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Abstract

The language of modern mechanics is calculus on manifolds, and exterior calculus is an important part of that.
It consists of objects like differential forms, general tensors and vector fields on manifolds, and operators that
act on these. While the smooth exterior calculus has a long history going back to Cartan, Lie, Grassmann,
Hodge, de Rham and many others, the need for a discrete calculus has been spurred on recently by the need
to do computations.

This thesis presents the beginnings of a theorglisfrete exterior calculuDEC). This is motivated by
potential applications in computational methods for field theories (elasticity, fluids, electromagnetism) and in
areas of computer vision and computer graphics. One approach to approximating a smooth exterior calculus
is to consider the given mesh as approximating some smooth manifold at least locally, and then defining
the discrete operators by truncating the smooth ones. Another approach is to consider the discrete mesh
as the only given thing and developing an entire calculus using only discrete combinatorial and geometric
operations. The derivations may require that the objects on the discrete mesh, but not the mesh itself, are
interpolated. It is this latter route that we have taken and this leads to a discrete exterior calculus.

Our theory includes not only discrete equivalents of differential forms, but also discrete vector fields and
the operators acting on these objects. General tensors are not developed, though we suggest a possible way to
do that towards the end. The presence of forms and vector fields allows us to address the various interactions
between forms and vector fields which are important in applications. With a few exceptions, most previous
attempts at discrete exterior calculus have addressed only differential forms, or vector fields as proxies for
forms. We also show that the circumcentric dual of a simplicial complex plays a useful role in the metric
dependent part of this theory. The importance of dual complexes in this field has been well understood, but
with a few exceptions previous researchers have used barycentric duals.

The use of duals is reminiscent of the use of staggered meshes in computational mechanics. The appear-
ance of dual complexes leads to a proliferation of the operators in the discrete theory. For example there are
primal-primal, primal-dual etc. versions of many operators. This is of course unique to the discrete side.
In many examples we find that the formulas derived from our discrete exterior calculus are identitical to the
existing formulas in literature.

We define discrete differential forms in the usual way, as cochains on a simplicial complex. The discrete

vector fields are defined as vector valued 0-forms, and they live either on the primal, or on the dual vertices.
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We then define the operators that act on these objects, starting with discrete versions of the exterior derivative,
codifferential and Hodge star for operating on forms. A discrete wedge product is defined for combining
forms; discrete flat and sharp operators for going between vector fields and one forms; and discrete interior
product operator and Lie derivatives for combining forms and vector fields. The sharp and flat allow us to
define various vector calculus operators on simplicial meshes including a discrete Laplace-Beltrami operator.

Our development of the theory is formal in that we do not prove convergence to a smooth theory. We have
tried instead to build a discrete calculus thasédf-consistent and parallels the smooth theory. The discrete
operator should be natural under pullbacks, when the smooth one is, important theorems like the discrete
Stokes’ theorem must be satisfied, and the operators should be local. We then use these operators to derive
explicit formulas for discrete differential operators in specific cases. These cases include 2-surites in
built with irregular triangles, regular rectangular and hexagonal meshes in the plane, and tetrahedralization
of domains inR3. At least in these simple but important examples we find that the formula derived from our
discrete exterior calculus is identitical to the existing formula in the literature.

Numerical methods similar to those based on a discrete exterior calculus have been used in many physi-
cal problems, for example, in areas like electromagnetism, fluid mechanics and elasticity. This is due to the
geometric content of many physical theories. In this thesis we give a glimpse into three fields of discrete,
geometric computations, which we have developed without an exterior calculus framework. These are ex-
amples of areas which are likely to benefit from a working DEC. They include discrete shells, a Hodge type
decomposition of discrete 3D vector fields on an irregular, simplicial mesh, and template matching.

One potential application of DEC is to variational problems. Such problems come equipped with a rich
exterior calculus structure and so on the discrete level, such structures will be enhanced by the availability of
a discrete exterior calculus. One of the objectives of this thesis is to fill this gap. An area for future work,
is the relationship between multisymplectic geometry and DEC. There are many constraints in numerical
algorithms that naturally involve differential forms, such as the divergence constraint for incompressibility of
fluids. Another example is in electromagnetism since differential forms are naturally the fields in that subject,
and some of Maxwell's equations are expressed in terms of the divergence and curl operations on these fields.
Preserving, as in the mimetic differencing literature, such features directly on the discrete level is another one
of the goals, overlapping with our goals for variational problems.

In future work we want to make a cleaner separation of metric independent and metric dependent parts of
DEC. For example, the wedge product, pairing of forms and vector fields, interior product and Lie derivative,
should all be metric independent. Divergence should depend on the metric, only through the appearance of
volume form. The metric should play a role only in the definition of sharp and flat operators. In this thesis,
we don't always make this distinction and sometimes use identities from smooth theory, where the metric
dependence cancels. It is not clear that the same cancellation happens on the discrete side. In these cases we
have also tried to give at least a partial development of a metric independent definition.

In this thesis we have tried to push a purely discrete point of view as far as possible. In fact, in various
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parts of the thesis we argue that this can only be pushed so far, and that interpolation is a useful device for
developing DEC. For example, we found that interpolation of functions and vector fields is a very convenient
device for understanding and deriving a discrete theory involving functions and vector fields. This naturally
leads to the next step, that of interpolation of higher degree forms, for example using Whitney map. This is
the methodology that is quite common in this field. In future work we intend to continue this interpolation
point of view, especially in the context of the sharp, Lie derivative and interior product operators. Some

preliminary ideas on this point of view are spread throughout the thesis.
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Chapter 1

Introduction

This thesis presents the beginnings of a theorgistrete exterior calculu§DEC), motivated by potential
applications in computational methods for field theories (elasticity, fluids, electromagnetism), and in areas
of computer vision and computer graphics. This theory has a long history that we shall outline below in
Section 1.3, but we aim at a comprehensive, systematic, as well as useful, treatment. Many previous works,
as we shall review, are incomplete in terms of the objects and operators that they treat.

One approach to approximating a smooth exterior calculus is to consider the given mesh as approximating
some smooth manifold at least locally, and then defining the discrete operators by truncating the smooth ones.
Another approach is to consider the discrete mesh as the only given thing and developing an entire calculus
using only discrete combinatorial and geometric operations. The derivations of the operators may require that
the objects on the discrete mesh, but not the mesh itself, are interpolated. It is this latter route that we have
taken and this leads to a discrete exterior calculus. General views of the subject area of DEC are common
in the literature (see, for instance, Mattiussi [2000]), but they usually stress the process of discretizing a
continuous theory and the overall approach is tied to this goal. However we take the point of view that the

discrete theory can stand in its own right.

Applications to Variational Problems. One application is to variational problems. These arise naturally

in mechanics and optimal control. In addition many problems in computer vision, image processing and
computer graphics can also be posed naturally as variational problems. Some examples are template match-
ing, image restoration, image segmentation and computation of minimal distortion maps. See, for example,
Hirani et al. [2001]; Paragios [2002]; Gu [2002]; Desbrun et al. [2002]. Key ingredients for computations
involving variational principles, at least in mechanics, are variational integrators designed for the numerical
integration of mechanical systems, as in Lew et al. [2003]. These algorithms respect some of the key features
of the continuous theory, such as their (multi)symplectic nature and exact conservation laws. They do so
by discretizing the underlying variational principles of mechanics rather than discretizing the equations. It

is well known (see the reference just mentioned for some of the literature) that variational problems come

equipped with a rich exterior calculus structure and so on the discrete level, such structures will be enhanced
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by the availability of a discrete exterior calculus. One of the objectives of this thesis is to fill this gap.

