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Abstract The paper investigates reproducing the effects of

confining pressure on the behaviour of scaled railway ballast

in triaxial tests in discrete element models (DEM). Previous

DEM work, using a standard Hertzian elastic contact law

with an elastic–perfectly plastic tangential slip model, has

been unable to replicate the behaviour observed in laboratory

tests across a range of confining pressures without altering

both the material stiffness and the inter-particle friction. A

new contact law modelling damage at the contacts between

particles is introduced. Particle contact is via spherically-

capped conical asperities, which reduce in height if over-

stressed. This introduces plasticity to the behaviour normal

to the contact surface. In addition, the inter-particle friction

angle is varied as a function of normalized contact normal

force. At relatively low normal forces the friction angle must

be increased for peak mobilized friction angles to match the

laboratory data, an effect that is attributed to interlocking at

the scale of surface roughness. Simulation results show close

agreement with laboratory data.

Keywords DEM · Confining pressure · Triaxial test ·
Railway ballast · Contact damage

1 Introduction

Triaxial test results on railway ballast and other granular

materials (e.g., [3,9,13,17,20,25]) have shown that, when

other factors are held constant, the peak mobilized strength

and volumetric strain are strongly influenced by the con-
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fining cell pressure applied. In particular, at low confining

pressure the peak mobilised shear strength is significantly

greater. This has particular relevance in the context of rail-

way ballast. Railway ballast is placed as a near surface layer

and operates entirely within a low horizontal confining stress

regime, and is required to perform acceptably over a large

range of vertical to horizontal stress ratios.

Prior discrete element modelling (DEM) studies have

modelled the effects of confining pressure on the behaviour

of granular matter in different ways. Grain crushing has been

modelled explicitly by various means (see, for example [4]).

Other studies have modelled pressure effects without mod-

elling crushing (see [19,28] for sands, [15,22] for direct shear

tests of railway ballast and [26] for a qualitative study) by

using constant-stiffness linear (rather than Hertzian) contact

laws, which allow greater particle overlap at higher confin-

ing pressures and hence a softer behaviour. In this paper, it

is demonstrated that for triaxial tests on a scaled granite bal-

last material, although no particle breakage was observed in

the laboratory, some contact damage must be taking place

with increasing confining pressure. This is consistent with

anecdotal experimental evidence of ballast attrition observed

in the laboratory. Furthermore, it is shown that the observed

behaviour, including the correct loading/unloading response,

cannot be modelled using a standard elastic contact law and

a new model is proposed to address this need.

Ahmed et al. [2] presented discrete element simulations of

railway ballast that showed close agreement with monotonic

laboratory triaxial tests carried out by Aingaran [3], on one-

third scale ballast. The experimental test rig is shown in

Fig. 1. The numerical model used a Hertzian contact law

with elastic behaviour normal to the contact plane and elas-

tic/perfectly plastic behaviour in the tangential direction.

The ballast was tested at confining cell pressures of 15 and

30 kPa; example results for a cell pressure of 15 kPa are
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Fig. 1 Photo of one-third scale ballast specimen of height = 300 mm

and diameter = 150 mm in a GDS Instruments [10] triaxial apparatus.

The triaxial cell was mounted within a reaction frame and bolted to a

pedestal seated by self-weight onto a bottom–up mechanical drive unit

used to apply axial strain or stress

Fig. 2 Laboratory and simulated results for triaxial test at 15 kPa

shown in Fig. 2. However, if we now extend and apply the

same DEM model to test an identical numerical specimen

at 200 kPa, a significant difference between laboratory and

DEM results can be seen, as shown in Fig. 3. In comparison

with results at 15 kPa, the real ballast exhibits much more

volumetric compression and a slower rise to a lower peak

strength. In contrast, the simulated response at 200 kPa is

Fig. 3 Laboratory and simulated results for triaxial test at 200 kPa

Table 1 Summary of laboratory and simulated results for triaxial tests

Lab Model Lab Model

15 kPa 15 kPa 200 kPa 200 kPa

φpeak (◦) 47 47 45 51

ǫa at onset of dilation (%) 0.3 0.3 3.2 0.3

Peak ǫvol (%) 0 0 1 0.1

generally similar to that at 15 kPa, except for a slight increase

in volumetric compression and, perhaps surprisingly, in peak

strength. These results are summarized in Table 1. Accord-

ing to established soil mechanics principles, for tests on soil

samples with the same initial void ratio, increased confining

pressure will lead to a reduction in both the peak strength

(unless the peak strength coincides with the critical state)

and the specific volume at the critical state.

