
A
T

L
-D

A
Q

-P
R

O
C

-2
0
1
6
-0

0
8

0
9
/

0
6
/

2
0
1
6

SECTION TITLE

Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

COMPUTER SIMULATIONS

Editors: Barry I. Schneider, bis@nist.gov | Gabriel A. Wainer, gwainer@sce.carleton.ca

70 Computing in Science & Engineering 1521-9615/16/$33.00 © 2016 IEEE Copublished by the IEEE CS and the AIP May/June 2016

Discrete Event Modeling and Simulation-Driven

Engineering for the ATLAS Data Acquisition

Network

Matías Bonaventura, Daniel Foguelman, and Rodrigo Castro | Universidad de Buenos Aires, Argentina

R
obust engineering methodologies o�ering product
lifecycle control have proved to be a cornerstone in
modern software development projects. Simulta-
neously, various modeling and simulation (M&S)

techniques have become increasingly adopted in complex
system design, particularly in scenarios in which it’s di�cult
to predict system behavior as changes are introduced.

�e DEVS (Discrete Event Systems Speci�cation) frame-
work is the most general formalism for modeling discrete
event systems1–3 and has been adopted in several disciplines
for complex software and hardware system design and analy-
sis.4,5 In addition to providing an unambiguous mathemati-
cal formalism to de�ne model behavior and structure, DEVS

provides a clear framework for system analysis, experimental
frame de�nition, model-to-simulator veri�cation, and mod-
el-to-system validation.

We present a DEVS-based methodology for M&S-driv-
en engineering projects that integrates software development
best practices tailored to a large-scale networked data acquisi-
tion system in a physics experiment (speci�cally, the ATLAS
particle detector6 at CERN7). �is project poses M&S chal-
lenges from several viewpoints, including system complexity,
tight delivery times, the quality and �exibility of the devel-
oped models and tools, interdisciplinary communication of
results to collaborators (mostly scientists), and big data-scale
analysis.

www.computer.org/cise 71

The Data Acquisition Network at CERN’s

ATLAS Experiment

�e Large Hadron Collider (LHC)8 is the world’s
largest particle accelerator—27 kilometers in cir-
cumference—colliding bunches of particles (pro-
tons or ions) every 25 ns near large detectors, in-
cluding ATLAS, CMS,9 ALICE,10 and LHCb.11
In 2013, the Run1 detectors went o�ine for
maintenance and upgrades (long shutdown 1, or
LS1) until the Run2 restart in 2015. Collisions in
the ATLAS detector generate very high energy, en-
abling the search of novel physical evidence such as
Higgs boson, extra dimensions, and dark matter.
Each particle bunch collision is called an Event (we
use “Event” for high-energy physics and “event” for
DEVS modeling) and consists of particle-induced
signals registered in the detector and digitized for
further analysis. �e raw amount of information
generated exceeds 60 Terabyte/s.

To assimilate this throughput, ATLAS uses a
sophisticated layered �ltering system (trigger and
data acquisition, or TDAQ12) that decides in real
time whether each Event should be permanently
stored or safely discarded. �e �rst-level trigger (L1)
�lters Events from an initial raw rate of 40 million
Events/s down to a �ltered rate of 100,000 Events/s.
L1-accepted Events are temporarily stored in a read-
out system (ROS) in the form of data structures
called fragments and then accessed by a second-level
�lter called the high-level trigger (HLT). At the HLT,
physics algorithms reanalyze the fragments (this
time with a di�erent granularity), retaining only
1,000 “interesting” Events/s. �e TDAQ system
and its HLT-ROS data network is our system under
study.

Applications and Data Network in the HLT

Figure 1 shows the interconnections among various
applications in the HLT at the commencement of
our case study. Upon selection by L1, Event data
is transferred to the ROS, and the specialized ap-
plication HLT supervisor (HLTSV) is noti�ed. �e
HLTSV assigns Events to trigger processing unit
(TPU) servers, which run an application called a
data collection manager (DCM) to centralize com-
munication between the TPU and the rest of the
system. DCMs interface with instances of the ap-
plication processing unit (PU)—one per available
core, between 8 and 24 per host. Each Event is as-
signed to a single PU instance that analyzes it and
decides whether it should be permanently stored or
discarded. �is system represents our starting point
for the M&S process.

Applications communicate over an Ethernet
network with link capacities of 1 and 10 Gbps.
Two core routers and approximately 100 switches
interconnect roughly 2,000 multicore servers us-
ing TCP/IP protocols. Figure 1 shows a diagram
of the network. �e farm is composed of 50 racks
for TPU servers and 25 racks for ROS nodes. Each
TPU rack contains from 30 to 40 servers (DCMs
and PU applications), and each ROS rack contains
8 servers. Within each rack, servers are connected to
a shared top-of-rack (ToR) switch via 1 Gbps links.
�e HLTSV node and the ToRs are connected to
the core switches over 10 Gbps links.

DEVS for Data Network Modeling

DEVS is a mathematical formalism for M&S based
on general systems theory—that is, it’s independent
of any speci�c application. DEVS lets us describe

ROS racks (x25)

10 Gigabit/s

1 Gigabit/s
ROS

(x8)

HLT racks (x25)

TPU

(x30·∙∙40)

TPU

(x30·∙∙40)

ToR

ToR

TPU

DCM (x1)

Processing units (x8·∙∙24)

HLTSV (x1)

Core switch 2

Storage node

Processing node

Core switch 1

Data logger

HLT racks (x25)

ToR

Figure 1. Topology and applications in the high-level trigger and data acquisition (TDAQ) farm. This intermediate

configuration is from long shutdown 1 (LS1) in 2014.

