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Abstract We consider model order reduction of integrated circuits with semicon-

ductors modeled by modified nodal analysis and drift-diffusion (DD) equations. The

DD-equations are discretized in space using a mixed finite element method. This

discretization yields a high dimensional, nonlinear system of differential-algebraic

equations. Proper orthogonal decomposition (POD) is used to reduce the dimension

of this model. Since the computational complexity of the reduced model through

the nonlinearity of the DD equations still depends on the number of variables of

the full model we apply the Discrete Empirical Interpolation Method (DEIM) to

further reduce the computational complexity. We provide numerical comparisons

which demonstrate the performance of this approach.

1 Introduction

In this article we investigate POD-based model order reduction for semiconductors

in electrical networks using DEIM to treat the reduction of nonlinear components.

Electrical networks can be modeled efficiently by a differential-algebraic equation

(DAE) which is obtained from modified nodal analysis. Often semiconductors them-

selves are modeled by electrical networks. These models are stored in a library and

are stamped into the surrounding network in order to create a complete model of

the integrated circuit. In [4] POD model order reduction (POD-MOR) is proposed

to obtain a reduced surrogate model conserving as much of the DD structure as pos-

sible in the reduced order model. This approach in [5] is extended to parametrized
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electrical networks using the greedy sampling proposed in [6]. Advantages of the

POD approach are the higher accuracy of the model and fewer model parameters.

On the other hand, numerical simulations are more expensive. For a comprehensive

overview of the drift-diffusion equations we refer to [1–3].

Using the Notation introduced in [7, 8] the finite element discretization of one

semiconductor with domain Ω ⊂ R
d (d = 1,2,3) in an electrical network leads to a

nonlinear, fully coupled DAE system of the form

AC

d

dt
qC(A

⊤
C e(t), t)+ARg(A⊤

R e(t), t)+AL jL(t)+AV jV (t)

+AS jS(t)+AIis(t) = 0, (1)

d

dt
φL( jL(t), t)−A⊤

L e(t) = 0, (2)

A⊤
V e(t)− vs(t) = 0, (3)

qS(t)−
dgψ

dt
(t) = 0, (4)

jS(t)−C1Jn(t)−C2Jp(t)−C3qS(t) = 0, (5)
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

−ML
dn
dt
(t)

ML
d p
dt
(t)

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+AFEM

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

ψ(t)
n(t)
p(t)

gψ(t)
Jn(t)
Jp(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+F(n(t), p(t),gψ(t))− b(e(t)) = 0, (6)

compare Fig. 1, and see [4, 5]. Here, (1)-(3) describe the electrical network with

unknown node potentials e, and branch currents j L of inductive, and jV of voltage

source branches, respectively. Equations (4)-(5) are discretized coupling conditions.

The vector-valued function ψ contains the weights for the ansatz functions ϕ i in the

Galerkin ansatz

ψh(t,x) =
N

∑
i=1

ψi(t)ϕi(x), x ∈ Ω , (7)

for the discretized potential of the semiconductor. N denotes the number of finite

elements. The discretized electron and hole concentrations n h(t,x) and ph(t,x), the

electric field −gh
ψ(t,x) and the current densities Jh

n (t,x) and Jh
p(t,x) are defined like-

wise. The incidence matrix A= [AR,AC,AL,AV ,AI ,AS] represents the network topol-

ogy and is defined as usual. The matrices AFEM and ML are large and sparse. The

voltage sources vs and current sources is are considered as inputs of the network.

This paper is organized as follows. In Sect. 2 we present the model order reduc-

tion method based on snapshot POD combined with DEIM. In Sect. 3 we present

numerical experiments, and also discuss advantages and shortcomings of our ap-

proach.
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Fig. 1 Basic test circuit with

one diode. The network is

described by

AV =
(

1, 0
)⊤

,

AS =
(
−1, 1

)⊤
,

AR =
(

0, 1
)⊤

,

g(A⊤
R e, t) =

1

R
e2(t).

vs(t)

ψ(t,x), n(t,x), . . .
x ∈ Ω

jV (t)

R

e1(t) e2(t)

2 Model order reduction

We use POD-MOR applied to the DD part (6) to construct a dimension-reduced

surrogate model for (1)-(6). For this purpose we run a simulation of the unreduced

system and collect l snapshots ψ h(tk, ·), nh(tk, ·), ph(tk, ·), gh
ψ(tk, ·), Jh

n(tk, ·), Jh
p(tk, ·)

at time instances tk ∈ {t1, . . . , tl}⊂ [0,T ]. The optimal selection of the time instances

is not considered here. We use the time instances delivered by the DAE integrator.

The snapshot variant of POD introduced in [9] finds a best approximation of the

space spanned by the snapshots w.r.t. to the considered scalar product.