There are two main possible causes of the difference in

stiffness between the laboratory and simulated tests:

1. The model is too stiff or is otherwise incorrectly cal-

ibrated. Contacts between real ballast particles are not

Hertzian, as the particles have rough, non-spherical sur-

faces, so there is some scope for uncertainty in the

choice of stiffness magnitude. However, the 10 GPa shear

modulus used for the Hertzian contact stiffness in the sim-

ulation is already considerably less than that of granite,

which is in the region of 17–29 GPa [12] (based on a

Poisson’s ratio of 0.2).

2. The ballast in the laboratory is experiencing some sort

of damage that increases with cell pressure. Visual and

sieve analysis before and after triaxial testing revealed no

discernible particle breakage and no measurable change

in particle size distribution. This was also observed in

tests on full scale ballast [1]. Therefore, if damage is
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Table 2 Particle size distribution used in simulation

% Passing by weight (net-

work rail specification)

Sieve size

(mm)

One-third scale

sieve size (mm)

100 62.5 20.83

85 50 16.67

17.5 40 13.33

12.5 31.5 10.5

1.5 22.4 7.47

For the one-third scale particles, D50 = 13.5 mm

occurring to the material used in these tests, it must take

the form of very small-scale crushing or abrasion of con-

tacting asperities, perhaps reducing the effective surface

roughness.

Other factors, such as approximations in the modelling of

the triaxial test itself are discussed by Ahmed et al. [2].

First, the possibility is explored that variation of the model

parameters could improve the fit to the laboratory data over

the range of cell pressures 15–200 kPa. The main model para-

meters that can be adjusted are:

1. Particle shape and size distribution (PSD).

2. Initial void ratio.

3. Particle contact stiffness.

4. Inter-particle friction angle.

The particles were chosen so that the distribution of particle

forms and PSD (shown in Table 2) matched the real ballast

[2,18], and the void ratio at the start of the test was the same

as the void ratio measured in the laboratory. Furthermore,

approximately the same number of particles (2800) were used

in the real and simulated tests. The D50 for the one third-scale

ballast was 13.5 mm.

The same initial specimen of particles was used for all

of the numerical studies presented in this paper (see Fig. 4).

The simulated particle shapes are approximations, which will

potentially give rise to some errors both in the simulated

behaviour and in the measurement of void ratios in com-

parison with the real ballast. However, for the purposes of

this study, the particle size distribution and initial void ratio

are considered to be fixed. This leaves only the inter-particle

friction angle and stiffness as variables.

The effects of varying the inter-particle friction angle, for

a constant shear modulus of 10 GPa and a constant confining

pressure of 200 kPa, are shown in Fig. 5. These results were

obtained using the discrete element model and the specimen

of potential particles [11] presented in [2]. Reducing the inter-

particle friction angle has little effect on the initial response,

which remains stiffer than the laboratory test. Also, the crit-

ical state strength is not significantly altered, with all three

simulations being slightly weaker than the laboratory test.

Fig. 4 Image of numerical triaxial specimen, showing potential parti-

cle representation of railway ballast

Fig. 5 Laboratory and simulated results with varied friction angle for

triaxial test at 200 kPa. Hertzian shear modulus G = 10 GPa

However, the peak strength increases with increasing inter-

particle friction angle and is accompanied by an increase in

the rate of dilation. Thus it is clear that a change of interparti-

cle friction angle alone cannot correct the fit to the laboratory

data at the higher confining pressure of 200 kPa (it would also

spoil the fit at lower confining pressures).
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Figure 6 shows the effects of varying the Hertzian shear

modulus, G, for a constant inter-particle friction angle of

40◦. With a value of G = 1 GPa, the initial stiffness of

the response is much improved. However, the peak strength,

rather than reducing as desired, has increased along with the

dilation rate. At G = 100 MPa the peak mobilized friction

angle is reduced, but the initial response is too soft. Once

again, it seems that the critical state response is not signifi-

cantly affected.