COMPUTER SIMULATIONS

72 May/June 2016

exactly any discrete system and approximate
 numerically continuous systems with any degree of
desired accuracy. �e formal model speci�cation pro-
vides tools for analytical manipulation and o�ers in-
dependence in choosing the programming language
for implementation.2 DEVS models are described
as a hierarchical composition of atomic models (Ms)
and coupled models (CMs) de�ned by mathematical
tuples as shown in Figure 2.

CMs de�ne system structure (interconnections
between coupled and atomic models), whereas Ms
de�ne dynamic behaviors. For Ms, each possible
model state s ∈ S has an associated lifetime
de�ned by the function ta:S → R0

+. When
the model is in state s = s1, at time t1 = ta(s1) it
autonomously undergoes an internal transition
toward a new state s2 = δint(s1), where δint:S → S
is the internal transition function. An output event
is simultaneously produced at t1 with value y1 =
λ(s1), where λ:S → Y is the output function.

When a model receives an input event x1 ∈ X,
an external transition is triggered that instantly
changes the model state to s4 = δext(s3, e, x1), where
s3 is the model state by the time it receives the
input event, and e is the elapsed time since the last
state transition (with e < ta(s3)). �e function δext:S
× R0

+ × X → S is the external transition function.

Vectorial DEVS. �e DEVS simulation algorithm is
universal, unambiguous, easy to implement, and in-
dependent of programming languages, with many
of its extensions and specializations tackling di�er-
ent needs. We’re particularly interested in vectorial
DEVS (VDEVS),13 which lets us model large-scale
systems with a compact graphical representation. A
vectorial model is an array of quasi-identical classic
DEVS models that can di�er in their initial parame-
ters. Formally, the vector model’s structure is de�ned
by VD = {N, XV, YV, P, Mi}, where N is the vec-
tor dimension, Xv is the set of input events vector,
Yv is a vector set of output events, P is the set of

parameters, and each Mi is a classic DEVS model. For
the interaction between vectorial and nonvectorial,
we de�ne scalar to/from mappings of vector models.

PowerDEVS. We developed a model for TDAQ us-
ing the PowerDEVS tool,14 which provides a graph-
ical interface to de�ne DEVS models via block
diagrams, a C ++ editor to code the four dynamic
functions for the M tuple, and libraries with reus-
able models. PowerDEVS also has a native interface
to Scilab (www.scilab.org), an open source alterna-
tive to Matlab for numerical computation purposes.
We adopted a data networks library (queues, serv-
ers, tra�c generators, a TCP implementation, and
so on15, 16) and extended it for our case study.

Network-speci�c simulators strive to represent
protocols and hardware nodes in great detail. �ey
typically provide comprehensive and reusable librar-
ies that allow for quick model prototyping—for ex-
ample, OMNeT++ (www.omnetpp.org), NS2/3,17
and OPNET18 (an updated review19 and a recent
simulation study20 of the TDAQ system using OM-
NeT++ appear elsewhere).

When adopting prebuilt network frameworks, it’s
di�cult (or even impossible, depending on the soft-
ware package) to freely choose the desired simulation
abstraction level. Experience shows that once a ques-
tion is de�ned, several protocol features (or even entire
network layers) can become dispensable as they don’t
contribute signi�cantly to increase result �delity, but
they do increase simulation costs.21 �is poses risks in
M&S projects, particularly for large-scale networks.

By adopting a general-purpose discrete event for-
malism such as DEVS, we partially renounce some
out-of-the-box detailed protocol features o�ered by
network-speci�c packages, but we gain the freedom
to decide what kind of representation and granular-
ity suits a given stage of the project. Our strategy for
modeling the TDAQ system is to �exibly select a suf-
�cient level of abstraction to answer each particular
question with an acceptable �delity given time and
computational resource constraints. Along these lines,
we aim to perform hybrid simulations (discrete events
mixed with continuous �ows). �is capability is read-
ily available in DEVS22 and implemented in advanced
versions of PowerDEVS tailored for data networks.16

Context, Requirements, and Methodology

For any case study that might arise in TDAQ, cross-
cutting contexts and requirements call for a �exible
yet robust development methodology.

�e TDAQ HLT �ltering farm is no excep-
tion. During LS1, it was subject to hardware and

X

S

Y

CM = {X, Y, D, {Mi}, {Zij}}

M = {X, Y, S, δint, δext, λ, ta}

(a) (b)

Ma
Mb

CMbCMa

Figure 2. Basic Discrete Event Systems Specification (DEVS) (a) atomic

models and (b) coupled models. Coupled models define the structure of

the system (interconnections between coupled and atomic models). Atomic

models define the dynamic behaviors.

www.computer.org/cise 73

control algorithm changes that a�ect network topol-
ogy and throughput, yet predicting the impact these
changes have isn’t straightforward. Serious design
and benchmark studies on system components give
con�dence, but they require access to the hardware
in advance. In the end, testing the system as a whole
happens only at the �nal integration phase.

�e full TDAQ system was available for test-
ing only about one out of every six weeks (during
scheduled technical runs), which delays testing on
new control algorithms that are continuously im-
proved but can’t be fully validated until the full sys-
tem is available.

Table 1 lists the resulting requirements elicited
during system analysis meetings. Moreover, these re-
quirements are likely to change dynamically through-
out a project’s lifetime, with di�erent experts having
varying requirements on the same system compo-
nent’s analysis.

To implement an engineering strategy driven by
modeling and simulation, we proposed the iterative
process-based methodology illustrated in Figure 3.

DEVS Formal Framework

At the methodology’s core, the system, model and
simulator entities are strictly separated yet formally
related by the DEVS framework. �e real (or
“source”) system is experimented under a system ex-
perimental frame (EFS), with questions encoded in the
form of system parameters ΘS that de�ne experimental
conditions. Experimental results relevant to the original
questions are stored in a system behavior database λS.