Structured Constraints. There are many constraints in numerical algorithms that naturally involve differ-
ential forms, such as the divergence constraint for incompressibility of fluids. Another example is in electro-
magnetism, since differential forms are naturally the fields in that subject, and some of Maxwell’'s equations
are expressed in terms of the divergence and curl operations on these fields. See Hehl and Obukhov [2000] for
electromagnetism using differential forms. Preserving, as in the mimetic differencing literature, such features

directly on the discrete level is another one of the goals, overlapping with our goals for variational problems.

Methodology. We believe that one way to proceed with this program is to develop a calculus on discrete
manifolds which parallels the calculus on smooth manifolds. Indeed one advantage of developing a calculus
on discrete manifolds is pedagogical. By using concrete examples of discrete two- and three-dimensional
spaces one can explain most of discrete calculus at least formally. The machinery of Riemannian manifolds
and general manifold theory from the smooth case is, strictly speaking, not required in the discrete world.
The technical terms that will be used in the rest of this introduction will be defined in subsequent sections,
but they should be already familiar to someone who knows the usual exterior calculus on smooth manifolds.
Chapters 6 and 7 of Abraham et al. [1988] are a good standard reference.

Our development in this thesis is formal, in the sense that we choose appropriate geometric definitions
of the various objects and quantities involved. We do not prove that these definitions converge to the smooth
counterparts. The definitions are chosen so as to make some important theorems like the generalized Stokes’
theorem true by definition, to preserve naturality with respect to pullbacks, and to ensure that operators are
local. Often, an interpolation of objects is involved in reaching the discrete definition. In the cases where
previous results are available, we have checked that the operators we obtain match the ones obtained by other
means such as variational or other derivations. A proper study of convergence is clearly needed in the future

after we have had some numerical experience with DEC.

1.1 Results of This Thesis

Our development of discrete exterior calculus includes discrete differential forms as well as vector fields,
the Hodge star operator, the wedge product, the exterior derivative, as well as interior product and the Lie
derivative. Our theory can be thought of as calculus on simplicial complexes of arbitrary finite dimension.
We point out that the embedding of the complex can be local. We also hint at how it might generalize
formulas from finite-difference theory on regular meshes. The inclusion of discrete differential forms and
discrete vector fields allows us to address the various interactions between forms and vector fields which
are important in applications. With a few exceptions, such as Bossavit [2003], previous attempts at discrete

exterior calculus have addressed only differential forms, or have used vector fields as proxies for forms.
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We use circumcentric duals of simplicial complexes in the metric parts of our theory. The importance
of dual complexes in this field has been well understood, but most previous researchers have used barycen-
tric duals. We show that circumcentric duals play a role in arriving at the metric dependent parts of a DEC
theory. This includes the sharp and flat operators for going between vector fields and forms, and the Hodge
star for operating on forms. The usefulness of circumcentric duality in these cases stems from the fact that
the property of being normal to boundary comes automatically with circumcentric duality. This makes the
expressions for fluxes very easy in terms of geometric objects like the dual cells. Indeed the importance of
circumcentric duals in this context has also been known in some communities such as the mimetic differenc-
ing. But that has usually been for flat two- or three-dimensional logically rectangular meshes and only scalar
and vector fields appear in that literature.

While most of the thesis is about discrete exterior calculus on a single discrete manifold we define discrete
pullback between two complexes. Multiple meshes are important in applications where the mesh is changing,
but the discrete pullback is important even for picking the right definition on a single complex in some cases.
This is because it provides the criterion of naturality for discrete operators, i.e., commuting with pullback,
which is important for a full calculus on manifold. This was pointed out to us very recently by Marco
Castrillon and Jerry Marsden.

We argue in this thesis, that interpolation of objects is important for developing DEC. We use interpolation
of 0-forms and vector fields viewed as vector valued 0-forms and argue that the proper development of sharp
operator, and consequently of gradient and curl, requires the interpolation of 1-forms. In the Chapter on
interior product and Lie derivative we argue that the interpolation of forms plays a crucial role in the derivation
of discrete version of these operators. But we do not carry out this program of interpolation of higher degree

forms in this thesis, leaving it for future work.

1.2 The Objects in DEC

To develop a discrete theory, one must define discrete differential forms along with vector fields and operators
involving these. Once discrete forms and vector fields are defined, a calculus can be developed by defining the
discrete exterior derivativel], codifferential ¢§) and Hodge star«) for operating on forms, discrete wedge
product (\) for combining forms, discrete flat)and sharpf{) operators for going between vector fields and

one forms and discrete interior product operatgr) (for combining forms and vector fields. Once these are
done one can then define other useful operators. For example, a discrete Lie der@afveat bedefined

by requiring that the Cartan magic (or homotopy) formula hold. A discrete divergence in any dimension and
curl in R? can also be defined. A discrete Laplace-Beltrami operakjroan be defined using the usual
definition ofdd + dd. When applied to functions this is the same as the discrete Laplace-Beltrami operator
(V?) which is the defined adiv o grad. We define all these objects and operators in this thesis. In some cases

we define the operators in multiple ways.
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The discrete manifolds we work with are manifold-like oriented simplicial complexes (however we also
show how DEC generalizes some finite-difference formulas on regular non-simplicial meshes). We will recall
the standard formal definitions in Section 2.1 but familiar examples of simplicial complexes are meshes of
triangles embedded iR? and meshes made up of tetrahedra occupying a portid®? ofwe will assume
that the angles and lengths on such discrete manifolds are computed in the embeddiRspaogy the
standard metric of that space. In other words in this thesis we do not address the issue of how to discretize
a given smooth Riemannian manifold and how to embedR‘hsince there may be many ways to do this.

For exampleSO(3) can be embedded iR? with a constraint or irR* using quaternions. For the purposes

of exterior calculus, only local metric information is required, and we will comment in Section 2.8 on how to
address the issue of embedding in a local fashion. We emphasize thatneérageed a global embedding of

the discretized manifold, since the operators of DEC are local, and intrinsic. For simplicity of presentation

we don't always stress this point and often write as if a global embedding has been given.

1.3 History and Previous Work

The use of simplicial chains and cochains (defined in Chapter 3) as the basic building blocks for a discrete
exterior calculus has appeared in several papers. See, for instance, Sen et al. [2000], Adams [1996], Bossavit
[2002b] and references therein. These authors view forms as linearly interpolated versions of smooth differ-
ential forms, a viewpoint originating from Whitney [1957], who introduced the Whitney and de Rham maps
that establish an isomorphism between simplicial cochains and Lipschitz differential forms. Similar ideas
on non-simplicial meshes and from a finite-difference point of view are referred to in the papers of Hyman,
Shashkov and their collaborators. See for instance Hyman and Shashkov [1997a] and the references therein.
These papers however use vector fields as proxies for forms.

Discrete forms for logically rectangular meshes are defined in Chard and Shapiro [2000]. They however
define only thed operator from exterior calculus. However it is interesting to see that the implementation
of even a subset of DEC-like ideas can be interesting for computational mechanics. Cochains are discrete
objects that can be paired with chains of oriented simplices or their geometric duals by the bilinear pairing of
evaluation. Intuitively, the natural pairing of evaluation can be thought of as integration of the discrete form
over the chain.