By altering both the Hertzian shear modulus (G =
0.5 GPa) and the interparticle friction angle (30◦), a reason-

able fit can be obtained at a confining pressure of 200 kPa

(Fig. 7). The response at 15 kPa, using the same low Hertzian

Fig. 6 Laboratory and simulated results with varied stiffness for triax-

ial test at 200 kPa. Inter-particle friction angle φ = 40◦

Fig. 7 Laboratory and simulated results with stiffness G = 0.5 GPa

for triaxial tests. Inter-particle friction angle was set to 40◦ at 200 kPa

and to 30◦ for the 15 kPa simulation

Fig. 8 Laboratory and simulated cyclic loading tests at 200 kPa

Table 3 Summary of laboratory and simulated results for cyclic loading

tests

Test Residual modulusa

Er (MPa)

Axial strainb

ǫa

Laboratory 125.3 0.0134

Simulation G = 0.5 GPa 16.0 0.0132

Simulation G = 10 GPa 91.9 0.00847

a Residual modulus measured for second unloading cycle
b Axial strain at start of second unloading cycle

shear modulus (G = 0.5 GPa), but retaining the higher inter-

particle friction angle of 40◦, was evaluated and is also

shown. At 15 kPa, the reduction in stiffness has affected the

peak mobilized friction a little, but the volumetric behaviour

and the strength at 200 kPa is quite well matched.

Although this choice of parameters yields quite a close

match for the monotonic tests, universally changing the inter-

particle friction angle to match the data at different confining

pressures is not a workable solution for more general load-

ing cases in which the confining pressure is not held constant.

Furthermore, although there is some room for manoeuvre in

the choice of stiffness (ballast particles are not spherical and

particle contacts are therefore not perfectly Hertzian), the

very low value used (about one fiftieth of the value for gran-

ite) is difficult to justify. This is borne out in a comparison

of cyclic loading tests shown in Fig. 8, for the laboratory and

simulation data. These results are summarized in Table 3.

This shows that a much stiffer model (G of at least 10 GPa)

is required to match the per-cycle deflection observed in the

laboratory scaled triaxial test.

One explanation for the observed behaviour is that plas-

tic damage occurs at contacts as they are loaded. Cavarretta

et al. [5] showed that for coarse grained sand the inter-

particle contact stiffness included an irrecoverable proportion

of deflection beyond which the deflection vs. stress plot
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showed Hertzian contact behaviour. This would make the

contacts appear initially soft in monotonic loading (as the

asperities are crushed), but stiffer as loading progressed and

stiffen cyclic loading behaviour if the model was subse-

quently unloaded and reloaded.

2 Conical damage model

To address the inconsistencies observed between the mea-

sured and simulated specimen stiffness at different confining

pressures, a new contact damage model is proposed. The

basis of the model is an idealized asperity represented by a

cone (Fig. 9). The sides of the cone make an angle α with

the vertical and the cone has a rounded apex with radius of

curvature, R. This asperity contacts an elastic half plane via

a Hertzian contact with the rounded tip. A minimum radius

of curvature Rmin is specified, as shown in Fig. 9a. The max-

imum stress, σ0, for a Hertzian contact (which occurs at the

centre of the contact) can be expressed as a function of the

radius of contact, R, the normal force, P , and the overlap of

the spherical cap with the elastic half plane, δ, as:

σ0 =
3P

2π Rδ
(1)

Alternatively, σ0 can be expressed as:

σ0 =
1

π

(

6P E∗2

R2

)1/3

(2)

where:

1

E∗ =
1 − ν1

2G1
+

1 − ν2

2G2
(3)

and where G1, G2 and ν1, ν2 are, respectively, the shear

moduli and Poisson’s ratios of the two contacting particles.

