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Abstract – Complex spatially-extended systems 
consist of numerous sub-systems leading to large 
simulation execution times. One approach to 
reducing these execution times is designing a 
simulation engine to allocate its attention to sub-
systems in proportion to their activity levels. In 
this paper, we consider a large scale simulation of 
a physics-based fire spread model. This model is 
discretized using a recently developed numerical 
method called quantization and implemented using 
discrete event simulation. In this paper, we provide 
comparisons between the quantization method and 
usual Euler discrete-time methods. The aim is to 
demonstrate the ability of quantization and discrete 
event simulation to focus on active sub-systems, 
thus significantly reducing execution time for large 
heterogeneous systems. 

Keywords: DEVS, quantization, large-scale 
spatial continuous systems, fire spread simulation. 

 

1 Introduction 

Modeling and simulation of large-scale spatial 
systems often necessitates a long process starting 
from analysis and ending with a solution design. 
Large-scale spatial systems are generally 
composed of many sub-systems. Hence, at every 
step of the modeling process, the different models 
developed have to be designed to support efficient 
simulation. Simulation efficiency is inversely 
related to simulation complexity. The latter can be 
categorized into the following three areas: (i) 
quantity of information to store, (ii) quantity of 
information to exchange, and (iii) number of 
computations performed. Reducing this 

complexity will result in decreasing execution time 
of the simulation. 

In order to illustrate an example of a large-scale 
spatial continuous system, we will consider that 
the modeling process starts with the definition of a 
partial differential equation (PDE). PDEs allow us 
to capture spatial and temporal continuity of the 
real world through a formal mathematical 
language. In order to be simulated on a digital 
computer, PDEs have to be discretized into 
spatially arrayed cells and discrete-time steps. To 
achieve these goals, it is common to use 
conventional discrete-time methods (Euler, 
Adams, etc.) [1]. Basically, to solve a PDE, these 
methods necessitate computation of every cell’s 
state even though there may be no significant state 
changes at many of the cells.  In this context, the 
usual discrete-time numerical methods can result 
in more complex simulations than necessary.  

To reduce the simulation complexity, one can 
define an algorithm that reduces the calculation 
domain by scanning cells’ states [2]. However, this 
solution consists in artificially reducing the 
calculation domain independently of the numerical 
method. 

Recently, a new numerical method based on 
discrete events has been proposed: cell state 
quantization [3, 4]. Values of state variables are 
discretized in equal quanta. Threshold crossings of 
a quantum lead to discrete event state transitions 
and inter-cell state updates. Time advances needed 
for the state to change a quantum amount are 
computed only for active cells, i.e., cells that have 
changed states by this amount. This original 



method allows a discrete event simulator to 
faithfully track activity in space and thereby 
reduce execution times. There is a well-defined 
process for discretization of a PDE (or its 
quantization) to its implementation in Discrete 
Event System Specification (DEVS) [3].  

In this paper we experiment with the quantization 
method on the complex phenomenon of fire 
spread. Indeed, this phenomenon is complex at 
every modeling step. First, complexity of the 
phenomenon is related to the high number of 
intricate physical phenomena composing fire 
spread. Second, precise physical models of fire 
spread, based on PDEs, have non-linear terms and 
therefore are not amenable to analytical solutions. 
Finally, to reduce execution times, spatial 
simulation has to focus on cells changing 
temperature rapidly around the fire front. 

We will rigorously compare quantization of a 
physical model of fire spread to a reference Euler 
method. Both explicit and implicit methods will be 
explored. Explicit methods or Forward Euler 
methods compute the value of every cell of the 
cellular model at the next time step based on the 
values of these cells at the current time step. 
Implicit methods or Backward Euler methods use 
more sophisticated error convergence criteria to do 
the same calculation. Execution times of the 
different approaches will be compared. Since the 
physical model of fire spread has no analytical 
solution, the quantization results were compared to 
experimentally validated explicit results using an 
average relative error calculation. All the 
numerical methods’ results were visually validated 
using laboratory experiments comparing simulated 
and experimental fire fronts positions. 