There is much interest in a discrete exterior calculus in the computational electromagnetics community, as
represented by Bossavit [2001, 2002b,a, 2003], Gross and Kotiuga [2001], Hiptmair [1999, 2001a,b, 2002b],
Mattiussi [1997, 2000], Teixeira [2001] and Tonti [2002]. This is the community that seems to have gone the
furthest in terms of incorporating DEC-like ideas into their computational methods. This is perhaps because
Maxwell's equations can be written purely in terms of differential forms. With the exception of some recent
work of Bossavit on interior products (Bossavit [2003]) the computational electromagnetism community has

used either a forms only theory or with vector fields as proxies for forms.
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Many of the authors cited above, for example, Bossavit [2002b], Sen et al. [2000], Hiptmair [2002b,a],
also introduce the notions of dual complexes in order to introduce the Hodge star operator. With the exception
of Hiptmair, they mostly use barycentric duals. This works fine if one develops a theory of discrete forms
and does not introduce discrete vector fields. We show later that to introduce discrete vector fields into the
theory the notion of circumcentric duals seems to be convenient.

Other authors, such as Moritz [2000]; Moritz and Schwalm [2001]; Schwalm et al. [1999, 2001] have
incorporated vector fields into the cochain based approach to exterior calculus by identifying vector fields
with cochains, and having them supported on the same mesh. This may make it harder to encode physically
relevant phenomena such as fluxes across boundaries that are important in some applications.

Another approach to a discrete exterior calculus is in Dezin [1995]. He defines a one-dimensional dis-
cretization of the real line in much the same way we would. However to generalize to higher dimensions he
introduces a tensor product of this space. This results in logically rectangular meshes. Our calculus however
is over simplicial meshes. A further difference is that like other authors in this field, Dezin [1995] does not
introduce vector fields into his theory. A related effort for three-dimensional domains with logically rectan-
gular meshes is that of Mansfield and Hydon [2001], who established a variational complex for difference
equations by constructing a discrete homotopy operator. In Harrison [1993, 1999] one finds the development
of a discrete calculus by extending the permitted domains of integration to include nonsmooth and fractal
spaces. These papers not only develop a part of discrete calculus but also discuss convergence issues. Be-
sides the exterior derivative, a Hodge star and Laplace-Beltrami are also defined in Harrison [1999] for very
general spaces.

In computer graphics Meyer et al. [2002] define, for simplicial meshes, discrete differential geometry
operators and vector calculus operators like Laplace-Beltrami. Recently Gu [2002] has done some very
interesting work in applying homology and cohomology theory for some applications in graphics, such as,
finding global conformal maps for arbitrary genus surfaces. However, they do not develop a discrete exterior
calculus. For instance, their wedge product is the standard one (cross prodtitt) in

Mimetic discretization (Hyman and Shashkov [1997a]) is a successful development of finite-difference
and finite-volume type methods that satisfy various theorems like Stokes’ theorem. It has been applied to
a variety of physical problems. Once again, it is a theory that has been developed for forms only or vector
fields as proxies for forms. Also, most of those methods seem to be for flat meshes. Moreover, we conjecture
that a generalization of DEC for non-simplicial meshes will bring DEC and mimetic discretization closer,
except that in addition one will have a theory of forms and fields with all the attendant operators, and have it
for non-flat meshes as well. With the current version of DEC we have already made a start towards this, for

simplicial meshes.
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1.4 How This Thesis is Organized

In chapters 2-8 the preamble of each chapter, i.e. the part before the numbered sections of the chapter begin,
summarizes what the chapter is about, the main new results in the chapter, the context in which the chapter
fits into DEC. This is typically the content of the first or first few paragraph of each chapter’s preamble.
The second part of each preamble is generally a summary of what remains to be done and what is not well-
understood etc. Chapter 9 is about other work and speculative work. The former consists of applications
that we have done which would benefit from a DEC like framework for their future development. The latter,
consists of some preliminary ideas about lattices and regular nonsimplicial complexes and general discrete
tensors. In some chapters the last section is a summary and discussion section. Due to this organization of the
thesis, we have not included a conclusions Chapter. The preambles and summary sections of the following
chapters, and the next section of this Chapter can be read instead, to understand the scope, limitations and

conclusions of this thesis.

1.5 Increasing Role of Interpolation

In this section we document our changing viewpoint about interpolation. Interpolation has been playing an
increasing role as we have gained more experience with DEC. When we started work on DEC, we held the
viewpoint of treating forms strictly as cochains, not only in the definition of forms, but also in the definition

of operators on forms. That is, we wanted to define all the operators of exterior calculus as cochains, using
only the values of the operands on chains. This was in contrast with another popular approach, such as that of
Sen et al. [2000] and others, in which forms are interpolated using Whitney maps, and operators defined on
the interpolated forms. An early consequence of our strictly discrete approach, was, for example the lack of
associativity of wedge product, except for closed forms (Remark 7.1.4). But the straightforward interpolation
approach mentioned above also suffers from not having an associative wedge product Sen et al. [2000]. Thus
while this lack of associativity has consequences for the theory, we pressed ahead.

But slowly there were other signs that a strict discrete approach was inconvenient. For example, we had
found a formula for a discrete flat operator without interpolating vector fields or forms. But it was found by
guesswork, by requiring a discrete divergence theorem to be true. Later, we realized that if we interpolated
vector fields, as interpolated vector valued 0-forms, we were able to give a derivation for the formula we had
found,andfind other types of discrete flats that we had missed. Thus the interpolation point of view seemed
to be good not just for explaining existing formulas, but for finding new ones. Similarly, we found that for
defining a discrete gradient, the point of view of interpolation of 0-forms inside simplices, was a useful one.
Similar advantages held for other vector calculus operators as we saw in our vector field decomposition work
in Tong et al. [2003].

Naturally, the question was, why stop at 0-forms ? Why not interpolate higher degree forms as well ? This
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was obvious when we considered sharp operator on 1-forms and interior product and Lie derivative. With the
strictly discrete point of view, one can get quite far, but not all the way, it seems. We argue in this thesis that
the development of a sharp, gradient, interior product and Lie derivative requires the interpolation of one and
higher degree forms. The full development of this interpolation point of view is for future work.

One track for our future work, is the usual Whitney interpolation idea, studied by so many other authors.
This is to interpolate forms using Whitney forms and then use the smooth operators. But we intend to use it
to define operators like Lie derivative, that others have not explored. Another track we intend to explore, is if
we can build higher degree forms, defined everywhere on the complex, from 1-forms. This is along the same
lines as our preliminary suggestion to build general tensors by using tensor products of 1-forms as mentioned
in Section 9.5.

Even while knowing the limitations of a purely discrete approach, in this thesis, we try to push the purely
discrete point of view as far as possible. This is done, in part to expose the parts of DEC where interpolation
is clearly the way to go. We have tried to include the basic ideas about interpolation at various places in the
thesis, in preparation for our future work along this direction. This approach can be called a finite element
approach to DEC. Here, the discretization of forms via the de Rham map of Section 3.3 takes a back seat
and the interpolation of forms via Whitney maps or other means becomes more prominent. The operators are
defined on interpolated forms, by using the smooth definitions where possible.