If the maximum stress exceeds the maximum compressive

strength of the material, σcmax, the contact can no longer

support the load, Pmax. In this case, the radius of curvature

is recalculated such that σ0 is equal to σcmax. Rearranging

Eq. 2 and setting σ0 = σcmax, the new radius R is given by:

R =
E∗√6Pmax

(πσcmax)
3/2

(4)

Fig. 9 Conical damage model

The tip of the asperity then vanishes and is replaced with a

new, more rounded, cap, as shown in Fig. 9b. The rate of

recession of the asperity is governed by the cone angle α

together with material strength. If the tangent to the cone is

parallel to the surface of the cap at the point where the cap

and the cone meet, the new offset from the apex of the cone

to the highest point on the cap, δc, may be calculated from

geometry as:

δc = R

(

1 − sin α

sin α

)

(5)

In implementing the model, damage to the contact surface

is calculated incrementally and changes at each new simu-

lation step are assumed to be small. If σcmax is exceeded at

a contact, then the new radius of contact, R, and offset, δc,

are calculated. The new normal force, P , is calculated on the

basis of the new overlap between the two particles, δ, (which

will have reduced as the surface of the asperity has receded)

and the new contact stiffness, kn , which has changed due to

the change of contact radius:

P = knδ (6)

where:

kn =
4

3
E∗√Rδ (7)

The new shear stiffness, ks is given by:

ks =
4

3
kn E∗√R (8)

and the new shear force is calculated incrementally as usual.

This model is relatively simple and can potentially satisfy

the simultaneous requirements of an apparently low initial

stiffness in monotonic loading at high confining pressures

(through crushing of the asperity), while retaining high elas-

tic stiffness for the case of cyclic loading, which is of crucial

importance in modelling railway ballast. Finding the values

of minimum contact radius, Rmin , and cone angle, α, which

are assumed to be the same for all contacts, is addressed in

Sect. 2.1.

2.1 Calibration of the conical damage model

The parameter values for Rmin and α were refined using the

following iterative procedure:

1. Select the elastic shear modulus, G. (Poisson’s ratio, ν,

was set to 0.2 for all simulations).
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Fig. 10 Percentage of contacts that do not crush as a function of contact

radius, R, for shear stiffness, for G = 5 GPa, and a confining pressure

of 15 kPa. As a reference, the D50 of the specimen is 13.5 mm

2. Select Rmin : it was assumed that very little crushing

occurs at a confining pressure of 15 kPa, thus the behav-

iour is dominated by the influence of Rmin on the stiffness

of the contacts.

(a) Using the contact force data at peak strength for the

best fit simulation at a cell pressure of 15 kPa (Fig. 2),

from Eq. 4 calculate the value of the contact radius

required to support the load, based on the elastic mod-

ulus chosen in (1). The proportion of non-crushing

contacts as a function of contact radius, for a shear

modulus of 5 GPa, is shown in Fig. 10.

(b) Choose a value of Rmin so that most of the contacts

will not crush.

3. Select α: with all other parameters held constant, the cone

angle, α, determines the rate of plastic deformation nor-

mal to the contact plane in response to a normal force

increment beyond the elastic limit. An initial estimate

for alpha can be obtained by studying the simulation data

for the best fit at a cell pressure of 200 kPa with purely

elastic behaviour normal to the contact plane (Fig. 7). In

this case, the fit to the laboratory data was obtained by

using a low inter-particle stiffness, resulting in relatively

large particle overlaps. By reapportioning these particle

overlaps between plastic and elastic deformations, a more

realistic material stiffness can be used, and a value of α

may be determined as follows:

(a) At the peak of mobilized friction, examine the contact

forces, P , and particle overlaps, δ.

(b) Calculate the radius of curvature, R, required to sup-

port the force at each of the (non-zero force) contacts,

using Eq. 4.

(c) From Eq. 6, calculate the elastic deformation, δe, that

would result from the application of this force, using

the radius, R, and the shear modulus, G.

Fig. 11 Histogram of cone angle α for shear modulus, G = 5 GPa and

Rmin = 4 mm

(d) Calculate the plastic displacement, δp, that would

give rise to the same overall contact displacement,

δ, as δp = δ − δe. This minimum value of δp is lim-

ited to zero for the purpose of the next calculation.

(e) Use geometry to calculate the angle α for each contact

such that the new contact radius, R, is obtained for a

plastic reduction in height of the asperity, δp, as:

α = arcsin

(

R − Rmin

R − Rmin + δp

)

(9)

A value of alpha can be calculated for each contact. Next,

select a single value that satisfies the largest number of

contacts. For example, in the case of G = 5 GPa and

Rmin = 4 mm, a histogram of values of α for all particle

contacts is shown in Fig. 11, which shows a peak at α ≈
78◦.