2 Background 
 Quantization concepts are strongly related to 
discrete events. DEVS is thus a naturally 
appropriate framework to specify quantization 
models. 
2.1 Quantization concepts 
 Quantization of ODEs has been introduced in 
[3, 5, 6]. Instead of generating approximate 
solutions at discrete points in time, the solution is 
approximated by looking at significant changes in 
the system’s state. The magnitude of change in the 

solution that is considered to be significant is 
called an integration quantum (or quantum). A 
quantum can be defined by: 

                    (1) 

Where D  is the desired change in the solution at 
each step of the computation, 1+Φn  and nΦ  are 
two numerical approximations of the continuous 
function )(tΦ  representing a time invariant 
process.  

Using the explicit Euler formulae leads to: 

 (2) 

The time required for a quantum change to occur 
can be approximated by: 

  (3) 

If 0)( =Φ nf , then ∞→∆t , which indicates that 
an equilibrium is reached. Hence, no information 
is lost by setting ∞→∆t . 

A quantized integration scheme can be constructed 
by substituting equation (3) into equation (2) and 
keeping track of the sign of the derivative to 
ensure that the solution moves in the proper 
direction. This gives the system: 

 (4) 

Which approximates successive values of the 
continuous system. The time ℜ∈+1nt  of 
approximated states is given by:   

(5) 

An approximation example of the function )(tΦ  
is sketched in Figure 1. One can notice that for a 
continuous time base, the number of computations 
needed to approximate the curve )(tΦ  can be 
reduced, even more when the latter changes 
slowly during time. 

Equations (4) and (5) constitute a quantized 
integrator. In space, and when applied to PDEs, 
using such integrators allows to track activity, that 
is, changes in time in one point of the space. Then, 
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each integrator can be implemented as an atomic 
model DEVS. 
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Figure 1. Quantization approximation of ODE 

2.2 The DEVS formalism 

Specification of cellular models can be achieved 
using the DEVS formalism. A DEVS Atomic 
Model (AM) is a structure [3]: 

>=< aconfext tSYXAM ,,,,,,, int λδδδ  

Where, X  is the set of input values, Y  is the set 
of output values, S  is the set of sequential states, 

SXQ b
ext →×:δ  is the external  

transition function (where 
)}(0,/),{( steSsesQ a≤≤∈=  is the total set of 

states, e  is the elapsed time since the last state 
change, and XX b ∈  is a bag of input values), 

SS →:intδ  is the internal transition function, 

SXS b
conf →×:δ  is the confluent transition 

function, bYS →:λ  is the output function, 
YY b ∈  is a bag of output values, and +ℜ→Sta :  

is the time advance function. 

An atomic model allows specifying the behavior 
of a system. Connections between different atomic 
models can be performed by a coupled model 
(CM) [3]: 

{ } >=< }{},{,,,, , jiii ZIMDYXCM  

Where, X  is the set of input values, Y  is the set 
of output values, D  is the set of model 

references, For each Di∈ , iM  is an atomic 

model, iI  is the influencer set, jiZ ,  is a function: 

the i to j output translation with (c.f. Figure 1): 
jMCjMC XXZ →:,  is the input coupling function, 

MCiMCi YYZ →:,  is the output coupling function, 

and jiji XYZ →:,  is the internal coupling 

function. 

3 Fire spread modeling 

To be simulated, physical fire spread models 
usually consist of reaction diffusion equations [7]. 
These PDEs cannot be solved analytically. They 
have to be solved numerically. Discrete-time 
solutions can be obtained using Explicit (Forward) 
or Implicit (Backward) Euler methods. 

3.1 Physical model 

The physical model we use [8] is composed of 
elementary cells of earth and plant matter. Under 
no wind and no slope conditions, the temperature 
of every cell is represented by the following PDE: 
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σv = σv0  if T < Tig                         (6b) 
σv = σv0.e-α(t-tig)  if T ≥  Tig                       (6c) 
T(x,y,t) = Ta  at the boundary               (6d) 
T(x,y,t) ≥ Tig  for the burning cells             (6e) 
T(x,y,0) = Ta  for the non burning cells at t=0  (6f) 
 
Where, Ta (27 °C) is the ambient temperature, Tig 
(300 °C) is the ignition temperature, tig (s) is the 
ignition time, T  (°C) is the temperature, K  (m².s-1) 
is the thermal diffusivity, Q (m².°C / kg) is the 
reduced combustion enthalpy, α (s-1) combustion 
time constant, σv (kg.m-2) is the vegetable surface 
mass, σv0 (kg.m-2) is the initial vegetable surface 
mass (before the cell’s combustion).  