As a speci�cation of structures and behaviors,
every new DEVS model is built for a pair {System,
EFS} according to a modeling relation and guided
by selected homomorphisms/isomorphisms. A
new model experimental frame (EFM) also allows
for questions about model attributes (using model
parameters ΘM for queries and a model database

λM to store answers) related to coupling density,
model topology, types of variables (discrete, contin-
uous), and so on, with no access to the real system
and independent of any simulation exercise.

A DEVS simulator reads a DEVS model and
produces an output trajectory by obeying the mod-
el’s dynamics (in short, a DEVS model is simu-
lated). Its most common realization is a computer
program, usually referred to simply as a simulator,
which is constructed, adapted, and maintained to
read and compute DEVS models e�ciently within
their EFM. �is establishes a simulation relation.
�e compute experimental frame (EFC) de�nes
new questions and parameters ΘC for experiment-
ing with (simulating) the computable model. It also
hosts simulation results in a compute behavior da-
tabase λC. �e validation relationship lets us relate
back to the original system to validate correctness
(λS versus λC) or to perform scans over EFS due to
unexpected observations discovered in the EFC.

Cycles and Phases

We organize the �ow of tasks in three main cycles:
build (the model) in blue, hypothesis (on the system) in
orange, and explore (simulation results) in green. While
each cycle’s goal di�ers, in all cases the �ow across
the DEVS formal framework follows the system →
model → simulation path. In turn, for each evolution
through the cycle, two parallel and cooperative phases
are de�ned: the system study phase drives progress ac-
cording to questions about the system under study,
and the tools development phase seeks to improve the
supporting software algorithms and interfaces, leverag-
ing modeling, simulation, and analysis capabilities.

�e build cycle starts with observation and mea-
surement of the system. Its objective is to provide
quality models that, once simulated, will exhibit an ad-
equate degree of validation against the original system.
�e hypothesis cycle exercises on the model several

Table 1. Elicited requirements.

Requirement Goal

Evaluate candidate changes for the network and

control algorithms before their commissioning

Perform early risk assessment

Define in advance the best set of tests to perform on

the real system during scarce windows of availability

Harness the test window to focus on the most relevant

questions

Enable flexibility for choosing the level of detail/

accuracy with which the evaluations are obtained

Dynamically adapt to different and complex modifications

that need to be assessed, and then schedule changes

COMPUTER SIMULATIONS

74 May/June 2016

candidate changes to be applied onto the system. Its
goal is to �nd improvement opportunities for the sys-
tem when it’s unavailable or when direct experimenta-
tion is too expensive. �e explore cycle starts with ana-
lyzing the large amounts of information produced by
simulations; its goal is to discover properties and correla-
tions unthought of during the experimentation phases.

Cycles need not occur in any speci�c order (al-
though a build cycle is usually required at the begin-
ning of a project). �is approach leads to a model
that reproduces relevant behaviors of the real system
within reasonable simulation times: less relevant
dynamics are kept out of the model (such as intrin-
sics of the network physical layer). �e methodology
also o�ers a guideline for development phases of the

underlying modeling and simulation software tools;
new features are added to the tools at speci�c phases,
responding to speci�c needs, framed within unam-
biguous cycle goals.

Existing Techniques and Methods

Software engineering processes and methodologies
propose frameworks to control software projects’
life cycles—some of the most popular are test-
driven development, extreme programming, and
the Rational Uni�ed Process. Some of these foster
practices such as pair programming or code reviews
as part of this work, whereas others propose itera-
tive and incremental cycles, with frequent deliveries
focused on adding value quickly.

Tools

development

phase

DEVS formal framework

Simulation validation

System Simulator

Model
M

od
el-to-sim

u
lation

verifi
cation

S
ys

te
m

-t
o-

m
od

el

ve
ri
fi
ca

ti
on

Modeling

relation

Simulation

relation

EFM

EFS EFC

?

? ?

Hypothesis and

design

cycle

(on the system)

Explore and

discover

cycle

(on simulation

results)

System

study

phase

Build and

maintenance

cycle

(of the model)

Validation

relation

Figure 3. Modeling and simulation-driven engineering. The methodology diagram based on the DEVS formal framework shows iterative

cycles and incremental phases.

www.computer.org/cise 75

Our methodology shares some aspects with
these approaches. However, none of the aforemen-
tioned methods include the formal M&S aspects
provided by DEVS: strict separation between model-
ing formalism, abstract simulation mechanism, and
code implementation (of both model behavior and
simulation engines). �is gives the advantage of in-
dependence between experimental frames for the real
system, the model, and the simulator, straightforward-
ly propagating enhancements in any of these three ar-
eas to the others. In typical software-based projects, it’s
unusual to modify the base tools themselves to execute
the project. However, in M&S-driven scienti�c proj-
ects, the base tools for modeling, simulation, and data
analysis are crucial devices that call for their own re-
quirements alongside requirements of the model itself.
Our methodology naturally �lls this need.

Large sets of simulation results can support data-
driven hypothesis and predictive analytics.23 A well-
structured simulation database together with reusable
data analysis libraries can systematize di�erent layers
of information aggregation, enabling strati�ed levels
of analyses. Our methodology fosters this approach.

Case Study: Improving the TDAQ Flow and

Data Network

Our real-life case study, in which we applied the above
presented methodology, starts with two build cycles,
observing the system, translating knowledge into an
executable simulation model, and upgrading the mod-
el to represent important design changes in the system.

�is step was followed by an explore cycle, in
which we discovered hidden undesirable behaviors
in load balancing mechanisms. Such behaviors were
con�rmed to exist in the real system and raised the
need for improvements along with open questions
about possible solutions.

To answer the new questions and provide for
predictions, we used hypothesis cycles to test alter-
native scenarios that weren’t rapidly exercisable on
the real system. We then implemented into the real
application a set of improvements that proved sat-
isfactory in the simulated environment. Finally, we
evaluated their true e�ectiveness in the real network
by loading the system with emulated physics Events.

