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Discrete Event Modeling and Simulation-Driven 

Engineering for the ATLAS Data Acquisition 

Network

Matías Bonaventura, Daniel Foguelman, and Rodrigo Castro | Universidad de Buenos Aires, Argentina

R
obust engineering methodologies o�ering product 
lifecycle control have proved to be a cornerstone in 
modern software development projects. Simulta-
neously, various modeling and simulation (M&S) 

techniques have become increasingly adopted in complex 
system design, particularly in scenarios in which it’s di�cult 
to predict system behavior as changes are introduced. 

�e DEVS (Discrete Event Systems Speci�cation) frame-
work is the most general formalism for modeling discrete 
event systems1–3 and has been adopted in several disciplines 
for complex software and hardware system design and analy-
sis.4,5 In addition to providing an unambiguous mathemati-
cal formalism to de�ne model behavior and structure, DEVS 

provides a clear framework for system analysis, experimental 
frame de�nition, model-to-simulator veri�cation, and mod-
el-to-system validation.

We present a DEVS-based methodology for M&S-driv-
en engineering projects that integrates software development 
best practices tailored to a large-scale networked data acquisi-
tion system in a physics experiment (speci�cally, the ATLAS 
particle detector6 at CERN7). �is project poses M&S chal-
lenges from several viewpoints, including system complexity, 
tight delivery times, the quality and �exibility of the devel-
oped models and tools, interdisciplinary communication of 
results to collaborators (mostly scientists), and big data-scale 
analysis.
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The Data Acquisition Network at CERN’s 

ATLAS Experiment

�e Large Hadron Collider (LHC)8 is the world’s 
largest particle accelerator—27 kilometers in cir-
cumference—colliding bunches of particles (pro-
tons or ions) every 25 ns near large detectors, in-
cluding ATLAS, CMS,9 ALICE,10 and LHCb.11 
In 2013, the Run1 detectors went o�ine for 
maintenance and upgrades (long shutdown 1, or 
LS1) until the Run2 restart in 2015. Collisions in 
the ATLAS detector generate very high energy, en-
abling the search of novel physical evidence such as 
Higgs boson, extra dimensions, and dark matter. 
Each particle bunch collision is called an Event (we 
use “Event” for high-energy physics and “event” for 
DEVS modeling) and consists of particle-induced 
signals registered in the detector and digitized for 
further analysis. �e raw amount of information 
generated exceeds 60 Terabyte/s. 

To assimilate this throughput, ATLAS uses a 
sophisticated layered �ltering system (trigger and 
data acquisition, or TDAQ12) that decides in real 
time whether each Event should be permanently 
stored or safely discarded. �e �rst-level trigger (L1) 
�lters Events from an initial raw rate of 40 million 
Events/s down to a �ltered rate of 100,000 Events/s. 
L1-accepted Events are temporarily stored in a read-
out system (ROS) in the form of data structures 
called fragments and then accessed by a second-level 
�lter called the high-level trigger (HLT). At the HLT, 
physics algorithms reanalyze the fragments (this 
time with a di�erent granularity), retaining only 
1,000 “interesting” Events/s. �e TDAQ system  
and its HLT-ROS data network is our system under 
study.

Applications and Data Network in the HLT

Figure 1 shows the interconnections among various 
applications in the HLT at the commencement of 
our case study. Upon selection by L1, Event data 
is transferred to the ROS, and the specialized ap-
plication HLT supervisor (HLTSV) is noti�ed. �e 
HLTSV assigns Events to trigger processing unit 
(TPU) servers, which run an application called a 
data collection manager (DCM) to centralize com-
munication between the TPU and the rest of the 
system. DCMs interface with instances of the ap-
plication processing unit (PU)—one per available 
core, between 8 and 24 per host. Each Event is as-
signed to a single PU instance that analyzes it and 
decides whether it should be permanently stored or 
discarded. �is system represents our starting point 
for the M&S process.

Applications communicate over an Ethernet 
network with link capacities of 1 and 10 Gbps. 
Two core routers and approximately 100 switches 
interconnect roughly 2,000 multicore servers us-
ing TCP/IP protocols. Figure 1 shows a diagram 
of the network. �e farm is composed of 50 racks 
for TPU servers and 25 racks for ROS nodes. Each 
TPU rack contains from 30 to 40 servers (DCMs 
and PU applications), and each ROS rack contains 
8 servers. Within each rack, servers are connected to 
a shared top-of-rack (ToR) switch via 1 Gbps links. 
�e HLTSV node and the ToRs are connected to 
the core switches over 10 Gbps links.

