
Discrete Exterior Calculus

Thesis by

Anil N. Hirani

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2003

(Defended May 9, 2003)



ii

c© 2003

Anil N. Hirani

All Rights Reserved



iii

For

my parents Nirmal and Sati Hirani

my wife Bhavna and daughter Sankhya.



iv

Acknowledgements

I was lucky to have two advisors at Caltech – Jerry Marsden and Jim Arvo. It was Jim who convinced me to

come to Caltech. And on my first day here, he sent me to meet Jerry. I took Jerry’s CDS 140 and I think after

a few weeks asked him to be my advisor, which he kindly agreed to be. His geometric view of mathematics

and mechanics was totally new to me and very interesting. This, I then set out to learn.

This difficult but rewarding experience has been made easier by the help of many people who are at

Caltech or passed through Caltech during my years here. After Jerry Marsden and Jim Arvo as my advisors,

the other person who has taught me the most is Mathieu Desbrun. It has been my good luck to have him as

a guide and a collaborator. Amongst the faculty here, Al Barr has also been particularly kind and generous

with advice. I thank him for taking an interest in my work and in my academic well-being.

Amongst students current and former, special thanks to Antonio Hernandez for being such a great TA

in CDS courses, and spending so many extra hours, helping me understand so much stuff that was new to

me. Thanks also to the many Mathematics department TAs who had to suffer my incessant questioning in all

those maths courses. It wasn’t easy being an outsider in those courses, but they made the task easier. Thanks

to Sameer Jalnapurkar for giving me his fabulous notes on everything that is relevant; Dong-Eui Chang for

teaching me how to take fancy derivatives; Eitan Grinspun for his wit, politeness and for the chance to work

with him on discrete shells; Yiying Tong for collaboration on vector field decomposition; Mark Meyer for

doing so many things that were a precursor to the work in this thesis; Paul Penzes for the afternoon badminton

sessions; Adam Granicz and David Wei for being such nice and considerate current officemates and Eric Bax

for being such a peaceful and nice former officemate.

For the work in this thesis, I thank first of all the members of my Ph.D. committee – Jerrold E. Marsden

(chair), James Arvo, Mathieu Desbrun, Michael Ortiz and Peter Shcröder. Thanks to Jenny Harrison and
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Abstract

The language of modern mechanics is calculus on manifolds, and exterior calculus is an important part of that.

It consists of objects like differential forms, general tensors and vector fields on manifolds, and operators that

act on these. While the smooth exterior calculus has a long history going back to Cartan, Lie, Grassmann,

Hodge, de Rham and many others, the need for a discrete calculus has been spurred on recently by the need

to do computations.

This thesis presents the beginnings of a theory ofdiscrete exterior calculus(DEC). This is motivated by

potential applications in computational methods for field theories (elasticity, fluids, electromagnetism) and in

areas of computer vision and computer graphics. One approach to approximating a smooth exterior calculus

is to consider the given mesh as approximating some smooth manifold at least locally, and then defining

the discrete operators by truncating the smooth ones. Another approach is to consider the discrete mesh

as the only given thing and developing an entire calculus using only discrete combinatorial and geometric

operations. The derivations may require that the objects on the discrete mesh, but not the mesh itself, are

interpolated. It is this latter route that we have taken and this leads to a discrete exterior calculus.

Our theory includes not only discrete equivalents of differential forms, but also discrete vector fields and

the operators acting on these objects. General tensors are not developed, though we suggest a possible way to

do that towards the end. The presence of forms and vector fields allows us to address the various interactions

between forms and vector fields which are important in applications. With a few exceptions, most previous

attempts at discrete exterior calculus have addressed only differential forms, or vector fields as proxies for

forms. We also show that the circumcentric dual of a simplicial complex plays a useful role in the metric

dependent part of this theory. The importance of dual complexes in this field has been well understood, but

with a few exceptions previous researchers have used barycentric duals.

The use of duals is reminiscent of the use of staggered meshes in computational mechanics. The appear-

ance of dual complexes leads to a proliferation of the operators in the discrete theory. For example there are

primal-primal, primal-dual etc. versions of many operators. This is of course unique to the discrete side.

In many examples we find that the formulas derived from our discrete exterior calculus are identitical to the

existing formulas in literature.

We define discrete differential forms in the usual way, as cochains on a simplicial complex. The discrete

vector fields are defined as vector valued 0-forms, and they live either on the primal, or on the dual vertices.
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We then define the operators that act on these objects, starting with discrete versions of the exterior derivative,

codifferential and Hodge star for operating on forms. A discrete wedge product is defined for combining

forms; discrete flat and sharp operators for going between vector fields and one forms; and discrete interior

product operator and Lie derivatives for combining forms and vector fields. The sharp and flat allow us to

define various vector calculus operators on simplicial meshes including a discrete Laplace-Beltrami operator.

Our development of the theory is formal in that we do not prove convergence to a smooth theory. We have

tried instead to build a discrete calculus that isself-consistent and parallels the smooth theory. The discrete

operator should be natural under pullbacks, when the smooth one is, important theorems like the discrete

Stokes’ theorem must be satisfied, and the operators should be local. We then use these operators to derive

explicit formulas for discrete differential operators in specific cases. These cases include 2-surfaces inR3

built with irregular triangles, regular rectangular and hexagonal meshes in the plane, and tetrahedralization

of domains inR3. At least in these simple but important examples we find that the formula derived from our

discrete exterior calculus is identitical to the existing formula in the literature.

Numerical methods similar to those based on a discrete exterior calculus have been used in many physi-

cal problems, for example, in areas like electromagnetism, fluid mechanics and elasticity. This is due to the

geometric content of many physical theories. In this thesis we give a glimpse into three fields of discrete,

geometric computations, which we have developed without an exterior calculus framework. These are ex-

amples of areas which are likely to benefit from a working DEC. They include discrete shells, a Hodge type

decomposition of discrete 3D vector fields on an irregular, simplicial mesh, and template matching.

One potential application of DEC is to variational problems. Such problems come equipped with a rich

exterior calculus structure and so on the discrete level, such structures will be enhanced by the availability of

a discrete exterior calculus. One of the objectives of this thesis is to fill this gap. An area for future work,

is the relationship between multisymplectic geometry and DEC. There are many constraints in numerical

algorithms that naturally involve differential forms, such as the divergence constraint for incompressibility of

fluids. Another example is in electromagnetism since differential forms are naturally the fields in that subject,

and some of Maxwell’s equations are expressed in terms of the divergence and curl operations on these fields.

Preserving, as in the mimetic differencing literature, such features directly on the discrete level is another one

of the goals, overlapping with our goals for variational problems.

In future work we want to make a cleaner separation of metric independent and metric dependent parts of

DEC. For example, the wedge product, pairing of forms and vector fields, interior product and Lie derivative,

should all be metric independent. Divergence should depend on the metric, only through the appearance of

volume form. The metric should play a role only in the definition of sharp and flat operators. In this thesis,

we don’t always make this distinction and sometimes use identities from smooth theory, where the metric

dependence cancels. It is not clear that the same cancellation happens on the discrete side. In these cases we

have also tried to give at least a partial development of a metric independent definition.

In this thesis we have tried to push a purely discrete point of view as far as possible. In fact, in various
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parts of the thesis we argue that this can only be pushed so far, and that interpolation is a useful device for

developing DEC. For example, we found that interpolation of functions and vector fields is a very convenient

device for understanding and deriving a discrete theory involving functions and vector fields. This naturally

leads to the next step, that of interpolation of higher degree forms, for example using Whitney map. This is

the methodology that is quite common in this field. In future work we intend to continue this interpolation

point of view, especially in the context of the sharp, Lie derivative and interior product operators. Some

preliminary ideas on this point of view are spread throughout the thesis.



ix

Contents

Acknowledgements iv

Abstract vi

1 Introduction 1

1.1 Results of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The Objects in DEC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 History and Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 How This Thesis is Organized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Increasing Role of Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Primal and Dual Complexes 8

2.1 Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Discretizing the Manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Oriented Primal Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Dual Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Oriented Dual Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Circumcentric and Barycentric Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Interpolation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.8 Local and Global Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Discrete Forms and Exterior Derivative 28

3.1 Differential Forms and Discrete Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Primal Chains and Cochains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Whitney and de Rham Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Dual Chains and Cochains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Maps Between Complexes and Pullback of Forms . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Exterior Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



x

3.7 Speculations on Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.8 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Hodge Star and Codifferential 40

4.1 Hodge Star . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Codifferential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Forms and Vector Fields 44

5.1 Discrete Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Smooth Flat and Sharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Proliferation of Discrete Flats and Sharps . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.4 Discrete Flats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.5 A Dual-Primal-Primal Flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Other Discrete Flats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 A Primal-Dual Sharp for Exact Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.8 A Primal-Primal Sharp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.9 Composing Sharps and Flats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.10 Natural Pairing of Forms and Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.11 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6 Div, Grad, Curl and Laplace-Beltrami 59

6.1 Divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2 Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3 Curl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.4 Laplace-Beltrami . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 Wedge Product 71

7.1 Primal-Primal Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2 Alternative Primal-Primal Wedge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8 Interior Product and Lie Derivative 77

8.1 Separation of Forms and Vector Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.2 Algebraic Discrete Interior Product or Contraction . . . . . . . . . . . . . . . . . . . . . . . 79

8.3 Interior Product via Extrusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8.4 Algebraic Lie Derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83



xi

8.5 Lie Derivative From Flow-Out Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

9 Other Work 87

9.1 Template Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

9.2 Discrete Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

9.3 Discrete Multiscale Vector Field Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 89

9.4 Regular Nonsimplicial Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9.5 General Discrete Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



1

Chapter 1

Introduction

This thesis presents the beginnings of a theory ofdiscrete exterior calculus(DEC), motivated by potential

applications in computational methods for field theories (elasticity, fluids, electromagnetism), and in areas

of computer vision and computer graphics. This theory has a long history that we shall outline below in

Section 1.3, but we aim at a comprehensive, systematic, as well as useful, treatment. Many previous works,

as we shall review, are incomplete in terms of the objects and operators that they treat.

One approach to approximating a smooth exterior calculus is to consider the given mesh as approximating

some smooth manifold at least locally, and then defining the discrete operators by truncating the smooth ones.

Another approach is to consider the discrete mesh as the only given thing and developing an entire calculus

using only discrete combinatorial and geometric operations. The derivations of the operators may require that

the objects on the discrete mesh, but not the mesh itself, are interpolated. It is this latter route that we have

taken and this leads to a discrete exterior calculus. General views of the subject area of DEC are common

in the literature (see, for instance, Mattiussi [2000]), but they usually stress the process of discretizing a

continuous theory and the overall approach is tied to this goal. However we take the point of view that the

discrete theory can stand in its own right.

Applications to Variational Problems. One application is to variational problems. These arise naturally

in mechanics and optimal control. In addition many problems in computer vision, image processing and

computer graphics can also be posed naturally as variational problems. Some examples are template match-

ing, image restoration, image segmentation and computation of minimal distortion maps. See, for example,

Hirani et al. [2001]; Paragios [2002]; Gu [2002]; Desbrun et al. [2002]. Key ingredients for computations

involving variational principles, at least in mechanics, are variational integrators designed for the numerical

integration of mechanical systems, as in Lew et al. [2003]. These algorithms respect some of the key features

of the continuous theory, such as their (multi)symplectic nature and exact conservation laws. They do so

by discretizing the underlying variational principles of mechanics rather than discretizing the equations. It

is well known (see the reference just mentioned for some of the literature) that variational problems come

equipped with a rich exterior calculus structure and so on the discrete level, such structures will be enhanced
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by the availability of a discrete exterior calculus. One of the objectives of this thesis is to fill this gap.

Structured Constraints. There are many constraints in numerical algorithms that naturally involve differ-

ential forms, such as the divergence constraint for incompressibility of fluids. Another example is in electro-

magnetism, since differential forms are naturally the fields in that subject, and some of Maxwell’s equations

are expressed in terms of the divergence and curl operations on these fields. See Hehl and Obukhov [2000] for

electromagnetism using differential forms. Preserving, as in the mimetic differencing literature, such features

directly on the discrete level is another one of the goals, overlapping with our goals for variational problems.

Methodology. We believe that one way to proceed with this program is to develop a calculus on discrete

manifolds which parallels the calculus on smooth manifolds. Indeed one advantage of developing a calculus

on discrete manifolds is pedagogical. By using concrete examples of discrete two- and three-dimensional

spaces one can explain most of discrete calculus at least formally. The machinery of Riemannian manifolds

and general manifold theory from the smooth case is, strictly speaking, not required in the discrete world.

The technical terms that will be used in the rest of this introduction will be defined in subsequent sections,

but they should be already familiar to someone who knows the usual exterior calculus on smooth manifolds.

Chapters 6 and 7 of Abraham et al. [1988] are a good standard reference.

Our development in this thesis is formal, in the sense that we choose appropriate geometric definitions

of the various objects and quantities involved. We do not prove that these definitions converge to the smooth

counterparts. The definitions are chosen so as to make some important theorems like the generalized Stokes’

theorem true by definition, to preserve naturality with respect to pullbacks, and to ensure that operators are

local. Often, an interpolation of objects is involved in reaching the discrete definition. In the cases where

previous results are available, we have checked that the operators we obtain match the ones obtained by other

means such as variational or other derivations. A proper study of convergence is clearly needed in the future

after we have had some numerical experience with DEC.

1.1 Results of This Thesis

Our development of discrete exterior calculus includes discrete differential forms as well as vector fields,

the Hodge star operator, the wedge product, the exterior derivative, as well as interior product and the Lie

derivative. Our theory can be thought of as calculus on simplicial complexes of arbitrary finite dimension.

We point out that the embedding of the complex can be local. We also hint at how it might generalize

formulas from finite-difference theory on regular meshes. The inclusion of discrete differential forms and

discrete vector fields allows us to address the various interactions between forms and vector fields which

are important in applications. With a few exceptions, such as Bossavit [2003], previous attempts at discrete

exterior calculus have addressed only differential forms, or have used vector fields as proxies for forms.
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We use circumcentric duals of simplicial complexes in the metric parts of our theory. The importance

of dual complexes in this field has been well understood, but most previous researchers have used barycen-

tric duals. We show that circumcentric duals play a role in arriving at the metric dependent parts of a DEC

theory. This includes the sharp and flat operators for going between vector fields and forms, and the Hodge

star for operating on forms. The usefulness of circumcentric duality in these cases stems from the fact that

the property of being normal to boundary comes automatically with circumcentric duality. This makes the

expressions for fluxes very easy in terms of geometric objects like the dual cells. Indeed the importance of

circumcentric duals in this context has also been known in some communities such as the mimetic differenc-

ing. But that has usually been for flat two- or three-dimensional logically rectangular meshes and only scalar

and vector fields appear in that literature.

While most of the thesis is about discrete exterior calculus on a single discrete manifold we define discrete

pullback between two complexes. Multiple meshes are important in applications where the mesh is changing,

but the discrete pullback is important even for picking the right definition on a single complex in some cases.

This is because it provides the criterion of naturality for discrete operators, i.e., commuting with pullback,

which is important for a full calculus on manifold. This was pointed out to us very recently by Marco

Castrillon and Jerry Marsden.

We argue in this thesis, that interpolation of objects is important for developing DEC. We use interpolation

of 0-forms and vector fields viewed as vector valued 0-forms and argue that the proper development of sharp

operator, and consequently of gradient and curl, requires the interpolation of 1-forms. In the Chapter on

interior product and Lie derivative we argue that the interpolation of forms plays a crucial role in the derivation

of discrete version of these operators. But we do not carry out this program of interpolation of higher degree

forms in this thesis, leaving it for future work.

1.2 The Objects in DEC

To develop a discrete theory, one must define discrete differential forms along with vector fields and operators

involving these. Once discrete forms and vector fields are defined, a calculus can be developed by defining the

discrete exterior derivative (d), codifferential (δ) and Hodge star (∗) for operating on forms, discrete wedge

product (∧) for combining forms, discrete flat ([) and sharp (]) operators for going between vector fields and

one forms and discrete interior product operator (iX ) for combining forms and vector fields. Once these are

done one can then define other useful operators. For example, a discrete Lie derivative (£X ) can bedefined

by requiring that the Cartan magic (or homotopy) formula hold. A discrete divergence in any dimension and

curl in R3 can also be defined. A discrete Laplace-Beltrami operator (∆) can be defined using the usual

definition ofdδ + δd. When applied to functions this is the same as the discrete Laplace-Beltrami operator

(∇2) which is the defined asdiv ◦ grad. We define all these objects and operators in this thesis. In some cases

we define the operators in multiple ways.
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The discrete manifolds we work with are manifold-like oriented simplicial complexes (however we also

show how DEC generalizes some finite-difference formulas on regular non-simplicial meshes). We will recall

the standard formal definitions in Section 2.1 but familiar examples of simplicial complexes are meshes of

triangles embedded inR3 and meshes made up of tetrahedra occupying a portion ofR3. We will assume

that the angles and lengths on such discrete manifolds are computed in the embedding spaceRN using the

standard metric of that space. In other words in this thesis we do not address the issue of how to discretize

a given smooth Riemannian manifold and how to embed it inRN since there may be many ways to do this.

For example,SO(3) can be embedded inR9 with a constraint or inR4 using quaternions. For the purposes

of exterior calculus, only local metric information is required, and we will comment in Section 2.8 on how to

address the issue of embedding in a local fashion. We emphasize that we donot need a global embedding of

the discretized manifold, since the operators of DEC are local, and intrinsic. For simplicity of presentation

we don’t always stress this point and often write as if a global embedding has been given.

1.3 History and Previous Work

The use of simplicial chains and cochains (defined in Chapter 3) as the basic building blocks for a discrete

exterior calculus has appeared in several papers. See, for instance, Sen et al. [2000], Adams [1996], Bossavit

[2002b] and references therein. These authors view forms as linearly interpolated versions of smooth differ-

ential forms, a viewpoint originating from Whitney [1957], who introduced the Whitney and de Rham maps

that establish an isomorphism between simplicial cochains and Lipschitz differential forms. Similar ideas

on non-simplicial meshes and from a finite-difference point of view are referred to in the papers of Hyman,

Shashkov and their collaborators. See for instance Hyman and Shashkov [1997a] and the references therein.

These papers however use vector fields as proxies for forms.

Discrete forms for logically rectangular meshes are defined in Chard and Shapiro [2000]. They however

define only thed operator from exterior calculus. However it is interesting to see that the implementation

of even a subset of DEC-like ideas can be interesting for computational mechanics. Cochains are discrete

objects that can be paired with chains of oriented simplices or their geometric duals by the bilinear pairing of

evaluation. Intuitively, the natural pairing of evaluation can be thought of as integration of the discrete form

over the chain.

There is much interest in a discrete exterior calculus in the computational electromagnetics community, as

represented by Bossavit [2001, 2002b,a, 2003], Gross and Kotiuga [2001], Hiptmair [1999, 2001a,b, 2002b],

Mattiussi [1997, 2000], Teixeira [2001] and Tonti [2002]. This is the community that seems to have gone the

furthest in terms of incorporating DEC-like ideas into their computational methods. This is perhaps because

Maxwell’s equations can be written purely in terms of differential forms. With the exception of some recent

work of Bossavit on interior products (Bossavit [2003]) the computational electromagnetism community has

used either a forms only theory or with vector fields as proxies for forms.
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Many of the authors cited above, for example, Bossavit [2002b], Sen et al. [2000], Hiptmair [2002b,a],

also introduce the notions of dual complexes in order to introduce the Hodge star operator. With the exception

of Hiptmair, they mostly use barycentric duals. This works fine if one develops a theory of discrete forms

and does not introduce discrete vector fields. We show later that to introduce discrete vector fields into the

theory the notion of circumcentric duals seems to be convenient.

Other authors, such as Moritz [2000]; Moritz and Schwalm [2001]; Schwalm et al. [1999, 2001] have

incorporated vector fields into the cochain based approach to exterior calculus by identifying vector fields

with cochains, and having them supported on the same mesh. This may make it harder to encode physically

relevant phenomena such as fluxes across boundaries that are important in some applications.

Another approach to a discrete exterior calculus is in Dezin [1995]. He defines a one-dimensional dis-

cretization of the real line in much the same way we would. However to generalize to higher dimensions he

introduces a tensor product of this space. This results in logically rectangular meshes. Our calculus however

is over simplicial meshes. A further difference is that like other authors in this field, Dezin [1995] does not

introduce vector fields into his theory. A related effort for three-dimensional domains with logically rectan-

gular meshes is that of Mansfield and Hydon [2001], who established a variational complex for difference

equations by constructing a discrete homotopy operator. In Harrison [1993, 1999] one finds the development

of a discrete calculus by extending the permitted domains of integration to include nonsmooth and fractal

spaces. These papers not only develop a part of discrete calculus but also discuss convergence issues. Be-

sides the exterior derivative, a Hodge star and Laplace-Beltrami are also defined in Harrison [1999] for very

general spaces.

In computer graphics Meyer et al. [2002] define, for simplicial meshes, discrete differential geometry

operators and vector calculus operators like Laplace-Beltrami. Recently Gu [2002] has done some very

interesting work in applying homology and cohomology theory for some applications in graphics, such as,

finding global conformal maps for arbitrary genus surfaces. However, they do not develop a discrete exterior

calculus. For instance, their wedge product is the standard one (cross product) inR3.

Mimetic discretization (Hyman and Shashkov [1997a]) is a successful development of finite-difference

and finite-volume type methods that satisfy various theorems like Stokes’ theorem. It has been applied to

a variety of physical problems. Once again, it is a theory that has been developed for forms only or vector

fields as proxies for forms. Also, most of those methods seem to be for flat meshes. Moreover, we conjecture

that a generalization of DEC for non-simplicial meshes will bring DEC and mimetic discretization closer,

except that in addition one will have a theory of forms and fields with all the attendant operators, and have it

for non-flat meshes as well. With the current version of DEC we have already made a start towards this, for

simplicial meshes.
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1.4 How This Thesis is Organized

In chapters 2-8 the preamble of each chapter, i.e. the part before the numbered sections of the chapter begin,

summarizes what the chapter is about, the main new results in the chapter, the context in which the chapter

fits into DEC. This is typically the content of the first or first few paragraph of each chapter’s preamble.

The second part of each preamble is generally a summary of what remains to be done and what is not well-

understood etc. Chapter 9 is about other work and speculative work. The former consists of applications

that we have done which would benefit from a DEC like framework for their future development. The latter,

consists of some preliminary ideas about lattices and regular nonsimplicial complexes and general discrete

tensors. In some chapters the last section is a summary and discussion section. Due to this organization of the

thesis, we have not included a conclusions Chapter. The preambles and summary sections of the following

chapters, and the next section of this Chapter can be read instead, to understand the scope, limitations and

conclusions of this thesis.

1.5 Increasing Role of Interpolation

In this section we document our changing viewpoint about interpolation. Interpolation has been playing an

increasing role as we have gained more experience with DEC. When we started work on DEC, we held the

viewpoint of treating forms strictly as cochains, not only in the definition of forms, but also in the definition

of operators on forms. That is, we wanted to define all the operators of exterior calculus as cochains, using

only the values of the operands on chains. This was in contrast with another popular approach, such as that of

Sen et al. [2000] and others, in which forms are interpolated using Whitney maps, and operators defined on

the interpolated forms. An early consequence of our strictly discrete approach, was, for example the lack of

associativity of wedge product, except for closed forms (Remark 7.1.4). But the straightforward interpolation

approach mentioned above also suffers from not having an associative wedge product Sen et al. [2000]. Thus

while this lack of associativity has consequences for the theory, we pressed ahead.

But slowly there were other signs that a strict discrete approach was inconvenient. For example, we had

found a formula for a discrete flat operator without interpolating vector fields or forms. But it was found by

guesswork, by requiring a discrete divergence theorem to be true. Later, we realized that if we interpolated

vector fields, as interpolated vector valued 0-forms, we were able to give a derivation for the formula we had

found,andfind other types of discrete flats that we had missed. Thus the interpolation point of view seemed

to be good not just for explaining existing formulas, but for finding new ones. Similarly, we found that for

defining a discrete gradient, the point of view of interpolation of 0-forms inside simplices, was a useful one.

Similar advantages held for other vector calculus operators as we saw in our vector field decomposition work

in Tong et al. [2003].

Naturally, the question was, why stop at 0-forms ? Why not interpolate higher degree forms as well ? This
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was obvious when we considered sharp operator on 1-forms and interior product and Lie derivative. With the

strictly discrete point of view, one can get quite far, but not all the way, it seems. We argue in this thesis that

the development of a sharp, gradient, interior product and Lie derivative requires the interpolation of one and

higher degree forms. The full development of this interpolation point of view is for future work.

One track for our future work, is the usual Whitney interpolation idea, studied by so many other authors.

This is to interpolate forms using Whitney forms and then use the smooth operators. But we intend to use it

to define operators like Lie derivative, that others have not explored. Another track we intend to explore, is if

we can build higher degree forms, defined everywhere on the complex, from 1-forms. This is along the same

lines as our preliminary suggestion to build general tensors by using tensor products of 1-forms as mentioned

in Section 9.5.

Even while knowing the limitations of a purely discrete approach, in this thesis, we try to push the purely

discrete point of view as far as possible. This is done, in part to expose the parts of DEC where interpolation

is clearly the way to go. We have tried to include the basic ideas about interpolation at various places in the

thesis, in preparation for our future work along this direction. This approach can be called a finite element

approach to DEC. Here, the discretization of forms via the de Rham map of Section 3.3 takes a back seat

and the interpolation of forms via Whitney maps or other means becomes more prominent. The operators are

defined on interpolated forms, by using the smooth definitions where possible.

Various interpolation schemes can then be studied, including higher order ones. Building a higher order

DEC requires that one find a closed way to construct higher degree forms from discrete 1-forms that are

quadratic or higher order accurate. In any case, even in the lowest order case, with this interpolation, or

finite element approach, there is no longer any need to define operators using metric information when the

smooth operators do not depend on the metric. This simplifies the presentation of DEC which can then be

organized into the metric-independent part like exterior derivative, wedge, interior product and Lie derivative,

and the metric dependent part like sharp and flat. It is quite possible, as happened in the case of flat, that the

interpolation based definition of some operators will eventually result in a purely discrete definition. This is

because the operators are all local and many involve derivatives. The identities from smooth theory that we

were forced to adopt as definitions in some cases, then become theorems in such a discrete theory.

The detailed exploration of such an interpolation based DEC, in which interpolation of higher degree

forms, and not just of 0-forms, plays a prominent role, is left for our immediate future work.
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Chapter 2

Primal and Dual Complexes

Results: In our formulation of discrete exterior calculus,K, an oriented manifold-like simplicial complex

(defined below) discretizes a portion ofM , the triangulable Riemanniann-manifold of interest. The starting

point for our calculusis the given complexK. In this chapter we give basic definitions related to simpli-

cial complexes and their dual cell complexes and orientations of these. We have found a simple geometric

interpretation of orientation of duals which we give in this chapter. In contrast, in algebraic topology the

definition of dual orientation usually requires some knowledge of homology and relative homology theory.

The requirement of orientability may not be a problem in practice. This is because the operators in DEC are

local and any point of ann-manifold is in an open set that is homeomorphic to an open set inRn or in a half

space, in the case of boundary points.

Shortcomings: A complete treatment of DEC should discuss how wellK approximatesM , and indeed

howK is obtained fromM in the first place. It should also include a discussion of how well the discrete

operators approximate the smooth counterparts. But for this one needs to define a topology on the discrete side

so that continuity and convergence can be discussed. This discussion, of discretization and approximation

quality, is something we do not do in this thesis, although it is an important topic for future work. Nevertheless

in Section 2.2 we discuss the idea of discretization at least roughly.

2.1 Simplicial Complex

We now recall some basic definitions of simplices and simplicial complexes. For more details see Munkres

[1984] and Hatcher [2002]. Let{v0, . . . , vp} be a set of geometrically independent points inRN , i.e., the

vectors{v1 − v0, . . . , vp − v0} or equivalently{v1 − v0, v2 − v1, . . . , vp − vp−1} are linearly independent.

