive loading discs assembly and found that
the force propagation through granular media depends on
impact duration, arrangement of the discs, and the diameter
of discs. Tanaka et al. [6] investigate numerically and
experimentally the dynamic behavior of a two-dimensional
granular matter subjected to the impact of a spherical
projectile.

To investigate dynamic response, many researchers [7–
11] have modeled the granular matter as spherical particles

using the micromechanical modeling of contact between
particles. These studies focused on equivalent macroelastic
constitutive constants during dynamic loading. Similarly
experimental work using dynamic photoelasticity and strain
gage are performed to investigate contact loads between par-
ticles both under static and dynamic loading [12, 13]. Sadd
et al. [12] perform numerical simulations to investigate the
effects of the contact laws on wave propagation in granular
matter. Similarly Sadd et al. [13] use the discrete element
method (DEM) to simulate wave propagation in granular
materials. Results of this study show wave propagation speed
and amplitude attenuation for two-dimensional assembly of
spherical particles. However, this study is restricted to the
elastic range only while the material stiffness and damping
constants used in the model are determined by photoelas-
ticity. DEM was initially developed by Cundall and Strack
[14] and this numerical method has been widely used for
granular material simulations [15–17]. Different engineering
approaches are discussed in [18, 19] to model the behavior of
granular matter using DEM. Dynamic compaction of metal
powder is also reported in the literature [20–24] and studies
the distribution of stress, strain, and wave propagation.
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Figure 1: Schematic of two particles in quasistatic contact. h is
the overlap and I12 is the distance between the centers of the two
particles.

However, these studies treat the powder as a continuum and
determine the material constants experimentally.

Force transmission in spherical particles occurs in a
chain of contacts, which is usually referred to as the force
chain. Force chains in granular matter have been widely
investigated, experimentally [25, 26] and in simulations [27,
28]. However these studies do not consider wave propagation
velocity during loading. Liu and Nagel [29] and Jia et al.
[30] found experimentally that sound propagates in granular
media along strong force chains. Somfai et al. [31] investigate
the sound waves propagation in a confined granular system.
Recently Abd-Elhady et al. [32, 33] studied contact time and
force transferred due to an incident particle impact while
using the Thornton and Ning approach [34] and found a
good agreement between DEM simulation and experimental
measurements. However, these studies are restricted to the
particle collision and are not modeling the shock wave
propagation during dynamic loading of particles.

In the present work, DEM is used to simulate dynamic
loading of a one-dimensional chain of spherical particles.
The contact between particles is modeled using elastic
and plastic loading, elastic unloading, and adhesion at
contacts. Recently many researchers [35–39] used these
contact models, however only to investigate different aspects
of static compaction of particulate matter. In the current
investigation, typical dynamic loading parameters are used,
which are commonly found in high velocity compaction
process. The 1D chain of spherical particles is chosen as a
preliminary step towards the understanding of elastoplastic
shock wave propagation and its effects during the entire
loading process. Computer simulations reveal generation,
transmission, and reflection of the elastoplastic shock wave
through the particles. The shock wave effects on contact
between particles, particle velocity, and its deformation are
investigated. Effects of shock wave propagation on loading
parameters are also investigated. In addition to trans-
ducer design, earthquake engineering, and soil mechanics,
elastoplastic shock propagation in particulate materials has
many other practical applications including the high-velocity
compaction of powder material.

2. Basic Contact Equations

This section summarizes the theories that describe the
contact behavior between particles and between particles and

die wall during loading-unloading-reloading stages. Here
the compact is modeled as a one-dimensional assembly of
spherical particles that indent each other. These particles are
assumed to be materially isotropic and homogeneous while
depicting elastoplastic material behavior. Equivalent elastic
modulus E∗ [38] is given by

E∗ =
E0

2(1− ν
2)

, (1)

where E0 represents Young’s modulus and ν is Poisson’s ratio
of the material. The effective radius R0 of the two particles in
contact, here labeled 1 and 2 is determined by the relation

1

R0
=

1

R1
+

1

R2
. (2)

As compaction proceeds, the particles overlap each other and
elastic normal force follows the Hertzian law

Fe =
4

3
E∗
√

R0h
3/2, (3)

where h denotes the indentation or overlap between particles,
as shown in Figure 1. In the plastic regime, as described by
Storåkers et al. [40, 41] for two spherical particles undergoing
plastic deformation, the strain hardening relationship is
given as

σ = σiε
M , i = 1, 2, (4)

where σi is a material constant, M is the strain hardening
exponent, and σ and ε are stress and strain in the uniaxial
case. Normal contact force Fp is given by the relation [42]