DEVS for Data Network Modeling

DEVS is a mathematical formalism for M&S based 
on general systems theory—that is, it’s independent 
of any speci�c application. DEVS lets us describe  
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Figure 1. Topology and applications in the high-level trigger and data acquisition (TDAQ) farm. This intermediate 

configuration is from long shutdown 1 (LS1) in 2014.
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exactly any discrete system and approximate 
 numerically continuous systems with any degree of 
desired accuracy. �e formal model speci�cation pro-
vides tools for analytical manipulation and o�ers in-
dependence in choosing the programming language 
for implementation.2 DEVS models are described 
as a hierarchical composition of atomic models (Ms) 
and coupled models (CMs) de�ned by mathematical 
tuples as shown in Figure 2.

CMs de�ne system structure (interconnections 
between coupled and atomic models), whereas Ms 
de�ne dynamic behaviors. For Ms, each possible 
model state s ∈ S has an associated lifetime 
de�ned by the function ta:S → R0

+. When 
the model is in state s = s1, at time t1 = ta(s1) it 
autonomously undergoes an internal transition 
toward a new state s2 = δint(s1), where δint:S → S 
is the internal transition function. An output event 
is simultaneously produced at t1 with value y1 = 
λ(s1), where λ:S → Y is the output function.

When a model receives an input event x1 ∈ X,  
an external transition is triggered that instantly 
changes the model state to s4 = δext(s3, e, x1), where 
s3 is the model state by the time it receives the 
input event, and e is the elapsed time since the last 
state transition (with e < ta(s3)). �e function δext:S  
× R0

+ × X → S is the external transition function. 

Vectorial DEVS. �e DEVS simulation algorithm is 
universal, unambiguous, easy to implement, and in-
dependent of programming languages, with many 
of its extensions and specializations tackling di�er-
ent needs. We’re particularly interested in vectorial 
DEVS (VDEVS),13 which lets us model large-scale 
systems with a compact graphical representation. A 
vectorial model is an array of quasi-identical classic 
DEVS models that can di�er in their initial parame-
ters. Formally, the vector model’s structure is de�ned 
by VD = {N, XV, YV, P, Mi}, where N is the vec-
tor dimension, Xv is the set of input events vector, 
Yv is a vector set of output events, P is the set of  

parameters, and each Mi is a classic DEVS model. For 
the interaction between vectorial and nonvectorial, 
we de�ne scalar to/from mappings of vector models.

PowerDEVS. We developed a model for TDAQ us-
ing the PowerDEVS tool,14 which provides a graph-
ical interface to de�ne DEVS models via block 
diagrams, a C ++ editor to code the four dynamic 
functions for the M tuple, and libraries with reus-
able models. PowerDEVS also has a native interface 
to Scilab (www.scilab.org), an open source alterna-
tive to Matlab for numerical computation purposes. 
We adopted a data networks library (queues, serv-
ers, tra�c generators, a TCP implementation, and 
so on15, 16) and extended it for our case study. 

Network-speci�c simulators strive to represent 
protocols and hardware nodes in great detail. �ey 
typically provide comprehensive and reusable librar-
ies that allow for quick model prototyping—for ex-
ample, OMNeT++ (www.omnetpp.org), NS2/3,17 
and OPNET18 (an updated review19 and a recent 
simulation study20 of the TDAQ system using OM-
NeT++ appear elsewhere).

When adopting prebuilt network frameworks, it’s 
di�cult (or even impossible, depending on the soft-
ware package) to freely choose the desired simulation 
abstraction level. Experience shows that once a ques-
tion is de�ned, several protocol features (or even entire 
network layers) can become dispensable as they don’t 
contribute signi�cantly to increase result �delity, but 
they do increase simulation costs.21 �is poses risks in 
M&S projects, particularly for large-scale networks.