Definition 2.1.1. A p-simplex σp is the convex hull ofp + 1 geometrically independent pointsv0, . . . , vp.

That is

σp =
{
x ∈ RN

∣∣ x =
∑p

i=0
µivi whereµi ≥ 0 and

∑n

i=0
µi = 1

}
.
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We’ll write σp = v0 . . . vp. The pointsv0, . . . , vp are inRN and are called theverticesof the simplex, and the

numberp is called thedimensionof the simplex. Any simplex spanned by a (proper) subset of{v0, . . . , vp}

is called a(proper) faceof σp ; their union is called theboundary of σp and denotedBd(σp). Theinterior

of σp is Int(σp) = σp\Bd(σp) and is also called anopen simplex. If σq is a proper face ofσp, then we

write σq ≺ σp. Sometimes we will writeσp asσ when the dimension is understood. By|σp| we will mean

thep-volume of σp in RN . Forp = 0 this is defined to be 1. The smallest affine subspace ofRN containing

σ is called theplane of σ and denotedP(σ). This can be obtained for example, by letting the coefficientsµ

above be negative. ♦

Definition 2.1.2. A simplicial complexK in RN is a collection of simplices inRN such that

(1) Every face of a simplex ofK is inK.

(2) The intersection of any two simplices ofK is either a face of each of them, or it is empty.

The dimensionn of the largest dimensional simplex inK will be called the dimension ofK. The union

of simplices ofK is a subset ofRN and will be called theunderlying spaceof K or the polytope of

K and denoted|K|. We will be only concerned withfinite simplicial complexes (a complex with a finite

number of simplices). In acell complex(also known asCW complex) open simplices are replaced bycells,

which are objects homeomorphic to open balls. See page 5 of Hatcher [2002] for another way to define cell

complexes. ♦

Remark 2.1.3. Topology on underlying space: For a finite complex (the only kind we will consider in

this work) the topology on|K| will be the natural one (subspace topology) induced fromRN . For a simplex

σp of dimensionp ≥ 1 the meaning ofInt(σp) andBd(σp) coincides with the usual topological meanings

of interior and boundary in the topology of|K|. However forp = 0, i.e., for pointsσ0, Int(σ0) = σ0 and

Bd(σ0) = ∅, since a point has no proper faces (see Def. 2.1.1). However in the topology of|K| a point has

empty topological interior and is its own topological boundary. This special status of a 0-simplex is actually

useful in defining duals as we will do in Def. 2.4.5. Another thing to keep in mind is that theInt(σp) for any

dimensionp is called anopensimplex even though (for example)Int(σ1) in a dimension 2 complex is not an

open set in the subspace topology. Forp = n the open simplexInt(σp) is indeed an open set. ♦

Definition 2.1.4. A flat (or linear) simplicial complexK of dimensionn in RN is one of which all simplices

are in the same affinen-subspace ofRN . This coincides with our usual intuition of a flat 2-surface embedded

in R3. ♦

Definition 2.1.5. A simplicial triangulation of the polytope|K| is any simplicial complexL such that the

union of the simplices ofL (i.e., polytope|L|) is the polytope|K|. ♦

Definition 2.1.6. If L is a sub-collection ofK that contains all faces of its elements, thenL is a simplicial

complex in its own right, and it is called asubcomplexof K. One subcomplex ofK is the collection of all
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simplices ofK of dimension at mostp, which is called thep-skeletonof K and is denotedK(p). Theclosed

star (or one-ring) of a simplexs in K is denotedSt s and is the union of all simplices ofK havings as a

face. Twop-simplices will be calledadjacentof they share a(p− 1)-face. ♦

2.2 Discretizing the Manifold

Let M be a smooth triangulable Riemanniann-manifold and define an abstract simplicial complex onM .

See pages 15–19 of Munkres [1984] for the definition of and information on abstract simplicial complexes,

but for our purpose it is enough to think of it as simplices “glued” to or “drawn on”M in such way that they

form a “curved” simplicial complex. It is a cell complex in which the cells are simplices on the manifold.

Let K be a concrete geometric simplicial complex that is isomorphic to a part of the complex onM .

It may be convenient to embedK in RN whereN ≥ n. For example, this is often done in computational

mechanics and graphics when a surface is approximated by a triangle mesh embedded inR3. We stress that

the idea of discretization isnot to put charts on the manifold and then triangulate the codomain of the chart

into a simplicial complex. If we did this, then the idea of discrete approximation would be lost, because we

would have to store the analytical information about the chart exactly. Sometimes this is not even possible. An

example of this situation is when the smooth manifold can only be sampled by some physical measurement

such as when the shape of an object is acquired by scanning. So the simplices ofK approximate a portion of

M for which we may only know a set of points. These then become the vertices ofK. Nevertheless we will

define the following map.

Definition 2.2.1. Letσp
M be an abstract simplex onM and a simplexσp

K be a simplex inK that approximates

it. In order to transfer information (like forms and vector fields) fromM to K we will need the exact or

approximate map between the two. We will call such a mapπσ : σp
M → σp

K a pasting mapand assume it is

a smooth map. ♦

Remark 2.2.2. Pasting map as a formal device:We have mentioned above that in applications we may

not even knowM exactly. Thus the pasting maps will not be known in these cases. Even if they were,

storing the pasting maps would defeat the idea of discretization. But there is no harm in using them during

discretization. In general they are a formal device allowing one to talk about the transfer of information from

M to K. In practice they may be a procedural scheme or a measurement device allowing one to discretize

smooth information onM . If M is a domain inRN , then it may even be an identity map. ♦

Approximating a portion ofM by K means that the metric onK induced fromRN approximates the

metric onM in the portion being approximated. The embedding of the simplicial complex into an ambient

space is a computational convenience. For the purposes of the theory, it is only necessary to specify the

connectivity of the mesh in the form of an abstract simplicial complex, along with a local metric on the space
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of vertices. This is addressed in Section 2.8. Discretization of forms via de Rham map and interpolation of

forms via Whitney maps is addressed in Section 3.3.

2.3 Oriented Primal Complex

For DEC we need a notion of orientation for the simplices and for simplicial complexes. We start with

simplices.

Definition 2.3.1. Define two orderings of the vertices of a simplexσp to be equivalent if they differ from

one another by an even permutation. Ifp > 0, then the orderings fall into two equivalence classes. Each

of these classes is called anorientation of σp. An oriented simplex (also writtenσp) is a simplex together

with an orientation. Ifv0, . . . , vp are the vertices ofσp, then we’ll use[v0, . . . , vp] for the oriented simplex

σp with the equivalence class of the ordering(v0, . . . , vp). A 0-simplex has only one possible ordering so has

no orientation (although it can have aninducedorientation defined below). ♦

Definition 2.3.2. Given a simplexσp with vertices{v0, . . . , vp}, the ordered collection of vectors(v1 −

v0, v2 − v0, . . . , vp − v0), which is a basis for the planeP(σ), will be called acorner basis atv0 of the

simplex. The ordered collection(v1− v0, v2− v1, . . . , vp− vp−1), which is also another basis, will be called

polyline basis fromv0 of the simplex. ♦

Remark 2.3.3. Simplex orientation using a basis:A simplexσ is a closed connected subset of its plane

P(σ) and of the same dimension as the plane. The planeP(σ) being an affine subspace ofRN is oriented in

the usual sense of orientation by an ordered basis or equivalently a volume form. In particular the ordered

corner basis and the polyline basis of the simplex orient the plane and hence the simplex itself. These notions

of orientation via corner and polyline basis coincide with the orientation via permutations defined above. This

means that the partition of the set of simplices into two orientation classes is the same in each case. See, for

example, Lemma 5a on page 360 of Whitney [1957]. Thus orienting a simplex is equivalent to orienting its

plane. From now we will use the word orientation to mean any of these equivalent notions of corner, polyline

or permutation based orientation. ♦

Example 2.3.4. Oriented simplices: Consider 3 non-collinear pointsv0, v1 and v2 in R2 labeling the

vertices of a triangle in a counterclockwise fashion. Then these three points individually are examples of 0-

simplices (hence these have no orientation). Examples of oriented 1-simplices are the oriented line segments

[v0, v1], [v1, v2] and [v0, v2]. By writing the vertices in that order we have given orientations to these 1-

simplices, i.e.,[v0, v1] is oriented fromv0 to v1. The triangle[v0, v1, v2] is a counterclockwise oriented

2-simplex. �

Consider a simplexσp with vertices{v0, . . . , vp} with p ≥ 1. By deleting one vertex at a time from

this set we can enumerate the simplices that have dimension(p − 1) and are faces ofσp. There arep + 1
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such faces and facei is spanned by{v0, . . . , v̂i, . . . , vp} for i = 0, . . . , p. The hat means omit that vertex.

An oriented simplexσp induces an orientation on each of these faces. The notion of induced orientation is

related to the boundary operator to be defined in Chapter 3 in Def. 3.6.1. But induced orientation can be

defined independently as follows.

Definition 2.3.5. Let σp = [v0, . . . , vp] be an oriented simplex, withp ≥ 1. This orientation ofσ gives each

of the(p − 1)-dimensional faces aninduced orientation. Forp > 1, if i is even the induced orientation of

the facev0 . . . v̂i . . . vp is the same as the orientation of the oriented simplex[v0, . . . , v̂i, . . . , vp]. Otherwise

it is the opposite one. ♦

Example 2.3.6. Induced orientation: Given the counterclockwise oriented triangleσ = [v0, v1, v2] its

unoriented 1-faces arev1v2, v0v2 andv0v1. The induced orientation onv1v2 is the same as the orientation of

[v1, v2]. The induced orientation onv0v2 is the opposite of the orientation of[v0, v1] and the induced orien-

tation onv0v1 is the same as the orientation of[v0, v1]. As another example consider an oriented tetrahedron

[v0, v1, v2, v3] with v0 at the top andv1, v2, v3 labeling the bottom triangle in counterclockwise fashion when

looked from outside. This has the same orientation class as the ordered collection of 3 vectors emanating from

v0 and pointing to the 3 verticesv1, v2 andv3 in order, i.e., the corner basis atv0. This corresponds to a right-

hand rule orientation for the plane of the tetrahedron, i.e., forR3. By the definition of induced orientation the

triangular faces of the tetrahedron get oriented counterclockwise when looking from outside. �

Remark 2.3.7. Comparing orientations: Consider two oriented simplicesσ andτ embedded inRN .

If their dimensions differ, then their orientations cannot be compared. So assume that they have the same

dimensionp and so1 ≤ p ≤ n (0-simplices have no orientation). Then their orientations can be compared in

the following cases:

1. Their planes coincide, i.e.,P(σ) = P(τ)

2. They share a face of dimensionp− 1

In case 1 the two simplicesσ andτ will have the same orientation iff their corner or polyline basis orients

their plane the same way. In case 2 the two will have the same orientation if the induced orientation of the

sharedp− 1 face induced by theσ is opposite to that induced byτ . Fig. 2.1 clarifies this remark. ♦

Definition 2.3.8. Let σp andτp, with 1 ≤ p ≤ n, be two simplices whose orientations can be compared, that

is, they fall into one of the two cases of Rem. 2.3.7. If their orientations are in the same class we will say that

the two simplices have arelative orientation of +1 otherwise−1. We will write this assgn(σp, τp) = +1

or−1 respectively. ♦

The notion of a simplicial complex defined in this section is too general for our purpose. For example, in

R2 a triangle with a line segment sticking out of one vertex is a simplicial complex. While such things may
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(a) (b)

Figure 2.1: Situations where orientations of simplices can be compared: (a) All the triangles are inR3 but
since their plane is identical (shown in the figure) the orientations can be compared using any of their corner
basis or polyline basis. See Rem. 2.3.3 and 2.3.7 ; (b) Two triangles inR3 not in the same plane. But
since they share an edge their orientations can be compared. Orienting them so that they induce opposite
orientations on the shared edge gives the two triangles identical orientations.

be useful say, in modeling domains connected by wires in electromagnetism, in this thesis we exclude such

cases by using the definition to be given below. Another type of complex to be excluded is, for example, two

triangles touching only at a common vertex. Excluding such complexes is in line with this being a theory

of exterior calculus. For example, in smooth exterior calculus the starting point is the notion of a smooth

manifold. The examples just mentioned can be considered to be discretizations of smooth spaces that are

not manifolds (not even manifolds with boundary) since they are not locally homeomorphic toRn or to half

space. This is captured in the following definition.

Definition 2.3.9. A simplicial complexK of dimensionn is called amanifold-like simplicial complex

if the underlying space|K| is aC0 manifold (possibly with boundary). In such a complex all simplices

of dimensionk with 0 ≤ k ≤ n − 1 must be a face of some simplex of dimensionn in the complex.

Also, by definition ofC0 manifolds each point on|K| will have a neighborhood homeomorphic toRn or

n-dimensional half-space. See pages 143 and 478 of Abraham et al. [1988] for definitions of manifolds and

manifolds with boundary. ♦

From now on we will work only with manifold-like simplicial complexes. Allowing only such complexes

has the added advantage that we can now define orientability for simplicial complexes. In algebraic topology

the definition of an orientable simplicial complex requires some technical machinery (such as homology

n-manifolds and homology groups). In the following definition we can bypass such machinery.

Definition 2.3.10. A manifold-like simplicial complexK of dimensionn is called anoriented manifold-

like simplicial complex if adjacentn-simplices (i.e., those that share a common(n− 1)-face) have the same

orientation (orient the shared(n − 1)-face oppositely) and simplices of dimensionsn − 1 and lower are

oriented individually. From now on the nameprimal mesh will be used to mean a manifold-like oriented
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simplicial complex. ♦

2.4 Dual Complex

An important ingredient of DEC is the dual complex (defined below) of a manifold-like simplicial complex.

The dual complex will usually not be a simplicial complex. However if the primal mesh satisfies some

conditions, then the dualcanbe built from a simplicial refinement of the primal mesh. The notion of duality

we use is circumcentric (or Voronoi) duality. The other popular choice in this subject is barycentric duality

and we compare the two types in Section 2.6.

Remark 2.4.1. Metric-dependence and duality: The metric-dependent and metric-independent parts of

DEC can be developed separately. Operators, that in the smooth theory do not use metric information, should

have that property in the discrete theory as well. For example, the exterior derivative, wedge product, natural

pairing of forms and vector fields, interior product and Lie derivative are all example of such operators. On

the other hand Hodge star, sharp and flat depend on the metric. Divergence is an operator in which metric

enters only through its dependence on the volume form of the metric. Dual meshes seem to be required only

in the metric-dependent parts of DEC. However, in applications these might be all mixed up and thus one is

forced to invent versions of metric-independent operators for the dual mesh as well. An example is say, the

Lagrangian for harmonic maps,d f ∧ ∗d f . Since the wedge and Hodge are both present, one may expect

the dual mesh to play a role.

In this thesis, we have not always followed a strict separation of discrete operators into metric-independent

and metric-dependent types. But in those cases where we give a metric-dependent definition, we generally

accompany it with a metric-independent one as well. Also, the metric-dependent definitions used are such

that at least in the smooth theory, the metric dependence cancels, although in the discrete case we don’t know

if this is the case.

In our future work, we intend to maintain a more strict distinction between metric-independent and metric-

dependent operators. The computational implication of this distinction is that the computation of discrete

operators that are metric-independent may not require a dual complex, as it occasionally seems to, in this

thesis. ♦

Definition 2.4.2. Thecircumcenter of a p-simplexσp is given by the center of thep-circumsphere, where

thep-circumsphere is the uniquep-sphere that has allp + 1 vertices ofσp on its surface. Equivalently, the

circumcenter is the unique point inP(σ) that is equidistant from all thep+1 vertices of the simplex. We will

denote the circumcenter of a simplexσp by c (σp). If the circumcenter of a simplex lies in its interior we call

it a well-centered simplex. In R2 a triangle with all acute angles is an example. A simplicial complex all of

whose simplices (of all dimensions) are well-centered will be called awell-centered simplicial complex. ♦

The circumcenter of a simplexσp can be obtained by taking the intersection of the normals to the(p−1) -
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dimensional faces of the simplex, where the normals are emanating from the circumcenter of the face. This

allows us to recursively compute the circumcenter. We use the names Voronoi dual and circumcentric dual

synonymously since the dual of a simplex is its circumcenter (equidistant from all vertices of the simplex).

To build a circumcentric dual complex of a simplicial complex we have to first subdivide the original

complex to yield one with smaller simplices. Then some of the simplices will be combined to give the dual

complex. This general procedure of building a dual complex by subdivision and aggregation is described in

detail in Munkres [1984] on pages 83–88 (for subdivision) and pages 377–381 (for aggregation). While he

specializes the general construction to barycentric subdivision, under some conditions the same procedure

with the barycenters replaced by circumcenters produces a circumcentric subdivision.

This requires thatK be well-centered in the sense defined above because otherwise circumcentric subdi-

vision may not produce a simplicial complex. See Section 2.6 for implications of this restriction. However if

K is well-centered, then the subdivision operatorsd of Munkres [1984] can be replaced by a circumcentric

subdivision operatorcsd as defined below.

Given a simplicial complexK thencsd K will be a simplicial complex from which to build the dual

complex. The underlying spaces|K| and|csd K| are the same. In Lemma 15.3 Munkres [1984] gives the

form of the simplices insd K. Instead we will use this as the definition of subdivision.

Definition 2.4.3. Thecircumcentric subdivision of a well-centered simplicial complexK of dimensionn

is denotedcsd K, and it is a simplicial complex with the same underlying space asK and consisting of all

simplices (each of which is called asubdivision simplex) of the form [c (σ1) , . . . , c (σk)] for 1 ≤ k ≤ n

(note that the index here isnot dimension since it is a subscript). Hereσ1 ≺ σ2 ≺ . . . ≺ σk (i.e., σi is

a proper face ofσj for all i < j) and theσi are inK. That this is a simplicial complex follows from the

properties given on pages 83–88 of Munkres [1984]. This is because in a well-centered simplicial complex

all circumcenters lie inside their simplices and this is sufficient for the subdivision construction of Munkres

[1984] to produce a simplicial complex.

Each subdivision simplex in a given simplexσp will be called asubdivision simplex ofσp. Of these, aq

simplex (q ≤ p) will be called asubdivision q-simplex ofσp. ♦

Example 2.4.4. Circumcentric subdivision: Consider a simplicial complexK with verticesv0, v1 andv2,

i.e., the complex consists of a trianglev0v1v2, its edges and its vertices. ThenL = csd K consists of the

following elements:

• L(0) (the 0-simplices ofcsdK): consists of the circumcentersc(v0) = v0, c(v1) = v1 andc(v2) = v2,

the midpoints of the edgesc(v0v1), c(v1v2) and c(v0v2) and the circumcenter of the triangle, i.e.,

c(v0v1v2),

• L(1) (the 1-simplices ofcsdK): consists of 12 edges – the two halves of each edge and edges joining

the circumcenter of the triangle to the vertices and midpoints of the edges,
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σ0, 0-simplex σ1, 1-simplex σ2, 2-simplex

D(σ0), 2-cell D(σ1), 1-cell D(σ2), 0-cell

Vσ0 Vσ1 Vσ2

Figure 2.2: Primal and dual mesh elements in 2D. Top row shows primal mesh (Def. 2.3.10) with one sim-
plex of dimensions 0, 1 and 2 highlighted in the 3 figures; Middle row shows the corresponding dual cells
(Def. 2.4.5), shown here restricted to the original primal triangle ; Bottom row shows the support volumes
(Def. 2.4.9). See Fig. 2.3 for 3D example.

• L(2) (the 2-simplices ofcsdK): consists of 6 triangles of the formv0c(v0v1)c(v0v1v2).

See pages 87 and 378 of Munkres [1984] for more examples. Fig. 2.4 shows many triangles that have been

subdivided. �

If K is a manifold-like simplicial complex, then the underlying space|K| can be partitioned into subsets

that are cells (see Def. 2.1.2) (in Munkres [1984] Section 64 such dual cells are called blocks because he

is working with homology manifolds where spheres are homological spheres). This partitioning gives the

dual cell decomposition of|K|. Each dual cell is made by aggregating together certain simplices fromsd K.

Instead we will usecsdK and end up with a circumcentric version of the dual block decomposition ofK.

We summarize this procedure below. For details see pages 377-381 of Munkres [1984].

Definition 2.4.5. Let K be a well-centered manifold-like simplicial complex of dimensionn and letσp be

one of its simplices. Thecircumcentric dual cell of σp will be denotedD(σp) and defined as

D(σp) :=
n−p⋃
r=0

⋃
σp≺σ1≺...≺σr

Int (c (σp) c (σ1) . . . c (σr)) .

For r = 0, interpretσp ≺ σ1 ≺ . . . ≺ σr simply asσp. The closure of the dual cell ofσp is writtenD(σp)

and called theclosed dual cell. We will call each(n− p)-simplexc (σp) c
(
σp+1

)
. . . c (σn)) anelementary

dual simplex of σp. This is an(n− p)-simplex incsdK. The collection of dual cells is called thedual cell

decompositionof K. This is a cell complex and will be denotedD(K). The union of the cells of dimension

at mostp will be denotedK(p) and called thedual p-skeleton of K. For a closed dual cellD(σp) and
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σ0, 0-simplex σ1, 1-simplex σ2, 2-simplex σ3, 3-simplex

D(σ0) 3-cell D(σ1), 2-cell D(σ2), 1-cell D(σ3), 0-cell

Vσ0 Vσ1 Vσ2 Vσ3

Figure 2.3: Primal, dual cells and support volumes in 3D. Top row shows primal mesh (Def. 2.3.10) with
one simplex of dimensions 0, 1, 2 and 3 highlighted in the 4 figures; Middle row shows the corresponding
dual cells (Def. 2.4.5), shown here restricted to the original primal triangle ; Bottom row shows the support
volumes (Def. 2.4.9). See Fig. 2.3 for 2D example.

q < (n− p), any element ofK(q) that is a subset ofD(σp) will be called aproper face. For0 ≤ p ≤ n− 1,

the(n− p− 1)-faces ofD(σp) areD(σp+1) for all σp+1 � σp. ♦

Remark 2.4.6. Unions and sums using proper faces:The above definition is the first time in this thesis

that we have used the notationσ1 ≺ . . . ≺ σr etc. for indexing a union. This is a very convenient notation

for writing unions (or in the case of chains in next chapter, sums) without having to index the individual

simplices of all dimensions. A union like

⋃
σp1≺...≺σpk

or
⋃

σj1≺...≺σjk

or
⋃

σp≺...≺σjk

is a union over all simplices of a given simplicial complex that satisfy the proper face relationships under the

operator. Notice in particular the third union above. The first simplex is of dimensionp but the rest of the

simplices in the proper face relations have been indexed by numbers, not dimension. Such mixing of indexing

is allowed. ♦.

The dual cell decomposition gives a CW complex (see Def. 2.1.2 above or pages 214–221 of Munkres

[1984] or page 5 of Hatcher [2002] for more details on cell (or CW) complexes). Fig. 2.2 and 2.3 show
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Figure 2.4: A simplicial complexK is subdivided into the simplicial complexcsd K and some dual cells of
dimension 0,1 and 2 are marked. See Example 2.4.4 and 2.4.7. The new edges introduced by the subdivision
are shown dotted. The dual cells shown are colored red. Some elementary dual simplices and subdivision
simplices appearing in this figure are pointed out in Example 2.4.7.

examples of dual cells as does Example 2.4.7 and associated Fig. 2.4. See pages 378–379 of Munkres [1984]

for more examples.

Example 2.4.7. Dual cells and elementary dual simplices:By definition of dual cell the dual of a vertex

σ0 is

D(σ0) =
{
Int(c

(
σ0
)
)
}
∪
⋃

σ0≺σ1

Int
(
c
(
σ0
)
c (σ1)

)
∪ . . . ∪

⋃
σ0≺σ1...≺σn

Int
(
c
(
σ0
)
c (σ1) . . . c (σn)

)
.

Now recall from Rem. 2.1.3 that the first term above is the 0-simplexc
(
σ0
)

since the interior of a 0-simplex

is the 0-simplex itself. The second term is all the open edges starting atσ0 and going to the circumcenters

of: the edges containingσ0, the triangles containingσ0, and so on. The last term is the union of all the open

simplices of dimensionn containingσ0. Thus we get the open Voronoi region aroundσ0.

Refer to Fig. 2.4 for this part of the example. Consider the simplicial complex of dimension 2 shown

in the figure. The dual cell of a vertex is the topological interior of the Voronoi region around it as shown

shaded in the figure. This dual cell is made up of the the vertex whose dual it is, interiors of the open edges

emanating from that vertex, and interiors of the elementary dual simplices (Def. 2.4.5) of the vertex. An

example of an elementary dual simplex of is a triangle starting with vertices consisting of a vertex of the

complex, the circumcenter of an edge incident on the vertex and the circumcenter of a triangle containing

that edge. The dual cell of an edge in the simplex consists of the circumcenter of that edge and the two open

edges emanating from it and going to the circumcenters of the triangles adjacent to it. This is shown by

shading the dual cell of an internal edge and a boundary edge in Fig. 2.4. Note that for the boundary edge

the dual has only one piece since there is only one triangle adjacent to that boundary edge. Note that if the

complex is not flat, then the dual edge will not be straight line. An elementary dual simplex of an edge starts
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at the circumcenter of the edge and ends at the circumcenter of an adjacent triangle. In the figure the dual of

a triangle is shown as the circumcenter.

Now consider a dimension 3 complex inR3 and an edgeσ1 in it. We want to findD(σ1). The vertices of

one of the elementary dual simplex ofσ1 are the circumcenters:c
(
σ1
)
, c
(
σ2
)
, c
(
σ3
)

which form a triangle.

Hereσ1 is a proper face ofσ2 which is a proper face of a tetrahedronσ3. These circumcenters are 3 vertices

and so the elementary dual simplex is a triangle as expected. Herep = 1 andn = 3 and so the elementary

dual simplices are simplices of dimension3 − 1 = 2. Now let σ0 be a vertex contained inσ1. Then the

tetrahedronc
(
σ0
)
c
(
σ1
)
c
(
σ2
)
c
(
σ3
)

lies inside the tetrahedronσ3 and has the same plane asσ3. �

Remark 2.4.8. Properties of dual cells and related simplices:Let K be a well-centered manifold-like

simplicial complex of dimensionn. Letσ0, σ1, . . . ,σn be simplices inK of dimensions 0,1, . . . , n such that

σ0 ≺ σ1 ≺ . . . σn

that is,σ0 is a proper face ofσ1 which is a proper face ofσ2 and so on. Then the following are true:

1. The dual cellD(σp) is homeomorphic to an open ball of dimensionn− p and so it can be oriented (as

we shall do in Section 2.5),

2. The dual cells are disjoint and their union is|K|. Also, D(σp) is a polytope ofcsdK of dimension

n− p (Theorem 64.1 pages 378–379 of Munkres [1984]),

3. A p-simplexνp like c
(
σ0
)
. . . c (σp) is a subdivisionp-simplex (Def. 2.4.3) ofσp and its plane is

identical to that ofσp, i.e.,P(νp) = P(σp),

4. An (n− p)-simplexδ(n−p) like c (σp) . . . c (σn) is an elementary dual simplex (Def. 2.4.5) ofσp,

5. An n-simplex τn like c
(
σ0
)
. . . c (σn) is insideσn and has the same plane asσn, i.e., P(τn) =

P(σn) = Rn,

6. The subdivisionp-simplexνp and the elementary dual(n− p)-simplexδ(n−p) are transverse, i.e.,

P(νp)⊕ P
(
δ(n−p)

)
= P(σn) = Rn .

This equality is vacuously true forp = 0 or n.

These properties will be useful for orienting the dual cells in Section 2.5. ♦

Now we define something called a support volume of a simplex. For ap-skeleton of the primal mesh the

support volumes tile the primal mesh for any0 ≤ p ≤ n. That is, the union of the support volumes of all the

p-simplices in the primal mesh is the mesh and the intersections are along some(p− 1) simplices ofcsdK.