Various interpolation schemes can then be studied, including higher order ones. Building a higher order
DEC requires that one find a closed way to construct higher degree forms from discrete 1-forms that are
guadratic or higher order accurate. In any case, even in the lowest order case, with this interpolation, or
finite element approach, there is no longer any need to define operators using metric information when the
smooth operators do not depend on the metric. This simplifies the presentation of DEC which can then be
organized into the metric-independent part like exterior derivative, wedge, interior product and Lie derivative,
and the metric dependent part like sharp and flat. It is quite possible, as happened in the case of flat, that the
interpolation based definition of some operators will eventually result in a purely discrete definition. This is
because the operators are all local and many involve derivatives. The identities from smooth theory that we
were forced to adopt as definitions in some cases, then become theorems in such a discrete theory.

The detailed exploration of such an interpolation based DEC, in which interpolation of higher degree

forms, and not just of O-forms, plays a prominent role, is left for our immediate future work.



Chapter 2

Primal and Dual Complexes

Results: In our formulation of discrete exterior calculus, an oriented manifold-like simplicial complex
(defined below) discretizes a portion &f, the triangulable Riemannianrmanifold of interest. The starting

point for our calculugs the given complex<. In this chapter we give basic definitions related to simpli-

cial complexes and their dual cell complexes and orientations of these. We have found a simple geometric
interpretation of orientation of duals which we give in this chapter. In contrast, in algebraic topology the
definition of dual orientation usually requires some knowledge of homology and relative homology theory.
The requirement of orientability may not be a problem in practice. This is because the operators in DEC are
local and any point of an-manifold is in an open set that is homeomaorphic to an open €% ior in a half

space, in the case of boundary points.

Shortcomings: A complete treatment of DEC should discuss how wélbpproximates\/, and indeed

how K is obtained from)M in the first place. It should also include a discussion of how well the discrete
operators approximate the smooth counterparts. But for this one needs to define a topology on the discrete side
so that continuity and convergence can be discussed. This discussion, of discretization and approximation
quality, is something we do not do in this thesis, although it is an important topic for future work. Nevertheless

in Section 2.2 we discuss the idea of discretization at least roughly.

2.1 Simplicial Complex

We now recall some basic definitions of simplices and simplicial complexes. For more details see Munkres
[1984] and Hatcher [2002]. Lefvo, ..., v,} be a set of geometrically independent point&ifi, i.e., the

vectors{v, — vy, ..., v, — vo} OF equivalently{v; — vg,v2 — v1,...,v, — vp_1} are linearly independent.

Definition 2.1.1. A p-simplex ¢® is the convex hull op 4+ 1 geometrically independent points, . . ., vp,.
That is

ot = {z e RN| x = ZZ;O piv; wherep! > 0 and ano pt= 1} .
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We'll write 0P = vy . .. v,. The points, . . ., v, are inRY and are called theerticesof the simplex, and the
numberyp is called thedimensionof the simplex. Any simplex spanned by a (proper) subs¢vgf. . ., v,}

is called a(proper) face of o ; their union is called thboundary of o? and denote®d(c?). Theinterior

of o? is Int(c?) = oP\ Bd(cP) and is also called aapen simplex If ¢ is a proper face oé?, then we
write 09 < oP. Sometimes we will writer? aso when the dimension is understood. By | we will mean
thep-volume of o? in RV, Forp = 0 this is defined to be 1. The smallest affine subspad@"otontaining

o is called theplane of o and denoted (o). This can be obtained for example, by letting the coefficignts

above be negative. O
Definition 2.1.2. A simplicial complex K in R¥ is a collection of simplices iR such that

(1) Every face of a simplex oK isin K.

(2) The intersection of any two simplices Af is either a face of each of them, or it is empty.

The dimensiom of the largest dimensional simplex i will be called the dimension of{. The union

of simplices of K is a subset oRY and will be called theunderlying spaceof K or the polytope of

K and denotedK|. We will be only concerned witfinite simplicial complexes (a complex with a finite
number of simplices). In aell complex(also known a&€W complex) open simplices are replaced bglls

which are objects homeomorphic to open balls. See page 5 of Hatcher [2002] for another way to define cell

complexes. %

Remark 2.1.3. Topology on underlying space: For a finite complex (the only kind we will consider in

this work) the topology onK | will be the natural one (subspace topology) induced fioth For a simplex

o? of dimensionp > 1 the meaning oint(c?) andBd(c?) coincides with the usual topological meanings

of interior and boundary in the topology 0K |. However forp = 0, i.e., for pointso?, Int(c?) = ¢° and
Bd(c") = 0, since a point has no proper faces (see Def. 2.1.1). However in the topoldly afpoint has
empty topological interior and is its own topological boundary. This special status of a 0-simplex is actually
useful in defining duals as we will do in Def. 2.4.5. Another thing to keep in mind is thdttlie?) for any
dimensiorp is called aropensimplex even though (for examplg)t(o!) in a dimension 2 complex is not an

open set in the subspace topology. pet n the open simpleXnt(o?) is indeed an open set. %

Definition 2.1.4. A flat (or linear) simplicial complex K of dimensiorn in RY is one of which all simplices
are in the same affine-subspace dR”. This coincides with our usual intuition of a flat 2-surface embedded
in R3. O

Definition 2.1.5. A simplicial triangulation of the polytope K| is any simplicial complex. such that the
union of the simplices oL (i.e., polytope L|) is the polytopd K|. O

Definition 2.1.6. If L is a sub-collection ofK that contains all faces of its elements, theis a simplicial

complex in its own right, and it is calledsubcomplexof K. One subcomplex ok is the collection of all
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simplices of K of dimension at mosg, which is called the-skeletonof K and is denoted(”). Theclosed
star (or one-ring) of a simplexs in K is denotedSt s and is the union of all simplices df havings as a

face. Twop-simplices will be callechdjacent of they share &p — 1)-face. %

2.2 Discretizing the Manifold

Let M be a smooth triangulable Riemanniarmanifold and define an abstract simplicial complex/dn
See pages 15-19 of Munkres [1984] for the definition of and information on abstract simplicial complexes,
but for our purpose it is enough to think of it as simplices “glued” to or “drawn &hin such way that they
form a “curved” simplicial complex. It is a cell complex in which the cells are simplices on the manifold.

Let K be a concrete geometric simplicial complex that is isomorphic to a part of the complgxk. on
It may be convenient to embdd in R whereN > n. For example, this is often done in computational
mechanics and graphics when a surface is approximated by a triangle mesh emberRftied/énstress that
the idea of discretization isot to put charts on the manifold and then triangulate the codomain of the chart
into a simplicial complex. If we did this, then the idea of discrete approximation would be lost, because we
would have to store the analytical information about the chart exactly. Sometimes this is not even possible. An
example of this situation is when the smooth manifold can only be sampled by some physical measurement
such as when the shape of an object is acquired by scanning. So the simpli¢egppfoximate a portion of
M for which we may only know a set of points. These then become the vertides Bevertheless we will

define the following map.