By adopting a general-purpose discrete event for-
malism such as DEVS, we partially renounce some 
out-of-the-box detailed protocol features o�ered by 
network-speci�c packages, but we gain the freedom 
to decide what kind of representation and granular-
ity suits a given stage of the project. Our strategy for 
modeling the TDAQ system is to �exibly select a suf-
�cient level of abstraction to answer each particular 
question with an acceptable �delity given time and 
computational resource constraints. Along these lines, 
we aim to perform hybrid simulations (discrete events 
mixed with continuous �ows). �is capability is read-
ily available in DEVS22 and implemented in advanced 
versions of PowerDEVS tailored for data networks.16

Context, Requirements, and Methodology

For any case study that might arise in TDAQ, cross-
cutting contexts and requirements call for a �exible 
yet robust development methodology.

�e TDAQ HLT �ltering farm is no excep-
tion. During LS1, it was subject to hardware and 

X
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Y

CM = {X, Y, D, {Mi}, {Zij}}

M = {X, Y, S, δint, δext, λ, ta}

(a) (b)

Ma
Mb

CMbCMa

Figure 2. Basic Discrete Event Systems Specification (DEVS) (a) atomic 

models and (b) coupled models. Coupled models define the structure of 

the system (interconnections between coupled and atomic models). Atomic 

models define the dynamic behaviors.
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control algorithm changes that a�ect network topol-
ogy and throughput, yet predicting the impact these 
changes have isn’t straightforward. Serious design 
and benchmark studies on system components give 
con�dence, but they require access to the hardware 
in advance. In the end, testing the system as a whole 
happens only at the �nal integration phase.

�e full TDAQ system was available for test-
ing only about one out of every six weeks (during 
scheduled technical runs), which delays testing on 
new control algorithms that are continuously im-
proved but can’t be fully validated until the full sys-
tem is available.

Table 1 lists the resulting requirements elicited 
during system analysis meetings. Moreover, these re-
quirements are likely to change dynamically through-
out a project’s lifetime, with di�erent experts having 
varying requirements on the same system compo-
nent’s analysis.

To implement an engineering strategy driven by 
modeling and simulation, we proposed the iterative 
process-based methodology illustrated in Figure 3.

DEVS Formal Framework 

At the methodology’s core, the system, model and 
simulator entities are strictly separated yet formally  
related by the DEVS framework. �e real (or 
“source”) system is experimented under a system ex-
perimental frame (EFS), with questions encoded in the 
form of system parameters ΘS that de�ne experimental 
conditions. Experimental results relevant to the original 
questions are stored in a system behavior database λS.

As a speci�cation of structures and behaviors, 
every new DEVS model is built for a pair {System, 
EFS} according to a modeling relation and guided 
by selected homomorphisms/isomorphisms. A 
new model  experimental frame (EFM) also allows 
for questions about model attributes (using model  
parameters ΘM for queries and a model database 

λM to store answers) related to coupling density, 
model topology, types of variables (discrete, contin-
uous), and so on, with no access to the real system 
and independent of any simulation exercise. 

A DEVS simulator reads a DEVS model and 
produces an output trajectory by obeying the mod-
el’s dynamics (in short, a DEVS model is simu-
lated). Its most common realization is a computer 
program, usually referred to simply as a simulator, 
which is constructed, adapted, and maintained to 
read and compute DEVS models e�ciently within 
their EFM. �is establishes a simulation relation. 
�e compute  experimental frame (EFC) de�nes 
new questions and parameters ΘC for experiment-
ing with (simulating) the computable model. It also 
hosts simulation results in a compute behavior da-
tabase λC. �e validation relationship lets us relate 
back to the original system to validate correctness 
(λS versus λC) or to perform scans over EFS due to 
unexpected observations discovered in the EFC.

Cycles and Phases

We organize the �ow of tasks in three main cycles: 
build (the model) in blue, hypothesis (on the system) in 
orange, and explore (simulation results) in green. While 
each cycle’s goal di�ers, in all cases the �ow across 
the DEVS formal framework follows the system → 
model → simulation path. In turn, for each evolution 
through the cycle, two parallel and cooperative phases 
are de�ned: the system study phase drives progress ac-
cording to questions about the system under study, 
and the tools development phase seeks to improve the 
supporting software algorithms and interfaces, leverag-
ing modeling, simulation, and analysis capabilities.

�e build cycle starts with observation and mea-
surement of the system. Its objective is to provide 
quality models that, once simulated, will exhibit an ad-
equate degree of validation against the original system. 
�e hypothesis cycle exercises on the model several  

Table 1. Elicited requirements.