This concept will be useful in Chapter 5 in defining discrete flat operator.
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Definition 2.4.9. LetK be ann-dimensional manifold-like well-centered simplicial complex andσp one of

its simplices. The union of convex hulls ofσp and its dual cells in eachn-simplex of whichσp is a face,

forms ann-volume that we callsupport volumeof σp and we denote it byVσp . That is

Vσp :=
⋃

σn�σp

convexhull ({D(σp) ∩ σn, σp})

The support volumes of all thep-simplices ofK (for anyp) tile |K|. Some examples of support volumes in

two- and three-dimensional complexes are given in Fig. 2.2 and 2.3. ♦

2.5 Oriented Dual Complex

The dual cells introduced above are unoriented subsets of|K|. We next discuss how to give them an orien-

tation. The properties listed in Rem. 2.4.8 will now prove useful. First of all, according to that remark each

dual cell is homeomorphic to an open ball of that dimension. For example, theD(σ0) for a vertexσ0 in a

primal mesh of dimension 2 is homeomorphic to a two-dimensional open ball. So is the dual cell of an edge

in a dimension 3 complex. Thus dual cells are orientable subcomplexes ofcsdK. They can be oriented by

orienting just one of the elementary dual simplices. The orientations for the other elementary dual simplices

follow from Rem. 2.3.7, case 2.

Let σ0, σ1, . . . , σn be simplices in ann-dimensional primal meshK such thatσ0 ≺ σ1 ≺ . . . σn and

let σp be one of these simplices, with1 ≤ p ≤ n − 1. The task is to orient the elementary dual simplex

δ(n−p) = c (σp) . . . c (σn). According to Rem. 2.4.8,σp andδ(n−p) are transverse. Furthermore they are

both subsets ofσn and the direct sum of their planes equals the plane ofσn. Thusσp and δ(n−p) are

transverse orientable objects both living in the same oriented ambient space. So out of these 3 orientations

(ambient spaceσn, primal σp and elementary dualδ(n−p)) if 2 are given then there is a well defined way

to define the third one. This corresponds to the situation explained in Fig. 2.5. The following algorithmic

procedure orientsδ(n−p) unambiguously, even forp = 0 or n.

Remark 2.5.1. Algorithm to orient elementary duals: Consider first the case of1 ≤ p ≤ n − 1. Let the

correctly oriented elementary dual simplex bes [c (σp) , . . . , c (σn)], wheres = ±1, and the correct value

of s has to be determined. The primal mesh is oriented. Recall that this means that then-simplices are all

oriented the same way and then − 1 and lower dimensional simplices have been individually oriented. We

will useσp andσn to denote theorientedsimplices of the primal mesh.

By the properties in Rem 2.4.8 the orientations ofσp and
[
c
(
σ0
)
, . . . , c (σp)

]
can be compared since

they have the same planes. Similarly the orientations ofσn and
[
c
(
σ0
)
, . . . , c (σn)

]
can be compared for

the same reason. Then we define

(2.5.1) s := sgn
([
c
(
σ0
)
, . . . , c (σp)

]
, σp
)
× sgn

([
c
(
σ0
)
, . . . , c (σn)

]
, σn

)
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Dual
1

2

3 Ambient orientation

Primal Primal

1

2 Ambient orientation

Dual

(a) (b)

Figure 2.5: Relationship between orientations of embedding space, embedded “primal” manifold and an
embedded “dual” manifold transverse to the primal (meaning that at the intersection point of the primal and
dual the direct sum of their tangent spaces is the tangent space of the embedding manifold). Given any two
of the three orientations the third one is determined. See Section 2.5. This can also be thought of in terms
of internal and external orientations of the primal as in Bossavit [2002b]. The roles of primal and dual can
be switched and so can the order of putting primal tangent space before the that of the dual. This is a matter
of convention. The point is that there is a consistent way to define the third orientation given any two of
the orientations ; (a) If the primal 2-manifold is oriented as shown, then the dual 1-manifold has only one
orientation such that the orienting basis for the primal followed by the one for the dual together gives the
orientation of the embedding space that has been given as right hand rule. (b) Similar situation in 2D.

wheresgn is the relative orientation defined in Def. 2.3.8. This method implements the idea embodied in

Fig. 2.5. Example 2.5.2 clarifies this idea. Forp = n the dual is of dimension 0 and so has no orientation.

Forp = 0, we defines := sgn(
[
c
(
σ0
)
, . . . , c (σn)

]
, σn). ♦

Example 2.5.2. Orienting elementary duals:Consider the well-centered manifold-like simplicial complex

of dimensions 2 shown in Fig. 2.6. The orientations of the simplices are as shown in the figure. Letp = 1

and we list below the simplices appearing in Rem. 2.5.1.

primal simplex:σp = σ1 = [v1, v0]

σ0 ≺ σ1 ≺ σ2 instance:v0 ≺ [v1, v0] ≺ [v0, v1, v2][
c
(
σ0
)
, c
(
σ1
)]

= [v0, c01]

elementary dual:s
[
c
(
σ1
)
, c
(
σ2
)]

= s[c01, c012]

subdivision simplex:
[
c
(
σ0
)
, c
(
σ1
)]

= [v0, c01] .

The task is to determine ifs = +1 or−1. By the algorithm above

s = sgn
([
c
(
σ0
)
, c
(
σ1
)]
, σ1
)
× sgn

([
c
(
σ0
)
, c
(
σ1
)
, c
(
σ2
)]
, σ2
)

= sgn ([v0, c01] , [v1, v0])× sgn ([v0, c01, c012] , [v0, v1, v2]) = (−1)(+1) = −1 .

This means that the elementary dual simplexc01c012 should be oriented as−[c01, c012] = [c012, c01]. Note

that
[
c
(
σ0
)
, c
(
σ1
)]

has the same plane asσ1 and so their orientations can be compared (“plane” here is

the line containing both). Similarly for
[
c
(
σ0
)
, c
(
σ1
)
, c
(
σ2
)]

andσ2. We would have obtained the same
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0

v1

v2

c012
c01

v

Figure 2.6: Orienting an elementary dual simplex. See Example 2.5.2. Here we have writtenc012 for the
circumcenterc([v0, v1, v2]) etc.

answer even if we had chosen some other subdivision simplex. �

Definition 2.5.3. Let 0 ≤ p ≤ n − 1 and consider the closed dualD(σp). This is an(n − p)-dimensional

oriented dual object. It has(n−p−1)-dimensional faces that inherit an orientation fromD(σp). This is called

thedual induced orientation of an(n−p−1)-face. It is defined as the orientation induced (Def. 2.3.5) from

the closure of then-simplex that is an elementary dual simplex making upD(σp) whose boundary includes

part of the(n − p − 1)-face. Here we assume that the elementary dual simplex has been oriented correctly

according to the algorithm in Rem. 2.5.1. ♦

Example 2.5.4. Dual induced orientation: Consider a 1-ring of triangles with each triangle oriented

counterclockwise. The dual of the central vertex is its Voronoi region on the complex. By the above definition

the dual induced orientation of the boundary will make each dual edge oriented so that the boundary goes

around counterclockwise. Each dual edge in the boundary of the Vornoi region is dual to a primal edge. The

dual edge induces an orientation on the circumcenters that lie at its end. �

2.6 Circumcentric and Barycentric Duality

As we pointed out earlier, the importance of using a dual mesh is well known in many computational fields

and in physics. For example, barycentric dual meshes are used in Sen et al. [2000] for the discretization of an

abelian Chern-Simons theory. In computational electromagnetism they have been used by Bossavit [2002b]

and many others as a space on which dual forms are defined, just as we will use circumcentric duals in

Chapter 3. In computational electromagnetism circumcentric duals also appear in the work of Hiptmair. See

for instance Hiptmair [2002a]. In mimetic differencing one often sees the appearance of circumcentric duality

to define differential operators for logically rectangular meshes. See for instance Hyman and Shashkov

[1997a,b]. Circumcentric duality for defining differential operators on simplicial meshes is used in Nicolaides
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[1992]. In none of the above works however is a circumcentric dual mesh used to develop a full discrete

exterior calculus. Most deal with either forms only or vector fields as proxies for forms.

Both types of dual meshes have good and bad properties. For example, barycentric duals have a very nice

property that barycentric subdivision (which is the first step for building a barycentric dual) always produces a

simplicial complex. This is unlike the situation in circumcentric subdivision which requires that the complex

be a well-centered simplicial complex because otherwisecsdK may not be a simplicial complex. Thus if

in a computation a mesh is changing, the barycentric dual will remain well-defined whereas a circumcentric

dual may soon become invalid due to some circumcenters leaking out of their simplices. Maybe this problem

can be ameliorated by mixed Eulerian-Lagrangian methods where the mesh is moved for a few time steps

and then interpolation brings one back to a nice reference mesh. This has to be investigated further in future

work.

On the other hand it appears as if circumcentric duals are useful in building that part of the theory of

DEC that involves metric operations like Hodge star, flat and sharp. The dual of an(n − 1)-face is an edge

perpendicular to it. Similarly the dual of an edge is an(n − 1)-cell. Thus circumcentric duals seem to give

simple expressions for fluxes in the coordinate systems of faces and their dual normals. We don’t claim that

circumcentric duality is the only way to make the operators that relate forms and vector field (such as discrete

flat) work. But at least its use in the metric parts of the theory seems to produce simple formulas that are

self-consistent and satisfy theorems like Gauss’ divergence theorem for vector fields. We should point out

that the generalized Stokes’ theorem is a non-metric theorem when expressed via forms and so it has nothing

to do with the dual.

Even the construction of circumcentric dual meshes may be computationally challenging in high dimen-

sions. Suppose we are given the vertices from which a primal mesh is to be built. Delaunay triangulation will

produce a simplicial complex in which the interiors of circumspheres do not contain other vertices. But our

requirement of well-centeredness is stronger and may require the introduction of new vertices. Even Delau-

nay triangulation for dimension higher than 2 is a computationally challenging task. See, for example, Bern

et al. [1995]. Delaunay triangulation is equivalent in complexity to complexity of finding convex hulls in one

higher dimension. See, for example, Boissonnat and Yvinec [1998].

For some computations the Delaunay triangulation is desirable in that it reduces the maximum aspect

ratio of the mesh, which is a factor in determining the rate at which the corresponding numerical scheme con-

verges. But in practice there are problems (for example those involving anisotropy) for which even Delaunay

triangulations are a bad idea and so well-centered simplices might not be very useful. See, for example,

Shewchuck [2002]; Bern et al. [1995].

In the generalization of DEC to some simple regular meshes as done in Section 9.4, the absence of well-

centeredness seems to cause no problem in computing quantities like Laplacian which do not involve a flux

across a boundary and are quantities to be evaluated at nodes. This is probably because the closed dual cells

of primal nodes are Voronoi cells and by definition these tile the underlying space even when the mesh is not
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well-centered. So vertex related quantities can be computed at least for regular non-simplicial meshes even

for non-well-centered complexes.

In this thesis we will ignore all these computational difficulties and assume that we are given a primal

mesh satisfying the required conditions and that the mesh is not changing with time. We will proceed to build

exterior calculus objects and operators on such a mesh.

2.7 Interpolation Functions

Later in the thesis we will need to interpolate values that are defined at either primal or dual vertices. For this

we will need some basis functions that we now discuss.

Definition 2.7.1. LetK be a well-centered manifold-like simplicial complex. Consider a 1-ring of a vertex

σ0 andσn � σ0, i.e., ann-simplex in the 1-ring. Then the following functions, all maps fromRN to R are

calledinterpolation functions.

(i) φσ0,σn is theprimal-primal interpolation function supported onσn and it is the unique affine function

that has the value 0 at all vertices ofσn other thanσ0 and the value 1 atσ0,

(ii) φσ0,D(σ0) is theprimal-dual interpolation function supported onD(σ0) with value 1 there and 0 else-

where,

(iii) φD(σn),σn is thedual-primal interpolation function supported onInt(σn) with value 1 there and 0

elsewhere,

(iv) φD(σn),D(σ0) is thedual-dual interpolation function supported onD(σ0) and defined as the barycentric

basis for convex non-simplicial polyhedra as defined in Warren et al. [2003]. This requires thatK be a

flat complex. ♦

See Fig. 2.7 for a cartoon representation of the interpolation functions.

The primal-primal interpolation function is Whitney 0-form (or element). Whitney forms of higher

degress are used by many authors working in DEC. We don’t make use of any higher degree Whitney forms

in this thesis, but that is likely to change in our future work. Whitney forms are defined in Section 3.3.

Remark 2.7.2. Sum and gradient of primal-primal interpolation functions: Note that∇φσ0,σn is con-

stant inint(σn) and normal to the face opposite to vertexσ0. Its length (in the standard inner product induced

from RN ) is 1/h whereh is the height of vertexσ0 above the face opposite toσ0. Furthermore,

(2.7.1)
∑

σ0≺σn

φσ0,σn(x) = 1
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Figure 2.7: Cartoon representation of the four types of interpolation functions defined in Def. 2.7.1. The
dotted arc represents a one-ring of triangles of which only 2 triangles are being shown here.Top row: primal
(left) and dual (right) scalar data;Bottom row:(left to right) primal-primal, primal-dual, dual-primal and dual-
dual interpolation functions. In primal-primal, data is barycentric interpolated (affinely) in each simplex; in
primal-dual it is made constant in each dual of primal vertex; in dual-primal it is made constant in each primal
simplex; and in dual-dual it is barycentric interpolated (rational polynomial) using the generalized barycentric
coordinates of Warren et al. [2003]. The simplicial complex can be non-flat in the first three cases.

for all x ∈ σn and so

(2.7.2)
∑

σ0≺σn

∇φσ0,σn = 0

in the interior ofσn. Here the sum is over all simplicesσn containing the vertexv. ♦

2.8 Local and Global Embeddings

The operators of DEC are local and operate in local regions like a 1-ring, the support volume etc. Furthermore,

the quantities used in the formulas turn out to be intrinsic quantities, in the plane of each simplex, and they

are independent of how the 1-ring etc. is embedded inRN . As in the smooth case, a quantity like mean

curvature which depends on the embedding is not part of an exterior calculus with real valued forms. In the

general case the proper development of such quantities requires Lie algebra valued forms and a theory of

connections, which is something we do not address in this thesis. As a result it is not essential to embed the

entire discretized manifoldK and one can work instead with local embedding. It is also not important how

the local piece is embedded, as long as the metric in each simplex is respected and the metric on each shared

face between simplices agrees.

To achieve this one can define a local metric on the vertices of the simplicial complex which is now an

abstract simplicial complex, i.e. a collection of vertices and connectivity information. This was pointed out

to us by Alan Weinstein. Distances between two vertices are only defined if they are part of a commonn-
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simplex in the simplicial complex. Then the local metric is a mapd : {(v0, v1) | v0, v1 ∈ K(0), [v0, v1] ≺

σn ∈ K} → R. The axioms for a local metric are as follows,

(i) Positived(v0, v1) ≥ 0, andd(v0, v0) = 0, ∀[v0, v1] ≺ σn ∈ K.

(ii) Strictly Positive If d(v0, v1) = 0, thenv0 = v1, ∀[v0, v1] ≺ σn ∈ K.

(iii) Symmetry d(v0, v1) = d(v1, v0), ∀[v0, v1] ≺ σn ∈ K.

(iv) Triangle Inequality d(v0, v2) ≤ d(v0, v1) + d(v1, v2), ∀[v0, v1, v2] ≺ σn ∈ K.

Now eachn-simplex can be locally embedded intoRn, and all the necessary metric dependent quantities can

be computed within the plane of the simplex. For example, the volume of ak-dual cell will be computed as

the sum of thek-volumes of the dual cell restricted to eachn-simplex in its local embedding intoRn.

Example 2.8.1. Local discretization of a Riemannian manifold: Suppose we are given a Riemannian

manifold and some points on it. To discretize this information we would first define an abstract simplicial

complex on it, i.e., “glue”, or “draw” a simplicial complex on the manifold, with the given points as the ver-

tices. The measurement of lengths of the edges of this complex gives the data needed for a local embedding.

For example for a surface we would embed each triangle individually inR2 using the edge lengths from the

abstract complex as the lengths of the edges of the triangle. Now the metric is implicitly defined inside the

embedded triangle. Since adjacent triangles share an edge, the metric of the two matches on the edge which

is a useful feature. This is all that is needed for a local theory like DEC. Of course the information about

quantities like mean curvature, which depends on the embedding, is lost. These quantities are not a part of

the basic exterior calculus with real valued forms, even in the smooth case. �

2.9 Summary and Discussion

This chapter is not a repeat of what is found in algebraic topology textbooks although such books are the start-

ing point for it. We have given details about primal and dual complexes that should allow one to implement

the required concepts in a program. This is in contrast with most available treatments in algebraic topology,

where, for instance, orientation of dual complexes requires much more background than our geometric, al-

gorithmic interpretation. We have also discussed the primal orientation in more detail than is usual in DEC

literature where the concepts like comparing orientations, or the requirement of the complex being manifold-

like, are rarely mentioned. We have spelled out the restrictions that we place on our meshes in detail, such

as requiring well-centered, manifold-like oriented simplicial complexes. Ample examples have been given

to clarify all the technical terms and concepts that are introduced. The discussion on local embeddings is to

suggest that one does not need to be given the entire manifold of interest discretized and embedded globally

as a simplicial complex inRN .
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We have compared barycentric and circumcentric duality. Some reasons were conjectured as to why

circumcentric duality might be preferable in those parts of DEC that involve metric. However, a full un-

derstanding of which duality is better when, remains yet to be achieved. This is in part due to the fact that

metric seems to play a role in the current version of DEC in operators where it should not. Even if the metric

information seems to cancel out overall, a much cleaner DEC will likely limit the use of metric to only Hodge

star, flat and sharp. We have started to address this and we will point out some preliminary results as we go

along.
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Chapter 3

Discrete Forms and Exterior Derivative

Results: Now we will define discrete forms, which are objects that discretize differential forms of smooth

theory. The objects that are important in this chapter are chains and dual chains, which are made up of

simplices and other cells. We take the standard view of discrete forms as cochains, that is, as certain types

of functions on chains. For discrete exterior derivative also, we use its standard definition, as a dual of the

boundary operator. As is well-known and as we point out later in this chapter, this makes a discrete Stokes’

theorem true by definition. The only thing new in this chapter is discrete pullback. We define it and show

that discrete exterior derivative and pullback commute as in smooth theory.

Shortcomings: We place no continuity requirements on discrete forms as cochains. But many authors

do and rightly so. To prove convergence of discrete objects and operators to their smooth counterparts, one

needs a topology on the space of all chains possible from discretization (and not just on the chains of a given

complex). Next one needs to assume that cochains are continuous in this topology and discrete operators

continuous in cochain topology. As stated previously, we have done no convergence analysis yet and it is an

important topic for future work. Therefore, in this thesis we will not require continuity in the definition of

cochains as functions on chains. However Section 3.7 we speculate on such topology issues.

3.1 Differential Forms and Discrete Forms

We will define the discrete analogue of differential forms. Some terms from algebraic topology will be

defined and used but it will become clear by looking at the examples that one can gain a clear and working

notion of what a discrete form is without any knowledge of algebraic topology.

In smooth theory 0-forms are functions, 1-forms are differentials and 2 or higher degree forms (and

vacuously even 0- and 1-forms) are antisymmetric tensors. See Chapter 6 of Abraham et al. [1988]. One of

the uses for forms is that ap-form can be integrated on ap-manifold as described in Chapter 7 of Abraham

et al. [1988]. Forms play a crucial role in modern geometric mechanics. For example, the symplectic form of

Hamiltonian mechanics is a 2-form and many differential equations of mechanics can be framed in terms of
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forms and vector fields. See, for instance, Marsden and Ratiu [1999], Abraham and Marsden [1978], Arnol′d

[1989]. Thus it is worthwhile to try and discretize forms. There is a huge amount of literature on this which

we summarize and then add to in this chapter.

In the discrete theory the role ofp-manifold is played by ap-chain (a formal sum of simplices). We will

find that the integration has been done at discretization and from then on the role of integration is replaced

by an evaluation operation – evaluation of a discrete form on a chain. Discrete forms will be defined as

objects that can be evaluated on chains and hence will be called cochains. This is one kind of duality. We

have already seen another, geometric duality in the previous chapter where under some conditions every

simplicial complex was found to have an associated circumcentric dual complex. Since there are primal and

dual complexes naturally there are primal and dual chains and so there are primal and dual discrete forms.

3.2 Primal Chains and Cochains

We start with a few definitions for which more details can be found on pages 27, 28 and 251 of Munkres

[1984].

Definition 3.2.1. Let K be a simplicial complex. We denote the free abelian group generated by a basis

consisting of orientedp-simplices by,Cp (K; Z) . This is the space of finite formal sums of the orientedp-

simplices, with coefficients inZ. Elements ofCp(K; Z) are calledprimal p-chains. Some examples are

shown in Fig. 3.1. ♦

Remark 3.2.2. Chains as arrays: Sincep-chains are formal sums with integer coefficients or elements

of a free abelian group one way of thinking about chains is that ap-chain is simply an array or table of the

orientedp-simplices of the given complexK. An integer is entered corresponding to each simplex. Two such

tables can be added by adding the corresponding entries etc. This set of tables is clearly an abelian group.♦

We view discretep-forms as maps from the space ofp-chains toR. Recalling that the space ofp-chains

is a group we require these maps that define the forms to be homomorphisms into the additive groupR.

Thus discrete forms are what are called cochains in algebraic topology. We will define cochains below in the

definition of forms but for more context and more details readers can refer to any algebraic topology text, for

example, page 251 of Munkres [1984].

This point of view of discrete forms as cochains is not new. Hassler Whitney did a lot of work in this

subject as detailed in Whitney [1957]. In applications the idea appears for example in the works of Bossavit

[2002b], Adams [1996], Dezin [1995], Hiptmair [1999], Sen et al. [2000]. Our point of departure is that the

other authors go on to develop a theory of discrete exterior calculus of forms only. We have both forms and

vector fields and in the current version of DEC we only interpolate 0-forms and vector fields. It is possible

that in future work we will use Whitney forms for interpolating discrete forms. The formal definition of

discrete forms follows.
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Figure 3.1: Examples of a discrete 0-form, 1-form and 2-forms. In all of these mesh is assumed to be oriented
by orienting say, each triangle counterclockwise. The 0-form shown in top row is just numbers assigned to
vertices. The 1-form in bottom left is numbers attached to oriented edges. The edges have to be oriented
independently of the oriented triangles. On bottom right is a 2-form, here just numbers assigned to oriented
triangles. In each of these examples one could also have a multiplicity associated with each vertex, edge or
triangle, here assumed to be 1.

Definition 3.2.3. A primal discrete p-form α is a homomorphism from the chain groupCp(K; Z) to the

additive groupR. Thus a discretep-form is an element ofHom(Cp(K),R) the space ofcochains. This space

becomes an abelian group if we add two homomorphisms by adding their values inR. The standard notation

for Hom(Cp(K),R) in algebraic topology isCp(K; R). But we will often use the notationΩp
d(K) for this

space as a reminder that this is the space of discrete (hence thed subscript)p-forms on the simplicial complex

K. ThusΩp
d(K) := Cp(K; R) = Hom(Cp(K),R). ♦

Note that by the above definition forp-chain
∑

i aic
p
i (whereai ∈ Z) and a discretep-formα,α (

∑
i aic

p
i )

=
∑

i aiα(cpi ) and for two discretep-formsα, β ∈ Ωp
d(K) andp-chainc ∈ Cp(K; Z) we have(α + β)(c)

= α(c) + β(c).

Remark 3.2.4. Real coefficients in chains:We could just as well have defined the chain group as the set

of formal sums with real coefficients instead of integers so we getCp(K; R) instead ofCp(K; Z). This has

the advantage that this is a vector space with thep-simplices ofK as the basis. This is useful when doing

analysis on chains and cochains. It is also useful in the definitions of Whitney maps in the next section.♦
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3.3 Whitney and de Rham Maps

In this section we will discuss discretization of smooth forms by using the de Rham map, and interpolation of

cochains using the Whitney map. In the usual exterior calculus on smooth manifolds integration ofp-forms

on an orientablep-dimensional manifold is defined in terms of the familiar integration inRp. This is done

roughly speaking by doing the integration in local coordinates and showing that the value is independent of

the choice of coordinates due to the change of variables theorem inRp. For details on this see the first few

pages of Chapter 7 of Abraham et al. [1988].

In the discrete theory the above integration of smooth forms is used during discretization via the de Rham

map to be defined below. This map, in association with the pasting map, produces discrete forms from smooth

ones. Recall that a discrete form is a cochain hence a function on chains. The value of a discrete form on a

chain is defined as the value assigned during discretization via the de Rham and pasting maps. This is made

more clear in the following definitions and discussion.

Conversely Whitney maps allow us to define smooth forms corresponding to cochains. The definitions

we use are from Whitney [1957]. On pages 138–140 he introduces “elementary forms” which are now called

Whitney forms (Bossavit [1998]; Sen et al. [2000]). Whitney uses the notationψ for de Rham map andφ

for what is now called the Whitney map and we will continue to use his notation. Amongst our interpolation

functions defined in Section 2.7, were the primal-primal interpolation functions written asφσ0,σn and these

were the Whitney 0-forms.

LetM be a smooth triangulablen-manifold and letK be a simplicial complex inRN andπ a homeomor-

phism ofK ontoM . Due to the local nature of DEC, as discussed in Section 2.8 we don’t need the entireM

to be discretized asK and embedded. It is enough to do the embedding locally as discussed in that section.

Hereπ restricted to a simplex ofK is what we called the pasting map in Def. 2.2.1. Whitney [1957] requires

some conditions on this map, but we will use it only formally in this thesis and so we skip those technicalities.

For an abstract simplexσp in M let the corresponding approximating simplex beτp = π−1(σp) in K.

Such simplices inM form a complexL. We can define chainsc ∈ Cp(L; R) on this complex as formal linear

combination of simplices inL and integratep-forms onM over suchp-chains. This leads to the definition of

the de Rham map. The space ofp-chains now is a vector space with thep-simplices as the basis elements. The

space of cochains will still be denoted asCp(L; R) but it now stands for the vector space dual ofCp(L; R).

Definition 3.3.1. Given a smoothp-form α ∈ Ωp(M), the function
∫

c
α is linear inc and hence defines ap-

cochainψpα of L. The space of cochains of chains inL will be denotedCp(L; R). The mapψp : Ωp(M) →

Cp(L; R) is called thede Rham mapand is defined by its value on simplicesσp ∈ L:

ψp(α)(σp) = 〈ψp(α), σp〉 :=
∫

σp

α .

To discretize a smooth formα on M we define a cochainαd on K by defining its value on a simplex
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π−1(σp) = τp ∈ K as

αd(τp) := 〈ψp(α), σp〉 .

Thus the cochainαd onK is a discrete form produced from a smooth form onM by using a de Rham map

and a pasting map. ♦

Definition 3.3.2. Thenatural pairing of a discretep-form αd = ψp(α) and ap-chainc in K is the value of

the discrete form on the chain, defined as the bilinear pairing〈αd, c〉 = αd(c) := 〈ψp(α), π(c)〉. ♦

Remark 3.3.3. Discrete form-chain pairing in the limit: We can consider the limiting value of the eval-

uation of a discrete 1-form on a 1-simplex in a simplicial complexK. This limit is taken in the topology of

the underlying space|K|. In the limit the average value of the pairing of 1-simplex and cochain becomes the

natural pairing of a form and tangent vector in the direction of the simplex. This can probably be generalized

to higher degree forms, but we have not done that yet. For 1-forms, the following informal calculation on a

smooth manifold makes the above statement more specific.