�e model focuses on predicting HLT data�ow
performance. We selected �ltering latency as the
main performance metric; it represents the time from
when the HLTSV assigns an Event to a given PU un-
til when the Event is either discarded or stored.

�e sequence diagram in Figure 4 depicts the ap-
plications that take part in Event �ltering. �e PUs
request information from the ROS in two stages:

L2 �ltering and Event building (EB). In L2, a small
portion of the Event is �rst requested and then ana-
lyzed; this step can be repeated several times until
EB takes place and all pending information is re-
quested as a whole. For each requested portion of
the Event, all involved ROS nodes send their replies
to the same DCM almost simultaneously, creating
tra�c bursts from ROS → DCM that increase the
�ltering latency because of the queuing e�ect gener-
ated at the core and ToR switches.

TDAQ has high bandwidth and low latency
in relation to TCP minimum retransmission time
(200 ms). Together with the data �ow described
earlier, these conditions create a TCP throughput
collapse known as the TCP Incast pathology.24 �e
impact on TDAQ can be huge. Whenever a single
TCP packet is discarded at the switches, a PU can’t
start processing the Event until that packet is re-
transmitted (after 200 ms at best), raising the per-
ceived network latency of an Event request from a
theoretical minimum of 19.2 ms (for 2,400 bytes)
to more than 200 ms. To avoid the Incast e�ect,
the DCM application restricts the number of si-
multaneous requests to the ROS using a credit-
based tra�c shaping control that limits “in �ight”
requests on the network.25 Because responses can
vary signi�cantly in their size, tra�c shaping doesn’t
completely prevent packet losses, so it’s important
to study the e�ects of queue saturation (and TCP
retransmissions) and engineer the network and its
algorithms to maximize performance and minimize
high-latency risks. �is is where our M&S-driven
network engineering methodology comes into play.

First Iteration: Building the Model

We start the model implementation with a build cycle
(blue cycle in Figure 1). We de�ned the system ex-
perimental frame EFS for this cycle as a subset of the
complete system: the HLTSV, all ROS nodes, and a
single instance of the DCM and PU applications. To
simplify timing calculations we assumed zero process-
ing time at the PUs, and Events with �xed size (2.4
Mbytes). �is EFS is representative of the entire sys-
tem with unlimited resources, as each PU indepen-
dently processes a single Event at a time. Scaling this
scenario shows emergent behaviors of resource shar-
ing (DCM credits, network bandwidth, and so on).

Real system measurements. �e build cycle begins
with observation of the real system (experimenta-
tion and metrics acquisition), so we measured �lter-
ing latency in di�erent scenarios. Experiments were
de�ned using ΘS = {number of initial DCM credits}

COMPUTER SIMULATIONS

76 May/June 2016

and results stored in λS. In Figure 5a, we see an opti-
mum con�guration in which average latency stabiliz-
es at 20 ms (close to the theoretical minimum) with-
in a range of about 100 to 600 DCM credits. With
fewer credits (12 to 100), latency increases (DCM
can send fewer simultaneous requests, underutilizing
network capacity). Using more than 600 credits, la-
tency increases rapidly and stabilizes at around 500
ms. We observed packet discards on the ToR switches
when more than 600 credits were used, thus con-
�rming that the latency increase is due to network
congestion and TCP retransmission (no packet loss
was observed at core switches).

Model implementation. �e build cycle continues
with the creation of a DEVS model guided by the

TDAQ architecture and data �ow described for a
single PU application. Figure 6 shows a PowerDEVS
view of the implemented TDAQ model.

To preserve the real system’s semantics, we built
a hierarchical model complying with TDAQ nam-
ing and structure conventions. �is greatly facili-
tated the extraction of control logic from the C++
algorithms in the real applications, thus maximizing
the homomorphism with the system under study.
�e ROS and DCM coupled models implement
the TCP �ow and congestion control logic based on
preexisting PowerDEVS libraries. TCPSender mod-
els TCP Cubic,26 implementing only the TCP be-
havior relevant to the case study. Tests to validate the
TCP model against the real system shifted our focus
from the average latency (red curve in Figure 5) to

{} HLTSV

filterEvent(evld)

filterEvent(evld)

getFragments(evld,f_ids)

getFragments(evld,f_ids1)

getFragments(evld,f_ids2)

{ fragments }

{ fragments }

{ fragments }

{ fragments }

{ fragments }

getFragments(evld, f_ids1 .. f_idsN)

startEBProcessing(evld)

start

L2Processing(evld)

doL2Processing(frags)

^eventOK

acceptEvent(evld)

doEBProcessing(frags)

^eventOK

^evld

getAllfragments(evld)

chkCredits()

^OK

chkCredits()

^OK

getNextPU()^P1

DCM 1 PU 1 ROS 1 ROS 2 ROS 3..N

Figure 4. TDAQ application sequence diagram involved in filtering a single Event. The processing units (PUs) request

information from the read-out system (ROS) in two stages: level-two (L2) filtering and Event building (EB).

www.computer.org/cise 77

the clustered latencies pattern (blue dots). While the
explanation for the occurrence of clustered latencies
is outside this article’s scope, it has a central role in
the TCP Incast e�ect. Moreover, the modeling ef-

forts led to the detection of a bug in the Linux SCL6
TCP implementation that’s responsible for the (un-
expected) cluster around 600 ms (https://bugzilla.
redhat.com/show_bug.cgi?id=1203742).