Definition 2.2.1. Let o}, be an abstract simplex avf and a simplex be a simplex ink” that approximates
it. In order to transfer information (like forms and vector fields) frathto K we will need the exact or
approximate map between the two. We will call such a map o, — o} apasting mapand assume it is

a smooth map. O

Remark 2.2.2. Pasting map as a formal device:We have mentioned above that in applications we may

not even knowM exactly. Thus the pasting maps will not be known in these cases. Even if they were,
storing the pasting maps would defeat the idea of discretization. But there is no harm in using them during
discretization. In general they are a formal device allowing one to talk about the transfer of information from
M to K. In practice they may be a procedural scheme or a measurement device allowing one to discretize

smooth information od/. If M is a domain inRY, then it may even be an identity map. O

Approximating a portion of\f by K means that the metric o induced fromR” approximates the
metric onM in the portion being approximated. The embedding of the simplicial complex into an ambient
space is a computational convenience. For the purposes of the theory, it is only necessary to specify the

connectivity of the mesh in the form of an abstract simplicial complex, along with a local metric on the space
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of vertices. This is addressed in Section 2.8. Discretization of forms via de Rham map and interpolation of

forms via Whitney maps is addressed in Section 3.3.

2.3 Oriented Primal Complex

For DEC we need a notion of orientation for the simplices and for simplicial complexes. We start with

simplices.

Definition 2.3.1. Define two orderings of the vertices of a simplek to be equivalent if they differ from
one another by an even permutationplf> 0, then the orderings fall into two equivalence classes. Each
of these classes is called arientation of o”. An oriented simplex (also writteno?) is a simplex together
with an orientation. Ifv, ..., v, are the vertices of?, then we’'ll usevy, . . ., v,] for the oriented simplex
oP with the equivalence class of the orderipag, . . . ,v,). A O-simplex has only one possible ordering so has

no orientation (although it can have muced orientation defined below). %

Definition 2.3.2. Given a simplexs? with vertices{uvy, ..., v,}, the ordered collection of vectofs; —
vg, V2 — Vo, ..., Vp — V), Which is a basis for the plarie(o), will be called acorner basis atv, of the
simplex. The ordered collectid, — vg, v2 —v1, ..., v, — vp—1), Which is also another basis, will be called

polyline basis from v, of the simplex. %

Remark 2.3.3. Simplex orientation using a basis: A simplex o is a closed connected subset of its plane

P(o) and of the same dimension as the plane. The pl{ag being an affine subspace&f¥ is oriented in

the usual sense of orientation by an ordered basis or equivalently a volume form. In particular the ordered
corner basis and the polyline basis of the simplex orient the plane and hence the simplex itself. These notions
of orientation via corner and polyline basis coincide with the orientation via permutations defined above. This
means that the partition of the set of simplices into two orientation classes is the same in each case. See, for
example, Lemma 5a on page 360 of Whitney [1957]. Thus orienting a simplex is equivalent to orienting its
plane. From now we will use the word orientation to mean any of these equivalent notions of corner, polyline

or permutation based orientation. O

Example 2.3.4. Oriented simplices: Consider 3 non-collinear points),v; andv, in R? labeling the

vertices of a triangle in a counterclockwise fashion. Then these three points individually are examples of 0-
simplices (hence these have no orientation). Examples of oriented 1-simplices are the oriented line segments
[vo,v1], [v1,v2] and[vg,v2]. By writing the vertices in that order we have given orientations to these 1-
simplices, i.e.,[ug, v1] is oriented fromw, to v1. The triangle[vg, v, v2] is a counterclockwise oriented

2-simplex. ¢

Consider a simplex? with vertices{vy, ...,v,} with p > 1. By deleting one vertex at a time from

this set we can enumerate the simplices that have dimeiigsienl) and are faces of?. There arep + 1
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such faces and faceis spanned by{vy, ..., v;,...,v,} fori = 0,...,p. The hat means omit that vertex.
An oriented simplex? induces an orientation on each of these faces. The notion of induced orientation is
related to the boundary operator to be defined in Chapter 3 in Def. 3.6.1. But induced orientation can be

defined independently as follows.

Definition 2.3.5. Leto? = [vy, . .., v,] be an oriented simplex, with > 1. This orientation ot gives each
of the (p — 1)-dimensional faces ainduced orientation. Forp > 1, if 4 is even the induced orientation of
the facevy ... 0; ... v, is the same as the orientation of the oriented simplgx .., 7;, . .., vp]. Otherwise

it is the opposite one. %

Example 2.3.6. Induced orientation: Given the counterclockwise oriented triangle= [vo, v1, v2] its
unoriented 1-faces arg vy, vgvs andvgv;. The induced orientation on v, is the same as the orientation of
[v1,v2]. The induced orientation oy is the opposite of the orientation ofy, v;] and the induced orien-

tation onvyv; is the same as the orientation[of, v;]. As another example consider an oriented tetrahedron

[vo, v1, v2, v3] With vy at the top and, v2, v3 labeling the bottom triangle in counterclockwise fashion when
looked from outside. This has the same orientation class as the ordered collection of 3 vectors emanating from
vo and pointing to the 3 vertices, v, andvs in order, i.e., the corner basis@t This corresponds to a right-

hand rule orientation for the plane of the tetrahedron, i.e RforBy the definition of induced orientation the

triangular faces of the tetrahedron get oriented counterclockwise when looking from outside. ¢

Remark 2.3.7. Comparing orientations: Consider two oriented simplices and~ embedded irR" .
If their dimensions differ, then their orientations cannot be compared. So assume that they have the same
dimensiornp and sol < p < n (0-simplices have no orientation). Then their orientations can be compared in

the following cases:
1. Their planes coincide, i.?(c) = P(7)
2. They share a face of dimensipn- 1

In case 1 the two simplicas and+ will have the same orientation iff their corner or polyline basis orients
their plane the same way. In case 2 the two will have the same orientation if the induced orientation of the

sharedp — 1 face induced by the is opposite to that induced by Fig. 2.1 clarifies this remark. %

Definition 2.3.8. Let ¢? and7?, with 1 < p < n, be two simplices whose orientations can be compared, that
is, they fall into one of the two cases of Rem. 2.3.7. If their orientations are in the same class we will say that
the two simplices have relative orientation of 41 otherwise—1. We will write this assgn(o?, 77) = +1

or —1 respectively. O

The notion of a simplicial complex defined in this section is too general for our purpose. For example, in

R? a triangle with a line segment sticking out of one vertex is a simplicial complex. While such things may
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Figure 2.1: Situations where orientations of simplices can be compared: (a) All the trianglesRdrblin

since their plane is identical (shown in the figure) the orientations can be compared using any of their corner
basis or polyline basis. See Rem. 2.3.3 and 2.3.7 ; (b) Two triangl&S inot in the same plane. But

since they share an edge their orientations can be compared. Orienting them so that they induce opposite
orientations on the shared edge gives the two triangles identical orientations.

be useful say, in modeling domains connected by wires in electromagnetism, in this thesis we exclude such
cases by using the definition to be given below. Another type of complex to be excluded is, for example, two
triangles touching only at a common vertex. Excluding such complexes is in line with this being a theory
of exterior calculus. For example, in smooth exterior calculus the starting point is the notion of a smooth
manifold. The examples just mentioned can be considered to be discretizations of smooth spaces that are
not manifolds (not even manifolds with boundary) since they are not locally homeomorgkficdoto half

space. This is captured in the following definition.

Definition 2.3.9. A simplicial complexK of dimensionn is called amanifold-like simplicial complex

if the underlying spacéK| is a C® manifold (possibly with boundary). In such a complex all simplices

of dimensionk with 0 < k < n — 1 must be a face of some simplex of dimensiorin the complex.