The term )( aTTk −  represents thermal exchanges 
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diffusion phenomenon and the term   
t

Q v

∂
∂σ  

represents the combustion energy (the reaction). 

3.2 Discrete-time solutions 

In a previous study, Finite Element and the Finite 
Difference Methods have been used to discretize the 
previous physical model [9]. The Finite Difference 
Method provided equivalent results as the Finite 
Element Method. However, the latter appeared more 
complex to implement and involved longer execution 
times. Therefore, the Finite Difference Method has been 
chosen. 

3.2.1  The explicit solution  

The physical model (6.a-f) solved by the Explicit 
Method leads to the following algebraic equation: 

(7) 

Where, Tij is the grid node temperature. The 
coefficients a, b, c, d and e depend on the time step 
and the mesh size considered.  
The study domain is meshed uniformly with cells 
of 1-cm² and a time step of 0.01s. The propagation 
domain thus consists of a cellular model where 
each future cell’s temperature is calculated using 
the current cell’s temperature and temperatures of 
the cardinal neighbors. 

3.2.2  The implicit solution 

Implicit methods are typically more stable than 
explicit methods and allow larger time steps thus 
reducing execution times. 

The physical model (6.a-f) solved by the Implicit 
Method leads to the following algebraic equation:  

(8.a) 

 (8.b) 

Where, k  is the iteration step. The coefficients a’, 
b’, c’, d’ and e’ depend on the time step and on the 
mesh size considered.  
The solution is calculated at each time step using 
the iterative method of Jacobi [10] for which the 
convergence condition (8.b) is used to pass on to 

the next time step. Hence, as long as all the whole 
temperatures calculated between two successive 
iterations are not less than an ε  ( K310−  for 
example), the simulation clock is not incremented. 

3.3 The Quantization solution 

Quantization of equation (6a) consists of 
discretizing the term of thermal exchanges, the 
diffusion term and the reaction term. Then, in 
every cell a quantized integrator (c.f. equations (4) 
and (5)) calculates the temperature of the cell 
according to the value of: (1) the term of thermal 
exchanges (which is discretized), (2) the term of 
diffusion (which is discretized), and (3) the 
reaction term (which is quantized). 

The discretization of the diffusion term in space 
using the center differences leads to: 

(9) 

The term of thermal exchanges can be directly 
discretized:  

  (10) 

When the cell is burning, the energy   
t

Q v

∂
∂σ  

released by the combustion depends directly on 
the exponential decrease of the fuel mass: 

  (11) 

By knowing that the fuel mass will decrease only 
by one quantum D , we obtain: 

 (12) 

Taking the logarithm, we obtain the time advance 

at : 

   (13) 

In every cell, the global time advance depends on 
this time advance (13). Every cell is a coupled 
model composed of two atomic models. Figure 2 
describes this coupled model (CM). The latter is 
composed of an atomic model of Fuel Decrease  
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Figure 2. Cell description  

(AMFD) and of an atomic model of Thermal 
Exchanges and Diffusion (AMED).  

An atomic model AMED is connected to its four 
cardinal neighbors through eight ports. Cells’ 
temperatures are sent and received through these 
ports. 

An atomic model AMFD describes the evolution of 
the fuel mass decrease when the cell is burning. 
After the reception of the cell’s temperature 
(contained in AMED), if the cell is in combustion, 
the external transition function of AMFD will 
compute the time of next quantum boundary 
crossing according to the time advance (13). At 
each quantum crossing, computed by an internal 
transition, influenced cells are updated 
immediately. Finally, the derivative of the 
temperature, calculated by AMED, according to the 
neighboring cells’ temperatures and to the fuel 
mass, is integrated using equations (4) and (5).  