Requirement Goal

Evaluate candidate changes for the network and 

control algorithms before their commissioning

Perform early risk assessment

Define in advance the best set of tests to perform on 

the real system during scarce windows of availability

Harness the test window to focus on the most relevant 

questions

Enable flexibility for choosing the level of detail/

accuracy with which the evaluations are obtained

Dynamically adapt to different and complex modifications 

that need to be assessed, and then schedule changes
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candidate changes to be applied onto the system. Its 
goal is to �nd improvement opportunities for the sys-
tem when it’s unavailable or when direct experimenta-
tion is too expensive. �e explore cycle starts with ana-
lyzing the large amounts of information produced by 
simulations; its goal is to discover properties and correla-
tions unthought of during the experimentation phases. 

Cycles need not occur in any speci�c order (al-
though a build cycle is usually required at the begin-
ning of a project). �is approach leads to a model 
that reproduces relevant behaviors of the real system 
within reasonable simulation times: less relevant  
dynamics are kept out of the model (such as intrin-
sics of the network physical layer). �e methodology 
also o�ers a guideline for development phases of the 

underlying modeling and simulation software tools; 
new features are added to the tools at speci�c phases, 
responding to speci�c needs, framed within unam-
biguous cycle goals.

Existing Techniques and Methods

Software engineering processes and methodologies 
propose frameworks to control software projects’ 
life cycles—some of the most popular are test-
driven development, extreme programming, and 
the Rational Uni�ed Process. Some of these foster 
practices such as pair programming or code reviews 
as part of this work, whereas others propose itera-
tive and incremental cycles, with frequent deliveries 
focused on adding value quickly. 
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Our methodology shares some aspects with 
these approaches. However, none of the aforemen-
tioned methods include the formal M&S aspects 
provided by DEVS: strict separation between model-
ing formalism, abstract simulation mechanism, and 
code implementation (of both model behavior and 
simulation engines). �is gives the advantage of in-
dependence between experimental frames for the real  
system, the model, and the simulator, straightforward-
ly propagating enhancements in any of these three ar-
eas to the others. In typical software-based projects, it’s 
unusual to modify the base tools themselves to execute 
the project. However, in M&S-driven scienti�c proj-
ects, the base tools for modeling, simulation, and data 
analysis are crucial devices that call for their own re-
quirements alongside requirements of the model itself. 
Our methodology naturally �lls this need.

Large sets of simulation results can support data-
driven hypothesis and predictive analytics.23 A well-
structured simulation database together with reusable 
data analysis libraries can systematize di�erent layers 
of information aggregation, enabling strati�ed levels 
of analyses. Our methodology fosters this approach.

Case Study: Improving the TDAQ Flow and 

Data Network

Our real-life case study, in which we applied the above 
presented methodology, starts with two build cycles, 
observing the system, translating knowledge into an 
executable simulation model, and upgrading the mod-
el to represent important design changes in the system.

�is step was followed by an explore cycle, in 
which we discovered hidden undesirable behaviors 
in load balancing mechanisms. Such behaviors were 
con�rmed to exist in the real system and raised the 
need for improvements along with open questions 
about possible solutions.

To answer the new questions and provide for 
predictions, we used hypothesis cycles to test alter-
native scenarios that weren’t rapidly exercisable on 
the real system. We then implemented into the real 
application a set of improvements that proved sat-
isfactory in the simulated environment. Finally, we 
evaluated their true e�ectiveness in the real network 
by loading the system with emulated physics Events.

�e model focuses on predicting HLT data�ow 
performance. We selected �ltering latency as the 
main performance metric; it represents the time from 
when the HLTSV assigns an Event to a given PU un-
til when the Event is either discarded or stored.

�e sequence diagram in Figure 4 depicts the ap-
plications that take part in Event �ltering. �e PUs 
request information from the ROS in two stages:  

L2 �ltering and Event building (EB). In L2, a small 
portion of the Event is �rst requested and then ana-
lyzed; this step can be repeated several times until 
EB takes place and all pending information is re-
quested as a whole. For each requested portion of 
the Event, all involved ROS nodes send their replies 
to the same DCM almost simultaneously, creating 
tra�c bursts from ROS → DCM that increase the 
�ltering latency because of the queuing e�ect gener-
ated at the core and ToR switches.