Also, by definition of C° manifolds each point ohk'| will have a neighborhood homeomorphic& or
n-dimensional half-space. See pages 143 and 478 of Abraham et al. [1988] for definitions of manifolds and

manifolds with boundary. o

From now on we will work only with manifold-like simplicial complexes. Allowing only such complexes
has the added advantage that we can now define orientability for simplicial complexes. In algebraic topology
the definition of an orientable simplicial complex requires some technical machinery (such as homology

n-manifolds and homology groups). In the following definition we can bypass such machinery.

Definition 2.3.10. A manifold-like simplicial complexK of dimensionn is called anoriented manifold-
like simplicial complex if adjacentn-simplices (i.e., those that share a comngonr- 1)-face) have the same
orientation (orient the sharedh — 1)-face oppositely) and simplices of dimensions- 1 and lower are

oriented individually. From now on the nanpeimal mesh will be used to mean a manifold-like oriented
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simplicial complex. O

2.4 Dual Complex

An important ingredient of DEC is the dual complex (defined below) of a manifold-like simplicial complex.
The dual complex will usually not be a simplicial complex. However if the primal mesh satisfies some
conditions, then the duabnbe built from a simplicial refinement of the primal mesh. The notion of duality
we use is circumcentric (or Voronoi) duality. The other popular choice in this subject is barycentric duality

and we compare the two types in Section 2.6.

Remark 2.4.1. Metric-dependence and duality: The metric-dependent and metric-independent parts of
DEC can be developed separately. Operators, that in the smooth theory do not use metric information, should
have that property in the discrete theory as well. For example, the exterior derivative, wedge product, natural
pairing of forms and vector fields, interior product and Lie derivative are all example of such operators. On
the other hand Hodge star, sharp and flat depend on the metric. Divergence is an operator in which metric
enters only through its dependence on the volume form of the metric. Dual meshes seem to be required only
in the metric-dependent parts of DEC. However, in applications these might be all mixed up and thus one is
forced to invent versions of metric-independent operators for the dual mesh as well. An example is say, the
Lagrangian for harmonic mapd,f A xd f. Since the wedge and Hodge are both present, one may expect
the dual mesh to play a role.

In this thesis, we have not always followed a strict separation of discrete operators into metric-independent
and metric-dependent types. But in those cases where we give a metric-dependent definition, we generally
accompany it with a metric-independent one as well. Also, the metric-dependent definitions used are such
that at least in the smooth theory, the metric dependence cancels, although in the discrete case we don't know
if this is the case.

In our future work, we intend to maintain a more strict distinction between metric-independent and metric-
dependent operators. The computational implication of this distinction is that the computation of discrete
operators that are metric-independent may not require a dual complex, as it occasionally seems to, in this
thesis. %

Definition 2.4.2. The circumcenter of a p-simplexco? is given by the center of the-circumsphere, where
the p-circumsphere is the unigyesphere that has afl + 1 vertices ofs? on its surface. Equivalently, the
circumcenter is the unique pointi(o) that is equidistant from all the+ 1 vertices of the simplex. We will
denote the circumcenter of a simpleX by ¢ (o?). If the circumcenter of a simplex lies in its interior we call

it awell-centered simplex In R? a triangle with all acute angles is an example. A simplicial complex all of

whose simplices (of all dimensions) are well-centered will be callegl&acentered simplicial complex ¢

The circumcenter of a simplexX’ can be obtained by taking the intersection of the normals t¢ithe ) -



15

dimensional faces of the simplex, where the normals are emanating from the circumcenter of the face. This
allows us to recursively compute the circumcenter. We use the names Voronoi dual and circumcentric dual
synonymously since the dual of a simplex is its circumcenter (equidistant from all vertices of the simplex).

To build a circumcentric dual complex of a simplicial complex we have to first subdivide the original
complex to yield one with smaller simplices. Then some of the simplices will be combined to give the dual
complex. This general procedure of building a dual complex by subdivision and aggregation is described in
detail in Munkres [1984] on pages 83-88 (for subdivision) and pages 377-381 (for aggregation). While he
specializes the general construction to barycentric subdivision, under some conditions the same procedure
with the barycenters replaced by circumcenters produces a circumcentric subdivision.

This requires thak( be well-centered in the sense defined above because otherwise circumcentric subdi-
vision may not produce a simplicial complex. See Section 2.6 for implications of this restriction. However if
K is well-centered, then the subdivision operaidiof Munkres [1984] can be replaced by a circumcentric
subdivision operatotsd as defined below.

Given a simplicial complexs thencsd K will be a simplicial complex from which to build the dual
complex. The underlying spacék’| and|csd K| are the same. In Lemma 15.3 Munkres [1984] gives the

form of the simplices ind K. Instead we will use this as the definition of subdivision.

Definition 2.4.3. The circumcentric subdivision of a well-centered simplicial compleX” of dimensionn
is denotedtsd K, and it is a simplicial complex with the same underlying spac& and consisting of all
simplices (each of which is calledsabdivision simpley of the form[c(c1),...,c(o)]forl < k < n
(note that the index here it dimension since it is a subscript). Here < 02 < ... < o0 (i.e.,0; IS
a proper face o&; for all ¢ < j) and theo; are inK. That this is a simplicial complex follows from the
properties given on pages 83-88 of Munkres [1984]. This is because in a well-centered simplicial complex
all circumcenters lie inside their simplices and this is sufficient for the subdivision construction of Munkres
[1984] to produce a simplicial complex.

Each subdivision simplex in a given simpleX will be called asubdivision simplex ofo?. Of these, &

simplex ¢ < p) will be called asubdivision ¢-simplex of o?. %

Example 2.4.4. Circumcentric subdivision: Consider a simplicial complek with verticesvg, v; anduvs,
i.e., the complex consists of a trianglgv, vo, its edges and its vertices. Thén= csd K consists of the

following elements:

e L (the O-simplices oésd K): consists of the circumcenterguy) = v, c(v1) = v1 andc(vs) = vo,
the midpoints of the edgegvov1), c(vive) andc(vovz) and the circumcenter of the triangle, i.e.,

c(vou1v2),

o L) (the 1-simplices ofsd K): consists of 12 edges — the two halves of each edge and edges joining

the circumcenter of the triangle to the vertices and midpoints of the edges,



o, 0-simplex o', 1-simplex o?, 2-simplex
D(aY), 2-cell D(ct), 1-cell D(c?), O-cell
VO'O Vgl VUZ

Figure 2.2: Primal and dual mesh elements in 2D. Top row shows primal mesh (Def. 2.3.10) with one sim-
plex of dimensions 0, 1 and 2 highlighted in the 3 figures; Middle row shows the corresponding dual cells
(Def. 2.4.5), shown here restricted to the original primal triangle ; Bottom row shows the support volumes
(Def. 2.4.9). See Fig. 2.3 for 3D example.

e L) (the 2-simplices ofsd K): consists of 6 triangles of the formc(vovy )c(vovyvz).

See pages 87 and 378 of Munkres [1984] for more examples. Fig. 2.4 shows many triangles that have been
subdivided. ¢

If K is a manifold-like simplicial complex, then the underlying spa&é can be partitioned into subsets
that are cells (see Def. 2.1.2) (in Munkres [1984] Section 64 such dual cells are called blocks because he
is working with homology manifolds where spheres are homological spheres). This partitioning gives the
dual cell decomposition df<|. Each dual cell is made by aggregating together certain simplicessttain
Instead we will usesd K and end up with a circumcentric version of the dual block decompositidii.of

We summarize this procedure below. For details see pages 377-381 of Munkres [1984].