4 Simulation results 
To validate the simulation results, experimental 
fires have been conducted on Pinus Pinaster litter, 
in a closed room without any air motion, at the 
INRA (Institut National de la Recherche 
Agronomique) laboratory near Avignon, France 
[8]. These experiments have been performed in 
order to observe fire spread for point-ignition fires 
under no slope and no wind conditions. The 
experimental apparatus was composed of a one 

square meter aluminum plate protected by sand. A 
porous fuel bed was used, made up of pure oven 
dried pine needles spread as evenly as possible on 
the total area of the combustion table (in order to 
obtain a homogeneous structure). The experiment 
consisted in igniting a point using alcohol. The 
resulting spread of the flame across the needles 
has been closely observed with a camera and 
thermocouples. 

The fuel mass decrease simulated by the atomic 
model AMFD is represented in Figure 3. The end of 
this negative exponential curve pinpoints the 
interest of using a discrete event simulation 
passing directly from one continuous value of time 
to another. This allows to reduce the number of 
state transitions. However, the quantum size of this 
atomic model has to be carefully chosen because 
of the important beginning decreasing slope of the 
exponential curve. A too big quantum size leads to 
important errors. A quantum of ²m/kg01.0  has 
been chosen for this model.  

As equation (6a) does not have analytical solution, 
the quantization simulation results are visually 
validated through the laboratory experiment. 
Moreover, an average relative error is calculated 
against the explicit simulation results already 
validated through numerous studies [8]:  
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time base 

 
Figure 6 depicts a visual comparison between the 
simulated fire fronts (using the explicit, implicit 
and quantization methods) and experimental fire 
fronts (white boxes). Explicit, implicit and 
quantization solutions are the same. 
Figure 4 depicts the focus of the quantization 
simulation on active cells. The fire fronts are 
represented by lines. We can notice that the 
quantization simulation follows the fire front 
evolutions. 
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Figure 4. Focus of the quantization simulation on 
active cells at (a) 75s and (b) 122s 

 
Figure 5 depicts the average relative error for 
different quantum sizes of the AMED atomic 
model, and the same experiment. This curve is 
almost linear. For very small quantum values, the 
error is constant. This means that the quantization 
solution is very close to the actual propagation.  
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Figure 5. Average relative error for different 
quantum sizes 

 
Figure 7 depicts the execution times and the 
number of transitions of the quantization solution, 
according to different quantum sizes. The more the 
quantum size is, the less the execution times and 
the number of transitions are. Moreover, until a 
quantum size of K5 , both execution times and 
number of transitions decrease rapidly. 
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Figure 6. Visual comparison of simulated and experimental fire fronts 
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Figure 7. Execution times and number of 
transitions for different quantum sizes 

 
Figure 8 depicts the execution times of the 
explicit, implicit and quantization solutions, for 
different propagation domain sizes, that is for 
different numbers of cells. For the quantization 
solution, a quantum size of K5  has been chosen 
thus leading to an approximate error of %5 . 
Concerning the implicit solution, using a bigger 
time step allows to reduce execution times. 
However, quantization execution times are 
significantly smaller. These good results can be 
explained by looking at Figure 9, which depicts 
the number of transitions of the different methods, 
for different propagation domain sizes. Indeed, the 
quantization method greatly reduces the number of 
transitions. 
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Figure 8. Execution times of the numerical solutions for 
different domain sizes 
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Figure 9. Number of transitions for different 
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5 Conclusion 

Quantization has been applied here to a complex system. It 
has been proved that it reduces execution times by naturally 
focusing computations on active cells of a large-scale 
cellular model.  

However, to assess its benefits more generally, quantization 
has to be applied to other kinds of PDEs. Moreover, there 
are other methods that may offer advantages such as the 
conventional discrete-time methods coupled with an 
algorithm scanning active cells through Dynamic Structure 
Cellular Automata (DSCA) [11].  Comparisons between 
quantization, with its ability to focus on high activity 
regions and such modified methods will provide a better 
understanding of the advantages of each approach. 
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