LetM be a smooth Riemannian manifold with inner product〈〈 , 〉〉 andcε : (−ε,+ε) →M be a curve on

M such thatcε(0) = x0 ∈M . Let v ∈ Tx0M andv = c′ε(0) andα a 1-form onM . Then

∫
cε

α =
∫ +ε

−ε

〈〈α, c′ε(t)〉〉 dt ≈ 2ε 〈〈α(x0), v〉〉

Thus

〈〈α(x0), v〉〉 = lim
ε→0

1
l(cε)

∫
cε

α

wherel(cε) is the length of the curvecε. ♦

Let M be a smooth manifold andL its abstract simplicial complex as before. The Whitney maps are

defined by lifting the barycentric coordinates from the approximating complexK to the abstract simplicial

complexL on M and defining a partition of unity onM . For technical details see page 139 of Whitney

[1957]. We give the explicit expression for the maps below. The Whitney maps defined below allow us to

define smooth formsφαd corresponding to cochainsαd of L. The space of cochains is the spaceCp(L; R)

and in this section we will letσp
i denote not only an oriented simplex or a chain, but also the cochain defined

by σp
i (σp

j ) = δj
i . Then theσp

i form a basis for thep-cochains onL.

Definition 3.3.4. Given a simplexσp = [vλ0 , . . . , vλp
] in L define theWhitney map φp : Cp(L; R) →

Ωp(M) as a map from cochains onL to smooth forms onM by:

φp([vλ0 , . . . , vλp ]) = p!
p∑

i=0

φλi dφλ0 ∧ . . . d̂φλi ∧ . . . ∧ dφλp .

As mentioned above, we have abused notation and written[vλ0 , . . . , vλp ] for the cochain onL that takes

value 1 on that simplex and 0 elsewhere. An example of a Whitney map isφ(vi) = φi andφ(vivj) =
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φi dφj − φj dφi. This map can be formally extended to be from discrete forms onK to smooth forms on

M by using the pasting map to transfer values from the simplices ofK to the simplices ofL. ♦

The de Rham and Whitney maps satisfy the following important properties. Letα ∈ Ωp(M) be a smooth

p-form onM , and letαd ∈ Cp(L; R) be a cochain onL. Then

ψ dα = dψα

φdαd = dφαd

ψφαd = αd

φI0 = 1

whereI0 is the unit 0-cochain ofL and on the RHS,1 is the constant function onM with value 1 everywhere.

There are other important properties that are given in Whitney [1957], page 139. For example for anyp ∈M ,∑
φi(p) = 1 and

∑
dφi(p) = 0 which are like the properties of the usual barycentric coordinates on

ordinary simplices. The Whitney map, of a cochain dual to a simplexσ, is supported inSt(σ). The exterior

derivative of each Whitney map has the nice formula:

dφ([vλ0 . . . vλp
]) = (p+ 1)!dφλ0 ∧ . . . ∧ dφλp

.

This expression, along with induction, is used in Whitney [1957] to show the very useful property that

∫
σp

i

φσp
j = δj

i .

Thus for example, the Whitney 1-form corresponding to an edge when integrated on that edge gives the value

1. Because of the barycentric coordinate like properties of summing to 1 and having a sum of differentials

equal to 0 allows the Whitney forms to be used as the basis for defining forms from discrete forms. We do

not use this interpolation of any forms higher than degree 0, but expect to do so in future work.

3.4 Dual Chains and Cochains

In Chapter 2 we defined the dual cell complexD(K). There is an associated cellular chain group which

Munkres [1984] callsDp(K). This is just the group of formal sums of cells with integer coefficients. In the

cells inD(K) the information about the constituent elementary dual simplices is lost. In computations we

often want to retain that information. For example, we are often interested in the value of some quantity on

each elementary dual simplex making up the dual cell. To retain this bookkeeping information we define a

duality operator which takes values in the chain groupCp(csdK; Z). This is done below.
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Definition 3.4.1. Let K be a well-centered manifold-like simplicial complex of dimensionn. The star

duality operator ? : Cp(K,Z) → Cn−p(csdK; Z) is defined by

? (σp) =
∑

σp≺σp+1≺...≺σn

sσp,...,σn

[
c(σp), c(σp+1), . . . , c(σn)

]
where the sign coefficientsσp,...,σn is chosen as±1 using algorithm in Rem. 2.5.1. ♦

This definition is similar to, but simpler than Def. 2.4.5. Here, only(n − p)-simplices are used in the

union. As sets, the setD(σp), and? (σp), are equal. The difference is in semantics and bookkeeping since in

?σp one retains the information about the simplices it is made of.

Definition 3.4.2. The subset of chains ofCp(csdK; Z) that are equal to the cells ofD(K) as sets, forms a

subgroup ofCp(csdK; Z). This is the set of chains?K = {?σ|σ ∈ K}. As sets these form a cell complex

identitical toD(K). We will denote this subgroup ofCp(csdK; Z) by Cp(?K; Z). Thus?K is a basis set

for this. ♦

Definition 3.4.3. The star duality operator is a map from the primal simplicial complex to a subgroup

Cp(?K; Z) of the chain complex of the subdivision complex. But we can formally extend the star opera-

tor to a map from?K toK by defining? ? σp = ±σp. Here the sign is defined by the following:

(3.4.1) ? ? (σp) = (−1)p(n−p)σp.

In other words dual of the dual of a simplex is defined to be the same simplex with orientation adjusted by

±1. ♦

Definition 3.4.4. Cochains of cells inCp(?K; Z) are thedual discrete forms. The space of dualp-forms

will be denoted byΩp
d(?K). ♦

3.5 Maps Between Complexes and Pullback of Forms

A very important aspect of calculus on manifolds is the notion of maps between manifolds. This is important

for example in applications like elasticity where the object of interest is moving and changing shape with

time. Indeed maps are crucial for defining the flow of a vector field since the flow, for a fixed time, is a map

of a manifold to itself. Flow in turn is used in the smooth theory for defining Lie derivatives, a most important

operator in applications. See, for example, Abraham et al. [1988].

Most of this thesis deals with the discretization of objects and operators defined on only one manifold.

However, recently Marco Castrillon and Jerry Marsden pointed out the fact that even for defining operators

on a single manifold, pullbacks are useful. This is because naturality under pullbacks can rule out definitions

of operators that would not generalize to a full calculus on manifolds involving maps. We point out such an

example in the definition of the wedge product in Chapter 7.
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In a full calculus maps are used to pull back and push forward objects. For example vector fields can

be pushed forward and forms can be pulled back naturally. A discrete map is the unique piecewise affine

map obtained by extending a bijection between vertices of two complexes that are isomorphic in the category

of simplicial complexes. In algebraic topology such a map is called a simplicial homeomorphism or an

isomorphism. A more general concept is that of a simplicial map in which the simplex of one complex can be

mapped to a different dimension. The definitions reproduced here are actually a couple of Lemmas on pages

12 and 13 of Munkres [1984].

Definition 3.5.1. LetK andL be two simplicial complexes, andf : K(0) → L(0) be a map. Suppose that

whenever verticesv0 . . . vm of K span a simplex ofK, the pointsf(v0), . . . , f(vm) are vertices of a simplex

of L. Thenf can be extended to a continuous mapg : |K| → |L| such that

x =
m∑

i=0

µivi ⇒ g(x) =
m∑

i=0

µif(vi)

andg is called the (linear)simplicial map induced by the vertex mapf . If f is a bijection andv0 . . . vm span

a simplex ofK iff f(v0), . . . , f(vm) span a simplex ofL then the induced simplicial mapg is a homeomor-

phism and called asimplicial homeomorphism, or anisomorphism, ofK with L. ♦

Now we can define a discrete pullback. In the discrete theory, since forms are cochains, discrete pullback

is defined by making the change of variables formula true by definition.

Definition 3.5.2. LetK andL be simplicial complexes andϕ : |K| → |L| be a piecewise affine simplicial

isomorphism between them. Then theprimal discrete pullback by ϕ, of ap-form α ∈ Ωp
d(L), is written as

ϕ∗α and defined by its evaluation on ap-simplexσp ∈ K by:

〈ϕ∗(α), σp〉 := 〈α, ϕ(σp)〉 .

Thus it makes a discrete version of the change of variable formula true by definition since the evaluation of a

form on a simplex is a discrete version of integration. ♦

3.6 Exterior Derivative

Now we can define the discrete exterior derivative which we will calld as in the usual exterior calculus. The

discrete exterior derivative will be defined as the dual with respect to the natural pairing defined above, of

the boundary operator which is defined below. This operator will turn out to be local, natural with respect to

pullbacks and its composition with itself will be 0, just as in smooth calculus.

Definition 3.6.1. The boundary operator∂p : Cp (K; Z) → Cp−1 (K; Z) is a homomorphism defined by
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defining it on a simplexσp = [v0, . . . , vp],

∂pσ
p = ∂p ([v0, v1, . . . , vp]) =

p∑
i=0

(−1)i [v0, . . . , v̂i, . . . , vp]

where[v0, . . . , v̂i, . . . , vp] is the(p−1)-simplex obtained by omitting the vertexvi. Note that∂p◦∂p+1 = 0. ♦

Example 3.6.2. Boundary of a triangle: Given an oriented triangle[v0, v1, v2] the boundary by the above

definition is the chain[v1, v2]− [v0, v2] + [v0, v1] which are the 3 boundary edges of the triangle. �

Definition 3.6.3. On a simplicial complex of dimensionn, achain complexis a collection of chain groups

and homomorphisms∂p such that

0 // Cn(K)
∂n // . . .

∂p+1// Cp(K)
∂p // . . . ∂1 // C0(K) // 0 ,

and∂p ◦ ∂p+1 = 0. ♦

Definition 3.6.4. Thecoboundary operator δp : Cp (K) → Cp+1 (K) defined by duality to the boundary

operator using the natural bilinear pairing between discrete forms and chains. Specifically, for a discrete form

αp ∈ Ωp
d(K) and a chaincp+1 ∈ Cp+1(K; Z) we defineδp by

(3.6.1) 〈δpαp, cp+1〉 = 〈αp, ∂p+1cp+1〉

that is

δp(αp) = αp ◦ ∂p+1 .

This definition of the coboundary operator induces thecochain complex,

0 Cn(K)oo . . .δn−1
oo Cp(K)δp

oo . . .δp−1
oo C0(K)δ0

oo 0oo ,

where it is easy to see thatδp+1 ◦ δp = 0. ♦

Definition 3.6.5. Thediscrete exterior derivative denoted byd : Ωp
d(K) → Ωp+1

d (K) is defined to be the

coboundary operatorδp. An example is shown in Fig. 3.2. ♦

Remark 3.6.6. Stokes’ Theorem: With the above definition of the exterior derivatived : Ωp
d(K) →

Ωp+1
d (K) and the relationship between the natural pairing and integration one can regard equation (3.6.1) as

a discrete generalized Stokes’ theorem. Thus given ap-chainc and a discretep-form α the discrete Stokes’

theorem, which is true by definition, states that〈dα, c〉 = 〈α, ∂c〉. ♦

Remark 3.6.7. Properties of discrete exterior derivative: By definition discrete exterior derivative is a

local operator. Furthermore, it also follows immediately from the definition that,dp+1dp = 0, since the
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Figure 3.2: Computation of discrete exterior derivative. A 1-form is shown on the left, as numbers on oriented
edges. Thed of this will be a 2-form. The computation of this 2-form is shown on an oriented shaded triangle
in the mesh. The same triangle is shown separately on the right. Its orientation induces an orientation on its
boundary, shown here as going counterclockwise. This makes the numbers on the edges change sign if the
induced orientation is opposite of that edge’s original orientation shown on the left. The sum of these numbers
is thed of the 1-form on the left evaluated on the shaded oriented triangle.

boundary of a boundary is empty. Finally, the discrete exterior derivative is natural with respect to discrete

pullback, i.e., it commutes with discrete pullback. To see this, note that forα ∈ Ωp
d(L), ϕ : |K| → |L| a

simplicial homeomorphism, andσp+1 ∈ K we have that :

〈
ϕ∗(dα), σp+1

〉
=
〈
dα, ϕ(σp+1)

〉
=
〈
α, ∂ϕ(σp+1)

〉
=
〈
ϕ∗α, ∂σp+1

〉
=
〈
d(ϕ∗α), σp+1

〉
which shows the naturality of discrete pullback and exterior derivative. ♦

Definition 3.6.8. The dual boundary operator∂p : Cp (?K; Z) → Cp−1 (?K; Z) is a homomorphism

defined by defining it on?σn−p = ?[v0, . . . , vn−p],

∂ ? [v0, ..., vn−p] =
∑

σn−p+1�σn−p

?(sσn−p+1 σn−p+1) .

For0 ≤ p ≤ n− 1, the signsσn−p+1 = ±1 is chosen so that the orientation induced onσn−p by each of the

sσn−p+1 σn−p+1 is the same as the original orientation ofσn−p.

Forp = n the signsσ1 is chosen so that the orientation of?(sσ1 σ1) is the same as that induced onD(σ1)

by D(σ0). Thus for thep = n case, i.e., when defining the boundary of the Voronoi dual of a primal vertex

σ0, one orients the edges incident onσ0 so that they are all pointing inwards or outwards depending on the

orientation of the complex. ♦

Remark 3.6.9. Dual boundary is not the geometric boundary: The reason that it is not enough to define

the dual boundary as the geometric boundary is that near the boundary of a manifold that would be wrong.

For example consider the complex in Fig. 3.3. The dual of the vertex shown is the Voronoi region shown

shaded. Its geometric boundary has 5 sides (two half primal edges and 3 dual edges), whereas the dual

boundary according to the definition above consists of just the dual edges as it should. ♦
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Figure 3.3: The dual boundary is not the same as the geometric boundary near the boundary of the manifold.
See Rem. 3.6.9.

3.7 Speculations on Convergence

As mentioned earlier, in this thesis we do not address the issue of convergence. We don’t answer questions

like whether our operators converge to their smooth counterparts, and if yes, then how fast do they converge,

and so on. The answers will depend on what topologies on the spaces of chains and cochains are chosen. In

the case of chains we mean here the topology on the space of all chains obtained from discretization, not the

point set topology on the given simplicial complex. The cochains will have to be continuous in that topology

or satisfy even stronger requirements. It is not clear to us what topology to use or even how to pose the

question of convergence.

In practice when one takes a sequence of meshes converging to a limit the mesh itself will move and

change in its embedding space. Otherwise refining a coarse simplicial mesh would only give smaller sim-

plices without changing the geometric shape of the complex. It is also well known that the quality of trian-

gulation plays a subtle and important role in convergence questions. See for instance Shewchuck [2002].

Whitney [1957] defines three norms on chains and cochains – mass norm, sharp norm and flat norm.

According to Harrison [2003] none of these seems enough to get convergence. With the sharp norm one can

find Hodge star in the limit, but not the exterior derivatived. The flat norm carries with itd but not Hodge

star. Mass continuity of cochains is also not enough to retrieve the full calculus in the limit. For example

Almgren [1965] has shown that mass continuous cochains are differential forms.

One possibility is to take the Hausdorff metric on the space of all chains obtainable from discretization

of a manifold. This makes sense in physical problems. Discrete forms will come from the measurement by

some physical device. These measurements should not change when the device is moved slightly. This is the

view taken by Bossavit [2002b]. We leave these convergence questions for future work.

3.8 Summary and Discussion

In this chapter we have covered the background material needed for defining discrete forms and discrete

exterior derivatives. This can be usually found in some form or other in most works in DEC and in alge-

braic topology. Perhaps the only unique aspect of this chapter (thanks to Castrillon Lopez [2003]) is the

introduction of a discrete pullback and the proof that it commutes with exterior derivative.



39

One serious shortcoming of our work is that we have not done any convergence analysis. As a first step, in

future work we plan to study convergence issues in flat meshes, before attempting the more difficult questions

of convergence for non-flat meshes.
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Chapter 4

Hodge Star and Codifferential

Results: We define a discrete Hodge star as an equality of averages between primal and their dual forms.

Hodge star is an operator that involves the metric. Thus the use of metric information, in the form or cir-

cumcentric duals appears in line with the nature of the Hodge star operator. Once the Hodge star is defined,

a codifferential can be defined which then immediately leads to a useful operator like the Laplace-Beltrami

operator, the generalization of the usual Laplacian of Euclidean space to manifolds.

Shortcomings: In some applications there is more than one metric involved, leading to multiple Hodge

star operators. An example is 3D electromagnetism in which two Hodge star operators appear. One way

to handle this is to use two different embeddings of the simplices, corresponding to the two metrics. The

other, is to use 4D spacetime electromagnetism, which has only 1 metric. The latter solution has the difficulty

that no edge must be in the light direction. This problem is specific to relativistic applications. We have not

studied these questions in detail yet.

4.1 Hodge Star

In the exterior calculus for smooth manifolds the Hodge star denoted∗ is an isomorphism between the space

of p-forms and(n− p)-forms. The Hodge star is useful in defining the adjoint of the exterior derivative and

this adjoint is called the codifferential. For the definition of Hodge star in the smooth case see page 411 of

Abraham et al. [1988].

The appearance ofp andn − p in the definition of Hodge star may be taken to be a hint that primal and

dual meshes will play some role in the definition of a discrete Hodge star since the dual of ap-simplex is an

(n− p)-cell. Indeed this is the case.

Definition 4.1.1. The discrete Hodge Staris a map∗ : Ωp
d(K) → Ωn−p

d (?K) defined by its value over

simplices and duals of simplices. Let1 ≤ p ≤ n− 1. For ap-simplexσp and a discretep-form α

(4.1.1)
1

|?σp|
〈∗α, ?σp〉 :=

1
|σp|

〈α, σp〉 .
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Here recall that|σp| is the unsignedp-volume ofσp in the embedding spaceRN .

Forp = 0 we define the Hodge star by

1
s |?σ0|

〈
∗α, ?σ0

〉
:=

1
|σ0|

〈
α, σ0

〉
.

Heres is ±1. Its value depends on the orientation ofK and the dimensionn. The value ofs decided by

the following rule. Consider an edgeσ1 � σ0 oriented so that it points away fromσ0. Give ∂(?σ0) the

orientation induced from?σ0. Then

s = (−1)n−1 sgn(∂(?σ0), ?σ1) .

That is, if the dual of an outgoing edge is oriented the same as the orientation induced by?σ0 on its boundary,

then the signs = (−1)n−1, otherwise it is the opposite of that.

Forp = n define the Hodge star by

1
|?σn|

〈∗α, ?σn〉 :=
1

s |σn|
〈α, σn〉 .

Agains = ±1 and the value ofs decided by the following rule. Giveσn−1 the orientation induced fromσn.

If ?σn−1 points away from?σn, thens = (−1)n−1 otherwise it is the opposite sign. ♦

Remark 4.1.2. Special treatment forp = 0 and n: The reason for the special treatment ofp = 0 and

n is as follows. The 0-simplices have no inherent orientation. Thus forp = 0, in equation 4.1.1, the RHS

is independent of orientation ofK, but LHS is not. Forp = n the opposite is true. Thus the formula must

be corrected by making the orientation-independent side depend on the orientation ofK in some way. This

amounts to using the signed volume for then-volume in the formula. Thus forp = 0 we must use a signed

volume±|?σ0| on the LHS, and forp = nwe must use a signed volume±|σn| on the RHS of formula (4.1.1).

Note that for other values ofp, both sides of (4.1.1) depend on the orientation ofK, since for1 ≤ p ≤

n− 1, the orientation of the dual?σp changes when the orientation ofK changes. The use of signed volume

only in the case ofn-volumes is consistent with the fact that even in the smooth theory, in ann-manifold,

then-volumes are signed, but lower dimensional volumes don’t have any intrinsic sign. For example, in the

plane we can assign a sign to an area, relative to the orientation of the manifold, in a well-define manner.

But we cannot do this for lengths. Which specific sign convention is chosen for then-volumes, is a matter

of convention. We choose the one we do so that the boundary normals in the discrete divergence theorems of

Chapter 6 will point outwards.

As an example of the sign used, in dimensionn = 2, if the complexK is oriented by orienting all triangles

counterclockwise, then forp = 0, the signed volumes|?σ0| used will be−|?σ0|, since(−1)n−1 = −1. If K

was oriented the other way, this would be+|σ0|. In dimensionn = 3, if the complex is oriented by orienting

each tetrahedron by the right-hand rule, then the signed volumes|?σ0|will be +|σ0|, since(−1)n−1 = +1. ♦
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The idea that the discrete Hodge star maps primal discrete forms to dual forms and vice versa is well

known. See for example Sen et al. [2000]. However, notice we now make use of the volume of these primal

and dual meshes. Similar ideas seem to appear in Hiptmair [2002a] and Harrison [1999]. The definition

implies that the primal and dualaveragesmust be equal. This idea has already been introduced, not in the

context of exterior calculus, but in an attempt at defining discrete differential geometry operators in Meyer

et al. [2002].

Lemma 4.1.3. For a p-formα we have that∗ ∗ α = (−1)p(n−p)α.

Proof. The proof is a simple calculation using the property that for a simplex or a cellσp, ? ? (σp) =

(−1)p(n−p)σp (equation 3.4.1). �

4.2 Codifferential

Definition 4.2.1. Given a simplicial or a dual cell complexK the discrete codifferential operator δ :

Ωp+1
d (K) → Ωp

d(K) is defined byδ(Ω0
d(K)) = 0 and onp+1 discrete forms to beδβ = (−1)np+1∗d∗β. ♦

With the discrete forms, Hodge star,d andδ defined so far we already have enough to do an interesting

calculation involving the Laplace-Beltrami operator. We will show this calculation in Section 6.1 after we

have introduced discrete divergence and curl operators.

4.3 Summary and Discussion

We have defined a discrete Hodge star when there is only 1 metric involved. We will see later, that this Hodge

star, yields definitions of discrete Laplace-Beltrami and various vector calculus operators that have been found

by other researchers. In some applications, multiple metrics are involved and this leads to multiple Hodge

star operators. What should be done when there are multiple metrics involved ?

An example, is 3D electromagnetism in a non-uniform medium. Here one has the constitutive relation-

shipsd = ∗εe andb = ∗µ, wheree andh are 1-forms andd andb are two forms. Thus∗epsilon and∗mu

are two different Hodge stars based on two different metrics. One obvious possibility for addressing this

might be to embed the simplices of the complex in multiple ways, once for each metric. As mentioned in

Section 2.8 each of these embeddings can be local. However we have not studied the implications of such a

method.

Another solution, specific to the case of electromagnetism, might be to use spacetime formulation which

involves only 1 metric. However, as pointed out to us by Castrillon Lopez and Fernandez Martinez [2003],

other difficulties arise in such a formulation. Consider for example spacetime with 1 spatial dimension. If

this is triangulated and a triangle has one edge in the light direction then the circumcenter will lie on this

edge. One possibility for avoiding this may to use prisms with faces in spatial direction and straight lines in
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time direction. But this would require generalizing DEC to such cell-complexes. Thus work remains to be

done in treating discrete Hodge star in problems in which multiple metrics are involved.

In the interpolation view of DEC that we will explore in future work, the codifferential, and hence the

Hodge star will be determined by requiring the codifferential to be adjoint of the exterior derivative. In the

end the use of a dual mesh may turned out to be a shortcut for that procedure. This needs to be explored

further.
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Chapter 5

Forms and Vector Fields

Results: One of the unique aspects of our work is the simultaneous presence of forms and vector fields in

our theory, just as in smooth theory. This is in contrast with most previous works in this field which have had

one or the other but rarely both. One exception is the work of Bossavit, such as Bossavit [2003].

In this chapter we define discrete vector fields, and discrete sharp and flat operators for going between

1-forms and vector fields. Due to the presence of primal and dual meshes, the discrete theory has many

sharps and flats, unlike the smooth theory. The sharp and flat operators are used in Chapter 6 to define vector

calculus operators. In the case of two of the discrete flats defined here, we prove uniqueness, dictated by

requiring the discrete divergence theorem to be true.

Note that the flat and sharp are notjust for translating vector calculus into exterior calculus. In mechanics,

some quantities of interest aredefinedwith these operators. An example is vorticity in fluid mechanics, which

is du[ whereu is the fluid velocity field. Hereu is not a proxy for a 1-form, it is a genuine vector field. Thus

it is worthwhile to discretize sharps and flats.

Shortcomings: The discrete vector fields of this thesis are actually semi-discrete in that their domain of

definition is a finite discrete set but the values are in vector spaces. It is not yet clear if this is the only or

the best way to proceed with discretization of vector fields. Also, our study of discrete flats is more thorough

than that of discrete sharps and it still remains to be seen if there is a flat and a sharp in DEC which are

inverses of each other. This is required for some important vector calculus identities to be true. In this thesis,

discrete flats are defined systematically via interpolation, but the definitions of sharps are ad hoc. For a proper

definition of sharps, we believe that interpolation of 1-forms, say using Whitney maps, might be an important

step that we do not take in this thesis. Furthermore, the pairing between forms and vector fields suggested

here seems to be metric dependent unlike smooth theory. Interpolation of forms in future work may yield a

metric independent definition.
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5.1 Discrete Vector Fields

Just as discrete forms come in two flavors of primal and dual (being cochains of primal or dual chains)

discrete vector fields also come in two flavors. They are defined either on the primal nodes or the dual nodes.

Considered as vector valued 0-forms this data can then be interpolated in various ways using the 4 types of

interpolation functions defined in Def. 2.7.1. For example, the dual vector fields can be made constant inside

n-simplices or interpolated inside the Voronoi regions of primal vertices by using generalized barycentric

coordinates of Warren et al. [2003]. The primal vector fields can be made constant inside the Voronoi region

of a primal vertex, or linearly interpolated inside a primaln-simplex using the usual barycentric interpolation

inside simplices. See Def. 2.7.1 for more on interpolation.

Thus this leads to four types of interpolated vector fields defined almost everywhere on the underlying

space|K|. These are either constant over primaln-simplices or over dualn-cells or barycentric interpolated

in these regions. These ideas are made more precise in the following definitions.

Definition 5.1.1. A discrete dual vector fieldX on a well-centered manifold-like simplicial complexK is

a map from the 0-dimensional subcomplexK(0), the dual vertices ofD(K), to RN such that for every?σn,

X(?σn) is in the same plane asσn, that isX(?σn) ∈ P(σn). We will denote the space of such vector fields

by Xd(?K). See Fig. 5.1 for an example. The arrows drawn at the centers of triangles (dual vertices) together

form an example of a dual vector field. ♦

Definition 5.1.2. LetK be aflat well-centered manifold-like simplicial complex of dimensionn. A discrete

primal vector field X is a map from the 0-dimensional subcomplexK(0), the primal vertices ofK, to Rn.

We will denote the space of such vector fields byXd(K). See Fig. 5.1 for an example. The arrows drawn at

the primal vertices together are an example of a primal vector field. ♦

Remark 5.1.3. Why we require flat complex for primal vector fields: In this thesis we have defined the

primal vector fields only for flat meshes. This is because when the mesh is not flat (for instance a non-flat

piecewise linear surface i.e., a triangle mesh in 3D) then it is not obvious what should play the role of tangent

space at a vertex. It is important that at a fixed vertex the tangent space have dimensionn andnot depend

on the number ofn-simplices around the vertex. This is something for future work. But note that in many

applications this is not a limitation since one can use dual vector fields which are perfectly well defined for

non-flat meshes. Also in many important applications in computational mechanics flat mesh case is very

common, for example in 3D elasticity (although not in thin shells). ♦

Definition 5.1.4. The following vector fields on the underlying space of a complex are defined by interpolat-

ing the discrete vector field data over various cells of the complex. We assume thatK is a primal mesh.