700

600

500

400

300

200

100

0
0 200 400 600 800 1000

Initial DCM credits

A
ve

ra
g
e
 fi

lt
e
ri

n
g
 l
a
te

n
c
y

(m
s)

700

600

500

400

300

200

100

0

A
ve

ra
g
e
 fi

lt
e
ri

n
g
 l
a
te

n
c
y

(m
s)

1200 1400 0 200 400 600 800 1000

Initial DCM credits

1200 1400

(a) (b)

Figure 5. Filtering latency versus initial DCM credits: (a) real system measurements and (b) simulation results. The

red curve shows average latency, and blue dots show individual latencies; larger dot clusters denote higher number of

occurrences, which gather around discrete ranges (close to 15 ms, 200 ms, 400 ms, and 600 ms).

Figure 6. TDAQ simulation model implemented in PowerDEVS. Tests to validate the TCP model against the real system shifted the focus from

studying averaged filtering latencies to analyzing clustered latency patterns (red curve vs. blue dots in Figure 5).

COMPUTER SIMULATIONS

78 May/June 2016

Following the tools development approach, we
implemented TCP atomic models (sender and receiver)
and network elements (channels and switches) to be
generic and reusable and incorporated them into the
PowerDEVS network library. We also implemented
new Scilab and ROOT27 visualization mechanisms for
latency post-analysis along with a new distributed simu-
lation infrastructure, allowing us to execute multiple
simulations for parameter sweeping purposes. �ese
tools are meant to be reused in generalized simulation
applications.

Simulation results and validation against the real system.

�e next step of the build cycle is model veri�cation
and simulation validation. We con�gured the simula-
tion to follow the real system setup described earlier
(controlled ΘS → ΘM → ΘC translation), sweeping
the number of initial DCM credits. Figure 5b shows
the results. �e simulation reproduces the individual
�ltering latencies (blue dots) following the same clus-
tered patterns, validating the TCP dynamics (retrans-
missions and TCP Incast e�ect). �e simulated aver-
age latency approximates real measured latencies (λS
~ λC), with 100 to 600 credits attaining minimum
latency and fewer than 100 credits slightly increasing
latency. For credits above 600, the simulation showed
congestion and packet drops on the ToR switches,
but the increase in average latency was much steeper
compared to the real system. Another di�erence was
the stabilization point under congestion: the real sys-
tem latency stabilizes at 500 ms, whereas the simulat-
ed latency grows up to 700 ms. Although these di�er-
ences require further study, the simulation reproduces

very closely the intervals of major interest, underlin-
ing the constant tradeo� among degrees of model
detail, simulation accuracy, and delivery times for a
given engineering concern.

An important advantage of the simulated model is
that it allows for �ne-grained analysis (packet by packet
if required). For example, link utilization and queue oc-
cupancies can be visualized and studied in detail in the
simulation, but it’s impossible to sample the instanta-
neous evolution of queue occupancies at network de-
vices (for example, to pinpoint queuing bursts that are
critical for TDAQ and occur in less than 8 ms).

Second Iteration: System Upgrade and Model

Improvements

In the second iteration of the build cycle, we expand
the system’s experimental frame EFS by increasing
the number of TPUs and of PU applications on
each TPU. During this cycle, the real system was
upgraded, calling for changes in the model.

Changes in network topology. �e TDAQ team com-
missioned several changes in the HLT network
in preparation for ATLAS’s Run2 phase, which
doubles the maximum particle’s collision energy.
�e ROS ToR switches were removed and the 200
ROS nodes replaced by 100 new computers with
four 10 Gbps interfaces, each directly connected
to both core switches. �e ToR switches were ex-
panded with additional 10 Gbps links to both core
switches. �e overall throughput supported at the
network level increased by one order of magnitude
(see Figure 7).28

Core switch 1 Core switch 2

ROS (x100) Data logger

HLTSV (x1)

ToR

TPU

(x30···40)

TPU

HLT racks (x50)

DCM (x1)

Processing units (x8···24)

Storage node

Processing node

Bonded links

2x10 Gigabit/s
10 Gigabit/s

1 Gigabit/s

Figure 7. Topology and applications in the TDAQ HLT farm for Run2. This is an upgrade of the one in Figure 1.

www.computer.org/cise 79

Real system measurements. Again, the �rst step in the
build cycle is taking real metrics from the upgraded
system (all new ROS nodes and a full rack of TPUs),
where the network tra�c is largely determined via
HLTSV assignment rate. With a 100 kHz rate for
the HLTSV and 50 TPU racks (full farm), each rack
should handle Events at 2 kHz. �us, new experi-
ments must sweep this parameter (ΘS = {HLTSV
rate}), ranging from 50 Hz (nonsharing of resources;
Events are processed faster than 20 ms) up to 4 kHz
(network saturation point). To simplify the analysis,
we used a synthetic con�guration: PUs accept Events
50 percent of the time, Event size is 1.3 Mbytes, and
the DCM uses 500 and 700 credits.

Figure 8a shows the average Event latency for
increasing the HLTSV assignment rate. When the
HLTSV assigns Events at 50 Hz, latency is minimal
(13 ms) because the network is completely free when
applications start �ltering Events. For increasing assign-
ment rates, latency rises as several PUs simultaneously
request Events competing for �nite network resources
and DCM credits. For rates above around 3.2 kHz, la-
tency increases exponentially as the network approach-
es its maximum capacity (93 percent utilization).

Model implementation. Model changes related to to-
pology upgrades were minimal: the ROS ToR switch
models were easily removed, thanks to the modular-
ity fostered by DEVS, and the channel’s con�gura-
tion changed to match the new link capacities. �is
shows the model’s �exibility and the advantage of
having a one-to-one mapping between components
of the real system and the simulation model. At this

stage, we developed a complete HLTSV implemen-
tation, reusing directly some chunks of C++ code
from the real HLTSV application for greater reliabil-
ity. To increase the number of model instances, we
used VDEVS, developing 16 new vectorized DEVS
models and 10 new multiplexer models to represent
packet routing.