4. Run a cyclic loading test and examine the resulting

resilient modulus. Observation of the results for different

parameter values shows that:

(a) The relationship between shear modulus and resilient

modulus is rather non linear.

(b) The resilient modulus is not very sensitive to α or the

interparticle friction angle, φ.

(c) The plastic axial strain is affected by α and φ.

Adjust the shear modulus, by iteration, to obtain the cor-

rect residual modulus and then repeat steps (1)–(4) to

update Rmin , α and G.

Finally, these parameters can be fine-tuned through sim-

ulation of cyclic and monotonic triaxial tests. For σcmax =
200 MPa, G = 5 GPa, Rmin = 4 mm and α = 78◦, a close

match to the residual modulus was obtained and the results of

the monotonic triaxial test simulations are shown in Fig. 12.

At 15 kPa, the results are relatively unaffected by the damage
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Fig. 12 Simulation results for conical damage model at 15 and

200 kPa, with particle φ = 40◦, platen φ = 30◦, shear modulus

G = 5 GPa, Rmin = 4 mm, α = 78◦, σcmax = 200 kPa

model and the simulation is a good fit to the laboratory data.

At 200 kPa, the initial stiffness of the response matches the

data very closely, but the peak strength is much higher than

for the real ballast. This is not all that surprising, as the model

was conceived to address the discrepancy in monotonic and

cyclic stiffness noted in Sect. 1. A variable friction model

is introduced in the next section to address the reduction in

peak strength observed at higher cell pressures.

3 Variable friction model

In Sect. 1 it was shown that at a confining pressure of 200 kPa,

a good fit to the modelling data could be obtained through a

reduction of both the particle contact stiffness (to an unreal-

istically low value) and the inter-particle friction angle. The

stiffness anomaly was addressed through the introduction of

a damage model in Sect. 2.1, but the peak strength remained

too high. Reduction of the inter-particle friction angle would

improve the response at higher confining pressures, but this

is not a viable approach for more general loading conditions.

This section describes the rationale for and implementation

of a per-contact variable friction model to address the reduc-

tion in peak effective strength with confining pressure.

As an alternative to setting the inter-particle friction angle

globally as a function of the confining pressure, determina-

tion on a per-contact basis could provide a more generally

applicable model. Leaving aside for the moment the justi-

fication for such a measure, the interparticle friction angle

would need to be varied with some aspect of the current state

of the contact, for example the normal force. Figure 13 shows

the distributions of normal force at peak mobilized effective

Fig. 13 Superimposed histograms of contact normal force magnitude

|P| for triaxial test simulations at cell pressures of 15 and 200 kPa

Fig. 14 Changing angle of incidence for two particles in contact as

a function of imagined particle wear. a very little wear b, c ends of

asperities become increasingly rounded d surfaces are almost smooth.

Hatched arrows indicate relative movement of particles

strength for the best fit results at confining stresses of 15 and

200 kPa. The degree of overlap between the two curves is

greater than might be expected on the basis of the ratio of

confining pressures (200/15 = 13.3̇), although it is accentu-

ated visually by the logarithmic scale. Owing to the greater

number of contacts per particle at 200 kPa than at 15 kPa

(about 60 % more) and to the slightly lower mean pressure at

peak strength, the ratio of mean normal forces between the

two simulations is about 7. A relationship between interpar-

ticle friction angle and contact force would need to devised

in such a way that most of the contacts at 15 kPa have a value

of around 40◦, reducing to about 30◦ for the 200 kPa case.

A possible justification for a reduction in strength at higher

confining pressures is that asperities can provide some degree

of interlocking between particles at low confining pressures,

but tend to break at higher pressures. Evidence for this type

of polishing is presented by Indraratna and Salim [14] for

ballast subjected to cyclic loading. This process is imagined

in the spirit of the well-known saw-blade analogy for dilation

in Fig. 14, focusing on a change in apparent friction angle

rather than dilation. In Fig. 14a, there is very little wear and
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the contact normal is at an angle β to the vertical. The appar-

ent friction angle is then φs +β, where φs is the friction angle

of the smooth material. As the asperities become more worn

down, as represented by an increasing radius of curvature in

Fig. 14b–d, β tends to zero as the contact normal nears verti-

cal. Thus the apparent friction angle approaches the smooth

limit, φs . The concept proposed by Pöschel and Herrmann

[24] in the context of earthquake modelling, in which fric-

tion reduces with increasing sliding velocity, offers a possible

precedent.

