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ABSTRACT

General guidelines for selecting probabilistic input

models as part of a discrete-event sin1ulation study

are presented. Two short examples illustrating input

modeling decisions are also presented, as opposed to

a complete treatment of the subject.

1 INTRODUCTION

Discrete-event sill1ulation models typically have stoch

astic cOll1ponents that mimic the probabilistic nature

of the system under consideration. Successful input

modeling requires a close 111atch between the input

model and the true underlying probabilistic mecha

nism associated with the system. The general ques

tion considered here is how to model an element (e.g ..

arrival process, service times) in a discrete-event Si1l1

ulation given a data set collected on the element of

interest.

Since time and space for this tutorial is limited,

the following sill1plifying assull1ptions have been ll1ade.

• The modeler has access to a reliable source of

randoll1 numbers. Most introductory sill1ula

tion textbooks (e.g., Law and Kelton 1991) con

sider random number generation algorithn1s.

• An algorithm is available for converting these

random nUll1bers to randoll1 variates associated

with the input model to drive the simulation

(Devroye 1986).

• Data is available on the aspect of the simulation

of interest. For examples of input modeling in

the absence of data, see Schmeiser and Deutsch

(1977) or Law, McComas, and Vincent (1994).

With these assumptions lill1iting the scope of this

tutorial, the focus turns to selecting the appropriate

probabilistic models for the random cOll1ponents in a

simulation model. Many simulation textbooks have a

much broader treatll1ent of input 1110deling than pre

sented here (e.g., Law and Kelton 1991). These texts

include more specific inforll1ation on statistical tests

for independence, graphical 111ethods for model selec

tion, parameter estimation techniques, and goodness

of-fit tests. Advanced input lnodeling is considered by

Nelson et al. (1995).

An input model can be specified in a variety of

\vays, such as a cUll1ulative distribution function, haz

ard function, intensity function, or a variate-genera

tion algorithm. An input model characterizes each of

the stochastic elell1ents of a discrete-event simulation.

Figure 1 contains a taxonoll1y whose purpose is to

illustrate the scope of potential input 1110dels that are

available to simulation analysts. There is certainly no

uniqueness in the branching structure of the taxon

omy. The branches under stochastic processes, for ex

ample, could have been state followed by time, rather

than tim.e followed by state, as presented.

Exalnples of specific models that could be placed

on the branches of the taxonomy appear at the far

right of the diagram. Mixed, univariate, time-in

dependent input models have empirical/trace-driven

given as an possible model. All of the branches in

clude this particular model. A trace-driven input

model simply generates a process that is identical

to the collected data values so as not to rely on a

parametric model. A sill1ple example is a sequence

of arrival tin1es collected over a 24-hour tillle period.

The trace-driven input model for the arrival process is

generated by having arrivals occur at the same times

as the observed values.

The upper half of the taxonomy contains models

that are independent of time. These lnodels could

have been called !v!onte Carlo models. Models are

classified by whether there is one or several variables

of interest, and whether the distribution of these ran

dom variables is discrete. continuous, or contains both

continuous and discrete elen1ents. Exall1ples of uni

variate discrete models include the binoillial distribu

tion and a degenerate distribution with all of its
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Figure 1: .:\ Taxonol11Y for Input Models
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mass at one value. Examples of continuous distribu

tions include the normal distribution, an exponential

distribution with a random parameter A (see, for ex

ample, Martz and Waller 1982), and Bezier curves

(Flanigan-Wagner and Wilson 1993). Bezier curves

offer a unique combination of the paranletric and non

parametric approaches. An initial distribution is fit

ted to the data set, then the modeler decides whether

differences between the empirical and fitted nl0dels

represent sampling variability (chance variation) or

an aspect of the distribution that should be included

in the input model.

Examples of k-variable multivariate input 1110d

els (see Johnson 1987) include a sequence of k in

dependent binomial random variables, a nlultivari

ate normal distribution with Inean J1 and variance

covariance lllatrix L and a bivariate exponential dis

tribution (Barlow and Proschan 1981).

The lower half of the taxonomy contains stochas

tic process models. These models are often used to

solve problems at the system level, in addition to

serving as input models for simulations with stochas

tic elements. Models are classified by how tilne is

measured (discrete/continuous), the state space (dis

crete/continuous) and whether the 1110del is station

ary in time. For Markov models, the discrete-state/

continuous-state branch typically determines whether

the model will be called a "chain" or a "process" , and

the stationary/nonstationary branch typically deter

mines whether the model will be preceded with the

term "homogeneous" or "nonhomogeneous". Exanl

pIes of discrete-time stochastic processes include ho

mogeneous, discrete-time Markov chains (Ross 1993)

and ARIMA time series models (Box and Jenkins

1976). Since point processes are counting processes,

they have been placed on the continuous-time, dis

crete-space branch. Although the Poisson, renewal

and nonhomogeneous Poisson processes are all pure

birth processes, more general point processes, such

as one to model the number of custonlers in a queue,

can be placed on one of the continuous time, discrete

space branches.