For the tools development phases, we imple-
mented three generic solutions to address the scal-
ability requirement of increasing the number of simu-
lated instances 50 times. VDEVS’s original proposal
was extended, allowing for C++11 SmartPointers
in vector DEVS messages. SmartPointers were also
included directly in the PowerDEVS simulation base
engine to allow for automatic and transparent memo-
ry management in any atomic DEVS model. �is ap-
proach dramatically reduced the simulator’s memory
footprint, pushing its scalability to the next order of
magnitude. We also developed a new general frame-
work for PowerDEVS to automatically launch simul-
taneous simulations on distributed nodes, reducing
simulation times for parameter sweeping experiments
linearly with respect to the number of nodes used
(simulations are completely independent).

Simulation results and validation with the real system.

To complete the build cycle, we validated the simula-
tions against the real system, replicating previously con-
ducted experiments to sweep the HLTSV assignment
rate parameter. We executed nine experiments, each
simulating 60 seconds (180,000 �ltered Events in the
most stringent case) in three di�erent nodes, complet-
ing all simulations in 120 minutes. As Figure 8b shows,

700
500 credits 500 credits

700 credits

Designed operating rate

(2 kHz per rack)

4% 14.4% 29.3% 43.2% 58.1% 72.2%
84.3% 93%

1.5%
29% 58.4% 87.5% 93.42%

99.45%

99.92% 99.93%

98%

98.6%

600

500

400

300

200

100

0 500 1000 1500

HLTSV assigned event rate (Hz)

A
ve

ra
g
e
 fi

lt
e
ri

n
g
 l
a
te

n
c
y

(m
s)

2000 2500 3000 3500 4000

700

600

500

400

300

200

100

0
0 500 1000 1500

HLTSV assigned event rate (Hz)

A
ve

ra
g
e
 fi

lt
e
ri

n
g
 l
a
te

n
c
y

(m
s)

2000 2500 3000 3500 4000

(a) (b)

Figure 8. Average Event latency sweeping the HLTSV assignment rate (200 ROS, 1 TPU rack with 40 DCMs, 960 PUs): (a) real system

measurements and (b) simulation results. Percentages represent network load, and red background shows standard deviation.

COMPUTER SIMULATIONS

80 May/June 2016

the simulation results closely reproduce the latency
curve measured in the real system. �e absolute latency
values and network load on the simulation di�er from
reality within an acceptable range (less than 5 percent
di�erence), showing a good degree of validation.

Third Iteration: Exploring and Discovering

System-Level Behaviors

�e simulation accuracy obtained in previous cycles
provides us with a su�cient con�dence level on the
simulated data that justi�es running an explore cy-
cle (green cycle in Figure 3) to �nd potential emer-
gent behaviors.

Full system simulations generate huge volumes
of information for the 6 million Events �ltered in a
single minute (processing times, �ltering latencies,
queues occupancy, link usages, farm utilization, and
so on). Some of this information isn’t available in
the real system or is too di�cult to gather uniform-
ly for post-analysis goals.

Figure 9 is an example data analysis performed
on the simulation results for λC. It shows how Events

are distributed across the farm in di�erent time slots
using various load-balancing algorithms: �rst in �rst
out (FIFO) is the default policy implemented for se-
lecting the TPU node that will �lter the next Event.

In the FIFO policy, the reddish area at the bot-
tom explains the fact that 30 percent of the DCMs
had double the amount of PUs available for process-
ing, thus explaining their higher load. All DCMs are
heavily assigned in the �rst time bins; after a few sec-
onds of execution, load becomes similar to the RAN-
DOM algorithm (each Event’s �ltering time di�ers).
Another detected system-level behavior is that indi-
vidual DCMs di�er signi�cantly in the number of
Events they process—the color intensities vary no-
ticeably along any single row and along any single
column. �ese observations led us to infer that a po-
tentially uneven load-balancing mechanism might be
the cause of overall higher �ltering latencies.

For the tools development phase, we developed
a set of reusable R libraries for data analysis and vi-
sualization of the large volumes of logging informa-
tion produced by PowerDEVS. �e new graphical

200

FIFO

RANDOM

LEAST_BUSY_DCM

Simultaneous

PUs

Time binned (s)

25

20

15

10

5

150

100D
C

M
 I

D

50

0

200

150

100D
C

M
 I

D

50

0

200

150

100D
C

M
 I

D

50

(0
,0

.5
]

(0
.5

,1
]

(1
.5

,2
]

(2
,2

.5
]

(2
.5

,3
]

(3
,3

.5
]

(3
.5

,4
]

(4
,4

.5
]

(4
.5

,5
]

(1
,1

.5
]

0

Figure 9. Heatmap of the load in the HLT farm for different HLTSV assignment policies. Tile color represents the maximum amount of

PUs simultaneously processed in each DCM (230 DCM IDs in the vertical axis) in 0.5 s (5 s binned in the horizontal axis).

www.computer.org/cise 81

information generated through the R platform (such
as the heatmaps in Figure 9) became standard means
of communication with the TDAQ team.

Fourth Iteration: Real System Improvement

Proposal

�e revealed behavior discovered during the explore
cycle moved us forward to the hypotheses cycle (or-
ange cycle in Figure 3) to test new load-balancing
algorithms in a simulated domain in search of im-
proved performance.

Testing the hypothesis on the model. �e latency’s lin-
ear increase in Figure 8 is the e�ect of several PUs
competing for the same resources (reddish tiles in
Figure 9). However, in our synthetic experiment for
the designed frequency (2 kHz per rack), each DCM
receives on average one assignment every 50 to 60 ms,
while the minimum latency for �ltering an Event is
roughly one third of this period (with an unloaded
network). Under these conditions and an optimal
assignment policy, it isn’t necessary for two PUs to
process simultaneously on a single DCM. However,
such assignments currently behave as random (uni-
formly distributed), so sometimes 10 to 25 PUs of
the same DCM process simultaneously while other
DCMs are almost idle (DCM load in Figure 9).