Fp = ηh(2+M)/2, (5)

where

η = 21−(M/2)31−Mπc2+Mσ0R
1−(M/2)
0 . (6)

Here σ0 is a material parameter and, for ideally plastic
material behavior, invariant c2 = 1.43. By considering the
material as perfectly plastic M = 0 while the particles having
identical yielding stress

σ1 = σ2 = σy , (7)

normal contact force Fp can be written as [39]

Fp = 6πc2σyR0h. (8)

The contact radius a is defined as [40]

a2 = 2c2R0h, (9)

while contact stiffness

k = 6πc2σyR0. (10)

The parameters F0, h0, and a0 denote normal contact
force, overlap, and contact radius, respectively, at the end of
plastic compaction process, before the load is removed. The
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limit between a fully elastic unloading and a partially plastic
unloading, as shown by Mesarovic and Johnson [42], is

χ =
π

2π − 4

wE∗

p2
0a0

, (11)

where p0 is the uniform pressure at contact p0 = 3σy and w
is the work of adhesion. In the present case, it is set to w =
0.5 J/m2.

During the unloading stage, the distance I12 between the
centers of the two particles which are pressed together is

I12 = R1 + R2 − h0 + hu, (12)

and the overlap

h = h0 − hu, (13)

where indentation recovered hu is given by [38, 43]

hu =
2p0a0

E∗

√

1−
(

a

a0

)2

. (14)

During unloading, the contact radius a is determined
from (14) and normal force Fu is given by [38, 42] as

Fu = 2p0a
2
0

⎡

⎣arcsin
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)
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a
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√
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⎤

⎦

− 2
√

2πwE∗a3/2,

(15)

which can be written in terms of χ as [42]
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.

(16)

In (15) and (16), the second term on the right hand side
gives the contact force due to adhesion traction. During the
present work it has been realized that the second term must
be included in elastic and plastic loading equations when
adhesion traction is considered. Both cases with and without
adhesion traction are treated in the present study.

3. Discrete Element Method

The system under study is the one-dimensional dynamic
compaction model shown in Figure 2. There is a chain
of micron-sized identical, spherical particles aligned in a
container with one end open and the other blocked. At the
open end, these particles are in contact with a compaction
tool which has the same diameter as those of the particles.
Friction between the particles and the container walls is
not considered. To start the compaction process, hydraulic
pressure is used to accelerate the hammer which strikes the
compact at a certain impact velocity. The hammer along with
the compaction tool form the dynamic load. Compaction
energy is mainly determined by the impact velocity and

Dynamic load

Hammer Tool

Impact end

Rigid wall

ContainerHydraulic
pressure x

Figure 2: One-dimensional dynamic particles compaction model.

mass of the dynamic load. Hydraulic pressure is maintained
during the complete compaction process.

The dynamic compaction process is simulated by the
discrete element method. This numerical method is used
by Martin and Bouvard [37] and other authors to simulate
static compaction. In the present work, DEM is used to
extend fully developed contact models to simulate shock
wave propagation in a chain of spherical particles. Here,
each particle is modeled independently and interaction
between neighboring particles is governed by contact laws
as described in the previous section. This contact response
plays an important role in the use of DEM to simulate shock
wave propagation through the particles. During calculations
at time t + ∆t, where t is previous time and ∆t is the
time step, contact force between particles is calculated which
determines the net force or compaction force F acting on
each particle. By using Newton’s second law, these resultant
forces enable new acceleration, velocity, and position of each
particle. At time t = 0, force, velocity, and position of each
particle are known because it is the moment of the first hit.

The velocity v
(t+∆t)
i of a particle i at a time t+∆t is determined

by adopting a central difference scheme as

v
(t+∆t)
i = v

(t+∆t/2)
i +

Fi
mi

∆t

2
, (17)

where the position xi is given by

x
(t+∆t)
i = xti + v

(t+∆t/2)
i ∆t. (18)

During iterative calculations, the size of time step ∆t
plays an important role to ensure numerical stability. For
problems of a similar nature, Cundall and Strack [14] have
proposed a relationship to calculate the time step which is
further developed by O’Sullivan and Bray [44] for the central
difference time integration scheme as

max (∆t) = ft

√

m

k
, (19)

where correction factor ft = 0.01 for the present case, m is
the mass of the lightest particle, and k is the approximate
contact stiffness given by expression (10). This value of the
time step is shown to be sufficient to ensure numerical
stability during the calculations.