Since every component of the state vector z := (ψ ,n, p,gψ ,Jn,Jp) has its own

physical meaning we apply POD MOR to each component separately. Among other

things this approach has the advantage of yielding a block-dense model and the

approximation quality of each component is adapted individually.

The time-snapshot POD procedure delivers Galerkin ansatz spaces for ψ , n, p,

gψ , Jn and Jp and we set ψPOD(t) :=Uψγψ(t), nPOD(t) :=Unγn(t), . . .. The injection

matrices Uψ ∈ R
N×sψ , Un ∈ R

N×sn , . . ., contain the (time independent) POD basis

functions, and the vectors γ(·) the corresponding time-variant coefficients. The num-

bers s(·) denote the respective number of POD basis functions included. Assembling

the POD system yields the reduced model

AC

d

dt
qC(A

⊤
C e(t), t)+ARg(A⊤

R e(t), t)+AL jL(t)+AV jV (t)

+AS jS(t)+AIis(t) = 0, (8)

d

dt
φL( jL(t), t)−A⊤

L e(t) = 0, (9)

A⊤
V e(t)− vs(t) = 0, (10)

qS(t)−Ugψ

dgψ

dt
(t) = 0, (11)

jS(t)−C1UJnγJn(t)−C2UJpγJp(t)−C3qS(t) = 0, (12)
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

− dγn

dt
(t)

dγp

dt
(t)

0

0

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+APOD

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

γψ (t)
γn(t)
γp(t)
γgψ (t)
γJn(t)
γJp(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

+U⊤F(Unγn(t),Upγp(t),Ugψ γgψ (t))

−U⊤b(e(t)) = 0, (13)

with APOD =U⊤AFEMU and U = diag(Uψ ,Un,Up,Ugψ ,UJn ,UJp). All matrix-matrix

multiplications are calculated in an offline-phase. The nonlinear function F has to

be evaluated online which means that the computational complexity of the reduced

order model still depends on the number of unknowns of the unreduced model. The

nonlinearity in (13) is given by

U⊤F(Uγ(t)) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

U⊤
n Fn(Unγn(t),Upγp(t))

U⊤
p Fp(Unγn(t),Upγp(t))

0

U⊤
Jn

FJn(Unγn(t),Ugψ γgψ (t))

U⊤
Jp

FJp(Unγp(t),Ugψ γgψ (t))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

see e.g. [5]. The subsequent considerations apply for each block component of F .

For the sake of presentation we only consider the second block

U⊤
n

︸︷︷︸

size sn×N

Fn
︸︷︷︸

N evaluations

( Un
︸︷︷︸

size N×sn

γn(t), Up
︸︷︷︸

size N×sp

γp(t) ), (14)

and its derivative with respect to γ p,

U⊤
n

︸︷︷︸

size sn×N

∂Fn

∂ p
(Unγn(t),Upγp(t))

︸ ︷︷ ︸

size N×N, sparse

Up
︸︷︷︸

size N×sp

.

Here, the matrices U(·) are dense and the Jacobian of Fn is sparse. The evaluation

of (14) is of computational complexity O(N). Furthermore, we need to multiply

large dense matrices in the evaluation of the Jacobian. Thus, the POD model order

reduction may become inefficient.

To overcome this problem, we apply Discrete Empirical Interpolation Method

(DEIM) proposed in [10], which we now describe briefly. The snapshots ψ h(tk, ·),
nh(tk, ·), ph(tk, ·), gh

ψ(tk, ·), Jh
n (tk, ·), Jh

p(tk, ·) are collected at time instances tk ∈
{t1, . . . , tl} ⊂ [0,T ] as before. Additionally, we collect snapshots {Fn(n(tk), p(tk))}
of the nonlinearity. DEIM approximates the projected function (14) such that

U⊤
n Fn(Unγn(t),Upγp(t))≈ (U⊤

n Vn(P
⊤
n Vn)

−1)P⊤
n Fn(Unγn(t),Upγp(t)),
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where Vn ∈ R
N×τn contains the first τn POD basis functions of the space spanned

by the snapshots {Fn(n(tk), p(tk))} associated with the largest singular values. The

selection matrix Pn =
(
eρ1

, . . . ,eρτn

)
∈ R

N×τn selects the rows of Fn corresponding

to the so-called DEIM indices ρ1, . . . ,ρτn which are chosen such that the growth of

a global error bound is limited and P⊤
n Vn is regular, see [10] for details.

The matrix Wn := (U⊤
n Vn(P

⊤
n Vn)

−1) ∈ R
sn×τn as well as the whole interpolation

method is calculated in an offline phase. In the simulation of the reduced order

model we instead of (14) evaluate:

Wn
︸︷︷︸

size sn×τn

P⊤
n Fn
︸ ︷︷ ︸

τn evaluations

( Un
︸︷︷︸

size N×sn

γn(t), Up
︸︷︷︸

size N×sp

γp(t) ), (15)

with derivative

W⊤
n

︸︷︷︸

size sn×τn

∂P⊤
n Fn

∂ p
(Unγn(t),Upγp(t))

︸ ︷︷ ︸

size τn×N, sparse

Up
︸︷︷︸

size N×sp

.