TDAQ has high bandwidth and low latency 
in relation to TCP minimum retransmission time 
(200 ms). Together with the data �ow described 
earlier, these conditions create a TCP throughput 
collapse known as the TCP Incast pathology.24 �e 
impact on TDAQ can be huge. Whenever a single 
TCP packet is discarded at the switches, a PU can’t 
start processing the Event until that packet is re-
transmitted (after 200 ms at best), raising the per-
ceived network latency of an Event request from a 
theoretical minimum of 19.2 ms (for 2,400 bytes) 
to more than 200 ms. To avoid the Incast e�ect, 
the DCM application restricts the number of si-
multaneous requests to the ROS using a credit-
based tra�c shaping control that limits “in �ight” 
requests on the network.25 Because responses can 
vary signi�cantly in their size, tra�c shaping doesn’t 
completely prevent packet losses, so it’s important 
to study the e�ects of queue saturation (and TCP 
retransmissions) and engineer the network and its 
algorithms to maximize performance and minimize 
high-latency risks. �is is where our M&S-driven 
network engineering methodology comes into play.

First Iteration: Building the Model

We start the model implementation with a build cycle 
(blue cycle in Figure 1). We de�ned the system ex-
perimental frame EFS for this cycle as a subset of the 
complete system: the HLTSV, all ROS nodes, and a 
single instance of the DCM and PU applications. To 
simplify timing calculations we assumed zero process-
ing time at the PUs, and Events with �xed size (2.4 
Mbytes). �is EFS is representative of the entire sys-
tem with unlimited resources, as each PU indepen-
dently processes a single Event at a time. Scaling this 
scenario shows emergent behaviors of resource shar-
ing (DCM credits, network bandwidth, and so on).

Real system measurements. �e build cycle begins 
with observation of the real system (experimenta-
tion and metrics acquisition), so we measured �lter-
ing latency in di�erent scenarios. Experiments were  
de�ned using ΘS = {number of initial DCM credits}  
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and results stored in λS. In Figure 5a, we see an opti-
mum con�guration in which average latency stabiliz-
es at 20 ms (close to the theoretical minimum) with-
in a range of about 100 to 600 DCM credits. With 
fewer credits (12 to 100), latency increases (DCM 
can send fewer simultaneous requests, underutilizing 
network capacity). Using more than 600 credits, la-
tency increases rapidly and stabilizes at around 500 
ms. We observed packet discards on the ToR switches 
when more than 600 credits were used, thus con-
�rming that the latency increase is due to network 
congestion and TCP retransmission (no packet loss 
was observed at core switches).

Model implementation. �e build cycle continues 
with the creation of a DEVS model guided by the 

TDAQ architecture and data �ow described for a 
single PU application. Figure 6 shows a PowerDEVS  
view of the implemented TDAQ model.

To preserve the real system’s semantics, we built 
a hierarchical model complying with TDAQ nam-
ing and structure conventions. �is greatly facili-
tated the extraction of control logic from the C++ 
algorithms in the real applications, thus maximizing 
the homomorphism with the system under study. 
�e ROS and DCM coupled models implement 
the TCP �ow and congestion control logic based on 
preexisting PowerDEVS libraries. TCPSender mod-
els TCP Cubic,26 implementing only the TCP be-
havior relevant to the case study. Tests to validate the 
TCP model against the real system shifted our focus 
from the average latency (red curve in Figure 5) to 
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getFragments(evld,f_ids1)

getFragments(evld,f_ids2)

{ fragments }
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Figure 4. TDAQ application sequence diagram involved in filtering a single Event. The processing units (PUs) request 

information from the read-out system (ROS) in two stages: level-two (L2) filtering and Event building (EB).



www.computer.org/cise     77

the clustered latencies pattern (blue dots). While the 
explanation for the occurrence of clustered latencies 
is outside this article’s scope, it has a central role in 
the TCP Incast e�ect. Moreover, the modeling ef-

forts led to the detection of a bug in the Linux SCL6 
TCP implementation that’s responsible for the (un-
expected) cluster around 600 ms (https://bugzilla.
redhat.com/show_bug.cgi?id=1203742). 
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Figure 5. Filtering latency versus initial DCM credits: (a) real system measurements and (b) simulation results. The 
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Figure 6. TDAQ simulation model implemented in PowerDEVS. Tests to validate the TCP model against the real system shifted the focus from 

studying averaged filtering latencies to analyzing clustered latency patterns (red curve vs. blue dots in Figure 5).
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Following the tools development approach, we 
implemented TCP atomic models (sender and receiver) 
and network elements (channels and switches) to be 
generic and reusable and incorporated them into the 
PowerDEVS network library. We also implemented 
new Scilab and ROOT27 visualization mechanisms for 
latency post-analysis along with a new distributed simu-
lation infrastructure, allowing us to execute multiple 
simulations for parameter sweeping purposes. �ese 
tools are meant to be reused in generalized simulation 
applications.