2 EXAMPLES

Two simple examples illustrate the types of decisions

that often arise in input modeling. The first exaln

pIe determines an input model for service times and

the second example determines an input model for an

arrival process.

2.1 Service Time Model

Consider a data set of n = 23 service times collected

to determine an input model in a discrete-event sim-

ulation of a queuing systenl. The serVIce times In

seconds are

105.84 28.92 98.64 .55.56 128.04 45.60

67.80 105.12 48.48 51.84 173.40 51.96

.54.12 68.64 93.12 68.88 84.12 68.64

41.52 127.92 42.12 17.88 33.00.

[Although these service tinles COIlle from the life test

ing literature (Lieblein and Zelen 1956), the sanle

principles apply to both input nl0deling and survival

analysis.]

The first step is to assess \vhether the observations

are independent and identically distributed (iid). The

data must be given in the order collected for inde

pendence to be assessed. Situations where the iid

assumption \\Tould not be valid include:

• A new teller has been hired at a bank and the 23

service tinles represent a task that has a steep

learning curve. The expected service time is

likely to decrease as the new teller learns how

to perform the task more efficiently.

• The service times represent 23 conlpletion times

of a physically demanding task during an 8-hour

shift. If fatigue is a significant factor, the ex

pected time to cOlllplete the task is likely to

increase with time.

If a sinlple linear regression of the observation num

bers regressed against the service times shows a signif

icant nonzero slope, then the iid assumption is prob

ably not appropriate.

Assume that there is a suspicion that a learning

curve is present. An appropriate hypothesis test is

HI : PI < 0

associated with the linear model (Neter, Wasserman,

and Kutner 1989)

where X is the observation nunlber, }l" is the service

time, 130 is the intercept, /31 is the slope, and ( is an

error term. Figure 2 shows a plot of the (Xi, Yi) pairs

for i = 1, 2, ... , 23, along wi th the estimated regres

sion line. The p-value associated with the hypothesis

test is 0.14, which is not enough evidence to conclude

that there is a statistically significant learning curve

present.

There are a number of other graphical and statis

tical methods for assessing independence. These in

clude analysis of the sample autocorrelation function

associated with the observations and a scatterplot of
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Examples of the interpretations of these sample statis

tics are:

I n ( _)3Xi - X;?= -s- = 0.88.
t=l

• A coefficient of variation s / x close to 1, along

with the appropriate histogram shape, indicates

that the exponential distribution is a potential

input model.

adjacent observations. For this particular example,

assume that we are satisfied that the observations

are truly iid in order to perform a classical statistical

analysis.

The next step in the analysis of this data set in

cludes plotting a histogram and calculating the values

of some sample statistics. A histogram of the obser

vations is shown in Figure 3. Although the data set

is small, a skewed bell-shaped pattern is apparent.

The largest observation lies in the far right-hand tail

of the distribution, so care must be taken to assure

that it is representative of the population. The sam

ple mean, standard deviation, coefficient of variation,

and skewness are

68.64 seconds, and the observation in the far right

hand tail of the distribution, 173.40 seconds, tend to

indicate that a parametric analysis is more appropri

ate. Since the input model is for service times, the

accurate modeling of the right-hand tail of the dis

tribution is critical. These long service times signifi

cantly impact queuing statistics. For this particular

data set, a parametric approach is chosen.

There are dozens of choices for a univariate para

metric model for the service times. These include gen

eral families of scalar distributions, modified scalar

distributions and commonly-used parametric distri

butions (see Schmeiser 1990). Since the data is drawn

from a continuous population and the support of the

distribution is positive, a time-independent, univari

ate, continuous input model is chosen. The shape

of the histogram indicates that the gamma, inverse

Gaussian, log logistic, log normal, and Weibull dis

tributions (Lawless 1982) are good candidates. The

Weibull distribution is analyzed in detail here. Simi

lar approaches apply to the other distributions.

Parameter estimates for the Weibull distribution

can be found by least squares, the method of mo

ments, and maximum likelihood. Due to desirable

statistical properties, maximum likelihood is empha

sized here. The Weibull distribution has probability

density function

s
- = 0.52
x

s = 37.49x = 72.22

• A sample skewness close to 0 indicates that a

symmetric distribution (e.g., a normal distribu

tion) is a potential input model.