During the compaction process, particle contact
goes through several loading, unloading, and reloading
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Figure 3: Elastoplastic shock wave during dynamic compaction. (a) Propagation and reflection during various cycles. (b) Shock front is
shape preserving while amplitude decreases during propagation.

sequences. In the beginning of compaction, contact force
is initially elastic for small values of contact radius a and
it is given by (3). The contact force follows the same curve
during unloading and reloading in the elastic regime. At
larger contact radius, the contact becomes plastic and
contact force follows (8). The term relating the adhesion
−2
√

2πwE∗a3/2 is added in elastic and plastic equations
when considering adhesion traction. If the contact is
unloaded, normal force follows elastic unloading (15).
When contact is reloaded during unloading then it follows
the same equation up to the value of the contact radius
on which it was unloaded. Beyond this point, plasticity is
reactivated and (8) applies.

4. Results and Discussion

For simulation, one hundred aluminum particles of diameter
2R = 100 µm are used. Dynamic compression load is
applied on the particles by supplying a hydraulic pressure
of 13.5 MPa which gives the hammer an impact velocity of
10 m/s. This impact velocity along with the different choices
of loading mass results in a compaction energy of 1 J/g to
6.5 J/g. These loading parameters correspond to a typical
high-velocity compaction process. The time step used is
∆t = 2.3 ns which is estimated as explained in the previous
section. The material properties of the aluminum particles
are density 2700 kg/m3, yielding stress 146 MPa, Young’s
modulus 70 GPa, and Poissons’s ratio 0.30. The material
properties of the loading elements are density 7800 kg/m3,
Young’s modulus 210 GPa, and Poissons’s ratio 0.35. The
loading elements are made of steel with a high yielding

stress, therefore, during loading, these elements deform only
elastically. In the simulation, particle numbering starts from
the compaction end. As a convention, resultant force, veloc-
ity,and displacement are taken positive from compaction
to dead end, that is, along the positive x-axis, otherwise
negative. Dynamic effects during particle compaction like
elastoplastic shock wave propagation, particle contact behav-
ior, and particle velocity along with loading parameters are
investigated in this section.

4.1. Elastoplastic Wave Propagation. The dynamic load trans-
ferred in particles is described using elastoplastic shock wave
propagation variables like shock wave front velocity. The
shock wave front is interpreted as the maximum absolute
compaction force at a particular time while shock wave
velocity is defined as the velocity of the wave front. The
movement of the shock wave from compaction to dead
end and then back to the compaction end is described
as one compaction cycle. As the hammer moves forward
to compact the material, particles overlap each other and
thus contact forces are developed as a result of material
stiffness and damping characteristics. The difference between
contact forces results in a net force on the particle. This net
force increases and the particle starts to move approximately
with piston velocity after which this net force decreases and
eventually becomes zero. During this period, the shock is
also transferred continuously to the next particles. In one
compaction cycle, the shock travels from the first particle to
the last particle and then it is reflected back from the dead
end towards the compaction end. During the backward part
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Figure 4: Contact force between particles during loading-unloading process. (a) During compaction, contact is mainly in the plastic range
except for elastic unloading at few points. (b) Contact force increases until the hammer stops. Oscillations during unloading are due to the
adhesion between particles.
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Figure 5: Velocity of the particles during the compaction process. (a) No adhesion. (b) With adhesion.

of the cycle, net contact force on a particle becomes negative
as shown in Figure 3(a).

The shock wave velocity is approximately 750 m/s (with
adhesion) for the first cycle and it decreases approximately
5% from one cycle to the next as in Figure 3(a). Period in
which shock passes through individual particle also changes
from one cycle to the next and it is about 1.5 µs for the

first half cycle. Figure 3(b) shows the enlarged view of
neighboring particles. It can be seen that wave front is
approximately shape preserving as it propagates through
the particles. However, wave amplitude decreases slightly
while shock wave passes from one particle to the next. It
is mainly due to energy loss in the plastic deformation.
In this particular case of a single chain of particles, shock
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Figure 6: (a) Deformation of all the particles approximately remains the same. (b) Displacement covered by the particles depends upon
their position from compaction end.
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Figure 7: Kinetic energy varies as shock wave propagates through the particles. (a) The hammer kinetic energy and collective kinetic energy
of all the particles. (b) Variation in collective kinetic energy of particles with hammer velocity.

wave velocity and wave front mainly depend upon material
properties and they are only slightly affected by changing the
loading mass or initial impact velocity.

4.2. Particles Behavior during Compaction. This section de-
scribes particle contact behavior, particle velocity, and com-
paction during the dynamic loading process. These param-
eters are mainly influenced by the shock wave propagation.