Simulation results and validation against the real system. 

�e next step of the build cycle is model veri�cation 
and simulation validation. We con�gured the simula-
tion to follow the real system setup described earlier 
(controlled ΘS → ΘM → ΘC translation), sweeping 
the number of initial DCM credits. Figure 5b shows 
the results. �e simulation reproduces the individual 
�ltering latencies (blue dots) following the same clus-
tered patterns, validating the TCP dynamics (retrans-
missions and TCP Incast e�ect). �e simulated aver-
age latency approximates real measured latencies (λS 
~ λC), with 100 to 600 credits attaining minimum 
latency and fewer than 100 credits slightly increasing 
latency. For credits above 600, the simulation showed 
congestion and packet drops on the ToR switches, 
but the increase in average latency was much steeper 
compared to the real system. Another di�erence was 
the stabilization point under congestion: the real sys-
tem latency stabilizes at 500 ms, whereas the simulat-
ed latency grows up to 700 ms. Although these di�er-
ences require further study, the simulation reproduces  

very closely the intervals of major interest, underlin-
ing the constant tradeo� among degrees of model 
detail, simulation accuracy, and delivery times for a 
given engineering concern.

An important advantage of the simulated model is 
that it allows for �ne-grained analysis (packet by packet 
if required). For example, link utilization and queue oc-
cupancies can be visualized and studied in detail in the 
simulation, but it’s impossible to sample the instanta-
neous evolution of queue occupancies at network de-
vices (for example, to pinpoint queuing bursts that are 
critical for TDAQ and occur in less than 8 ms).

Second Iteration: System Upgrade and Model 

Improvements 

In the second iteration of the build cycle, we expand 
the system’s experimental frame EFS by increasing 
the number of TPUs and of PU applications on 
each TPU. During this cycle, the real system was 
upgraded, calling for changes in the model.

Changes in network topology. �e TDAQ team com-
missioned several changes in the HLT network 
in preparation for ATLAS’s Run2 phase, which 
doubles the maximum particle’s collision energy. 
�e ROS ToR switches were removed and the 200 
ROS nodes replaced by 100 new computers with 
four 10 Gbps interfaces, each directly connected 
to both core switches. �e ToR switches were ex-
panded with additional 10 Gbps links to both core 
switches. �e overall throughput supported at the 
network level increased by one order of magnitude 
(see Figure 7).28
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ROS (x100) Data logger

HLTSV (x1)

ToR

TPU

(x30···40)

TPU

HLT racks (x50)

DCM (x1)

Processing units (x8···24)

Storage node

Processing node

Bonded links

2x10 Gigabit/s
10 Gigabit/s

1 Gigabit/s

Figure 7. Topology and applications in the TDAQ HLT farm for Run2. This is an upgrade of the one in Figure 1.
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Real system measurements. Again, the �rst step in the 
build cycle is taking real metrics from the upgraded 
system (all new ROS nodes and a full rack of TPUs), 
where the network tra�c is largely determined via 
HLTSV assignment rate. With a 100 kHz rate for 
the HLTSV and 50 TPU racks (full farm), each rack 
should handle Events at 2 kHz. �us, new experi-
ments must sweep this parameter (ΘS = {HLTSV 
rate}), ranging from 50 Hz (nonsharing of resources; 
Events are processed faster than 20 ms) up to 4 kHz 
(network saturation point). To simplify the analysis, 
we used a synthetic con�guration: PUs accept Events 
50 percent of the time, Event size is 1.3 Mbytes, and 
the DCM uses 500 and 700 credits. 