The next decision that needs to be made is whether

a parametric or nonparametric input model should be

used. One simple nonparametric model would repeat

edly select one of the service times with probability

1/23. The small size of the data set, the tied value,

where A is a positive scale parameter and K is a posi

tive shape parameter. Let Xl, X2, .•. ,Xn be the data

values. The likelihood function is
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The log likelihood function is

n

log L('x, K) == n log K + n:n log'x + (n: - 1) L log Xi

i=1

n

-,x~ ~ X~LJ z'

i=1

The 2 x 1 score vector has elements

alog L('x, K)

o,x

and

F(O
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When these equations are equated to zero, the simul

taneous equations have no closed-form solution for ~

and K:

Figure 4: Empirical and Fitted Cunlulative Distribu

tion Functions for the Service Times

2[-113.691-log L('x, K)] < 5.99.

evaluated at the maxinlum likelihood estimators is

logL('x,~) = -113.691. Figure 4 shows the empiri

cal cUDlulative distribution function (a step function

with each step height l/n) along with the Weibull fit

to the data.

The observed inforl11ation matrix is

875 ]
10.4 '

O(~ ~'.) = [681, 000
1 h: 875

revealing a posi tive correlation between the elements

of the score vector. lJsing the fact that the like

lihood ratio statistic, 2[log L(~,~) - log L('x, K)]' is

asymptotically ,,2 with 2 degrees of freedom and that

\ ~ , O . 0 5 = 5.99, a 95% confidence region for the pa

rameters is all ,x and K satisfying

The 9591cl confidence region is shown in Figure 5. The

line K = 1 is not interior to the region, indicating

that the exponential distribution is not an appropri

ate model for this particular data set.

As further proof that K: is significantly different

from 1, the standard errors of the distribution of the

parameter estimators can be computed by using the

inverse of the observed inforDlation 111atrix

To reduce the problem to a single unknown, the first

equation can be solved for ,x in terms of K yielding

n n

~ + nlog'x + Llogxi - L(Axi)" logAxi = o.
K i=l i=l

Law and Kelton (1991, p. 334) give an initial esti

mate for K that can be used in Newton's lnethod to

numerically solve for the maximum likelihood esti

mators. Qiao and Tsokos (1994) consider nUlllerical

problems with Newton's method and give an alterna

tive algorithm for calculating the nlaxilllum likelihood

estimators.

The score vector has a mean of 0 and a variance

covariance matrix I('x, n:) given by the 2 x 2 Fisher

information nlatrix

This is the asymptotic variance-covariance 111atrix for

the parameter estimators ~ and K. The standard er

rors of the parameter estimators are the square roots

of the diagonal elements

The observed information matrix

can be used to estimate I (,x, K:).

For the 23 service times, the fitted Weibull dis

tribution has maximunl likelihood estimators ~ =

0.0122 and K- = 2.10. The log likelihood function

0- 1 (~ ~.) = [0.00000165
,K: -0.000139

0->. = 0.00128

-0.000139]
0.108 .
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Figure 6: A P-P Plot for the Service Times

or

Thus an asymptotic 95% confidence interval for f\, is

1.46 < Ii < 2.74,

2.10 - (1.96)(0.329) < f\, < 2.10 + (1.96)(0.329)

package also performs a goodness-of-fit test such as

the Kolmogorov-Smirnovor chi-square test, the dis

tribution that best fits the data set can quickly be

determined.

p-p and Q-Q plots can also be used to assess

n10del adequacy. A P-P plot, for example, is a plot

of the fitted cumulative distribution function at the

ith order statistic X(i), i.e., F(X(i))' versus the ad

justed empirical cumulative distribution function, i.e.

F(X(i») == i-~.5, for i == 1,2, .. . ,n. A plot where the

points fall close to a line indicates a good fit. For

the 23 service times, a P-P plot for the Weibull fit is

shown in Figure 6, along with a line connecting (0, 0)

and (1, 1). P-P plots should be constructed for all

competing models.

2.2 Arrival Process Model

Arrival times to a lunch wagon between 10:00 AM and

2:30 PM are collected on three days. The realizations

were generated from a hypothetical arrival process

given by Klein and Roberts (1984). A total of n ==
1.50 arrival times were observed, including n1 == 56,

n2 == 42 and n3 == 52 on the k == 3 days. Defining

(0,4.5] be the time interval of interest (in hours) the

three realizations are
Test statisticModel

since ZO.025 == 1.96. Since this confidence interval does

not contain 1, the inclusion of the Weibull shape pa

rameter Ii is justified.

At this point, model adequacy should be assessed.