We modeled three HLTSV assignment poli-
cies: FIFO, used by the real system; RANDOM,
in which the HLTSV selects a random idle PU;
and the new LEAST_BUSY_DCM, in which the
HLTSV selects an idle PU within the DCM with
fewer busy PUs. �e main idea behind LEAST_
BUSY_DCM is to revert the uneven load detected
in the explore cycle by assigning Events according
to the load on each DCM.

Simulation results. After implementing new alter-
natives in the model, we performed simulations to
compare the RANDOM algorithm with the pro-
posed LEAST_BUSY_DCM algorithm (FIFO is
omitted because it eventually becomes equivalent
to RANDOM as shown in Figure 9). To compare,
we simulated the same experiment as in the second
iteration (sweeping the HLTSV rate) but con�g-
ured nine TPU racks (267 DCMs and 6,408 PUs).
Figure 9 shows that LEAST_BUSY_DCM e�ec-
tively balances the load of all DCMs in the farm,
reducing the amount of simultaneous PUs process-
ing in each DCM (tile colors present more simi-
larity along rows and columns). Figure 10b shows
simulation results comparing both algorithms. �e
RANDOM algorithm exhibits the same behavior
as the FIFO algorithm, while the new algorithm
maintains average Event latency close to a mini-
mum (16 ms) for all frequencies below 24 kHz.
For higher frequencies, the latency grows exponen-
tially due to network congestion. �ese results sug-
gest that the new algorithm could reduce latency
between two to four times for this speci�c con�gu-
ration (design rate of 15 kHz with a network satu-
ration point of 23 kHz). New tests are under way
with more realistic data �ow to increase validation
con�dence.

Implementation and validation in the real system.

Once we test the hypothesis in the simulation, the
next step in the hypothesis cycle is to implement
changes to validate against the real system. It was
possible to reuse some C++ code developed for
models in the simulation, with minor adaptations to
attain close-to-real-time performance (the 100 kHz
rate requirement for HLTSV is a stringent one). We

200

150

A
ve

ra
g
e
 fi

lt
e
ri

n
g
 l
a
te

n
c
y

(m
s)

100

50

0 0
0 5k 10k

HLTSV assigned event rate (Hz)

15k 20k 25k

200

150

A
ve

ra
g
e
 fi

lt
e
ri

n
g
 l
a
te

n
c
y

(m
s)

100

50

0 5k 10k

HLTSV assigned event rate (Hz)

HLTSV LEAST_BUSY_DCM assignment (new)

HLTSV RANDOM assignment (current)

HLTSV LEAST_BUSY_DCM assignment (new)

HLTSV RANDOM assignment (current)

15k 20k 25k

(a) (b)

Figure 10. Comparison of assignment policies (RANDOM versus LEAST_BUSY_DCM) for (a) real system measurements and

(b) simulation results. The RANDOM algorithm exhibits the same behavior as the FIFO algorithm, while the new algorithm maintains

average Event latency close to a minimum (16 ms) for all frequencies below 24 kHz.

COMPUTER SIMULATIONS

82 May/June 2016

 performed the same experiment in the real system,
with HLTSV rate sweeping using nine TPUs racks.
Figure 10a shows the result of comparing RANDOM
and LEAST_BUSY_DCM algorithms in the real
system. With the new algorithm and rates under
24 kHz, the average latency is kept to a minimum
and shows improvements of two to four times com-
pared to the current FIFO algorithm, as predicted
in the simulation. �e simulation is thus validated,
showing that the model is capable of reproducing
known behaviors, representing a valuable tool to pre-
dict the impact of changes in the real system.

W
e’re currently implementing our model with a
variety of TDAQ scenarios in which we study

di�erent candidate tra�c control techniques in
search of further performance improvements (in par-
ticular, looking for quick recovery times in the face of
system failures). We also plan to apply our method-
ology and tools to assess candidate ATLAS upgrades
(planned for 2018), comparing performance and
modeling techniques with other simulation frame-
works. Ongoing research aims to automate param-
eterization-simulation-validation cycles by retrieving
real run parameters and metrics recorded in the
ATLAS Information Service database.

References

1. B.P. Zeigler, �eory of Modeling and Simulation,

John Wiley & Sons, 1976.

2. A.C.H. Chow and B.P. Zeigler, “Parallel DEVS:

A Parallel, Hierarchical, Modular, Modeling

Formalism,” Proc. 26th Conf. Winter Simulation,

1994, pp. 716–722.

3. B.P. Zeigler, H. Praehofer, and T.G. Kim, �eory of

Modeling and Simulation: Integrating Discrete Event

and Continuous Complex Dynamic Systems, Academic

Press, 2000.

4. G. Wainer, Discrete-Event Modeling and Simulation:

A Practitioner’s Approach, CRC Press, 2009.

5. G. Wainer and J. Mosterman, Discrete-Event

Modeling and Simulation: �eory and Applications,

CRC Press, 2010.

6. ATLAS Collaboration, “�e ATLAS Experiment

at the CERN Large Hadron Collider,” J.

Instrumentation, vol. 3, no. 8, 2008, p. S08003.

7. D. Pestre, “L’organisation Européenne pour la

Recherche Nucléaire (CERN): A Succès et Politique

Scienti�que,” Vingtieme Siecle, Revue d’Histoire,

JSTOR, 1984, pp. 65–76.

8. L. Evans and P. Bryant, eds., “LHC Machine,” J.

Instrumentation, vol. 3, no. 8, 2008, p. S08001.

9. CMS Collaboration, “�e CMS Experiment at the

CERN LHC,” J. Instrumentation, vol. 3,

no. 4, 2008, pp. 1748–0221.