In the applied finite element method a single functional component of Fn only de-

pends on a small constant number c ∈ N components of Unγn(t). Thus, the matrix-

matrix multiplication in the derivative does not really depend on N since the number

of entries per row in the Jacobian is at most c.

But there is still a dependence on N, namely the calculation of Unγn(t). To over-

come this dependency we identify the required components of the vector U nγn(t) for

the evaluation of P⊤
n Fn. This is done by defining selection matrices Qn,n ∈ R

cτn×sn ,

Qn,p ∈R
cτp×sp such that

P⊤
n Fn(Unγn(t),Upγp(t)) = F̂n(Qn,nUnγn(t),Qn,pUpγp(t)),

where F̂n denotes the functional components of Fn selected by Pn restricted to the

arguments selected by Qn,n and Qn,p.

Supposed that τn ≈ sn ≪ N we obtain a reduced order model which does not

depend on N any more.

3 Numerical investigation

The discussed finite element method is implemented in C++ based on the finite ele-

ment library deal.II [11]. The high dimensional DAE is integrated using the DASPK

software package [12]. The derivative of the nonlinear functional is hard to compute

and thus we calculate the Jacobians by automatic differentiation with the package

ADOL-C [13]. The Newton systems which arise from the BDF method are solved

with the direct sparse solver SuperLU [14].
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Fig. 2 Relative error between

reduced and unreduced prob-

lem at the fixed frequency

5 ·109 [Hz].
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Fig. 3 Time consumption

for simulation runs of Fig. 2.

The horizontal line indicates

the time consumption for the

simulation of the original full

system.
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A basic test circuit with a single 1-dimensional diode is depicted in Fig. 1. The

parameters of the diode are summarized in [5]. The input v s(t) is chosen to be sinu-

soidal with amplitude 5 [V ]. In the sequel the frequency of the voltage source will

be considered as a model parameter.

We first validate the reduced model at a fixed reference frequency of 5 ·10 9 [Hz].
Fig. 2 shows the development of the relative error between the POD reduced, the

POD-DEIM reduced and the unreduced numerical solutions, plotted over the lack

of information ∆ of the POD basis functions with respect to the space spanned by

the snapshots. The figure shows that the approximation quality of the POD-DEIM

reduced model is comparable with the more expensive POD reduced model. The

number of POD basis functions s(·) for each variable is chosen such that the indi-

cated approximation quality is reached, i.e. ∆ := ∆ ψ ≃ ∆n ≃ ∆p ≃ ∆gψ ≃ ∆Jn ≃ ∆Jp .

The numbers τ(·) of POD-DEIM basis functions are chosen likewise.

In Fig. 3 the simulation times are plotted versus the lack of information ∆ . The

POD reduced order model does not reduce the simulation times significantly for the

chosen parameters. The reason for this is the dependency on the number of variables

of the unreduced system. Here, the unreduced system contains 1000 finite elements

which yields 12012 unknowns. The POD-DEIM reduced order model behaves very

well and leads to a reduction in simulation time of about 90% without reducing the

accuracy of the reduced model. However, we have to report a minor drawback; not

all tested reduced models converge for large ∆(s)≥ 3 ·10−5. This is indicated in the

figures by missing squares.
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Fig. 4 The number of re-

quired POD basis function

and DEIM interpolation in-

dices grows only logarith-

mically with the requested

information content.
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Fig. 5 Computation times of

the unreduced and the reduced

order models plotted versus

the number of finite elements.
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In Fig. 4 we plot the corresponding total number of required POD basis functions.

It can be seen that with the number of POD basis functions increasing linearly, the

lack of information tends to zero exponentially. Furthermore, the number of DEIM

interpolation indices behaves in the same way.

In Fig. 5 we investigate the dependence of the reduced models on the number

of finite elements N. One sees that the simulation times of the unreduced model

depends linearly on N. The POD reduced order model still depends on N linearly

with a smaller constant. The dependence on N of our DEIM-POD implementation

is negligible.

Finally, we in Fig. 6 analyze the behaviour of the models with respect to param-

eter changes. We consider the frequency of the sinusoidal input voltage as model

parameter. The reduced order models are created based on snapshots gathered in

a full simulation at a frequency of 5 · 109[Hz]. We see that the POD model and

the POD-DEIM model behave very similar. The adaptive refinement of the reduced

model is discussed in [5].

Summarizing all numerical results we conclude that the significantly faster POD-

DEIM reduction method yields a reduced order model with the same qualitative

behaviour as the reduced model obtained by classical POD-MOR.
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Fig. 6 The reduced models

are compared with the unre-

duced model at various input

frequencies.
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