(i) For a flat primal meshK andX ∈ Xd(K), theprimal-primal interpolated vector field

∑
σn

∑
σ0≺σn

X(σ0)φσ0,σn
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Figure 5.1: Examples of a dual (top) and a primal (bottom) discrete vector field in dimension 2. The primal
mesh is in solid lines and the dotted lines are subdivision edges. For the dual field (arrows at the circumcenters
of the triangles) the complex can be non-flat. Each vector should then be in the plane of its triangle. For the
primal field to be defined (arrows on primal nodes) the complex has to be flat in the current version of our
theory. See Def. 5.1.1, Def. 5.1.2 and Rem. 5.1.3.

is a continuous piecewise affine vector field on|K|, affine in eachn-simplex and continuous on|K|,

(ii) For a flat primal meshK andX ∈ Xd(K), theprimal-dual interpolated vector field

∑
σ0

X(σ0)φσ0,D(σ0)

is a piecewise constant vector field which is defined in eachD(σ0) (which is an open set in|K|) and

constant there,

(iii) For a primal mesh (not necessarily flat)K andX ∈ Xd(?K), thedual-primal interpolated vector field

∑
σn

X(?σn)φD(σn),σn

is a piecewise constant vector field which is defined inInt(σn) for eachσn and is constant there,

(iv) For a flat primal meshK andX ∈ Xd(?K), thedual-dual interpolated vector field

∑
σ0

∑
σn�σ0

X(?σn)φD(σn),D(σ0)
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is a piecewise smooth vector field continuous on|K| and smooth in eachD(σ0).

See Def. 2.7.1 for more on interpolation. When we don’t want to specify the type of interpolation we will use

the notation
∑
Xφ to mean one of the above types of interpolated vector fields. ♦

5.2 Smooth Flat and Sharp

As in the smooth exterior calculus we want to define the discrete flat ([) and sharp (]) operators to relate

forms to vector fields. This allows one to write various vector calculus identities in terms of exterior calcu-

lus. Furthermore sharp and flat are important even for defining operators like divergence, gradient, curl and

Laplacian. The use of sharps and flats for some common 3D vector calculus identities can be seen for the

smooth case on page 426 of Abraham et al. [1988].

Now we recall the definitions of flat and sharp in the smooth case. Sharp and flat involve a metric so we

assume we have a Riemannian manifold.

Definition 5.2.1. Let M be a Riemannian manifold with metric〈〈 , 〉〉 andα ∈ Ω1(M) a 1-form. Then the

sharp (]) map from 1-forms to vector fields is defined by
〈〈
α], v

〉〉
= α(v) for every pointx ∈ M and any

tangent vectorv ∈ TxM . ♦

Recall that 1-forms are real valued linear functions on vector spaces soα(v) in the equation above is

a number. For finite dimensional manifolds the existence and uniqueness of this map is guaranteed by the

Riesz Representation Theorem. In coordinates the above definition can be written as follows. Letg be the

Riemannian metric〈〈 , 〉〉 and let the matrix corresponding to it in some local coordinates be[gij ]. In the same

coordinate system letαi be the coordinates ofα. Then the above definition is equivalent to(α])i = gijαj

where[gij ] is the inverse of the matrix corresponding to the metricg. The inverse of the sharp map is the flat

([) map which maps vector fields to 1-forms. Thus it can be defined as follows.

Definition 5.2.2. LetM be as above andX ∈ X(M) a vector field onM . Then theflat ([) map from vector

fields to 1-forms is defined by〈〈X, v〉〉 = X[(v) for every pointx ∈M and tangent vectorv ∈ TxM . ♦

To see that[ and] are inverses of each other note that for vector fieldsX andV on a Riemannian manifold

M we have

〈〈
(X[)], V

〉〉
= X[(V ) = 〈〈X,V 〉〉

(α])[(V ) =
〈〈
α], V

〉〉
= α(V ) .

Example 5.2.3. Sharp and flat in gradient: The most common example of the use of sharps and flats is the

gradient operator. See page 353 of Abraham et al. [1988] for details. Letf be a smooth real valued function

onM . Then the gradient off written∇f is defined as∇f = (df)] or equivalently(∇f)[ = df . �
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Figure 5.2:Top row: dual (left) and primal (right) vector fieldsX for whichX[ is desired on the shared
edge ;Bottom row: (left to right) dual-primal, dual-dual, primal-primal and primal-dual interpolations. See
Def. 2.7.1 for more on interpolation. The bottom row corresponds to the configuration for the discrete flats
[dpp, [ddp, [ppp and[pdp. A dual destination would yield 4 more flats for a total of 8 discrete flats.

5.3 Proliferation of Discrete Flats and Sharps

Unlike smooth exterior calculus the discrete theory has at least 8 flat operators. There are also multiple

discrete sharp operators. Consider first, discrete flats. The reason for the proliferation is first of all the

fact that we have primal and dual vector fields and 1-forms. In addition we can interpolate the data in the

discrete vector fields to get vector fields on the underlying space|K| defined (almost) everywhere on it. This

interpolation can be done in 2 ways for each type of data. Thus with 2 types of data, 2 types of interpolations

and 2 types of destinations we get 8 flat maps.

We decorate the 8 flats with 3 letter subscripts, using d for dual and p for primal and write[ppp, [ppd,

[pdp, [pdd, [dpp, [dpd, [ddp and[ddd, for the various flats. Thus, for example,[dpp is a flat operator taking a

(d)ual vector field, via a dual-(p)rimal interpolation, to a (p)rimal 1-form. See Fig. 5.2 for a pictorial depiction

of 4 of these. In Section 5.5 we derive the DPP-flat ([dpp) and in Section 5.6 a few others.

For sharps we have to consider interpolation of data living on edges since the sharps are maps from

1-forms. In this thesis however we take a shortcut and give ad hoc definitions of some sharps without con-

sidering interpolation. In future work we will consider interpolation of 1-forms into the support volumes of

primal or dual edges and interpolation of primal 1-forms inton-simplices using Whitney forms. In this thesis

we will decorate the discrete sharp operators as]pp, ]pd, ]dp, ]dd, indicating only the type of source and

destination in the subscripts (and not the interpolation type). In Section 5.8 we define a PP-sharp (]pp) and in

Section 5.7 a PD-sharp for exact forms.

5.4 Discrete Flats

Now we describe the strategy for defining discrete flats. In the next two sections we specialize this to derive

expressions for some discrete flats. Here we start with some basic facts about the smooth flat which will lead
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us to the discrete definitions.

LetM be a Riemannian manifold with inner product〈〈 , 〉〉 andY a smooth vector field onM . Let r be a

smooth curve onM arbitrarily parameterized byt ∈ [ta, tb] ⊂ R. Then by definition of smooth flat

(5.4.1)
∫

r

Y [ =
∫ tb

ta

〈〈Y (r(t)), ṙ(t)〉〉 dt .

Since the integral is parameterization independent we can choose arc-length parameterizations and we get

(5.4.2)
∫

r

Y [ =
∫ L

0

〈〈Y (r(s)), r̂(s)〉〉 ds

wherer̂(s) is the unit vector alongr at the pointr(s) andL is the length ofr in the metric ofM .

Now, letX be a discrete primal or dual vector field on a simplicial complexK. It can be interpolated into

almost all of the underlying space|K| by using one of the four types of interpolations of Def. 5.1.4. Then we

can define the discrete flat in terms of the flat of the piecewise interpolated vector field using equation (5.4.1).

That is, defineX[, the discrete flat of discrete vector fieldX by its evaluation on any piecewise smooth curve

r in |K| by

(5.4.3)
〈
X[, r

〉
:=
∫

r

(∑
Xφ
)[

where
∑
Xφ is the notation for interpolated vector field. Then evaluate the RHS by using equation (5.4.1)

over the various pieces ofr. In a discrete theory we will generally be interested in the case whenr = c1 is a

1-chain (primal or dual).

By construction, the interpolated vector field
∑
Xφ is defined almost everywhere and hence the integral

on the RHS is well defined almost everywhere in|K|. However, there are curves in|K| where the interpola-

tion is not defined. Specifically, primal-primal and primal-dual interpolation are defined everywhere on|K|.

But primal-dual is not defined on the dual(n − 1)-faces and dual-primal is not defined on primal(n − 1)-

faces. The interesting parts of the definition of a discrete flat operator are these very cases and we address

this in the next two sections.

5.5 A Dual-Primal-Primal Flat

LetX ∈ Xd(?K) be a discrete dual vector field onK whereK can be non-flat. In the case of a DPP-flat, we

start with such anX, i.e., data defined on the dual vertices. The interpolation used is dual-primal interpolation

(simplex-constant) and we are interested in evaluating the resulting discrete 1-form on a primal edgeσ1 ∈ K.

The interpolated vector field is

X̄ =
∑
σn

X(?σn)φD(σn),σn
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(a) (b)

Figure 5.3: (a) For a boundary edge in 2D there is no ambiguity about the the dual vector field to use for
defining a DPP-flat. The vector in the triangle containing the edge is used ; (b) On the shared edge the vector
field is not well defined. In 2D the two values to choose from are in the triangles sharing the edge. See
Fig. 5.4, Def. 5.5.2, and the explanation of that definition for a resolution of the ambiguity.

and this interpolated vector field is piecewise constant almost everywhere on|K|. Let r be a straight line

segment on which̄x is defined. For exampler can be a straight line in the interior of any face of a simplex.

In this case equation (5.4.2) of previous section, withY replaced by the interpolated field̄X becomes

(5.5.1)
∫

r

X̄[ =
〈〈
X̄, r̂

〉〉
L =

〈〈
X̄, ~r

〉〉
wherer̂ is the unit vector alongr and~r is the vector along the segmentr and of the same length asr. In fact the

inner product is the standard inner product of the embedding spaceRN and so we can write equation (5.5.1)

as

(5.5.2)
∫

r

X̄[ =
〈〈
X̄, ~r

〉〉
= X̄ · ~r .

We candefinethis to be the value ofX[ on the straight liner on which the interpolated field̄X is defined.

However, as mentioned in the previous section, often the interesting cases are precisely the ones where

the interpolated fieldX̄ is not defined. In the DPP-flat we want to evaluateX[ on primal edges and the

dual-primal interpolated vector field is undefined precisely there. Fig. 5.3 explains the situation with a 2D

examples.

In Fig. 5.3 (a) the primal edgeσ1 in question is a boundary edge, the top edge of the middle triangle

in the figure. Even though the interpolation is not defined onσ1, it is clear that usingX̄ = X(σ2) in

equation (5.5.2), whereσ2 � σ1, will complete the definition of DPP-flat in this case. This won’t work in

higher dimension. For example in dimension 3, a boundary edge may be shared by many tetrahedra. The

more interesting case is shown in Fig. 5.3 (b). Now the edgeσ1 in question is the edge shared by the two

triangles. Since the dual-primal interpolation ofX is not defined onσ1, what should one use for̄X on the

RHS of equation (5.5.2) ? The answer is in Def. 5.5.2 and the reasoning for it follows.

Let σ1 ∈ K be a shared edge. To give meaning to equation (5.5.2) forr = σ1 we propose to use
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an average, constant value of̄X alongσ1. One should use a local average, using only the values of the

interpolated vector field from nearσ1. For example onecould extendX̄ to σ1 by defining it to be

X̄ =
∑

σn�σ1

|σn|∑
σn�σ1 |σn|

X(?σn) .

Or in general

X̄ =
∑

σn�σ1

aσn∑
σn�σ1 aσn

X(?σn)

whereaσn are constants equal to the volume of the portion ofσn chosen in the weighting ofX(?σn). We

prove in Corollary 6.1.4 that discrete divergence theorem (Theorem 6.1.3) for a general dual discrete vector

field is true if and only if the factorsaσn are theuniquefactors that appear Def. 5.5.2, i.e., if and only if

aσn = |?σ1 ∩ σn|

which is equivalent to
aσn∑

σn�σ1 aσn

=
|?σ1 ∩ σn|
|?σ1|

The geometric meaning of these factors is the content of the following simple proposition.

Proposition 5.5.1. For a primal meshK of dimensionn, a primal edgeσ1 ∈ K, and ann-simplexσn � σ1,

the following geometric identity is true :

|?σ1 ∩ σn|
|?σ1|

=
|Vσ1 ∩ σn|
|Vσ1 |

.

Proof. Consider an arbitrary, simply connected, compact subset of a hyperplane inRn, i.e, an object of

dimensionn− 1. LetV be its(n− 1)-volume. Now consider the object obtained by translating the shape in

a transverse direction while scaling it uniformly and linearly in each of itsn − 1 dimensions until it reaches

a size 0. That point will be called the apex and the original object the base. This pyramid like structure will

be called a pyramid. If the transverse direction is orthogonal to the hyperplane containing the original object,

we will call the resulting pyramid a right pyramid. For example, in dimension 3, if one starts with a triangle,

one gets a tetrahedron. Starting with a square, one ends up with the usual pyramid. In dimension 2, if one

starts with an edge one gets a triangle.

The volume of a pyramid, created from a base object of volumeV is (1/(n + 1))V h whereh is the

orthogonal distance of the apex from the base. For example the area of a triangle is(1/2) base× height. The

volume of a tetrahedron is(1/3) base× height. The support volume of an edge in dimensionn consists of

2k right pyramids, two in each of thek n-simplices containing the edge. For example the support volume

of a shared edge of two triangles, consists of 4 right triangles. By construction, both the pyramids in each

n-simplex will be congruent and hence of same volume. The base object of each of these is the dual of the
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Figure 5.4: In DPP-flat the ambiguity about the vector field value at shared edge is resolved by defining a
weighted average vector field on the support volume of the edge. The average vector field is defined as being
constant there. The vectors are weighted by fraction of the support volume of the shared edge that falls in the
correspondingn-simplex (in this case triangles). There is a simple expression for this fraction, as stated in
Prop. 5.5.1. This leads to the definition of the DPP-flat in Def. 5.5.2. In Corollary 6.1.4 we show that these
are theuniquefactors that make the discrete divergence theorem true.

edge lying inside then-simplex. This is the quantity|?σ1∩σn|. Thus the volume of each of the two pyramids

in eachσn is

|?σ1 ∩ σn| |σ
1|
2

1
n+ 1

.

Thus
|Vσ1 ∩ σn|
|Vσ1 |

=
2 |?σ1 ∩ σn| (|σ1|/2) (1/(n+ 1))

2 |?σ1| (|σ1|/2) (1/(n+ 1))

which proves the desired identity. �

Definition 5.5.2. LetK be a simplicial complex of dimensionn, andX ∈ Xd(K) a given dual vector field

onK. Thediscrete DPP-flatis a map[dpp : Xd(?K) → Ω1
d(K) and is defined by its evaluation on a primal

1-simplexσ1 by

(5.5.3)
〈
X[dpp , σ1

〉
=
∑

σn�σ1

| ? σ1 ∩ σn|
| ? σ1|

X(σn) · ~σ1

whereX(σn) · ~σ1 is the usual dot product of vectors inRN and~σ1 stands for the vector corresponding to

σ1 and with the same direction as the orientation ofσ1. The sum is over allσn containing the edgeσ1. The

volume factors are inn− 1 dimensions. We will sometimes writeX[ instead ofX[dpp . ♦

In the smooth theory the flat and sharp are inverses of each other. The next proposition shows that at least

the DPP-flat does not have an inverse in the literal sense. We have not investigated yet, if an inverse exists in

some other, for example, averaged sense.

Proposition 5.5.3. The discrete flat[dpp is neither surjective nor injective. Thus it does not even have a

one-sided inverse.

Proof. Fig. 5.5 shows an example of a vector field that is not zero but whose DPP-flat is 0. Since the discrete

DPP-flat function is a linear function of the vector field data, this implies that it is not injective. It is also
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Figure 5.5: A dual vector field that shows that the[dpp is not one-one. The arrows are based at circumcenters
and are supposed to be of equal lengths and orthogonal to the corresponding outer boundary edge.

not surjective. Just consider an equilateral triangle and a 1-form that takes value 1 on each edge. There is no

vector field whose DPP-flat will give this 1-form. �

5.6 Other Discrete Flats

Now we will discuss the remaining 7 types of discrete flats. For some we give the explicit expression and for

the more complicated ones we describe the construction in words.

PPP-flat: Barycentric interpolation inside ann-simplex reduces to barycentric interpolation along the

edge, i.e., linear interpolation along the edge. Thus we have forσ1 = [v0, v1]

〈
X[ppp , σ1

〉
=
∫

σ1
X̄ · ~σ1

whereX̄ is the linear interpolation of the valuesX(v0) andX(v1) alongσ1.

PPD-flat: Here the vectors at the vertices ofσn are linearly interpolated inside the simplex. IfX̄ is this

interpolation then forσn−1 ≺ σn

〈
X[ppd , σ1

〉
=
∫

σ1
X̄ · ?σn−1 .

PDP-flat: The vector field in Voronoi region of each vertex is constant. Thus forσ1 = [v0, v1]

〈
X[pdp , σ1

〉
= X(v0) ·

~σ1

2
+X(v1) ·

~σ1

2

=
X(v0) +X(v1)

2
· ~σ1

and so the average value along the edge is used.
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PDD-flat: Like the previous case, the interpolated vector field is constant in the Voronoi region of a

vertex. Letσn−1 ≺ σn and consider the dual edge?σn−1 where the flat is to be evaluated. This dual edge

intersectsσn−1 at the circumcenterc(σn−1). Thusevery pointon the dual edge is equidistant to every vertex

σ0 ≺ σn−1. Thus clearly the valuesX(σ0) should be combined with the same factor 1. Indeed this is also

the conclusion of Corollary 6.1.8 of the proof of primal discrete divergence theorem in Chapter 6. In other

words, a primal discrete divergence theorem is true if and only if PDD-flat is defined as below:

〈
X[pdd , ?σn−1

〉
:=

∑
σ0≺σn−1

X(σ0) · (?σn−1)

where we have used?σn−1 to mean both the dual edge and the dual edge considered as a vector.

DPP-flat: This has been derived in the previous section.

DPD-flat: HereX is made constant inside ann-simplex. Let?σn−1 be the dual edge on which we want

to evaluate the flat. We define

〈
X[dpd , ?σ1

〉
=

∑
σn�σn−1

X(σn) · (?σn−1 ∩ σn)

where by abuse of notation,?σn−1 ∩ σn stands for the vector corresponding to the dual edge inσn.

DDP-flat andDDD-flat: These two require the new barycentric interpolation of Warren et al. [2003] and

we will not use them in this thesis.

5.7 A Primal-Dual Sharp for Exact Forms

As mentioned in Section 5.3 a proper development of the discrete flat operator should probably start with

interpolating the discrete 1-form data. The two choices for interpolation might be into the support volume,

and into the simplex by using Whitney forms of Section 3.3. We do not do that in this thesis, and instead, we

shortcut the process of interpolation and define 4 types of sharps based on 2 types of sources and 2 types of

destination. Of these we will only discuss PD-sharp for exact forms and PP-sharp.

To motivate the definition of primal-dual sharp for exact forms we do the following simple calculation of

gradient. Letf̄ be the function that is obtained by linearly interpolating in ann-simplex the discrete 0-form

f . Thus for a pointx ∈ σn, using the interpolation functions we have that

f̄
∣∣
σn (x) =

∑
σ0≺σn

f(σ0) φσ0,σn(x) .
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Taking the usual gradient of this smooth function inIntσn we have

(5.7.1) (∇f̄)
∣∣
Int(σn)

=
∑

σ0≺σn

f(σ0)∇φσ0,σn .

Let [v0, . . . , vn] = σn. Then by equation (2.7.2) we have that

∇φv0,σn = −
∑

1≤i≤n

∇φvi,σn .

Substituting this into (5.7.1) we get

(∇f̄)
∣∣
Int(σn)

=
∑

0≤i≤n

f(vi)∇φvi,σn

=
∑

1≤i≤n

f(vi)∇φvi,σn −
∑

1≤i≤n

f(v0)∇φvi,σn

=
∑

1≤i≤n

(f(vi)− f(v0))∇φvi,σn .

Thus

(∇f̄)
∣∣
Int(σn)

=
∑

1≤i≤n

(f(vi)− f(v0))∇φvi,σn .

Note that here the coefficientsf(vi) − f(v0) are nothing butd f evaluated on the edge[v0, vi]. Since

∇f̄ = d f̄ in the simplex interior, the above equation suggests the following definition for a primal-dual

sharp.

Definition 5.7.1. Let f be a discrete 0-form on a primal mesh,σn a simplex in this mesh andv a vertex of

σn. Then thediscrete primal-dual sharp for exact forms is defined by

(5.7.2)
〈
(d f)]pd , ?σn

〉
:=

∑
σ0≺σn

(f(σ0)− f(v))∇φσ0,σn .

We state without proof that the value is independent of whichv is chosen as the distinguished vertex. This is

clear from the calculation of gradient done above. A pictorial depiction of this formula is in Fig. 5.6.♦

We did not define the primal-dual sharp for general forms because in that case the choice of the vertex

v will in general, affect the answer. One could try to take all vertices ofσn one by one, and use some sort

of weighting, such as|?σ0 ∩ σn|/σn. Then in equation (5.7.2) above,f(σ0) − f(v) would be replaced by〈
α, [σ0, v]

〉
whereα is the discrete 1-form whose sharp is desired. However, this is an ad hoc weighting and

as we have been stressing, perhaps the right way to build discrete sharps is to first interpolate the discrete

1-forms, using, for example, Whitney maps.
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Figure 5.6: The geometry of PD-sharp for exact forms. The color coding shows the values that are related.
The arrows are gradients of primal-primal interpolation functions. The sum is taken at a vertex, any vertex
will do and will give the same result. The value of the exact form on each edges incident on that vertex is
used.

5.8 A Primal-Primal Sharp

If we start with a primal 1-form and want to produce from it a primal vector field at a vertex, then one ad

hoc definition is to compute the sharp in each simplex of a one-ring around the vertex. This can be done

by using that vertex as the distinguished vertexv of equation (5.7.2) and using evaluations of the 1-form

on edges instead of evaluation ofd f in that equation. Then one can use some weighting for each simplex,

say the portion of the Voronoi region that falls in each simplex. Or, the fraction of volume that the simplex

represents, of the one-ring volume. The former choice would lead to the following definition. Unlike our

uniqueness result in the discrete flat case, we have not attempted any uniqueness proofs in discrete sharps,

since the future development will probably involve interpolation of 1-forms.

Definition 5.8.1. LetK be a flat simplicial complex of dimensionn and letα ∈ Ω1
d(K) be a discrete primal

1-form. Thediscrete primal-primal sharp is ]pp : Ω1
d(K) → Xd(K) (but we’ll just write]) and is defined

by its evaluation on a given vertexv as follows

(5.8.1) α](v) =
∑

[v,σ0]

〈
α, [v, σ0]

〉 ∑
σn�[v,σ0]

| ? v ∩ σn|
|σn|

∇φσ0,σn .

The outer sum is over all 1-simplices[v, σ0] containing the given vertexv and the inner sum is over allσn

containing the 1-simplex[v, σ0]. The volume factors are in dimensionn. The mapsφσ0,σn are the primal-

primal interpolation functions. A pictorial depiction is in Fig. 5.7. ♦

5.9 Composing Sharps and Flats

Note that[dpp goes from dual vector fields to primal 1-forms. But]pp goes from primal 1-forms to primal

vector fields. Thus although sharp and flat in the smooth theory are inverses, heretheseparticular the discrete

sharp and flats cannot be inverses of each other. We have see also in Prop. 5.5.3 that the DPP-flat cannot have

an inverse in the usual sense.

The incompatibility of domains and codomains for DPP-flat and PP-sharp seems similar to the incon-
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Figure 5.7: The geometry of PP-sharp definition. The color coding shows the quantities that are related. The
arrows are the gradients of interpolation functions.

sistency of domains and ranges of mimetic div, grad, curl described on page 85 of Hyman and Shashkov

[1997a]. It is possible that analogous to the discrete Hodge star case some flats and sharps are inverses in

terms of averages but this is something we have not studied yet. Neither have we studied all possible com-

binations of discrete flats and sharps. We also note that we implicitly define a sharp and flat in Tong et al.

[2003] so thatdiv ◦ curl = 0 andcurl ◦ grad = 0. Although we do not use DEC formalism there, the above

result, which in exterior calculus is a consequence of sharp and flat being inverses of each other, is reproduced

in Section 9.3. ♦

5.10 Natural Pairing of Forms and Vector Fields

In the smooth theory pairing of forms and vector fields is a metric independent operation. At a point on the

smooth manifold, 1-forms are the usual linear algebraic duals of the vectors at that point. So the pairing is

just evaluation of the real-valued linear functions (1-forms) on the vector at that point.

Here we define the natural pairing of discrete 1-forms and vector fields that seems to depend on a metric.

After that we suggest how we may give a metric independent definition. We can use equation in Def. 5.2.1

which is the definition of] in the smooth case but now we use it as the definition of the natural pairing. This

gives us the following definition for discrete natural pairing.

Definition 5.10.1. LetK be a flat simplicial complex of dimensionn, α ∈ Ω1
d(K) a discrete primal 1-form

andX ∈ Xd(K) a discrete primal vector field. Then theirdiscrete natural pairing, α(X) at a 0-simplexσ0

is defined as

α(X)(σ0) = α](σ0) · (X(σ0))

where· is the usual dot product in the embedding spaceRn. ♦

In future work we intend to consider interpolation of 1-forms using Whitney forms and also into the

support volumes of edges. Once the form is interpolated, one can use the smooth definition of pairing between



58

forms and vector fields to yield a discrete definition of pairing.

5.11 Summary and Discussion

The focus of this chapter has been the definition of sharps and flats. These are metric dependent operators that

were defined in the smooth theory, so that vector calculus could be brought under the umbrella of exterior

calculus. In this chapter we have made explicit the translation between discrete forms and discrete vector

fields using the metric information in specific, geometric formulas. In works on DEC that use vector fields

as proxies for forms, this is usually done implicitly by assuming flat space, and often even inR3. Our

development is explicit and general and works for non-flat meshes, when the choice of vector field and

interpolation scheme allows non-flatness. This allows one to define discrete vector calculus operators using

DEC. This is not essential for equations of mechanics, but it does help in discretizing equations that are

written in terms of div, grad and curl.

We have been able to define flats by using interpolation of vector fields which we treat as vector valued 0-

forms. For a proper definition of sharps it may be necessary to first interpolate 1-forms. Instead, here we gave

some ad hoc definitions. One drawback of these definitions is that the resulting definition of form-vector field

pairing is metric dependent. We also did not demonstrate a discrete sharp-flat inverse pair. In addition, we

showed that one of the discrete flats that we studied in detail cannot have an inverse in the usual sense. There

may be an inverse pair, or the inverse may exist in some kind of average manner. That is for future study.

Indirect evidence that such might be the case comes from our other work, on vector field decomposition in

which we have found vector calculus operators that satisfy the usual identities which are, in smooth theory, a

consequence of sharp and flat being inverses of each other and the fact thatd ◦d = 0.
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Chapter 6

Div, Grad, Curl and Laplace-Beltrami

Results: In smooth theory, divergence is defined in terms of the Lie derivative of a volume form. We

will define it first via an identity of exterior calculus involving flat operator. We show that we get a primal

and a dual discrete divergence theorem. Corollaries of the proofs of these also show that the factors in the

definition of DPP-flat and PDD-flat are unique. Also, in the 2D case our formula for discrete divergence is

the same as that appearing in other literature such as Polthier and Preuss [2002]. Then we briefly discuss

the other definition of divergence, based on derivative of volume. We define Laplace-de Rham operator,

of which, a special case is the Laplace-Beltrami of functions on manifolds. In a 2D calculation, our DEC

definition reproduces a well-known Laplace-Beltrami formula found in computer graphics by Meyer et al.

[2002]. The formula can also be derived variationally, using a DEC framework, as shown to us recently by

Castrillon Lopez and Fernandez Martinez [2003]. Our discrete gradient is defined using the PD-sharp for

exact forms from the previous chapter and another one using an averaging property of the PP-sharp. For curl

we show a 2D definition and a 3D definition and show that the 2D formula in DEC agrees, modulo an area

factor, with that found by Polthier and Preuss [2002].