3.1 Variable friction model: a first attempt

Consider a pair of contacting particles with a single break-

able asperity as shown in Fig. 15a. In this idealized case,

before sliding can occur the magnitude of the shear force

must exceed the sum of the asperity strength and the frictional

limit, which is proportional to the magnitude of the normal

force. This limiting shear force is indicated by the solid line

in Fig. 15b. If this limit is exceeded, the asperity breaks and

the limiting shear force would then be purely frictional, as

indicated by the dotted line in Fig. 15b. Trial simulations with

this model demonstrated that a very modest asperity strength

of about 1 Newton combined with a residual friction angle

of about 28◦ provided a close fit to the data at confining pres-

sures of both 15 and 200 kPa. At 200 kPa, the asperity strength

has very little effect. However, between these values, it was

found that the triaxial strength fell away too quickly with

increased confining pressure. To address this, a power law

relationship is proposed for the shear force limit of the form:

Qlim = max
{

a‖P‖1/b, tan(φresidual)‖P‖
}

(10)

where Qlim is the shear force limit, φresidual is the residual

friction angle and a and b are constants.

The coefficient of friction, μ, can then be written as:

μ = tan(φ) = max
{

a‖P‖1/b−1, tan(φresidual)

}

(11)

Fig. 15 a Two particles in contact; the lower particle has a nominally

flat upper surface but includes an asperity that must break before the

particles can slide. Arrows indicate the relative forces on the particles.

b Shear force limit as a function of normal force magnitude for single

asperity case

The results of monotonic triaxial test simulations using

the conical damage model in combination with the power-

law friction model are shown in Figs. 16, 17, 18 and 19. The

parameters for the simulation are summarized in Table 4 and

were obtained as follows:

1. The residual friction angle, φresidual was set to 28◦. The

coefficients α and Rmin were set to the values obtained

in Sect. 2.1.

2. The magnitude of the normal force above which the fric-

tion coefficient is constant was set to 80 N (see Fig. 16).

This results in most of the contacts at a confining pres-

sure of 15 kPa having an increased friction coefficient,

and many of the higher-load carrying contacts at 200 kPa

the residual value (see Fig. 13).

3. A trial value for b was chosen. The parameter a was cal-

culated from Eq. 11 with P = 80 N (from step 2) and

Fig. 16 Coefficient of friction as a function of normal force magnitude

Fig. 17 Simulation results with combined variable friction and conical

damage model compared with laboratory test data for triaxial simula-

tions at cell pressures of 15 kPa
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Fig. 18 Simulation results with combined variable friction and conical

damage model compared with laboratory test data for triaxial simula-

tions at cell pressures of 30 kPa

Fig. 19 Simulation results with combined variable friction and conical

damage model compared with laboratory test data for triaxial simula-

tions at cell pressures of 200 kPa

μ = tan(φresidual). Simulations at confining pressures

of 15 and 200 kPa were then carried out. This step was

repeated, adjusting b, to obtain the best fit to the experi-

mental data.

In all cases, the agreement in the mobilized friction

response is excellent and in the volumetric response at least

acceptable. Apart from the improved fit to the data, one piece

of circumstantial evidence of increased effective interparti-

cle friction at low normal forces is that the mobilized friction

response is more similar in nature to the laboratory data with

smaller fluctuations (for example, compare Fig. 17 with the

Table 4 Parameters for power

law friction simulation
Parameter Value

α 78◦

Rmin 4 mm

φresidual 28◦

a 1.1037

b 1.2

G 5 GPa

β ′, γ ′ and φresidual refer to Eq. 11

responses at a confining pressure of 15 kPa in Figs. 3 or 12).

This suggests that the specimen is stabilized (exhibiting less

erratic stick–slip behaviour) by lightly-loaded contacts which

have increased tangential strength due to surface interlocking

between particles.