Since the chi-square goodness-of-fit test suffers from

arbitrary interval limits and should not be applied to

small data sets, the I(011l10gorov-SIl1irnov, Cramer

von Mises, or Anderson-Darling goodness-of-fit tests

(Lawless 1982) are appropriate here. The I(oln10gor

ov-Smirnov test statistic, for example, for this data

set with a Weibull fit is 0.152, which 111easures the

maximum difference between the empirical and fitted

cumulative distribution functions. This test statistic

corresponds to a p-value of approximately 0.1,5 (Law

and Kelton 1991, page 391), so the Weibull distri

bution provides a reasonable 1110del for these service

times. The l\olmogorov-Smirnov test statistic values

for several potential 1110dels are shown below.

Exponential

Weibull

Gamll1a

Inverse Gaussian

Log norn1al

0.301

0.1,52

0.123

0.099

0.090

0.2152 0.3494 0.3943

0.3927 0.6211 0.7504

and

4.175 4.248,

4.044 4.374,

One preliminary statistical issue concerning this

data is whether the three days represent processes

Many of the discrete-event sin1ulation packages

exhibited at the ~ V i n t e r Simulation Conference have

the capability of determining 111axin1UITI likelihood es

tin1ators for several paran1etric distributions. If the

0.4499 0.5495 0.6921 3.643 4.357.
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Figure 7: Point and 95% Confidence Interval Estinla

tors for the Cumulative Intensity Function

The trigonometric function is capable of modeling the

intensity function that increases, then decreases.

In all of the parametric nlodels, the likelihood

function for the vector of unknown parameters B ==

(B 1 , ()2, ... , Bp ) from a single realization on (0, c] is

L(()) = [g'\(td] exp [-1c ,\ (t )dt] .

A(I)

60

Maximum likelihood estimators can be determined

by maximizing L( B) or its logarithm with respect to

all unknown parameters. Confidence intervals for the

unknown parameters can be found in a similar man

ner to the service time exanlple.

for A > 0 and K > 0, would certainly be an im

proved choice. A more general EPTF (exponential

polynomial-trigonometric function) model is given by

Lee, Wilson and Crawford (1991) with intensity func

tion

set since the intensity function can only increase, de

crease or remain constant, and can not model an in

tensity function that increases, then decreases. Since

the intensity function is analogous to the hazard func

tion for tinle-independent nlodels, an appropriate 2

parameter distribution to consider would be one with

a hazard function that increases initially, then de

creases. A log-logistic process, for example, with in

tensity function

t > 0,

where A and K are positive parameters. This pop

ular model would not be appropriate for this data

drawn from the same population. External factors

such as the weather, day of the week, advertisement,

and workload should be kept fixed. For this partic

ular example, these factors have been fixed and the

three processes are representative of the population

of arrival processes to the lunch wagon.

The input model for the process comes from the

lower branch (stochastic processes) of the taxonomy

in Figure 1. Furthermore, the arrival times consti

tute realizations of a continuous-time, discrete-state

stochastic process, so the remaining question con

cerns whether or not the process is stationary.

If the process proves to be stationary, the tech

niques from the previous example, such as drawing

a histogram, and choosing a parametric or nonpara

metric model for the interarrival times are appropri

ate. This results in a Poisson or renewal process.

On the other hand, if the process is nonstationary, a

nonhomogeneous Poisson process might be an input

appropriate model. A nonhomogeneous Poisson pro

cess is governed by an intensity function A(t) which

gives an arrival rate [e.g., A(2) == 10 means that the

arrival rate is 10 customers per hour at time 2] that

can vary with time.

Figure 7 contains a plot of the empirical cumula

tive intensity function estimator suggested by Leemis

(1991) for the three realizations. The solid line de

notes the point estimator for the cumulative inten

sity function A(t) == J~ A(r)dr and the dashed lines

denote 95% confidence intervals. The cumulative in

tensity function estimator at time 4.5 is 150/3 == 50,

the point estimator for the expected number of arriv

ing customers per day. If A( t) is linear, a stationary

model is appropriate. Since people are more likely

to arrive to the lunch wagon between 12:00 (t == 2)

and 1:00 (t == 3) than at other times and the cumu

lative intensity function estimator has an S-shape, a

nonstationary model is indicated. More specifically,

a nonhomogeneous Poisson process will be used to

nlodel the arrival process.

The next question to be determined is whether a

parametric or nonparametric model should be chosen

for the process. Figure 7 indicates that the inten

sity function increases initially, remains fairly con

stant during the noon hour, then decreases. This

may be difficult to model p a r a m e t r i ~ a l l y , so a non

parametric approach, possibly using A(t) in Figure 7

might be appropriate.

There are many potential paranletric models for

nonstationary arrival processes. The power law, or

Weibull process has intensity function
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