Shortcomings: The definition of divergence involves two Hodge stars and a flat operator. It is an identity

in smooth theory that the metric inherent in these, finally enters the divergence formula only via the volume

form. We have not shown that the same is true in discrete theory. However we give some preliminary

comments on the volume based definition of divergence in this chapter. We have derived a 3D curl in our

other work in Tong et al. [2003] that satisfies all the usual vector calculus identities. But we have not yet

reproduced that definition via a DEC derivation. We think that the proper definitions of a general gradient

and 3D curl requires that the sharp operator be build from interpolation of 1-forms, like the flat was built from

interpolation of 0-forms.
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6.1 Divergence

In the smooth theory, divergence is defined via a Lie derivative by(divX)µ = £Xµ whereµ is the volume

form associated with the given metric. In future work we plan to explore this definition in the discrete theory.

Some preliminary comments about this are given at the end of this section, in the context of Def. 6.1.9 where a

volume based definition is given. This volume based definition is the straightforward, intuitive interpretation

of the Lie derivative definition.

The main content of this section however, is the definition of a discrete divergence using an identity from

smooth theory. We don’t know yet if Lie derivative based definition and the present definition will turn out

to be identical. But we point out that the present flat based definition does result in a discrete divergence

theorem, for both primal and dual vector fields. This is the content of Theorem 6.1.3 and 6.1.7. First we

prove some lemmas that establish a discrete divergence theorem on a single dualn-cell and a single primal

n-simplex. Later we combine many dualn-cells or primaln-simplices to produce the divergence theorems.

Definition 6.1.1. For a discrete vector fieldX thediscrete divergence, div(X) is defined to be

div(X) := −δX[ = ∗d ∗X[ .

The above definition is actually a theorem in smooth exterior calculus and a consequence of the Lie derivative

based definition. See, for example, page 458 of Abraham et al. [1988]. IfX is a dual vector field, the discrete

flat used above is[dpp. For a primal vector field,[pdd is used. In other words ifX ∈ Xd(?K) then

(6.1.1)
〈
div(X), σ0

〉
= ∗d ∗X[dpp

and ifX ∈ Xd(K) then

(6.1.2) 〈div(X), ?σn〉 = ∗d ∗X[pdd .

Thus for a dual vector field, divergence is a primal 0-form, and for a primal vector field divergence is a dual

0-form. ♦

The divergence defined as above satisfies a discrete divergence theorem. This is proved for a dual vector

field in the following lemma and theorem. For a primal vector field, we only sketch the proof. We will now

prove the discrete divergence theorem for dual vector fields over dualn-cells, starting with the result over a

single dualn-cell.

Lemma 6.1.2 (Divergence Theorem on a Dualn-cell). LetK be a primal mesh, not necessarily flat, and



61

of dimensionn, andσ0, a vertex in it. LetX ∈ Xd(?K) be a dual vector field on the complex. Then

(6.1.3) |?σ0| 〈div(X), σ0〉 =
∑

σ1�σ0

∑
σn�σ1

| ? σ1 ∩ σn|
(
X(?σn) · ~σ

1

|σ1|

)
.

where the edgesσ1 are oriented so that they all point outwards.

Proof. First we indicate why we call this a divergence theorem. Here~σ1/|σ1| is a unit normal perpendicular

to the boundary of the region?σ0 and pointing outwards. This region is the Voronoi region of the vertexσ0

wherediv(X) is being evaluated. The quantity| ? σ1 ∩ σn| is the length of the part of the dual edge ofσ1

that is in the simplexσn. Thus equation (6.1.3) is a statement of the divergence theorem over the Voronoi

region?σ0, i.e., the integral of divergence over this region equals the the flux ofX through the boundary of

this region.

In this proof we will write[ as a shorthand for[dpp. Sincediv(X) = ∗d ∗X[, as expected, the divergence

is a scalar. In particular because the flat used is DPP-flat andX is a dual vector field,X[ is a primal 1-form

and so due to the two Hodge stars,div(X) is a primal 0-form. Thus we can compute it at a primal vertex,σ0.

This is the quantity 〈
div(X), σ0

〉
=
〈
∗d ∗X[, σ0

〉
.

Using the definition of Hodge star we get

1
|σ0|

〈
∗d ∗X[, σ0

〉
=

1
s |?σ0|

〈
∗ ∗ d ∗X[, ?σ0

〉
.

Heres is the sign± as discussed in the Hodge star definition for0- andn-simplices in Chapter 4. Assume,

without loss of generality, that the orientation ofK is the one that makess = (−1)n−1. Then, since|σ0| = 1,

we get

〈
div(X), σ0

〉
=

(−1)n−1

|?σ0|

〈
∗ ∗ d ∗X[, ?σ0

〉
=

(−1)n−1

|?σ0|

〈
d ∗X[, ?σ0

〉
=

(−1)n−1

|?σ0|

〈
∗X[, ∂(?σ0)

〉
.

The second equality is by application of definition of Hodge star and the last one above is by application of

discrete Stokes’ theorem. But by Def. 3.6.8 of dual boundary,

∂(?σ0) =
∑

σ1�σ0

?(sσ1σ1)

where the signsσ1 = ±1 is chosen to that the edgessσ1 σ1 all point inwards or outwards, depending on the

orientation ofK as explained Def. 3.6.8. In our case, the orientation has been chosen so that they will all
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point outwards. See Def. 4.1.1 and Def. 3.6.8 for an explanation.

For simplicity of notation in the calculation that follows, we will useσ1 instead ofsσ1σ1. That is, we will

assume that the edgesσ1 have been oriented so that they all point outwards. Now we can use the linearity of

the pairing of forms and chains and write

(−1)n−1

|?σ0|

〈
∗X[, ∂(?σ0)

〉
=

(−1)n−1

|?σ0|

〈
∗X[,

∑
σ1�σ0

?σ1

〉

=
(−1)n−1

|?σ0|
∑

σ1�σ0

〈∗X[, ?σ1〉 .

Another use of the definition of discrete Hodge star now gives

1
|?σ0|

∑
σ1�σ0

〈∗X[, ?σ1〉 =
1

|?σ0|
∑

σ1�σ0

|?σ1|
|σ1|

〈X[, σ1〉 .

Now we can use the definition of DPP-flat operator and we get that

1
|?σ0|

∑
σ1�σ0

|?σ1|
|σ1|

〈X[, σ1〉 =
1

|?σ0|
∑

σ1�σ0

|?σ1|
|σ1|

∑
σn�σ1

| ? σ1 ∩ σn|
|?σ1|

X(?σn) · ~σ1(6.1.4)

=
1

| ? σ0|
∑

σ1�σ0

∑
σn�σ1

| ? σ1 ∩ σn|
|σ1|

X(?σn) · ~σ1

=
1

|?σ0|
∑

σ1�σ0

∑
σn�σ1

| ? σ1 ∩ σn|
(
X(?σn) · ~σ

1

|σ1|

)

whereσ1 all point outwards. Thus we have finally that

|?σ0| 〈div(X), σ0〉 =
∑

σ1�σ0

∑
σn�σ1

| ? σ1 ∩ σn|
(
X(?σn) · ~σ

1

|σ1|

)

which we wanted to show. �

Theorem 6.1.3 (Divergence Theorem on a Dualn-Chain). Let c be a dualn-chain which, as a set, is a

simply connected subset of|K|. Then the discrete divergence theorem is true over this set.

Proof. It is enough to show that for two adjacent dualn-cells the contributions due to the shared dual edge

cancel in the RHS of equation (6.1.3). Consider two such adjacent dualn-cells. Letv0 andv1 be the two

vertices of which these are the dual cells. Since the cells are adjacent, there is an edge[v0, v1] and its

dual is the only shared face. That edge appears with opposite signs for the two versions of equation 6.1.3

corresponding tov0 andv1. The coefficients are otherwise the same. Thus the term corresponding to that

edge cancels. �

Corollary 6.1.4 (Uniqueness of DPP-flat).The discrete divergence theorem on a dualn-cell is true if and



63

only if the factors in the DPP-flat definition, Def. 5.5.2, are

|?σ1 ∩ σn|
|?σ1|

.

Proof. Suppose in the proof of Lemma 6.1.2 above we replace the definition ofX[dpp in equation (6.1.4) by

one that uses arbitrary factorsbσn . Thus we have, in the proof of Lemma 6.1.2, that

〈
div(X), σ0

〉
=

1
|?σ0|

∑
σ1�σ0

|?σ1|
|σ1|

∑
σn�σ1

bσnX(?σn) · ~σ1

=
1

|?σ0|
∑

σ1�σ0

∑
σn�σ1

|?σ1|bσn

(
X(?σn) · ~σ

1

|σ1|

)
.

Since the divergence theorem must be true for any dual vector fieldX we can choose one which is 0 every-

where except in oneσn � σ0. Then the divergence theorem is true iff|?σ1 ∩ σn| = |?σ1|bσn for some

σ1 ≺ σn, which implies that

bσn =
| ? σ1 ∩ σn|

|σ1|
.

Sinceσn was arbitrary, this proves the desired uniqueness. �

Remark 6.1.5. Divergence of dual vector field in primal is 0: If divergence is computed by Def. 6.1.1,

for a dual vector field inside a primaln-simplex, the DPD-flat is used. An easy calculation shows that then

the divergence at the center of the simplex is 0, because in the calculation, there is a sum of the dot product

of a vector with the dual edges which are scaled so that the sum is 0. Thus one gets the correct answer in this

case. To compute the divergence inside a primal simplex but for a primal vector field, one uses a PDD-flat

and this results in the following Lemma. ♦

Lemma 6.1.6 (Divergence Theorem on a Primaln-simplex). LetK be a flat primal mesh of dimensionn,

andσ0 a vertex in it. LetX ∈ Xd(K) be a primal vector field on the complex. Then

(6.1.5) |σn| 〈div(X), ?σn〉 =
∑

σn−1≺σn

|σn−1|

( ∑
σ0≺σn−1

X(σ0)

)
· ?σ

n−1

|?σn−1|
.

where the orientation ofσn is such that the dual edges?σn−1 point outwards. If the given orientation is the

other one then RHS is multiplied by−1.

Sketch of proof.The proof consists of application of the definitions, as in the proof of Lemma 6.1.2. The

only difference is that PDD-flat is used. Thus the vector field is interpolated to be constant in the Voronoi

dual of each primal vertex. �

Theorem 6.1.7 (Divergence Theorem on a Primaln-chain). Let c be a primaln-chain which, as a set, is

a simply connected subset of|K|. Then the discrete divergence theorem is true over this set.
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Sketch of proof.It is enough to show this for two adjacent primaln-simplices. It follows due to the fact that

the shared face is oriented oppositely by the adjacent simplices while the vector field data is the same. This

causes a cancellation giving us the proof over the two simplices. �

Corollary 6.1.8 (Uniqueness of PDD-flat).The discrete divergence theorem on a primaln-simplex is true

if and only if the factors in the PDD-flat definition in Section 5.6 are 1.

Proof. Similar to the proof of Cor. 6.1.4. �

Now we will give the formal definition of divergence via the volume form. We have not worked out the

resulting discrete formula in all cases, but in 2D, it appears to give the same result as the definition used

above.

Definition 6.1.9. LetX be a discrete primal vector field on a flat complexK andσ0 a vertex inK. Extend

X to X̄ in anysmooth fashion to a neighborhood of the boundary vertices of the one-ringSt(σ0) aroundσ0.

Then the discrete divergence on the one-ring is defined by

〈
div(X), σ0

〉
|St(σ0)| := d

dt

∣∣∣∣
t=0

|ϕt(St(σ0))|

whereϕt is the affine simplicial homeomorphism extended from from the flow ofX̄ restricted to the ver-

tices. ♦

We intend to explore this definition in future work. The nice property of this is that the metric enters only

via the volume form as it should.

6.2 Gradient

In smooth theory the gradient of a function is(d f)]. Thus it converts the metric independent quantity into

a metric dependent one. For a primal 0-form the gradient can easily be computed in the interior of the

primal simplex by first interpolating the 0-form from the vertices to the interior using the affine, barycentric

interpolation functions, and then taking the gradient. Since the interpolation is affine, the gradient is a constant

vector and we can associate it with the dual of the simplex. This is the primal-dual gradient defined below.

For the primal-primal gradient, one has to necessarily combine the information from the one ring around a

vertex in some way, and for now we propose an ad hoc method using the primal-primal sharp.

As we mentioned in Section 5.8, the right way to define sharp is to interpolate 1-forms first. But we have

not done that in this thesis, and instead we have given an ad hoc definition. Similarly one can give ad hoc

definitions for dual-dual and dual-primal sharps and consequently for those gradients. But we will not do

that here. In summary, the only reliable gradient we give here is the obvious one, the primal-dual gradient.

We note however, that our primal-primal gradient, when interpreted for regular nonsimplicial 2D rectangular
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mesh, gives a standard, finite difference formula for the gradient. The primal-dual and primal-primal gradients

are defined below.

Definition 6.2.1. Let K be a primal mesh of dimensionn andf ∈ Ω0
d(K) a discrete primal 0-form, i.e., a

real valued function on the vertices ofK. Then thediscrete primal-dual gradient of f writtengradpd f or

∇pdf is defined as(df)]pd . That is, using Definition 5.7.1 of discrete] its value on?σn is:

(6.2.1)
〈
(d f)]pd , ?σn

〉
:=

∑
σ0≺σn

(f(σ0)− f(v))∇φσ0,σn

wherev is a vertex ofσn and we state without proof that the definition is independent of whichv is chosen.

Given a vertexv ∈ K thediscrete primal-primal gradient of f is defined as(d f)]pp by

(6.2.2) (∇ppf)(v) :=
∑

σ1=[v,σ0]

[
f(σ0)− f(v)

] ∑
σn�[v,σ0]

|?v ∩ σn|
|σn|

∇φσ0,σn .

The outer sum is over all 1-simplices[v, σ0] containing the given vertexv and the inner sum is over allσn

containing the 1-simplex[v, σ0]. The volume factors are in dimensionn. The mapsφσ0,σn are the primal-

primal interpolation functions. ♦

6.3 Curl

In vector calculus, curl is usually defined in dimension 3 and sometimes as a scalar in dimension 2. In the

smooth exterior calculus notation these are,∗dX[ in dimension 2 and(∗dX[)] in dimension 3, whereX

is a smooth vector field inR2 or R3 respectively. In geometric mechanics the use of curl may be replaced

by d of a 1-form. One example is vorticity in fluid mechanics, which isdu[ in geometric theory of fluid

mechanics, butcurlu in the more common engineering literature. Notice that the sharp is not required in the

geometric mechanics definition of vorticity. In any case, having a discrete curl in exterior calculus is useful

for translating equations that have been written using curl. Due to the multiplicity of discrete sharps and flats

there will be many definitions of discrete curls. We have not explored all these, and give only one definition

each in the 2D and 3D case.

We first define the 2D curl and show that the DEC definition results in the same formula, modulo an area

factor, as one found by Polthier and Preuss [2002]. This is the content of Rem. 6.3.2.

Definition 6.3.1. Let K be a primal mesh of dimension 2 andX ∈ Xd(?K) a dual vector field. Then the

discrete 2D dual-primal curl is defined by

curldpX = ∗dX[dpd .



66

O

AC

PQ

B

Figure 6.1: Curl in 2D

Remark 6.3.2. DEC 2D curl compared to Polthier and Preuss [2002]: The DEC definition of the 2D

dual-primal curl coincides with one found by Polthier and Preuss [2002], modulo an area factor that their

definition does not have. Consider the configuration shown in Fig. 6.1. According to Polthier and Preuss

[2002], the discrete curl in 2D that assigns vectors to primal nodes is

〈
curl(X), σ0

〉
=

1
2

∑
σ2�σ0

X(?σ2) · ~σ1(σ2)

whereσ1(σ2) is the outer edge of triangleσ2. Let us compute the DEC version of the 2D curl. For simplicity

of notation we will use[ instead of[dpd. Since∗dX[ is a 0-form, we can evaluate it at a vertexσ0. In

Fig. 6.1 this is marked as the pointO whose one-ring is shown in that figure. Let the complex shown in the

figure be oriented by orienting each triangle counter clockwise. By definition of discrete Hodge star we have

1
σ0

〈
?dX[, σ0

〉
=

1
−|?σ0|

〈
dX[, ?σ0

〉
.

Then, by discrete Stokes’ theorem we have

〈
curlX,σ0

〉
=

1
−|?σ0|

〈
X[, ∂(?σ0)

〉
.

By the definition of dual boundary, and because of the orientation chosen for the complex we get

〈
curlX,σ0

〉
=

1
|?σ0|

∑
σ1�σ0

〈
X[, ∂(?σ0)

〉

where the negative sign has canceled with the one coming from the dual boundary definition and all theσ1

are pointing outwards.

The flat to be used is the DPD-flat. This consists of simply taking the dot product of the vector inside

each triangle with the dual edges, when evaluatingX[ on the dual edges. This is because in DPD-flat the dual
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vector field inside the triangle is interpolated to be constant inside the triangle. Thus the above RHS becomes

1
|?σ0|

∑
σ1

∑
σ2�σ1

X(?σ2) · (?σ1 ∩ σ2) .

Collecting terms by the triangles we get

〈
curlX,σ0

〉
=

1
|?σ0|

∑
σ2�σ0

∑
σ1≺σ2

X(?σ2) · (?σ1 ∩ σ2) .

In the case of the triangle shown with the dual edges in Fig. 6.1, the term
∑

σ1≺σ2 X(?σ2) · (?σ1 ∩ σ2) in

the RHS above becomes simply

X(B) ·
−−→
AB +X(B) ·

−−→
BC .

The term according to Polthier and Preuss [2002] should be

1
2
X(B) ·

−−→
PQ .

But

X(B) ·
−−→
AB +X(B) ·

−−→
BC = X(B) · (

−−→
AB +

−−→
BC) = X(B) ·

−→
AC =

1
2
X(B) ·

−−→
PQ

where the last equality is due to the elementary geometric fact that the length of the edge joining midpoints

of two sides is half the remaining side of the triangle and in the same direction as it. Thus the DEC formula is

the same as the one given in Polthier and Preuss [2002] except that we have an additional factor of1/|?σ0|. ♦

For the 3D curl one needs to define sharp operator. We have given a primal-dual sharp for exact forms

and a primal-primal sharp in Chapter 5. Of these, only the primal-dual sharp for exact forms is satisfactory.

Thus the correct formulation of 3D discrete curl will have to wait a better development of sharp, which will

possibly involve interpolation of 1-forms. For completeness we give here the definition of a discrete 3D curl

using the usual smooth exterior calculus definition of curl.

Definition 6.3.3. LetK be a flat simplicial complex of dimension 3. LetX ∈ Xd(K) be a discrete primal

vector field. Then thediscrete 3D curl is defined by

curl(X) = (∗d(X[))]

where the operators∗, [ and] on RHS are the discrete operators. ♦

Remark 6.3.4. Curl and vector calculus identities: Recall that in smooth exterior calculus the identity

div ◦ curl = 0 follows from the fact thatd2 = 0. This is becausediv(curl(X)) = d ∗ ([∗(dX[)]][) and]

is the inverse of[. However as we pointed out in Section 5.9, in the discrete case we have to use the right

combination of] and[. For example, in this chapter we have used a dual-primal flat and a primal-primal
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i
βij

α ij
x j

x

Figure 6.2: The variable names used in formula (6.4.1) for the Laplace-Beltrami of a triangle mesh, found by
Meyer et al. [2002]. The complex does not have to be flat.

sharp. The composition has no chance of being identity. We point out that various vector calculus identities

are true in our vector field decomposition work Tong et al. [2003]. The proof is reproduced in Section 9.3.

Thus the information about the right flat and sharp to use is probably hidden in that work. ♦

6.4 Laplace-Beltrami

The Laplace-Beltrami operator is the generalization to curved surfaces, of the usual Laplacian of flat space.

In the smooth case the Laplace-Beltrami operator on smooth functions is defined to be∇2 = div ◦ curl = δd.

See, for example, page 459 of Abraham et al. [1988]. In the smooth case the Laplace-Beltrami on functions is

a special case of the more general Laplace-deRham operator∆ : Ωk(M) → Ωk(M) defined by∆ = dδ+δd.

In this section we show that this definition of Laplace-Beltrami leads to a well-known formula for discrete

Laplace-Beltrami found by Meyer et al. [2002]. The formula that they found was

(6.4.1) ∆f(xi) =
1

2A
∑

j∈N1(i)

(cot αij + cot βij) (f(xi)− f(xj))

where the angles and points shown are marked in Fig. 6.2. The termA stands for an area around the pointxi.

Meyer et al. [2002] also showed that the use of the Voronoi area around the vertex is optimal in some sense.

Recently, Castrillon Lopez and Fernandez Martinez [2003] showed us that the Laplace-Beltrami we derive

can be obtained from a discrete variational principle, by extremizing a discrete Dirichlet energy. This shows

that, at least in this case of harmonic maps, discretizing the smooth Lagrangian and obtaining the discrete

Euler-Lagrange equations gives the same result as first obtaining the Euler-Lagrange equations and then

discretizing them. Thus in this case the application of variational principle commutes with discretization via

DEC.

Example 6.4.1. Laplace-Beltrami on a triangle mesh:As an example we compute here∆f on a primal

vertexσ0 wheref ∈ Ω0
d(K) andK is a (not necessarily flat) triangle mesh inR3. Suppose thatK is oriented
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by orienting all its triangles counterclockwise. Sinceδf = 0 by definition, we have that

〈
∆f, σ0

〉
=
〈
δdf, σ0

〉
= −

〈
∗d ∗ df, σ0

〉
.

Now by using the definition of discrete Hodge star followed by the discrete Stokes’ theorem we get

〈
∗d ∗ df, σ0

〉
=

|σ0|
−|?σ0|

〈
d ∗ df, ?σ0

〉
=

−1
|?σ0|

〈
∗df, ∂(?σ0)

〉
.

The explanation for the use of signed volume−|?σ0| was given in Rem. 4.1.2. Thus

〈
∆f, σ0

〉
=

1
|?σ0|

〈
∗df, ∂(?σ0)

〉
.

By Def. 3.6.8 of the dual boundary,

∂(?σ0) =
∑

σ1�σ0

?(sσ1σ1)

wheresσ1 = ±1 is a sign, that depends on the orientation ofK andσ1. In dimension 2, with triangles of

K oriented counterclockwise, the definition of dual boundary dictates that the edgessσ1σ1 are all pointing

outwards. For simplicity, as usual, in the following we will setσ1 to besσ1 σ1, which means that all edges

incident onσ0 are now all pointing outwards. Thus,

〈
∗df, ∂(?σ0)

〉
=

〈
∗df,

∑
σ1�σ0

?σ1

〉

=
∑

σ1�σ0

〈
∗df, ?σ1

〉
.

Now another use of the definition of discrete Hodge star gives

〈
∗df, ?σ1

〉
=
|?σ1|
|σ1|

〈
df, σ1

〉
.

But then by discrete Stokes’ theorem we have that

〈
df, σ1

〉
= f(v)− f(σ0)

whereσ1 = [σ0, v]. Putting all this together we get that

(6.4.2)
〈
∆f, σ0

〉
=

1
|?σ0|

∑
σ1=[σ0,v]

|?σ1|
|σ1|

(f(v)− f(σ0)) .
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Then a geometric calculation shows that the above expression is the same as the formula (6.4.1) found by

Meyer et al. [2002], without using discrete exterior calculus. As mentioned before, this formula is also ob-

tained by a discrete variational principle as shown to us recently by Castrillon Lopez and Fernandez Martinez

[2003]. �

6.5 Summary and Discussion

In our future work the divergence will be defined via the Lie derivative of the volume form, as outlined in

Def. 6.1.9. For such a development, the vector field is extended in any smooth fashion, to the neighborhood

of vertices, and the mesh is moved with the flow of the vector field. The vectors can actually be placed at

any point, not just at the dual or primal vertices. Of course, then one would have to decide, what volume is

being used in that case – for example the convex hull of the points. If the vectors are placed at the primal

vertices, this definition of divergence can be pursued even in the current setting of DEC, without interpolation

of forms, since the volume form is defined everywhere. In hindsight, this is really the approach to divergence

we should have taken, since the metric dependence of divergence should only be through the volume form.

It should not have anything to do with Hodge duality, dual meshes or flat operator. The definition we used,

should actually be a theorem in the new setting.

In the interpolation view of DEC that we envision in the future, and as outlined in Section 1.5, the sharp

would be defined after interpolating 1-forms. This should yield a better definition of the 3D curl, that satisfies

various vector calculus identities. Similarly, that should yield a better primal-primal gradient, since in the

interpolation point of view, operators are defined even pointwise.

That said, we should point out that the definition of divergence we have given yields a nice divergence

theorem. Also, the formula in dimension 2, seems to be the same as the one obtained by the new, change of

volume point of view of divergence outlined above. The 2D curl we derive has been found by others, without

the use of DEC. The primal-dual gradient is a good definition, it even uses the idea of interpolation and the

primal-primal gradient yields a gradient on regular nonsimplicial meshes, as shown in Section 9.4.
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Chapter 7

Wedge Product

Results: As in the smooth case, the discrete wedge product we will construct is a way to build higher

degree forms from lower degree ones. Some common applications of the wedge are, for example in defining

the Lagrangian for harmonic maps, asd f ∧∗d f . In spacetime electromagnetism in vacuum, starting with a

1-formA one defines the Lagrangian usingdA ∧ ∗dA. Thus the wedge product is of practical significance

in important applications. In this thesis we give two different definitions for the primal-primal wedge, one of

which is due to Castrillon Lopez [2003], and we state some of the properties that our primal-primal wedge

satisfies.

Shortcomings: For a complete treatment, the dual-dual and primal-dual discrete wedge products should

be defined. We only give speculative suggestions for the other cases here. One definition of primal-primal

wedge we give, uses the metric. This use of metric is not satisfying because in the smooth theory, the

definition does not use the metric. Furthermore, the discrete wedge should commute with discrete pullbacks.

The metric dependent definition doesn’t. Recently Castrillon Lopez [2003] showed us a definition of discrete

wedge which does not use the metricand which commutes with discrete pullbacks. We include it here for

completeness.

7.1 Primal-Primal Wedge

For information about the smooth case see the first few pages of Chapter 6 of Abraham et al. [1988]. We give

two definitions of a primal-primal wedge here. The first definition is the one we had been working with until

recently. The second definition was suggested to us recently by Marco Castrillion and it has the nice property

that it is natural under pullbacks, i.e., his definition commutes with discrete pullbacks. This is an example of

how naturality under pullbacks can be used as a criterion for selecting definitions in the discrete case, even

when the operator being defined, like the wedge, is on only one manifold. The other obvious advantage of

his definition is that metric is not used in the definition. His definition is Def. 7.2.1.
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Definition 7.1.1. Given a primal discretek form αk ∈ Ωk
d(K) and a primal discretel form βl ∈ Ωl

d(K) the

discrete primal-primal wedge product ∧ : Ωk
d(K) × Ωl

d(K) → Ωk+l
d (K) defined by the evaluation on a

k + l simplexσk+l = [v0, . . . , vk+l] as follows,

(7.1.1)
〈
αk ∧ βl, σk+l

〉
:=

1
(k + l)!

∑
τ∈Sk+l+1

sign(τ)
|σk+l ∩ ?vτ(k)|

|σk+l|
(α ^ β)(τ(σk+l))

whereSk+l+1 is the permutation group and its elements are thought of as permutations of the numbers

0, . . . , k + l. Here sign(τ) is the sign of the permutationτ , being+1 if τ is even and−1 if it is odd.

The notationτ(σk+l) stands for the simplex[vτ(0), . . . , vτ(k+l)]. Finally the notation(α ^ β)(τ(σk+l)) is

borrowed from algebraic topology (see, for example, page 206 of Hatcher [2002]) and is defined as

(α ^ β)(τ(σk+l)) := 〈α,
[
vτ(0), . . . , vτ(k)

]
〉〈β,

[
vτ(k), . . . , vτ(k+l)

]
〉 .