10. K. Aamodt et al. (ALICE Collaboration), “�e

ALICE Experiment at the CERN LHC,” J.

Instrumentation, vol. 3, no. 8, 2008, p. S08002.

11. A.A. Alves Jr. et al. (LHCb Collaboration), “�e

LHCb Detector at the LHC,” J. Instrumentation,

vol. 3, no. 8, 2008, pp. 1–205.

12. ATLAS Collaboration, ATLAS High-Level Trigger,

Data-Acquisition and Controls, tech. report,

CERN-LHCC-2003-022, ATLAS-TDR-016,

CERN, 2003.

13. F. Bergero and E. Kofman, “A Vectorial DEVS

Extension for Large Scale Parallel System Modeling

and Simulation,” Simulation, vol. 90, no. 5, 2014,

pp. 522–546.

14. F. Bergero and E. Kofman, “PowerDEVS: A Tool

for Hybrid System Real-Time Modeling and

Simulation,” Simulation, vol. 87, nos. 1 and 2,

2011, pp. 113–132.

15. R. Castro, “Integrative Tools for Modeling,

Simulation and Control of Data Networks” (in

Spanish, extended summary in English), PhD

dissertation, Control Dept., Nat’l Univ. Rosario,

Argentina, 2010.

16. R. Castro and E. Kofman, “An Integrative Approach

for Hybrid Modeling, Simulation and Control of

Data Networks Based on the DEVS Formalism,”

Modeling and Simulation of Computer Networks

and Systems: Methodologies and Applications, M.S.

Obaidat, Z. Faouzi, and P. Nicopolitidis, eds.,

Morgan Kaufmann, 2015, chapter 18.

17. T. Issariyakul and E. Hossain, Introduction to

Network Simulator NS2, Springer, 2008.

18. X. Chang, “Network with OPNET Simulations,”

Proc. 31st Conf. Winter Simulation, 1999,

pp. 307–314.

19. J. Suárez et al., “Computer Networks Performance

Modeling and Simulation,” Modeling and Simulation

of Computer Networks and Systems: Methodologies

and Applications, M.S. Obaidat et al., eds., Morgan

Kaufmann, 2015, ch. 7.

20. T. Colombo et al., “Modeling a Large

Data-Acquisition Network in a Simulation

Framework,” Proc. Cluster Computing Conf.,

2015, pp. 809–816.

21. J.L. Burbank, W. Kasch, and J. Ward, An

Introduction to Network Modeling and Simulation

for the Practicing Engineer, John Wiley & Sons,

2011.

22. F. Cellier and E. Kofman, Continuous System

Simulation, Springer Science & Business Media, 2006.

www.computer.org/cise 83

23. B. Gonçalves and F. Porto, “Managing Scienti� c

Hypotheses as Data with Support for Predictive

Analytics,” Computing in Science & Eng., vol. 17,

no. 5, 2015, pp. 35–43.

24. S. Kulkarni and P. Agrawal, Analysis of TCP

Performance in Data Center Networks, Springer, 2014.

25. T. Colombo (on behalf of the ATLAS

Collaboration), “Data-Flow Performance

Optimisation on Unreliable Networks: � e ATLAS

Data-Acquisition Case,” J. Physics: Conf. Series, vol.

608, no. 1, 2015, p. 012005.

26. S. Ha, I. Rhee, and L. Xu, “CUBIC: A New

TCP-Friendly High-Speed TCP Variant,” ACM

SIGOPS Operating Systems Rev., vol. 42, no. 5,

2008, pp. 64–74.

27. I. Antcheva et al., “ROOT: A C++ Framework

for Petabyte Data Storage, Statistical Analysis and

Visualization,” Computer Physics Comm., vol. 182,

no. 12, 2011, pp. 2499–2512.

28. M.E. Pozo Astigarraga (on behalf of the ATLAS

Collaboration), “Evolution of the ATLAS Trigger

and Data Acquisition System,” J. Physics: Conf.

Series, vol. 608, no. 1, 2015, p. 012006.

Matías Bonaventura is a MASc in computer science

and a PhD student in the Departamento de Com-

putación, Facultad de Ciencias Exactas y Naturales, at the

Universidad de Buenos Aires, Argentina. Contact him at

mbonaventura@dc.uba.ar.

Daniel Foguelman is a MASc in computer science and

a PhD student in the Departamento de Computación,

Facultad de Ciencias Exactas y Naturales, at the Uni-

versidad de Buenos Aires, Argentina. Contact him at

dfoguelman@dc.uba.ar.

Rodrigo Castro is a PhD in electrical engineering (Uni-

versidad Nacional de Rosario, Argentina) and professor in

the Departamento de Computación, Facultad de Cien-

cias Exactas y Naturales, at the Universidad de Buenos

Aires, Argentina. Contact him at rcastro@dc.uba.ar.

Selected articles and columns from IEEE Computer

Society publications are also available for free at

http://ComputingNow.computer.org.

Stay relevant with the IEEE Computer Society

More at www.computer.org/myCS

Publications your way,

when you want them.

The future of publication delivery

is now. Check out myCS today!

• Mobile-friendly—Looks great on
any device—mobile, tablet, laptop,
or desktop

• Customizable—Whatever your
e-reader lets you do, you can do on
myCS

• Personal Archive—Save all your
issues and search or retrieve them

quickly on your personal myCS

site.

Keeping
YOU at the

Center
of Technology

Publications your way,

when you want them.

The future of publication delivery

is now. Check out myCS today!

• Mobile-friendly—Looks great on
any device—mobile, tablet, laptop,
or desktop

• Customizable—Whatever your
e-reader lets you do, you can do on
myCS

• Personal Archive—Save all your
issues and search or retrieve them

quickly on your personal myCS

site.

YOU at the

enter
nology