Contact history for different particles is shown in Figure 4(a).
Contact response between neighboring particles plays an
important role in transfer of mechanical energy through
particles. The compaction process is initially elastic which
remains for a very short time. Then particles are in plastic
deformation where the overlap between particles increases
linearly with contact force. However, contact force decreases
at few points which depicts elastic unloading during
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Figure 8: (a) Compaction of the particles with the same hammer kinetic energy. (b) Hydraulic pressure counters the elastic unloading
energy and also prevents the particles from instantaneous separation.

compaction. It mainly occurs when shock wave travels
back from the dead end and passes through the particle.
Contact force increases as shock wave passes through the
particle during both parts of the cycle, which can be seen
in Figure 4(b). When hammer stops and there is no applied
hydraulic pressure, contact force decreases and eventually
becomes zero. During this elastic unloading, the small
amount of overlap is recovered. Oscillations after unloading
are due to adhesion traction between particles. In case of no
adhesion between particles, those oscillations disappear.

During compaction, velocity of the particles does not
remain uniform and constant as illustrated in Figure 5. As
the shock wave passes during forward part of the cycle,
it results in the particle motion. Velocity of individual
particle is increased from zero to approximately hammer
velocity during this period. All particles start to move by the
end of forward cycle after which shock hits the dead end
and is reflected back. Now, as disturbance passes through
the individual particle, its velocity decreases and eventually
becomes zero. Time for motion of a particle is determined by
the period between shock wave passes through the particle
during forward and backward parts of the cycle. The hammer
compresses particles until its velocity becomes zero. Up
till this point, both cases of adhesion and no adhesion
depict almost similar behavior. After compaction, net force
becomes zero and particles expand and push back the
hammer due to the elastic energy. In case of no adhesion, as
in Figure 5(a), particles are moving with different velocities
which indicates that particles are separated. In adhesion case,
as illustrated in Figure 5(b), particles oscillations can be seen
which are caused by adhesion between particles. It indicates
that particles are not fully separated.

Furthermore, shock wave propagation also plays an
important role in particles deformation as shown in
Figure 6(a). Particles are deformed plastically as shock passes
during both parts of the cycle despite particles movement.
However, displacement covered by the particles depends
upon their position from the hammer as in Figure 6(b). All
particles are compacted approximately to the same amount
at shock wave propagation.

4.3. Effects of Changing Loading Parameters. Like particles
contact force and velocity, hammer kinetic energy (KE)
is influenced by shock wave propagation. Piston KE and
collective KE of all the particles are shown in Figure 7(a).
There are three shock cycles for this compaction period.
Hammer KE has the same pattern during a particular cycle
and it changes when shock hits back the hammer at the end
of the cycle. Particles KE increase as shock moves forward
from compaction to the dead end. It reaches maximum value
which is about 7% of hammer KE when shock hits the dead
end. On the return cycle, particles KE decrease and become
zero when shock hits the compaction end. At this point,
all energy is converted to plastic deformation and elastic
potential energy. For various choices of hammer KE, particles
KE have different values but they all have the same pattern
as illustrated in Figure 7(b). In all the cases, maximum and
minimum value occurs when shock hits the dead end and
compaction end, respectively.

It is obvious that particles compaction energy is mainly
directly proportional to hammer kinetic energy which
depends on its mass and impact velocity. Particles com-
paction for the the same hammer KE, but with different
mass and velocity combinations is shown in Figure 8(a).
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Compaction is the same in all the cases. However, com-
paction time is increased by increasing the loading mass.
After compaction stage, loading mass oscillates with the
same amplitude due to elastic energy of particles. However,
oscillations period time is increased with increased hammer
mass. In current simulation, the presence of hydraulic
pressure after the compaction stage also served to avoid
instantaneous particle separation. Contact force between the
particles 52 and 53 for different values of hydraulic pressure
is illustrated in Figure 8(b). It can be seen that oscillations are
decreased with the increase in hydraulic pressure. In case the
hydraulic force becomes larger than the contact force during
unloading, then particles are compacted again plastically.

5. Conclusion

In the present numerical simulation, a discrete element
method is employed to investigate elastoplastic shock propa-
gation in a one-dimensional assembly of spherical particles.
Well-established quasistatic compaction models are extended
to the dynamic high-velocity range. Propagation and reflec-
tion of the elastoplastic shock wave in particles is simulated
by using appropriate contact laws. Simulation results show
that shock wave velocity, and shape of the wave front changed
slightly during propagation. The shock wave determines the
contact behavior, velocity and deformation of the parti-
cles during dynamic compaction. After compaction stage,
adhesion traction restricts instantaneous particle separation.
Particle deformation during one cycle initially remained
almost the same regardless of loading parameters values.
However, particles compaction depends upon kinetic energy
of dynamic load despite different choices of impact velocity
and loading mass. Shock wave propagation also affects the
variations in hammer kinetic energy and collective kinetic
energy of all the particles. Although the extension of the
developed model into two and three dimensions requires
more computational time and resources, it is nevertheless
straightforward.
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