Definition 2.4.5. Let K be a well-centered manifold-like simplicial complex of dimensioand lets? be

one of its simplices. Theircumcentric dual cell of o? will be denotedD(o?) and defined as

D(o?) := nUp U  It(c(@”)c(or)...clon) .
r=0 oP <01 <...<0y

Forr = 0, interpreto? < o1 < ... < o, simply aso?. The closure of the dual cell af” is written D (o?)

and called thelosed dual cell We will call each(n — p)-simplexc (o) ¢ (6?*1) ... ¢ (c™)) anelementary

dual simplexof o?. This is an(n — p)-simplex incsd K. The collection of dual cells is called tlgeial cell

decompositionof K. This is a cell complex and will be denot&d K'). The union of the cells of dimension

at mostp will be denotedK ) and called thedual p-skeletonof K. For a closed dual celD(c?) and
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oY, 0-simplex

o', 1-simplex

o?, 2-simplex

o3, 3-simplex

D(c?) 3-cell

4

D(ct), 2-cell

D(c?), 1-cell

D(c?), O-cell

Vo

V2

Vs

Figure 2.3: Primal, dual cells and support volumes in 3D. Top row shows primal mesh (Def. 2.3.10) with
one simplex of dimensions 0, 1, 2 and 3 highlighted in the 4 figures; Middle row shows the corresponding
dual cells (Def. 2.4.5), shown here restricted to the original primal triangle ; Bottom row shows the support
volumes (Def. 2.4.9). See Fig. 2.3 for 2D example.

q < (n —p), any element of{, that is a subset dd (o) will be called aproper face. For0 < p <n — 1,

the (n — p — 1)-faces ofD(o?) areD(oP*1) for all oP ! - oP. O

Remark 2.4.6. Unions and sums using proper faces:The above definition is the first time in this thesis
that we have used the notatieti < ... < o” etc. for indexing a union. This is a very convenient notation
for writing unions (or in the case of chains in next chapter, sums) without having to index the individual

simplices of all dimensions. A union like

U or

oP1<...<0oPk

U

oP<...<0j,

U or

Tjp = =0y

is a union over all simplices of a given simplicial complex that satisfy the proper face relationships under the
operator. Notice in particular the third union above. The first simplex is of dimenskrn the rest of the

simplices in the proper face relations have been indexed by numbers, not dimension. Such mixing of indexing

is allowed. O.

The dual cell decomposition gives a CW complex (see Def. 2.1.2 above or pages 214-221 of Munkres

[1984] or page 5 of Hatcher [2002] for more details on cell (or CW) complexes). Fig. 2.2 and 2.3 show



18

Figure 2.4: A simplicial compleXs is subdivided into the simplicial complexd K and some dual cells of
dimension 0,1 and 2 are marked. See Example 2.4.4 and 2.4.7. The new edges introduced by the subdivision
are shown dotted. The dual cells shown are colored red. Some elementary dual simplices and subdivision
simplices appearing in this figure are pointed out in Example 2.4.7.

examples of dual cells as does Example 2.4.7 and associated Fig. 2.4. See pages 378—-379 of Munkres [1984]

for more examples.

Example 2.4.7. Dual cells and elementary dual simplicesBy definition of dual cell the dual of a vertex

oVis

D(0%) = {Int(c ()} U |J It (c(c°)c(o))u...u [J Int(c(c”)c(or)...clon)) -
00<0, 00<0y...<0op

Now recall from Rem. 2.1.3 that the first term above is the O-Simp(e»P) since the interior of a 0-simplex
is the O-simplex itself. The second term is all the open edges startifyatd going to the circumcenters
of: the edges containing?, the triangles containing®, and so on. The last term is the union of all the open
simplices of dimension containings®. Thus we get the open Voronoi region arourid

Refer to Fig. 2.4 for this part of the example. Consider the simplicial complex of dimension 2 shown
in the figure. The dual cell of a vertex is the topological interior of the Voronoi region around it as shown
shaded in the figure. This dual cell is made up of the the vertex whose dual it is, interiors of the open edges
emanating from that vertex, and interiors of the elementary dual simplices (Def. 2.4.5) of the vertex. An
example of an elementary dual simplex of is a triangle starting with vertices consisting of a vertex of the
complex, the circumcenter of an edge incident on the vertex and the circumcenter of a triangle containing
that edge. The dual cell of an edge in the simplex consists of the circumcenter of that edge and the two open
edges emanating from it and going to the circumcenters of the triangles adjacent to it. This is shown by
shading the dual cell of an internal edge and a boundary edge in Fig. 2.4. Note that for the boundary edge
the dual has only one piece since there is only one triangle adjacent to that boundary edge. Note that if the

complex is not flat, then the dual edge will not be straight line. An elementary dual simplex of an edge starts
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at the circumcenter of the edge and ends at the circumcenter of an adjacent triangle. In the figure the dual of
a triangle is shown as the circumcenter.
Now consider a dimension 3 complexk? and an edge in it. We want to findD(c!). The vertices of
one of the elementary dual simplexa®f are the circumcenters:(c!), ¢ (62), ¢ (¢*) which form a triangle.
Hereco! is a proper face of? which is a proper face of a tetrahedref. These circumcenters are 3 vertices
and so the elementary dual simplex is a triangle as expected.pHeré andn = 3 and so the elementary
dual simplices are simplices of dimensidn- 1 = 2. Now lets° be a vertex contained in'. Then the

tetrahedror: (6°) ¢ (o1) ¢ (62) ¢ (0?) lies inside the tetrahedrar® and has the same planeas ¢

Remark 2.4.8. Properties of dual cells and related simplices:Let K be a well-centered manifold-like

simplicial complex of dimension. Letc?, o, ...,o™ be simplices ink of dimensions 0,1, ..., n such that

o <ol <...o"

that is,o" is a proper face of* which is a proper face af? and so on. Then the following are true:

1. The dual celD(o?) is homeomorphic to an open ball of dimensior- p and so it can be oriented (as

we shall do in Section 2.5),

2. The dual cells are disjoint and their union/i§|. Also, D(o?) is a polytope ofcsd K of dimension
n — p (Theorem 64.1 pages 378-379 of Munkres [1984]),

3. A p-simplexv? like ¢ (0°)...c(oP) is a subdivisionp-simplex (Def. 2.4.3) ob* and its plane is

identical to that ob?, i.e.,P(v?) = P(o?),
4. An (n — p)-simplexs™~P) like ¢ (o?)...c(c™) is an elementary dual simplex (Def. 2.4.5)d,

5. An n-simplex ™ like ¢ (¢°)...c(c™) is insides™ and has the same plane &%, i.e., P(7") =
P(e™) =R",

6. The subdivisiop-simplexv? and the elementary duéb — p)-simplexs(~?) are transverse, i.e.,
P(vP) & P <5<”*P>> — P(o™) =R".

This equality is vacuously true fgr= 0 or n.

These properties will be useful for orienting the dual cells in Section 2.5. %

Now we define something called a support volume of a simplex. beskeleton of the primal mesh the
support volumes tile the primal mesh for ah p < n. That is, the union of the support volumes of all the
p-simplices in the primal mesh is the mesh and the intersections are alondgemeg simplices ofcsd K.