3.2 A damage-dependent friction model

The friction model proposed in Sect. 3.1 relates the inter-

particle friction angle to normal force at the contact. Although

the simulation results offer a good fit to the data, there are

two deficiencies with the model:

1. The normal force should be expressed in a non-dimensio-

nal form so that the model can be applied at different

scales.

2. There is no link between the state of damage and the

inter-particle friction angle.

As a first step in addressing these issues, consider the

model for the inception of sliding of a spherical contact on

a plane, proposed by Kogut and Etsion [16]. In this model,

rather than assuming a friction angle at which sliding will

occur, the area in contact is assumed to be fused and slid-

ing only takes place if the material itself fails. This leads to

an increase in the apparent friction coefficient at lower nor-

mal force magnitudes. Based on a fit to results from a finite

element model of a sphere contacting a plane, Kogut and

Etsion propose a relationship for the friction coefficient, μ,

as a function of the normal force, P , normalized by the crit-

ical force, Pc, i.e. the value of normal force at which plastic

deformation will occur for a given sphere radius and set of

elastic properties:

μ = 0.516

(

P

Pc

)−0.345

(12)

valid in the range 0 ≤ P ≤ Pc, where:
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Pc =
(π K H)3

6

(

R

E∗

)2

(13)

where R is the radius of the sphere, K is a hardness coefficient

related to the Poisson’s ratio of the material by K = 0.454+
0.41ν and H = 2.8Y , according to [27], where Y is the yield

strength of the material.

Note that Eq. 13 is very similar to Eq. 2, which can be

rearranged to give a slightly different expression for the crit-

ical force, Pc, as:

Pc =
(πσcmax)

3

6

(

R

E∗

)2

(14)

The difference is due to the fact that the maximum shear

stress occurs below the surface for a spherical indenter acting

on a plane [6]. Also, note that the form of Eq. 12 is similar

to the power law relationship in 3.1 (Eq. 11). The main dif-

ferences are the normalization of the normal force in Eq. 12,

and the lack of a lower limit on the friction coefficient, μ.

Kogut and Etsion were studying the behaviour of metals

and their approach may not be directly applicable to rock

contacts. However, several authors have reported increased

friction with rough surfaces (see for example [7,8,23]). In the

case of railway ballast, it is possible to imagine that surface

roughness, on a smaller scale than the asperities considered in

this paper, could provide a resistance to lateral movements

through interlocking. At low normal forces, the interlock-

ing effect would dominate, becoming less significant with

increasing normal force. However, the lateral strength of

the interlocked region depends on the contact area, which

in the case of nominally Hertzian contacts is a function of

the effective radius of contact. For constant surface rough-

ness and normal load, an increase in the nominal radius of

contact will increase the area of contact and could generate a

greater degree of interlocking. This provides a possible link

between the conical damage model (see Sect. 2), which alters

the effective contact radius, and the frictional behaviour.

Building on Kogut and Etsion, the conical damage model

can be combined with a friction law of the form given by

Eq. 12, by using the radius of contact from the conical damage

model (Eq. 4) to calculate the critical force, Pc. The proposed

model for μ is given by:

μ = β

(

P

Pc

)γ

(15)

where β > 0, γ < 0 and Pc is defined by Eq. 14, using the

value for R calculated in Eq. 4. It is important to note that

the normal force, P can never exceed the critical force Pc,

as this would result in damage to the cone, an increase in the

contact radius and, consequently, in the critical force, Pc. As

a result, the friction coefficient, μ, has a lower limit given by

μ = β.

3.2.1 Model calibration

The parameters β and γ were derived from the values of

residual friction, φresidual , and the exponent, 1/b − 1 (see

Eq. 11) determined in Sect. 3.1. Thus, β = tan(28◦) and γ =
1/1.2 − 1 = −0.16̇. The cone angle, α, and shear modulus,

G were initially set to the values obtained in Sect. 2.1.

By studying the distribution of contact normal force mag-

nitudes shown in Fig. 13, and making the assumption that

most of the contacts do not crush at a confining pressure

of 15 kPa, the load at which previously unloaded contacts

begin to crush, P0
c , was initialized to 80 N (from step 2 in

Sect. 3.1). The minimum radius, Rmin was then calculated

by rearranging Eq. 14 to give:

Rmin = E∗

√

6P0
c

(πσcmax)3
(16)

where E∗ is given by Eq. 3.