Figure 8a shows the average Event latency for 
increasing the HLTSV assignment rate. When the 
HLTSV assigns Events at 50 Hz, latency is minimal 
(13 ms) because the network is completely free when 
applications start �ltering Events. For increasing assign-
ment rates, latency rises as several PUs simultaneously 
request Events competing for �nite network resources 
and DCM credits. For rates above around 3.2 kHz, la-
tency increases exponentially as the network approach-
es its maximum capacity (93 percent utilization).

Model implementation. Model changes related to to-
pology upgrades were minimal: the ROS ToR switch 
models were easily removed, thanks to the modular-
ity fostered by DEVS, and the channel’s con�gura-
tion changed to match the new link capacities. �is 
shows the model’s �exibility and the advantage of 
having a one-to-one mapping between components 
of the real system and the simulation model. At this 

stage, we developed a complete HLTSV implemen-
tation, reusing directly some chunks of C++ code 
from the real HLTSV application for greater reliabil-
ity. To increase the number of model instances, we 
used VDEVS, developing 16 new vectorized DEVS 
models and 10 new multiplexer models to represent 
packet routing.

For the tools development phases, we imple-
mented three generic solutions to address the scal-
ability requirement of increasing the number of simu-
lated instances 50 times. VDEVS’s original proposal 
was extended, allowing for C++11 SmartPointers 
in vector DEVS messages. SmartPointers were also 
included directly in the PowerDEVS simulation base 
engine to allow for automatic and transparent memo-
ry management in any atomic DEVS model. �is ap-
proach dramatically reduced the simulator’s memory 
footprint, pushing its scalability to the next order of 
magnitude. We also developed a new general frame-
work for PowerDEVS to automatically launch simul-
taneous simulations on distributed nodes, reducing 
simulation times for parameter sweeping experiments 
linearly with respect to the number of nodes used 
(simulations are completely independent). 

Simulation results and validation with the real system. 

To complete the build cycle, we validated the simula-
tions against the real system, replicating previously con-
ducted experiments to sweep the HLTSV assignment 
rate parameter. We executed nine experiments, each 
simulating 60 seconds (180,000 �ltered Events in the 
most stringent case) in three di�erent nodes, complet-
ing all simulations in 120 minutes. As Figure 8b shows, 
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Figure 8. Average Event latency sweeping the HLTSV assignment rate (200 ROS, 1 TPU rack with 40 DCMs, 960 PUs): (a) real system 

measurements and (b) simulation results. Percentages represent network load, and red background shows standard deviation.
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the simulation results closely reproduce the latency 
curve measured in the real system. �e absolute latency 
values and network load on the simulation di�er from 
reality within an acceptable range (less than 5 percent 
di�erence), showing a good degree of validation. 

Third Iteration: Exploring and Discovering 

System-Level Behaviors

�e simulation accuracy obtained in previous cycles 
provides us with a su�cient con�dence level on the 
simulated data that justi�es running an explore cy-
cle (green cycle in Figure 3) to �nd potential emer-
gent behaviors.

Full system simulations generate huge volumes 
of information for the 6 million Events �ltered in a 
single minute (processing times, �ltering latencies, 
queues occupancy, link usages, farm utilization, and 
so on). Some of this information isn’t available in 
the real system or is too di�cult to gather uniform-
ly for post-analysis goals. 

Figure 9 is an example data analysis performed 
on the simulation results for λC. It shows how Events 

are distributed across the farm in di�erent time slots 
using various load-balancing algorithms: �rst in �rst 
out (FIFO) is the default policy implemented for se-
lecting the TPU node that will �lter the next Event. 

In the FIFO policy, the reddish area at the bot-
tom explains the fact that 30 percent of the DCMs 
had double the amount of PUs available for process-
ing, thus explaining their higher load. All DCMs are 
heavily assigned in the �rst time bins; after a few sec-
onds of execution, load becomes similar to the RAN-
DOM algorithm (each Event’s �ltering time di�ers). 
Another detected system-level behavior is that indi-
vidual DCMs di�er signi�cantly in the number of 
Events they process—the color intensities vary no-
ticeably along any single row and along any single 
column. �ese observations led us to infer that a po-
tentially uneven load-balancing mechanism might be 
the cause of overall higher �ltering latencies. 

For the tools development phase, we developed 
a set of reusable R libraries for data analysis and vi-
sualization of the large volumes of logging informa-
tion produced by PowerDEVS. �e new graphical 
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Figure 9. Heatmap of the load in the HLT farm for different HLTSV assignment policies. Tile color represents the maximum amount of 
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information generated through the R platform (such 
as the heatmaps in Figure 9) became standard means 
of communication with the TDAQ team.