♦

The above expression looks complicated but the idea behind it, and its computation is really simple. What

it amounts to, is evaluating the formsα andβ on thek andl simplices emanating from each vertex of the

simplexσk+l on which the wedge product is being evaluated. The sign of the permutationτ is there to

provide the anti commutativity property. The volume factor is provided to make the computation democratic,

by giving an appropriate weight to each vertex ofσk+l. The following example of wedge product between

two 1-forms should clarify the notation.

Example 7.1.2. Let α andβ be two 1-forms whose wedge product has to be computed, sok = l = 1.

The definition above gives the value ofα ∧ β on a triangleσ2 = [v0, v1, v2]. According to the definition

above the permutation group to be used isS1+1+1 = S3. Thusτ are elements of the set of permutations of

{0, 1, 2}. We will write the elements ofS3 as 1-0-2, 2-0-1, 0-1-2, 2-1-0, 1-2-0 and 0-2-1 with the obvious

interpretation. The signs of these are−, +, +, −, + and− respectively. Let the volume factors appearing

in (7.1.1) be denoted byC0, C1 andC2, i.e., let

Ci =
|σ2 ∩ ?vi|
|σ2|

.

Then

(7.1.2) 〈α ∧ β, [v0, v1, v2]〉 =
1
2
[−C0〈α, [v1, v0]〉〈β, [v0, v2]〉+ C0〈α, [v2, v0]〉〈β, [v0, v1]〉

+ C1〈α, [v0, v1]〉〈β, [v1, v2]〉 − C1〈α, [v2, v1]〉〈β, [v1, v0]〉

− C2〈α, [v0, v2]〉〈β, [v2, v1]〉+ C2〈α, [v1, v2]〉〈β, [v2, v0]〉]

Thus the formula says to go around the 3 vertices of the triangle evaluatingα and β on the two edges
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α

β
Figure 7.1: Pictorial depiction of 1 term in the sum in equation (7.1.2).

emanating from the vertex, then switching the arguments with an appropriate sign. The weighting factor is

the area of the triangle corner obtained by intersecting the Voronoi cell of the vertex with the triangle divided

by the area of the triangle. A pictorial depiction of 1 term in the equation above is in Fig. 7.1. �

The definition Def. 7.1.1 discussed above has some nice properties and some undesirable properties. If

a smooth volumek-form and a volumel-form are discretized and their primal-primal wedge computed on a

(k + l)-simplex, the result is the volume of the simplex. Also, this wedge satisfies most of the properties of

the smooth wedge. Specifically the following lemma is true.

Lemma 7.1.3. The discrete wedge product∧ : Ωk
d(K)×Ωl

d(K) → Ωk+l
d (K) satisfies the following proper-

ties:

(i) Anti-commutativity αk ∧ βk = (−1)klβl ∧ αk.

(ii) Leibniz rule d(αk ∧ βl) = (dαk) ∧ βl + (−1)kαk ∧ (dβl).

(iii) Associativity for closed formsFor αk ∈ Ωk
d(K), βl ∈ Ωl

d(K), γm ∈ Ωm
d (K), such thatdαk = 0,

dβl = 0, dγm = 0, we have that,(αk ∧ βl) ∧ γm = αk ∧ (βl ∧ γm).

Proof. See Desbrun et al. [2003]. �

Remark 7.1.4. Lack of associativity: According to Givental [2003] this lack of associativity in general,

and a special status for closed forms, is not an accident. Putting the “democratic weighting” aside, the wedge

definition works for any simplicial complex (such as singular cochains, for instance). It is known that it is

in principal impossible to make a universal definition anti-commutativeand associative. This phenomenon

has been studied a lot in algebraic topology or homological algebra and gives rise to the concepts of Massey

products and homotopy-associative algebras.

In our situation, one can define on the chain complex(C∗,d) a sequence of operations: the binary

operationa, b 7→ ab (the wedge product), some triple operationa, b, c 7→ [a, b, c] etc. such that the deviation

of each operation from some kind of associativity property is measured by the differential of the previous

operation. The key example is:

(ab)c− a(bc) = d[a, b, c]− [d a, b, c]− [a,d b, c]− [a, b,d c] .
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The signs correspond to evena, b, c and in general should be changed by the factors

(−1)deg(a) and(−1)deg(a)+deg(b)

in the last two summands. This implies that the product is associative on the cohomology i.e. whena, b, c

are closed, then(ab)c− a(bc) is exact. Our statement that it is not just exact but 0 is a bit surprising but not

impossible in this context. ♦

Remark 7.1.5. Wedge product and interpolation of forms: It has been pointed out by Sen et al. [2000]

that if the wedge product is defined by first interpolating the discrete forms by using the Whitney maps, the

resulting wedge product is still non-associative. Intuitively, this lack of associativity, and the lack in our case,

stem from the fact that one is not defining the wedge product pointwise. Thus it seems that one must not only

interpolate, but also specify, say, a vertex at which the evaluation must take place, to have a good chance of

getting associativity. This point of view seems to appear in Hiptmair [2002a] and we intend to explore this in

future work. ♦

Remark 7.1.6. Absence of naturality under pullback: Consider a simplexσn and an affine mapϕ : Rn →

Rn. Then in general the circumcenter isnot invariant under such maps. That is, in generalϕ(c(σn)) 6=

c(ϕ(σn)). Now suppose that we are given two simplicial complexes with a simplicial homeomorphismϕ

between them. If we use Def. 7.1.1 for the wedge then in general the wedge will not commute under discrete

pullback. That is, in general we willnot have that

〈ϕ∗(α ∧ β), σ〉 = 〈α ∧ β, ϕ(σ)〉 .

This appears to be not a good sign for that discrete definition, since the above property in the smooth theory

should follow from the change of variables theorem. Fortunately, the alternative definition presented in the

next section does satisfy this property. ♦

7.2 Alternative Primal-Primal Wedge

Now we give the other definition of primal-primal wedge, shown to us recently by Castrillon Lopez [2003],

which has the nice properties of not using the metric and of being natural under discrete pullbacks.

Definition 7.2.1 (Castrillon Lopez [2003]). Given a primal discretek form αk ∈ Ωk
d(K) and a primal

discretel form βl ∈ Ωl
d(K) the natural (in the sense of commuting with discrete pullbacks)discrete primal-

primal wedge product ∧ : Ωk
d(K) × Ωl

d(K) → Ωk+l
d (K) defined by the evaluation on ak + l simplex

σk+l = [v0, . . . , vk+l] as follows,

(7.2.1)
〈
αk ∧ βl, σk+l

〉
:=

1
(k + l + 1)!

∑
τ∈Sk+l+1

sign(τ)(α ^ β)(τ(σk+l)) .
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♦

Remark 7.2.2. Comparison of factors: In the above definition, equation (7.2.1) can be rewritten as

〈
αk ∧ βl, σk+l

〉
=

1
(k + l + 1)(k + l)!

∑
τ∈Sk+l+1

sign(τ)(α ^ β)(τ(σk+l))

=
1

(k + l)!

∑
τ∈Sk+l+1

sign(τ)
1

k + l + 1
(α ^ β)(τ(σk+l)) .

Comparing this with equation (7.1.1) we find that the factor

|σk+l ∩ ?vτ(k)|
|σk+l|

in that definition has been replaced by
1

k + l + 1
.

Thus a metric dependent factor has been changed into a constant factor. This is what makes Def. 7.2.1 natural

under discrete pullback. Note also that

∑
τ∈Sk+l+1

|σk+l ∩ ?vτ(k)|
|σk+l|

=
∑

τ∈Sk+l+1

1
(k + l + 1)!

= 1

a property that is useful in proving properties of the discrete wedge. ♦

7.3 Summary and Discussion

In the last two sections we have discussed the primal-primal wedge product in some detail. We defined it

in two ways, one of which due to Castrillon Lopez [2003] has the nice feature of being defined without the

use of metric and of commuting with discrete pullbacks. Since forms can be dual as well, for a complete

treatment of discrete wedge product we should define dual-dual and primal-dual wedges. In this section we

give only some preliminary suggestions for these definitions and do not study the properties of these wedge

products.

Given a dual discretek form α̂k ∈ Ωk
d(?K) and a dual discretel form β̂l ∈ Ωl

d(?K) thediscrete dual-

dual wedge product∧ : Ωk
d(?K)×Ωl

d(?K) → Ωk+l
d (?K) might be defined (modulo some factors that have

been left out) by the evaluation on ak + l dual cellσ̂k+l = ?σn−k−l = ?[v0, . . . , vn−k−l] as follows.

〈α̂k ∧ β̂l, σ̂k+l〉 =〈α̂k ∧ β̂l, ?σn−k−l〉

=
∑

σn�σn−k−l

sgn(σn−k−l, [vk+l, . . . , vn])
∑

τ∈Sk+l

sign(τ)

· 〈α̂k, ?[vτ(0), . . . , vτ(l−1), vk+l, . . . , vn]〉〈β̂l, ?[vτ(l), . . . , vτ(k+l−1), vk+l, . . . , vn]〉
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whereσn = [v0, . . . , vn], and we have without loss of generality assumed thatσn−k−l = ±[vk+l, . . . , vn].

Here we have left out the factor to be used, and that is for future work.

As mentioned in the preamble of this chapter, in some important applications, the Lagrangian can be

written asα ∧ ∗α. These are a complementary primal-dual pair, i.e., their degrees sum ton. The cochain

obtained by such a wedge product of ak and(n− k)-form could be defined on the support volumes of all the

k-simplices. Recall that these tile the underlying space|K|.

Let αk ∈ Ωk
d(K) be a primalk-form andβ̂n−k ∈ Ωn−k

d (?K) a dual(n − k)-form. Thusα andβ̂ are

a complementary primal-dual pair. Thediscrete primal-dual wedge product∧ : Ωk
d(K) × Ωn−k

d (?K) →

Ωn
d (Vk(K)) can be defined by the evaluation on the support volume of ak-simplex as follows. Here

Ωn
d (Vk(K)) are the cochains on then-cells that are the support volumes ofk-simplices. The value of

〈
αk ∧ β̂n−k, Vσk

〉
will likely involve terms like 〈

αk, σk
〉 〈

β̂, ?σk
〉
.

One obvious weighting factor to use for such a term might be

1
2

1
n |σ

k| |?σk ∩ σn|
Vσk

.

Here the numerator is the volume of that part of support volumeVσk that is formed byσk and its dual and

lies inside someσn. But again these factors are metric dependent, which may not be good.

However, recently Castrillon Lopez and Fernandez Martinez [2003] used a similar construction in the

special case ofn = 2 andk = 1 to do a discrete variational derivation of the Euler-Lagrange equation for

d f ∧ ∗d f . The solutions of these are harmonic maps on a surface. Their variational derivation yielded the

same Laplace-Beltrami operator that we defined in Chapter 6. They have shown that starting from a smooth

Lagrangian, one can derive the equation for harmonic maps and discretize it, or discretize the Lagrangian

and derive the discrete equation for harmonic maps using DEC. In both cases the resulting discrete Euler-

Lagrange equations are the same.
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Chapter 8

Interior Product and Lie Derivative

Results: In this thesis, we are trying to build a discrete exterior calculus which treats vector fields and

forms as separate entities, as does smooth theory. One motivation is that Lie derivatives of forms and vector

fields are two very different things. This is expanded upon in Sec. 8.1 below. In this chapter we will discuss

interior product and Lie derivatives of forms. First, we will derive an identity relating smooth interior product

to Hodge star and wedge products. This yields an algebraic, discrete interior product. However since in

the discrete theory we are only concerned with integrals of forms we can use the notion of extrusion of a

manifold by the flow of a vector field to define integral of interior product. This is an idea of Bossavit [2003]

and it leads to another definition of discrete interior product. A similar distinction exists in our discrete Lie

derivative definition. Use of the Cartan homotopy formula leads to an algebraic definition of Lie derivative,

and a flow-out formula that we prove, leads to another, flow based definition. In this Chapter we argue that

interpolation of forms becomes a must for a proper definition of Lie derivative.

Shortcomings: Our algebraic definition of interior product uses metric information in the form of Hodge

star and flat. We prove here that in the smooth case this metric dependence cancels out. But we don’t know

if this cancellation happens in the discrete case also. We have not studied carefully which properties are

satisfied by the two definitions of interior product we give here. Nor have we studied if the two are the same

in the discrete case.

A wedge product is involved in the algebraic definition. Thus the Lie derivative of a wedge product

ends up with a wedge of three forms, if the algebraic definition is used. Due to the lack of associativity for

general forms, one risks losing the important property of Leibniz rule for Lie derivative, except perhaps, for

closed forms. This was pointed out to us by Alan Weinstein. We give here the discrete version of the flow-

out formula for Lie derivative, to the extent possible without interpolation of forms. This is one of the key

examples that shows the importance of interpolation of forms. In fact Bossavit [2003] uses the interpolation

approach approach for interior product. But we haven’t seen a Lie derivative development like this. Neither

have the properties of such an interior product been studied in detail.

The smooth definition of Lie derivative, and hence this interpolated one, depends on derivatives. Hence,
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ultimately, the discrete definition for higher degree forms may turn out to be independent of the extension

(interpolation) used. Finally, we do not discuss the Lie derivatives of vector fields at all in this thesis.

8.1 Separation of Forms and Vector Fields

In Chapter 5 we defined discrete vector fields and the discrete sharps and flats for going between 1-forms and

vector fields. One use for sharps and flats is of course, to be able to translate vector calculus into exterior

calculus, allowing one to discretize equations written in vector calculus notation. But there is another, more

important reason for defining sharps and flats. As mentioned in Chapter 5, this is that in mechanics some

quantities aredefinedusing these operators. An example from Chapter 5 worth repeating for emphasis, is that

of vorticity in fluid mechanics. In geometric treatment of fluid mechanics vorticity is defined asdu[. Hereu

is the velocity field of the fluid, a genuine vector field which is not a proxy for a 1-form.

In many applied fields, vector calculus has been given prominence over differential forms even when

forms would have been more appropriate and simpler to use. In 3D, time-dependent electromagnetism,

the quantities of interest should be modeled by differential forms, not vector fields. When the Maxwell

system is written like this, theonly place where metric plays a role, is in the constitutive, material dependent

relationshipsd = ∗εe andb = ∗µ, wheree andh are 1-forms andd andb are two forms. When Maxwell’s

equations are written in terms of vector fields, which is the more common formulation, thenall the fields that

appear are proxies for 1-forms and 2-forms.

In R3, this prevalent confusion between 1-forms, 2-forms and vector fields, all of which have a basis size

of 3, takes the following form. For example, given a vector fieldF onR3 given by

F = F1
∂

∂x
+ F2

∂

∂y
+ F3

∂

∂z

we can identify it with the 1-formF [ = F1dx + F2dy + F3dz. With the standard inner product onR3 we

can identifyF also with the 2-form∗(F [) = F3dx ∧ dy − F2dx ∧ dz + F1dy ∧ dz. Most previous works

on DEC like theories that do talk about vector fields, do so in this way, by using vector fields as proxies for

differential forms. One exception is the work of Bossavit [2003]. The cost of this choice, and the importance

of the exterior calculus approach, has become clear in computational electromagnetism. Many researchers

in that field have explained this in their papers and books. For excellent treatments see for example Bossavit

[1991]; Mattiussi [2000].

Our motivation for keeping forms and vector fields distinct is our introduction of a discrete Lie derivative

into the theory. Lie derivative of a tensor is its derivative along the flow of a vector field. Arnol′d [1989] has

also called it the fisherman’s derivative (page 198 of Arnol′d [1989]) :

the flow carries all possible differential-geometric objects past the fisherman, and the fisherman

sits there and differentiates them.
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See Abraham et al. [1988] for a thorough treatment of Lie derivatives of tensors and vector fields. Lie

derivatives of forms and vector fields are very different things. For example, ifα is a 1-form andX a vector

field in R3 then in general

(£Xα)] 6= £X(α]) .

Similarly, if β is a 2-form then in general

(∗(£Xβ))] 6= £X((∗β)]) .

Thus if one was to identify 1-formsα or 2-formsβ with their corresponding vector fieldsα] and(∗β)] then

the Lie derivative along a vector fieldX would turn out to bewrong. This is why in certain applications it is

very important to keep the distinction between forms and vector fields.

8.2 Algebraic Discrete Interior Product or Contraction

Interior product is an operator that allows one to combine a vector field and a form. For a smooth manifold

M the interior product of a vector fieldX ∈ X(M) with ak + 1 form α ∈ Ωk+1(M) is written asiXα and

for vector fieldsX1, . . . , Xk ∈ X(M) the interior product in smooth exterior calculus is defined by

iXα(X1, . . . , Xk) = α(X,X1, . . . , Xk) .

Thus it is an operator that does not depend on the metric. We will first define the interior product by using

an identity that is true in smooth exterior calculus. Since we have not seen this identity we state it here with

proof. As the proof shows, the metric dependence cancels out in the smooth case.

Lemma 8.2.1. Given a smooth manifoldM of dimensionn and a vector fieldX ∈ X(M) and ak-form

α ∈ Ωk(M) we have that

(8.2.1) iXα = (−1)k(n−k) ∗ (∗α ∧X[) .

Proof. For properties of the interior product that we use in this proof see page 429 of Abraham et al. [1988].

Recall thatiX is R-linear. Moreover, for a smooth functionf ∈ Ω0(M) we have thatifXα = f iXα. This

is due to the multilinearity ofα. As a result it is enough to show the result in terms of basis elements. In

particular letτ ∈ Sn be a permutation of the numbers1, . . . n such thatτ(1) < . . . < τ(k) andτ(k + 1) <

. . . < τ(n). Since the identity (8.2.1) to be proved is a pointwise statement, pick a chart onM around

an arbitrary pointx ∈ M and lete1, . . . , en ande1, . . . , en be respectively the bases for the tangent and

cotangent spacesTxM andT ∗xM . LetX = eτ(j) for somej ∈ {1, . . . , n} and letα = eτ(1) ∧ . . . ∧ eτ(k).
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Then it is enough to show that

(8.2.2) ieτ(j)e
τ(1) ∧ . . . ∧ eτ(k) = (−1)k(n−k) ∗ (∗(eτ(1) ∧ . . . ∧ eτ(k)) ∧ eτ(j)) .

It is easy to see that the LHS is 0 ifj > k and it is

(−1)j−1(eτ(1) ∧ . . . ∧ êτ(j) ∧ . . . ∧ eτ(k))

otherwise. Herêeτ(j) meanseτ(j) is omitted from the wedge product. Now on the RHS of (8.2.2) we have

that

∗(eτ(1) ∧ . . . ∧ eτ(k)) = sign(τ)(eτ(k+1) ∧ . . . ∧ eτ(n)) .

Thus RHS is equal to

(−1)k(n−k) sign(τ) ∗ (eτ(k+1) ∧ . . . ∧ eτ(n) ∧ eτ(j))

which is 0 as required ifj > k. So assume that1 ≤ j ≤ k. We need to compute

∗(eτ(k+1) ∧ . . . ∧ eτ(n) ∧ eτ(j)) .

This is

s eτ(1) ∧ . . . ∧ êτ(j) ∧ . . . ∧ eτ(k)

where the signs = ±1 to be determined is the one that makes

s eτ(k+1) ∧ . . . ∧ eτ(n) ∧ eτ(j) ∧ eτ(1) ∧ . . . ∧ êτ(j) ∧ . . . ∧ eτ(k) = µ

for the standard volume formµ = e1 ∧ . . . ∧ en. This shows thats = (−1)j−1(−1)k(n−k) sign(τ). (This

technique to determine signs of wedge product involving permuted basis elements also appears on page 412

of Abraham et al. [1988]). Thus RHS = LHS as required. �

Definition 8.2.2 (Algebraic). LetK be a simplicial complex,X ∈ Xd(K) a primal discrete vector field and

α ∈ Ωp
d(?K) a dualp-form. Then thediscrete primal-dual interior product is defined as

iXα := (−1)p(n−p) ∗ (∗α ∧X[) .

A discretedual-primal interior product can be defined analogously. ♦

A valid criticism of such a definition is the metric dependence. We saw in the proof of Lemma 8.3.2 that

the metric dependence cancels out in the smooth case. But we don’t know if the same is true in the discrete

case. This will be studied in future work. In the next section we give a different definition of interior product.



81

This has appeared in Bossavit [2003] and is given here for completeness.

8.3 Interior Product via Extrusion

Recently, Bossavit [2003] described the importance of interior product in some applications in electromag-

netism and gave a very interesting definition, based on the idea of extruding objects under the flow of a vector

field. We develop this here for completeness and because this led us to a similar definition of Lie derivative

which will be given in a later section. We point out however, that we only know how to give the definition in

special cases. In particular, the vector field must be primal, and it must lie along primal edges. For a general

primal vector field, we only know how to give the definition for a particularn-simplex. In that case, the vector

at a primal vertex can be decomposed uniquely into vectors along the edges, since the edges emanating from

a vertex, form a basis for the plane of then-simplex. In the case of a full one-ring, the decomposition will

not be unique. To get a general definition, we have to interpolate forms, which we intend to explore in future

work. Now we give some preliminaries.

Definition 8.3.1. Let M be a smooth manifold of dimensionn andX ∈ X(M) a smooth vector field on

it. Let S be a submanifold (dimensionk, with k < n). As S is carried by the flow for a timet, it stays a

submanifold ift is less than the lifetime of every point onS. We will call such a submanifold at timet the

flowed-out submanifoldand denote it bySt. We will call the manifold obtained by sweepingS along the

flow of X for time t as theextrusion of S byX for time t and denote it byEX(S, t). ♦

Lemma 8.3.2 (Bossavit [2003]).

(8.3.1)
∫

S

iXβ =
d

dt

∣∣∣∣
t=0

∫
EX(S,t)

β .

Sketch of proof.Prove instead that

∫ t

0

[∫
Sτ

iXβ
]
dτ =

∫
EX(S,t)

β .

Then by first fundamental theorem of calculus the desired result will follow. To prove the above, take coordi-

nates onS and carry them along with the flow and define the transversal coordinate to be the flow ofX. This

is the proof that Bossavit [2002a] sketches. �

Using the identity in equation (8.3.1) we shall define a discrete interior product like Bossavit [2003]. The

idea is to define the discrete interior product by using a discretization of equation (8.3.1). The discrete version

then is not an identity to be proved but true by definition. We don’t claim that such a discretization converges

to the smooth identity. As in the rest of the thesis, we leave such convergence questions for future work.

Now letX ∈ Xd(K) be a discrete primal vector field andβ ∈ Ωk+1
d (K), a primal discrete(k+ 1)-form.

UsingRN in place ofM and ak-simplexσk ∈ K in place of the submanifoldS we get the following discrete
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version of equation (8.3.1)

(8.3.2)
〈
iXβ, σk

〉
=

d

dt

∣∣∣∣
t=0

〈
β,EX(σk, t)

〉
.

We will define the interior product on a primal(k + 1)-simplexσk+1 � σk. Since the interior product is

linear w.r.tX it is enough to give the definition in terms of a basis vector of the plane ofσk+1. The corner

basis ofσk+1 consists ofk vectors that spanσk and 1 vector along an edgeσ1. We will now derive the

discrete definition fori ~σ1β from the discretized identity 8.3.2. It will be clear from the derivation that if any

of the other basis elements are chosen, which all span the plane ofσk, the interior product will be 0. This is

the discrete analogue of the property thatiX ◦ iX = 0. As mentioned at the start of this Section, the vector

fields allowed in our definition are restricted to be along edges.

We will do the derivation by first interpolating the primal vector which is~σ1 based atσ0 and 0 on all

other nodes. Parameterize the edgeσ1 with t ∈ [0, 1]. Assume without loss of generality thatσ0 is the origin

of Rk+1, in whichσk+1 is embedded. Let~x = (x0, . . . , xk) be coordinates onRk+1. In these coordinates,

the vector field alongσ1 is ~̇x(t) = ~σ1 (1 − t). Since~x(0) = 0, the solution of this system of ODEs is

~x(t) = σ1 (t− (t2)/2.

Now E~σ1(σk, t) is a (k + 1)-simplex that is a subset ofσk+1. It also has the same base asσk+1 and

this base isσk. In fact it is the simplex obtained by joining the point~x(t) ∈ Rk+1 to all the points inσk by

straight lines. Now we will assume that the value of a discrete form on part of a simplex is proportional to

the ratio of volumes of that part and the full simplex. With this assumption, we have〈
β,E~σ1(σk, t)

〉
〈β, σk+1〉

=
|E~σ1(σk, t)|
|σk+1|

=
(1/(k + 1)) |σk| h(t)
(1/(k + 1)) |σk| h

whereh(t) is the height of~x(t) aboveσk andh is the height of the other end point ofσ1 aboveσk. By

geometry, this ratio of heightsh(t)/h is

h(t)
h

=
‖~x(t)‖
‖σ1‖

=
‖~σ1‖
|σ1|

(
|t− t2

2
|
)
.

Thus, fort ≤ 1 〈
β,E~σ1(σk, t)

〉
〈β, σk+1〉

=
1

σk+1

〈
β, σk+1

〉(
t− t2

2

)
and so taking time derivative of both sides and settingt = 0 we get

〈
i~σ1β, σk

〉
=

1
|σk+1|

〈
β, σk+1

〉
.
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Thus interior product of an edge vector~σ1 with a (k + 1)-form, evaluated on a simplexσk, is the average

value on the(k + 1)-simplex built from the edgeσ1 and the simplexσk.

8.4 Algebraic Lie Derivative

Once the interior product has been defined, one candefinethe Lie derivative by the Cartan magic formula.

In this, if the algebraic definition of interior product is used, then there is a potential problem with Leibniz

property of the Lie derivative. The algebraic definition Def. 8.2.2 involves a wedge product. Since the wedge

product is not associative, except for closed forms, the Leibniz property of Lie derivative might not hold.

This is the property that

£X(α ∧ β) = £X(α) ∧ β + α ∧£X(β) .

This possibility was pointed out to us by Weinstein [2003]. We don’t know whether this is a problem in

practice or not, but indeed Leibniz property of the Lie derivative is an important property, and its lack probably

will be a problem in applications. Nevertheless we give the algebraic definition below.

Definition 8.4.1. LetK be a simplicial complex,X ∈ Xd(K) a primal discrete vector field andω ∈ Ωp
d(?K)

a dualp-form. Then thediscrete primal-dual Lie derivative is defined using the interior product and the

Cartan magic (or homotopy) formula (see Abraham et al. [1988] as

£Xω := iXdω + diXω .

♦

8.5 Lie Derivative From Flow-Out Formula

An alternative to the algebraic approach detailed above is a method based on flowing out simplices similar

to the idea for interior product sketched above. It appears as if, for Lie derivative, this approach cannot be

carried through without interpolation of forms, which is something we intend to do in the future. We use this

as an argument that interpolation of forms may be required for a proper definition of a discrete Lie derivative.

It may turn out, that the resulting formula is independent of the interpolation, but at least its derivation seems

to require interpolation of forms. We develop the discrete formula of the Lie derivative, based on this flow-out

approach, to the point where we see that the interpolation is required. It appears that even this, can be done

only for special vector fields, that lie along primal edges. This is a strong argument in favor of interpolation

of forms.

Below, we give an identity from the smooth case from which the discrete definition of a flow-out Lie

derivative follows if interpolation of forms is allowed. But then one can argue that the smooth formula for

Lie derivative should be used with the interpolated forms. This would allow all primal vector fields, and not
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just those along edges. We agree with this argument and intend to pursue the interpolation approach in future

work. For completeness however, we now state and prove the identities referred to above.

Lemma 8.5.1. LetS, St be as above andβ be ak-form onM . Then

(8.5.1)
∫

S

£Xβ =
d

dt

∣∣∣∣
t=0

∫
St

β .

Proof. By the Lie Derivative Theorem (Theorem 6.4.1 of Abraham et al. [1988]) we have that for anyτ ≤ t

F ∗τ (£Xβ) =
d

dτ
F ∗τ β .

Integrating both sides from0 to t and using the fact thatF ∗0 β = β we get

∫ t

0

F ∗τ (£Xβ)dτ = F ∗t β − β .