Note that the rate of plastic deformation normal to the

contact plane for a monotonically increasing load, Pmax, is

determined by both the cone angle, α, and the stiffness, E∗.

Thus, to maintain similar plastic behaviour when changing

the stiffness, α must also be changed. This can be seen by

substituting for the cap radius, R, from Eq. 4 into 5 to give a

relationship between the normal force and the plastic settle-

ment, δc, as:

Pmax = Aδ2
c (17)

where

A =
(πσcmax)

3

6E∗2

(

sin α

1 − sin α

)2

(18)

is a constant.

Cyclic and monotonic loading simulations were then car-

ried out. The stiffness, G, was then adjusted to obtain a good

fit to the resilient modulus measured from the laboratory

cyclic loading data. At each stiffness, Rmin was recalculated

using Eq. 16 and α was adjusted to maintain a constant value

of A in Eq. 18. Finally, small trial-and-error adjustments were

made to Rmin and α to obtain the correct monotonic loading

response across the range of confining pressures.

The best fit parameters are presented in Table 5 and the

results for this model are shown in Figs. 20, 21 and 22,

which show good agreement with the laboratory results.

The results for corresponding cyclic loading test simulations

are shown in Fig. 23; these show excellent agreement for

both the resilient modulus and the initial axial strain. After
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Table 5 Parameters for

damage-dependent friction

simulation

Parameter Value

α 81◦

Rmin 12 mm

β 0.53171

γ −0.16667

G 8 GPa

β and γ refer to Eq. 15

Fig. 20 Simulation results with conical damage model and damage-

dependent friction compared with laboratory test data for triaxial

simulations at a cell pressure of 15 kPa

Fig. 21 Simulation results with conical damage model and damage-

dependent friction compared with laboratory test data for triaxial

simulations at a cell pressure of 30 kPa

several cycles the rate of axial strain in the simulation is

larger than in the laboratory test; this needs further investi-

gation.

Fig. 22 Simulation results with conical damage model and damage-

dependent friction compared with laboratory test data for triaxial

simulations at a cell pressure of 200 kPa

Fig. 23 Comparison of cyclic loading results at a cell pressure of

55 kPa for a laboratory test (top) and a simulation (bottom). The sim-

ulation was carried out using the damage-dependent friction model

combined with the conical damage model

4 Summary and conclusions

A discrete element contact law has been proposed to model

the behaviour observed in laboratory triaxial tests of scaled

railway ballast at a range of confining pressures from 15

to 200 kPa. It was shown not to be possible to match the

laboratory behaviour using the standard Hertzian elastic

contact law with an elastic-perfectly plastic tangential slip

model, presented in [2]. This suggests that some damage

must be occurring at particle contacts. A new contact model

was proposed, based on the supposition that particles con-

tact at asperities. The asperity contact was modelled by a
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spherically-capped cone. In an elastic regime, the contact is

Hertzian with a radius defined by the cap radius. If the yield

stress is exceeded the cap is crushed and forms a lower cap

with a larger radius, able to support the load. This model

was shown to provide good agreement with the initial load-

ing behaviour in monotonic laboratory tests for the different

confining pressures tested and also satisfies the requirement

for a stiffer unloading response. However, the damage model

did not significantly alter the peak strength, which reduces

with confining pressure in the laboratory tests. Therefore a

supplementary model was proposed that varies the inter-

particle friction coefficient as a function of a normalized

load, which is the contact normal force divided by the criti-

cal force, Pc (the load at which plastic failure will start). For

contact normal loads less than Pc, the friction is increased;

an effect attributed to interlocking at the surface roughness

scale. For virgin monotonic loading of a contact, the friction

will decrease until the load is equal to Pc and the friction

coefficient reaches a constant minimum value. A continued

increase in loading will result in plastic damage and a con-

sequent increase in Pc to the current load value. Subsequent

unloading results in an increase in friction coefficient.

Simulation results show excellent agreement with the lab-

oratory data for all monotonic triaxial tests. Good agreement

was obtained with cyclic loading data over the first few

cycles, in terms of both the resilient response and the axial

strain. In later cycles, the simulation displays larger plastic

axial strain than the laboratory results and this remains a

subject for further investigation.
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