Fourth Iteration: Real System Improvement 

Proposal

�e revealed behavior discovered during the explore 
cycle moved us forward to the hypotheses cycle (or-
ange cycle in Figure 3) to test new load-balancing 
algorithms in a simulated domain in search of im-
proved performance.

Testing the hypothesis on the model. �e latency’s lin-
ear increase in Figure 8 is the e�ect of several PUs 
competing for the same resources (reddish tiles in 
Figure 9). However, in our synthetic experiment for 
the designed frequency (2 kHz per rack), each DCM 
receives on average one assignment every 50 to 60 ms,  
while the minimum latency for �ltering an Event is 
roughly one third of this period (with an unloaded 
network). Under these conditions and an optimal 
assignment policy, it isn’t necessary for two PUs to 
process simultaneously on a single DCM. However, 
such assignments currently behave as random (uni-
formly distributed), so sometimes 10 to 25 PUs of 
the same DCM process simultaneously while other 
DCMs are almost idle (DCM load in Figure 9).

We modeled three HLTSV assignment poli-
cies: FIFO, used by the real system; RANDOM, 
in which the HLTSV selects a random idle PU; 
and the new LEAST_BUSY_DCM, in which the 
HLTSV selects an idle PU within the DCM with 
fewer busy PUs. �e main idea behind LEAST_
BUSY_DCM is to revert the uneven load detected 
in the explore cycle by assigning Events according 
to the load on each DCM.

Simulation results. After implementing new alter-
natives in the model, we performed simulations to 
compare the RANDOM algorithm with the pro-
posed LEAST_BUSY_DCM algorithm (FIFO is 
omitted because it eventually becomes equivalent 
to RANDOM as shown in Figure 9). To compare, 
we simulated the same experiment as in the second 
iteration (sweeping the HLTSV rate) but con�g-
ured nine TPU racks (267 DCMs and 6,408 PUs). 
Figure 9 shows that LEAST_BUSY_DCM e�ec-
tively balances the load of all DCMs in the farm, 
reducing the amount of simultaneous PUs process-
ing in each DCM (tile colors present more simi-
larity along rows and columns). Figure 10b shows 
simulation results comparing both algorithms. �e 
RANDOM algorithm exhibits the same behavior 
as the FIFO algorithm, while the new algorithm 
maintains average Event latency close to a mini-
mum (16 ms) for all frequencies below 24 kHz. 
For higher frequencies, the latency grows exponen-
tially due to network congestion. �ese results sug-
gest that the new algorithm could reduce latency 
between two to four times for this speci�c con�gu-
ration (design rate of 15 kHz with a network satu-
ration point of 23 kHz). New tests are under way 
with more realistic data �ow to increase validation 
con�dence.

Implementation and validation in the real system. 

Once we test the hypothesis in the simulation, the 
next step in the hypothesis cycle is to implement 
changes to validate against the real system. It was 
possible to reuse some C++ code developed for 
models in the simulation, with minor adaptations to 
attain close-to-real-time performance (the 100 kHz 
rate requirement for HLTSV is a stringent one). We 
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 performed the same experiment in the real system, 
with HLTSV rate sweeping using nine TPUs racks. 
Figure 10a shows the result of comparing  RANDOM 
and LEAST_BUSY_DCM algorithms in the real 
system. With the new algorithm and rates under  
24 kHz, the average latency is kept to a minimum 
and shows improvements of two to four times com-
pared to the current FIFO algorithm, as predicted 
in the simulation. �e simulation is thus validated, 
showing that the model is capable of reproducing 
known behaviors, representing a valuable tool to pre-
dict the impact of changes in the real system. 

W
e’re currently implementing our model with a 
variety of TDAQ scenarios in which we study 

di�erent candidate tra�c control techniques in 
search of further performance improvements (in par-
ticular, looking for quick recovery times in the face of 
system failures). We also plan to apply our method-
ology and tools to assess candidate ATLAS upgrades 
(planned for 2018), comparing performance and 
modeling techniques with other simulation frame-
works. Ongoing research aims to automate param-
eterization-simulation-validation cycles by retrieving 
real run parameters and metrics recorded in the  
ATLAS Information Service database. 
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