In the above equation both sides arek-forms onM and are functions oft, so they are time dependentk-forms

onM . Beingk-forms onM they can be integrated on ak-dimensional submanifold ofM . Integrating both

sides onS we get ∫
S

∫ t

0

F ∗τ (£Xβ)dτ =
∫

S

F ∗t β −
∫

S

β .

Now interchange the order of integration on the LHS and on RHS use the fact that
∫

S
F ∗t β =

∫
St
β. This

yields ∫ t

0

∫
Sτ

£Xβdτ =
∫

St

β −
∫

S

β .

Both sides are real valued functions oft. Taking derivative w.r.tt of both sides and using the first fundamental

theorem of calculus we get ∫
St

£Xβ =
d

dt

∫
St

β .

Evaluating both sides att = 0 we get the desired result. �

To derive a discrete definition of Lie derivative from the flow-out formula (8.5.1) we sketch the idea with

an example. Suppose the mesh consists of 1 tetrahedron[v0, v1, v2, v3] and we are given a discrete primal

1-formα. LetX be the primal vector field taking the value~σ1 at v1, where~σ1 is the vector along the edge

[v1, v2]. See Fig. 8.1. At the other nodes,X is 0. We are interested in computing the Lie derivative£Xα and

evaluating it on the edge[v0, v1].

By a reasoning exactly similar to the one carried out in the case of the extrusion based formula for interior

product, we get to a step that requires the computation of the value of the 1-formα on the edge[v0, ~x(t)]

where~x(t) is a point along the edge[v1, v2]. Then a time derivative of this value has to be taken. Due to this,

it may turn out that the answer finally only depends on the value ofα on [v0, v1] and the vector along[v1, v2].

Nevertheless, we see here that the intermediate step requires the interpolation ofα so it can be evaluated
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0 v1

v2

v3

v

Figure 8.1: The configuration for computing the flow-out formula of Lie derivative of a 1-form. The vector
field is nonzero only atv1 and has the length and direction of the edge[v1, v2]. It is linearly interpolated to
be 0 at vertexv2. This is the restriction, to an edge, of the barycentric interpolation of the vector field inside
the tetrahedron. We wish to evaluate the Lie derivative of a 1-form on the edge[v0, v1].

on [v0, ~x(t)] which lies inside the triangle[v0, v1, v2] and somewhere between the primal edges[v0, v1] and

[v0, v2]. But once interpolation of forms is accepted as a method, one might as well just use the definition of

the smooth Lie derivative. This is the plan we intend to pursue further in our future work. We sketch the idea

using 0-forms.

Remark 8.5.2. Interpolation Lie Derivative for Zero Forms: Consider for example a flat 2D mesh and

the vector fieldX to be a primal vector field. Define

(£Xf)(σ0) =
d

dt

∣∣∣∣
t=0

ϕ∗t f̄(σ0)

wheref̄ is an arbitrary smooth extension off andϕt is the flow of an arbitrary smooth extension ofX̄. Thus

(£Xf)(σ0) =
d

dt

∣∣∣∣
t=0

(f ◦ ϕt)

= (d f)(σ0) ·X(σ0) .

Here we have not done anything more than use the definitions from smooth theory. Thus everything is defined

pointwise, and the result only depends on the given discrete data and is independent of the extension used.♦

8.6 Summary and Discussion

This Chapter presents the strongest arguments in favor of an interpolation approach. Here we have seen that

in the case of interior products and Lie derivatives, the purely discrete approach can be pushed only so far.

One can get algebraic definitions, for both, but the lack of associativity can rule out the important Leibniz

property of Lie derivative, except perhaps for closed forms. The extrusion and flow-out based definitions also
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have limitations. Firstly, only special vector fields are allowed. Secondly, for the Lie derivative defined like

this, the intermediate calculation seems to require the interpolation of forms. Once interpolation of forms

is allowed however, it makes sense to use the smooth definitions of various operators to give the discrete

definitions. This leads to an alternative development of the metric independent part of DEC, and we will

pursue this in future work. In Rem. 8.5.2 we sketched the idea for doing this with 0-forms.
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Chapter 9

Other Work

In this chapter we describe some of the other, related work that we have done recently. Some of this is work

which does not yet fall directly into DEC. The rest is in DEC but very speculative and very preliminary.

The first few sections describe template matching, discrete shells, and vector field decomposition. These are

included here because our future work on these topics is likely to be influenced by our DEC work. Moreover,

some of these have influenced our thinking on DEC. The last few sections describe some preliminary and

speculative work, like some basic calculations on lattices and on nonsimplicial meshes. Also included, are

some early thoughts on building general discrete tensors into DEC.

9.1 Template Matching

Deformable template matching is a technique for comparing images with applications in computer vision,

medical imaging and other fields. It has been reported on extensively in the literature. See for example, the

references in Hirani et al. [2001]. Template matching is based on the notion of computing a deformation

induced distance between two images. The “energy” required to do a deformation that takes one image to

the other defines the distance between them. The deformations are often taken to be diffeomorphisms of the

image rectangle, i.e smooth maps with smooth inverse. The energy can be defined using various metrics on

the space of diffeomorphisms.

In this way of posing the problem, template matching is similar to the way fluid mechanics is formulated.

In fluid mechanics, averaged equations have been shown to have the property that length scales smaller than

a certain parameter in the equation are averaged over correctly and don’t need to be resolved in a numerical

solution. See Marsden and Shkoller Marsden and Shkoller [2001] for details. Motivated by this, in Hirani

et al. [2001] we derived the Averaged Template Matching Equation (ATME) :

vt + (div u)v + (u · ∇)v + (Du)T v = 0(9.1.1)

v = (1− α2∆)u(9.1.2)
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According to Holm [2003] this equation can be written in div, grad, curl form.

Our hope in deriving the ATME was that it would allow matching while ignoring features smaller than

a fixed size. This property has not yet been verified but some progress has been made in the analysis of

the equation in one and two spatial dimensions. For example, in Chapman et al. [2002] we showed how

natural boundary conditions lead to the reduction of the boundary value problem of template matching, to a

parameterized initial value formulation. Specifically, we derived the form that the initial velocity must take

to take one image to the other while satisfying the ATME. This initial condition was a piecewise smooth,

continuous function with a jump in the derivative at edges of the image.

Independently, Fringer and Holm [2001] and Holm [2003] have analyzed and computed the solutions

of the ATME and related equations in one and two spatial dimensions. In 1D they found that the initial

condition we derived (which they called a peakon) leads to stable solutions in which the initial peakons move

like solitons. Any other initial condition that they tried immediately broke up into peakons that proceeded to

move around and collide elastically. More interestingly, recently they have discovered solutions in the two

spatial dimension case. These turn out to be one dimensional string like peakons that move and collide in very

interesting soliton like ways. The crucial step in the numerical solution was the use of mimetic discretization

of the ATME when it is written using div, grad and curl. Mimetic discretization (Hyman and Shashkov

[1997a]) is related to a basic form of DEC involving only discrete forms and on logically rectangular meshes.

Our development of DEC should now allow the solutions to be computed on simplicial, irregular meshes.

Another way to write the ATME is using Lie derivatives, and again, DEC should prove useful in discretizing

that.

9.2 Discrete Shells

The work described in this section is joint work with Mathieu Desbrun, Eitan Grinspun and Peter Schröder.

See Grinspun et al. [2003] for details. A shell is a thin flexible structure whose rest configuration is non-flat.

Previously such models required complex continuum mechanics formulations and correspondingly complex

algorithms but we have derived a shell model in the discrete setting of triangle meshes.

The stored energy functional for a discrete shell consists of a membrane part, that measures area and

length changes, and a flexural part that accounts for the energy stored by out of plane bending. The key new

part of our work in discrete shells is the measurement of bending strain by the difference between the shape

operator on the reference configuration and thepullbackof the shape operator on the deformed configuration.

We use the commuting of trace and pullback to obtain a simple expression for the strain. Here we state

and prove this elementary result. This proposition was also proved independently by Grinspun and Desbrun

[2003].

Proposition 9.2.1. Letϕ : M →M be a diffeomorphism. HereM is the reference configuration of the shell

andM is the current. LetS andS be the shape operators onM andM respectively. ThenTr (ϕ∗S) =
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ϕ∗(TrS).

Proof. For a pointx̄ ∈M we have by definition and by the inverse function theorem that

ϕ∗S = Tϕ(x̄)ϕ
−1 ◦ S ◦ Tx̄ϕ

= [Tx̄ϕ]−1 ◦ S ◦ Tx̄ϕ

whereT is the tangent map (derivative). Thus

Tr (ϕ∗S) = Tr
(
[Tx̄ϕ]−1 ◦ S ◦ Tx̄ϕ

)
= ϕ∗ (TrS) .

�

What this proposition allows one to do is to compare these traces at corresponding points of the reference

and deformed configurations. This is because now we can compute

Tr
(
ϕ∗S − S

)
= Tr (ϕ∗S)− TrS

which makes sense only because of the proposition above. Discrete shells is an example of a subject in which

we take the approach that everything be defined on the discrete mesh. Thus, future development of this will

benefit from a development of DEC.

9.3 Discrete Multiscale Vector Field Decomposition

The work described in this section is joint work with Mathieu Desbrun, Santiago Lombeyda and Yiying

Tong (Tong et al. [2003]). In Section 8.1 we have mentioned that in DEC we keep the distinction between

differential forms and vector fields. But there are applications in which the use of vector field proxies for

forms is acceptable. One such application is the discrete decomposition of vector fields.

There is a Hodge decomposition theorem for smooth manifolds without boundaries that states that for

any k-form ω ∈ Ωk(M) there exist uniqueα ∈ Ωk−1(M), β ∈ Ωk+1(M) andγ ∈ Ωk(M) such that

ω = dα+ δβ + γ and∆γ = 0. There is also a generalization of this theorem for manifolds with boundary.

For details see pages 538– 541 of Abraham et al. [1988]. If we use vector field proxies for elements of

Ω1(M) we get that any vector field can be decomposed into a gradient (curl-free), curl (divergence-free) and

harmonic parts.

We have developed an algorithm for vector field decomposition for discrete vector fields on a 3D simpli-

cial mesh. The decomposition is done variationally and also leads to a definition of discrete divergence and

discrete curl. The curl-free part of a vector fieldξ is the critical point of the functional:
∫

K
(∇f − ξ)2 dV
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and the divergence-free part is the critical point of the functional:
∫

K
(∇ × V − ξ)2 dV . This vector field

decomposition work was done without using the DEC framework, but it was our first hint that interpolation

should play a role in DEC. We will denote the discrete divergence and curl byDiv andCurl and the gradient

and curl of interpolated fields by∇ and∇×.

Definition 9.3.1. Let K be a flat simplicial complex of dimension 3,W ∈ Xd(?K) a dual discrete vector

field andv a given vertex. Then define

(Div W )(v) :=
∑

σ3�v

|σ3| ∇φv,σ3 ·W (?σ3)(9.3.1)

(Curl W )(v) :=
∑

σ3�v

|σ3| ∇φv,σ3 ×W (?σ3) .(9.3.2)

In this Section,Div andCurl are our notations for discrete divergence and discrete curl. ♦

The following proposition was proved by Yiying Tong in Tong et al. [2003] and is reproduced here in

DEC notation for completeness.

Proposition 9.3.2 (Tong et al. [2003]).LetK be a flat simplicial complex of dimension 3, andṼ ∈ Xd(?K)

a dual discrete vector field. Denote byV a piecewise affine vector field obtained by linearly interpolating

Ṽ in the interior of each tetrahedron using the primal-primal interpolation functions. Letf̃ be a primal

discrete 0-form andf a piecewise affine function obtained by linearly interpolatingf in the interior of each

tetrahedron. Then away from the boundary ofK, the discrete operatorsDiv andCurl satisfy the following

identities :

Div(∇× V ) = 0(9.3.3)

Curl(∇f) = 0 .(9.3.4)

Here∇× and∇ are the usual smooth curl and gradient operators.

Proof. First we need a simple result about volumes of tetrahedra. For a tetrahedronσ3 let a, b be two of

its vertices and let~σ1
ab be the edge vector that does not contain these vertices, oriented along the direction

∇φa,σ3 ×∇φb,σ3 . For conciseness we have writtenφa for φa,σ3 etc. Then

|σ3| ∇φa ×∇φb =
~σ1

ab

6
.

To see this letσ2 be the face opposite toa, θ the dihedral angle at edge~σ1
ab, andha, hb the heights of vertices

a andb above their respective opposite faces. Then

|σ3| ∇φa ×∇φb =
1
3
|σ2|ha

1
ha

1
hb

sin θ
~σ1

ab

|σ1
ab|

=
~σ1

ab

6
.
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Now to prove (9.3.3) note that for any vertexp :

Div(∇× V )(p) =
∑

σ3�p

∇φp,σ3 · (∇× V )|σ3 |σ3|

=
∑

σ3�p

∇φp,σ3 ·

∑
a≺σ3

a6=p

∇φa,σ3 × V (?a)

 |σ3|

=
∑

σ3�p

∑
a≺σ3

a6=p

V (?a) ·
(
∇φp,σ3 ×∇φa,σ3

)
|σ3|

=
∑

σ3�p

∑
a≺σ3

a6=p

V (?a) ·
~σ1

pa

6
= 0 .

The third equality is from a basic identity about scalar triple products and the second last one is from the

result about tetrahedral volume derived above. This resulting sum is null, because the oriented edges~σ1
pa

form a loop aroundp. To prove (9.3.4) we use similar reasoning and show that

(Curl(∇f))(p) =
∑

σ3�p

∇φp,σ3 × (∇f)|k |σ3|

=
∑

σ3�p

∑
a≺σ3

a6=p

(
∇φp,σ3 ×∇φa,σ3

)
f(a) |σ3|

=
∑

σ3�p

∑
a≺σ3

a6=p

f(a)
~σ1

pa

6
= 0 .

Thus we have shown that the vector calculus identities in equation (9.3.3) and (9.3.4) are true. �

The discrete divergenceDiv here, is related to the dual-primal divergence of DEC, but is taken over

the full one-ring, rather than the Voronoi dual of a vertex. In the first identity proved above, we have thus, a

composition of primal-dual curl followed by a dual-primal divergence. In the second identity the composition

is of a primal-dual gradient followed by a dual-primal curl. Thus in this work we have been able to find the

pairs of operators that can be composed.

It was our vector field decomposition work described in this Section, that first suggested to us the useful-

ness of interpolation of forms and vector fields. The idea of interpolation and its role in current and future

DEC is discussed in Section 1.5 and in various places in the thesis. Also, it is in this vector field decompo-

sition that we have found a nice definition of 3D curl that satisfies the usual vector calculus identities. This

means that the hints for defining a sharp and a flat that are inverses of each other, might be found in this work.
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9.4 Regular Nonsimplicial Meshes

In this section we report some very preliminary ideas about regular nonsimplicial meshes, like square and

rectangular meshes and a regular hexagonal mesh in 2D. Note that these are not simplicial complexes, al-

though they are cell complexes. If we only include the edges and vertices, as in lattices, then indeed the mesh

becomes a dimension 1 simplicial complex.

For example consider vertices at integer pair locations on the plane and edges between nodes that are

distance one from each other. If the square area is not included, but only the edges and vertices are, then this

complexis a simplicial complex of dimension 1. The dual of a vertex is the plus shaped region starting from

the vertex and going halfway along the 4 edges incident on the node. The dual of an edge is the midpoint of

the edge. One can include even longer distance interaction. For example, if edges of length 2, or diagonal

edges etc. are also included, the complex is still a simplicial complex of dimension 1.

For such a mesh which is of dimension 1, it makes sense to compute gradients along the edges. This is

the primal-dual gradient and the result is placed in the middle of the edges, which are the duals of edges. In

the primal-dual gradient formula (6.2.1), in the dimension 1 case, the term∇φσ0,σ1 is a vector along the edge

σ1 pointing towardsσ0. Note that hereσ0 is in σ1. The vector has length1/|σ1|. Thus one will get the usual

definition of gradient along the edges. It does not make sense to compute operators like the two dimensional

Laplacian because the complex is of dimension 1.

Now we will consider the regular meshes not as dimension 1 lattices, but with the areas or volumes

included. In 2D, a square or rectangular the mesh such as above is a dimension 2 cell complex but it is not a

simplicial complex. In what follows we consider a 2D square mesh and a 2D hexagonal mesh. We compute

the gradient for the 2D square mesh. We do this by simply applying a formula analogous to (6.2.2) which

was for simplicial case. The gradients of the shape functions are replaced by corresponding normals. The

result is a standard formula for gradients on uniform meshes. Although we don’t show a similar computation

for a rectangular grid, we have checked that the correct gradient formula results from such a procedure on the

rectangular grid as well. The Laplacian on such grids is also reproduced by the DEC formula for Laplacian.

Similarly we compute Laplacian on a hexagonal grid by using the DEC formula for Laplacian and find a

standard formula for the Laplacian on such grids.

These calculations are being presented just as curiosities, not as a suggestion for extending DEC to non-

simplicial cases.

Example 9.4.1. Gradient on a square mesh in 2D:

Consider a flat uniform mesh with square cells of side lengthh such as the one shown in Figure 9.1.

Let f be a 0-form on this, i.e., real values defined at the nodes of the mesh. We will simply use the for-

mula (6.2.2) for discrete gradient and replace quantities that don’t make sense in a nonsimplicial mesh by the
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c

d

a

b

v

Figure 9.1: Portion of a grid on which gradient is to be defined. The dashed region is the Voronoi cell of the
vertexv. The length of the side of each square ish anda,b, etc. are names of the nodes.

corresponding geometric quantity. With such replacements the formula becomes :

(9.4.1) (∇f)(v) =
∑

σ1=[v,σ0]

[
f(σ0)− f(v)

] ∑
c2�σ1

| ? v ∩ c2|
|c2|

~nσ0,c2 .

Hereσ1 = [v, σ0] is an edge containing the vertexv andσ0, c2 is a square cell in the mesh, assumed to be

of size|c2| = h2. Let êx andêy be unit vectors in the horizontal and vertical directions. The normal~nσ0,c2

replaces the gradient of the shape function that appeared in the simplicial case in formula (6.2.2). If in the

figure of the mesh shown here the squarec2 is the northeast square adjacent tov, then for example,

~na,c2 =
êx

h
.

The Voronoi cell?v shown as shaded in the figure, also has areah2 whereas the quantity|?v∩c2| = h2/4

is the area of the overlap region between the dashed square and any one of the primal mesh squares adjacent

to v. We will use the shorthandfx for f(x). The first sum in formula (9.4.1) is over edges that containv.

These are the four edges going to verticesa,b,c andd from v. For each such edge, say[v, a] the second sum

is over all squaresc2 that contain this edge. For[v, a] these are the two squares above and below the edge

[v, a]. Thus for each edge there will be 2 terms and hence 8 terms in total. This gives :

(∇f)(v) =
2 (fa − fv)

h2/4
h2

êx

h
+2 (fb − fv)

h2/4
h2

êy

h
+

2 (fc − fv)
h2/4
h2

(− êx

h
) + 2 (fd − fv)

h2/4
h2

(− êy

h
)

=
fa − fc

2h
êx +

fb − fd

2h
êy

which is a standard discrete approximation of the gradient on a uniform square mesh. We state without proof

that this works for a rectangular grid as well. �

Example 9.4.2. Laplacian on a hexagonal mesh:Refer to Fig. 9.2. We want to compute the discrete
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v3

v1

v0

v

1

v2

v3

c012

c023

v

013
v0

c

(a) (b)

Figure 9.2: (a) Hexagonal grid; (b) The Laplacian is computed at pointv0. Since the trianglesv0v1v2 etc. are
not well-centered, the circumcentersc012 etc. lie outside them, but the computation of Laplacian still yields
the correct discrete Laplacian on hexagonal grids.

Laplacian at the vertexv0. If f is a 0-form, we will simply use the DEC formula for Laplace-Beltrami off .

We will use the simplicial complex formed from the “stencil” consisting ofv0, v1, v2 andv3. The complex

consists of the three triangles inside the dashed lines shown in Fig. 9.2 (b). The Voronoi dual?v0 is shown

as shaded. Note that the 3 triangles in the primal mesh are not well-centered. But we will still use the DEC

formula (6.4.2) for Laplace-Beltrami.

Thus we want to compute

〈∆f, v0〉 =
1

|?v0|
∑

σ1=[v0,σ0]

|?σ1|
|σ1|

(f(σ0)− f(v0)) .

The quantity|?v0| is the area of the shaded triangle in Fig. 9.2 (b). Ifh is the length of each side of the

hexagonal mesh, this area is

|?v0| =
3
√

3
4
h2 .

The dual edges that appear in the Laplacian formula above, are the sides of the shaded triangle in the figure.

For a hexagonal mesh with each edgeh, these dual edges have length
√

3h. Thus we have

〈∆f, v0〉 =
1
h2

(
4
3
f(v1) +

4
3
f(v2) +

4
3
f(v3)− 4f(v0)

)

which is the finite difference formula for discrete Laplacian on a hexagonal grid appearing, for example, in

Iserles [1996]. �
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9.5 General Discrete Tensors

For a complete theory of discrete exterior calculus, one must also include general tensors. The tensors we have

included so far are forms, which are antisymmetric tensors. But there are numerous applications that involve

other types of tensors. One example is elasticity. For example, the stress tensor there is not a differential

form. Perhaps, one way to build general tensors into the discrete theory is to define tensors by taking discrete

tensor products of discrete 1-forms. This would require a discrete pairing between forms and vectors. For

example one could build a (2,0)-tensor from 1-formsα andβ, by defining the general tensorα ⊗ β by its

evaluation on vector fieldsU andV by

(α1 ⊗ β1)(U, V ) = α(U)β(V ) .

We have proposed a discrete pairing of forms and vector fields in Section 5.10. That is not very satisfactory

because of the use of metric operator sharp, to define an operator of natural pairing between forms and vector

fields, which should be metric independent. Perhaps with interpolation of forms that we are envisioning in

our future work, one can get a more natural definition of pairing, and hence of general tensors.

9.6 Summary and Discussion

The first three Sections of this Chapter are geometric computations on discrete meshes, and as such will

benefit from an implementation and further development of DEC. Some of these have also influenced our

work on DEC, for example, by pointing out the need for interpolation.

The speculative work we have described here are just some simple hints about how we might extend DEC

to include general tensors and how some simple finite difference formulas can be reproduced by using the

DEC formula, even when the mesh in question is not simplicial.
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Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. Discrete differential-geometry operators

for triangulated 2-manifolds. InInternational Workshop on Visualization and Mathematics, VisMath, 2002.

B. Moritz. Vector difference calculus. PhD thesis, University of North Dakota, 2000.

B. Moritz and W. Schwalm. Triangle lattice Green functions for vector fields.J. Phys. A, 34(3):589–602,

2001.

James R. Munkres.Elements of algebraic topology. Addison–Wesley Publishing Company, Menlo Park, CA,

1984.

R. A. Nicolaides. Direct discretization of planar div-curl problems.SIAM J. Numer. Anal., 29(1):32–56,

1992.

N. Paragios. Special issue on variational and level set methods in computer vision.Intl. J. Computer Vision,

50(3), 2002.

Konrad Polthier and E. Preuss. Identifying vector field singularities using a discrete hodge decomposition. In

H. C. Hege and Konrad Polthier, editors,Visualization and Mathematics, VisMath. Springer–Verlag, 2002.

W. Schwalm, B. Moritz, M. Giona, and M. Schwalm. Vector difference calculus for physical lattice models.

Phys. Rev. E (3), 59(1, part B):1217–1233, 1999.

W. B. Schwalm, S. Crockett, and B. Moritz. Topological lattice model of electron coupled to a classical

polarization field.Int. J. Mod. Phys. B, 24-25:3339, 2001.

Samik Sen, Siddhartha Sen, James C. Sexton, and David H. Adams. Geometric discretization scheme applied

to the abelian Chern-Simons theory.Phys. Rev. E (3), 61(3):3174–3185, 2000.

Jonathan R Shewchuck. What is a good linear finite element? Interpolation, conditioning, anisotropy and

quality measures. 2002.

F. L. Teixeira. Geometric aspects of the simplicial discretization of Maxwell’s equations. In F. L. Teixeira,

editor,Geometric Methods for Computational Electromagnetics, chapter 7. EMW Publishing, 2001. URL

http://ceta-mac1.mit.edu/pier/pier32/pier32.html .

Yiying Tong, Santiago Lombeyda, Anil N. Hirani, and Mathieu Desbrun. Discrete multiscale vector field

decomposition.ACM Transactions on Graphics (SIGGRAPH), July 2003.



100

E. Tonti. Finite formulation of electromagnetic field.IEEE Trans. Mag., 38:333–336, 2002.

Joe Warren, Scott Schaefer, Anil N. Hirani, and Mathieu Desbrun. Barycentric coordinates for convex sets.

2003.

Alan Weinstein. Personal communication. 2003.

Hassler Whitney.Geometric integration theory. Princeton University Press, Princeton, N. J., 1957.



101

Index

Whitney forms, 48

Whitney map, 32

|K|, seeunderlying space

adjacent, 9

associativity

lack of, 73

basis, 11

corner, 11

polyline, 11

Bd, 8

boundary, 35

dual, 37

cell, 9

cell complex, 9, 17

cells, 16

chains

as arrays, 29

primal, 29

circumcenter, 14

circumcentric

subdivision, 15

circumcentric dual

compared with barycentric, 22

circumcentric subdivision

example of, 15

csd, seecircumcentric subdivision

closed star, 9

cochains, 30

codifferential, 42

contraction

algebraic, 80

corner basis, 11

curl

2D, 65

dual-primal, 65

D(K), 17

de Rham map, 31

δ, seecodifferential

discrete form, 30

discretization, 8

discretization and charts, 10

divergence, 60

divergence theorem

dual, 60

DPP flat, 52

dual block,seedual cell

dual cell, 16

elementary dual simplex of, 17

proper face of, 17

dual cell decomposition, 17

dual cells

examples of, 18

properties of, 19

dual discrete forms, 34

dual induced orientation, 22

dualp-skeleton, 17

dual-primal-primal flat, 52

duality

need for, 23
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elementary dual simplex, 19

examples of, 18

exterior derivative

example of, 37

flat

discrete, 48

smooth, 47

flat simplicial complex, 9

forms

complementary, 76

geometrically independent, 8

gradient, 65

primal-dual, 65

primal-primal, 65

hexagonal mesh, 93

Laplacian on a, 93

Hodge star, 40

homeomorphic, 19

homotopy-associative algebra, 73

induced orientation, 12, 37

Int, 8

interior product
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interpolation function, 24

inverse, 56

Lie derivative, 83

and interpolation, 85

linear simplicial complex, 9

manifold-like simplicial complex, 13

Massey products, 73
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primal, 13

natural pairing, 32, 57

one-ring, 9

open simplex, 8
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dual induced, 22

induced, 12, 22, 37

relative, 12

orientation algorithm, 20

oriented simplex, 11

oriented simplicial complex, 13

p-chains, 29

p-skeleton, 17

p-volume, 9

paring

forms and vector fields, 57

pasting map, 10

plane, 9, 45
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example of, 13

same, 19

polyline basis, 11
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primal discrete form, 30
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pullback, 35
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real coefficients, 30
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sgn, seerelative orientation
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manifold-like, 13
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subcomplex of, 9
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well-centered, 14

simplicial triangulation, 9
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square mesh, 92
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∗, seeHodge star
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Stokes’ Theorem, 36

subcomplex, 9
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subgroup, 34

support volume, 20, 48

tensors, 95

transverse, 19

underlying space, 9

Vσ, seesupport volume

vector field

dual, 45

dual-dual, 45

dual-primal, 45

interpolated, 45

primal, 45

primal-dual, 45

primal-primal, 45

wedge, 71, 74

applications of, 71

primal-dual, 76

primal-primal, 71, 74

wedge product

properties, 73

well-centered simplex, 14
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