This concept will be useful in Chapter 5 in defining discrete flat operator.
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Definition 2.4.9. Let K be ann-dimensional manifold-like well-centered simplicial complex afdone of
its simplices. The union of convex hulls ef and its dual cells in each-simplex of whicho? is a face,

forms ann-volume that we calsupport volume of o? and we denote it by, ». That is

Vor = U convexhull ({D(a?) N o™, 0?})
o =oP
The support volumes of all thesimplices ofK (for anyp) tile |K|. Some examples of support volumes in

two- and three-dimensional complexes are given in Fig. 2.2 and 2.3. O

2.5 Oriented Dual Complex

The dual cells introduced above are unoriented subset& jof\WWe next discuss how to give them an orien-
tation. The properties listed in Rem. 2.4.8 will now prove useful. First of all, according to that remark each
dual cell is homeomorphic to an open ball of that dimension. For examplé)(#®) for a vertexs? in a
primal mesh of dimension 2 is homeomorphic to a two-dimensional open ball. So is the dual cell of an edge
in a dimension 3 complex. Thus dual cells are orientable subcomplexsd &f. They can be oriented by
orienting just one of the elementary dual simplices. The orientations for the other elementary dual simplices
follow from Rem. 2.3.7, case 2.

Let 0°, o!,..., 0™ be simplices in am-dimensional primal mesi such thatz® < ¢! < ...0o™ and
let oP be one of these simplices, with< p < n — 1. The task is to orient the elementary dual simplex
§(n=P) = ¢(oP)...c(om). According to Rem. 2.4.8;” and§("~P) are transverse. Furthermore they are
both subsets of” and the direct sum of their planes equals the plane”of Thusc? andé("~?) are
transverse orientable objects both living in the same oriented ambient space. So out of these 3 orientations
(ambient space™, primal o* and elementary dual™—?)) if 2 are given then there is a well defined way
to define the third one. This corresponds to the situation explained in Fig. 2.5. The following algorithmic

procedure orient§("—?) unambiguously, even fgr = 0 or n.

Remark 2.5.1. Algorithm to orient elementary duals: Consider first the case af< p < n — 1. Let the
correctly oriented elementary dual simplex b (o?),...,c(c")], wheres = +1, and the correct value
of s has to be determined. The primal mesh is oriented. Recall that this means thagithplices are all
oriented the same way and the- 1 and lower dimensional simplices have been individually oriented. We
will use o? ando™ to denote th@rientedsimplices of the primal mesh.

By the properties in Rem 2.4.8 the orientationsséfand [c (c") ,...,c(o”)] can be compared since
they have the same planes. Similarly the orientations™oénd [c (¢°) ,...,c(c™)] can be compared for

the same reason. Then we define

(2.5.1) s :=sgn ([c (UO) .., C (U”)] ,Up) X sgn ([c (00) ey C (U")} ,0")
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Figure 2.5: Relationship between orientations of embedding space, embedded “primal” manifold and an
embedded “dual” manifold transverse to the primal (meaning that at the intersection point of the primal and
dual the direct sum of their tangent spaces is the tangent space of the embedding manifold). Given any two
of the three orientations the third one is determined. See Section 2.5. This can also be thought of in terms
of internal and external orientations of the primal as in Bossavit [2002b]. The roles of primal and dual can
be switched and so can the order of putting primal tangent space before the that of the dual. This is a matter
of convention. The point is that there is a consistent way to define the third orientation given any two of
the orientations ; (a) If the primal 2-manifold is oriented as shown, then the dual 1-manifold has only one
orientation such that the orienting basis for the primal followed by the one for the dual together gives the
orientation of the embedding space that has been given as right hand rule. (b) Similar situation in 2D.

wheresgn is the relative orientation defined in Def. 2.3.8. This method implements the idea embodied in
Fig. 2.5. Example 2.5.2 clarifies this idea. koe= n the dual is of dimension 0 and so has no orientation.

Forp = 0, we defines := sgn([c (¢°) ,...,c(c™)],0™). o

Example 2.5.2. Orienting elementary duals: Consider the well-centered manifold-like simplicial complex
of dimensions 2 shown in Fig. 2.6. The orientations of the simplices are as shown in the figupe=Liet

and we list below the simplices appearing in Rem. 2.5.1.

primal simplex:o®? = o' = [vy, v0]

o < o' < g% instancewy < [v1,vg] < [vo, v1,v2)
[¢(0°) e (o")] = [vo, con]

elementary duals [c (o') , ¢ (¢®)] = s[co1, co12]

subdivision simplex:[c (¢°) , ¢ (01)] = [vo, co1] -
The task is to determine i = +1 or —1. By the algorithm above

s = s ([e(0%) e (0")] ") x s ([e(0”) . (0") e (02)] . 0?)

= sgn ([vo, co1], [v1,v0]) X sgn ([vg, co1, co12] , [Vo, v1,v2]) = (=1)(+1) = —1.

This means that the elementary dual simplgx12 should be oriented as|co1, co12] = [co12, co1]. Note
that [c (¢°) ,c (¢!)] has the same plane a$ and so their orientations can be compared (“plane” here is

the line containing both). Similarly fofc (¢°) ,c (¢1), ¢ (02)] ando?. We would have obtained the same
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Figure 2.6: Orienting an elementary dual simplex. See Example 2.5.2. Here we have wiitéor the
circumcenter([vg, v1, v2]) €tc.

answer even if we had chosen some other subdivision simplex. ¢

Definition 2.5.3. Let0 < p < n — 1 and consider the closed dualcs?). This is an(n — p)-dimensional
oriented dual object. It hgs.—p— 1)-dimensional faces that inherit an orientation frirw?). This is called
thedual induced orientation of an(n —p — 1)-face. Itis defined as the orientation induced (Def. 2.3.5) from
the closure of thex-simplex that is an elementary dual simplex makingD(g?) whose boundary includes

part of the(n — p — 1)-face. Here we assume that the elementary dual simplex has been oriented correctly

according to the algorithm in Rem. 2.5.1. %

Example 2.5.4. Dual induced orientation: Consider a 1-ring of triangles with each triangle oriented
counterclockwise. The dual of the central vertex is its Voronoi region on the complex. By the above definition
the dual induced orientation of the boundary will make each dual edge oriented so that the boundary goes
around counterclockwise. Each dual edge in the boundary of the Vornoi region is dual to a primal edge. The

dual edge induces an orientation on the circumcenters that lie at its end. ¢

2.6 Circumcentric and Barycentric Duality

As we pointed out earlier, the importance of using a dual mesh is well known in many computational fields

and in physics. For example, barycentric dual meshes are used in Sen et al. [2000] for the discretization of an
abelian Chern-Simons theory. In computational electromagnetism they have been used by Bossavit [2002b]
and many others as a space on which dual forms are defined, just as we will use circumcentric duals in
Chapter 3. In computational electromagnetism circumcentric duals also appear in the work of Hiptmair. See
for instance Hiptmair [2002a]. In mimetic differencing one often sees the appearance of circumcentric duality

to define differential operators for logically rectangular meshes. See for instance Hyman and Shashkov

[1997a,b]. Circumcentric duality for defining differential operators on simplicial meshes is used in Nicolaides
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[1992]. In none of the above works however is a circumcentric dual mesh used to develop a full discrete
exterior calculus. Most deal with either forms only or vector fields as proxies for forms.

Both types of dual meshes have good and bad properties. For example, barycentric duals have a very nice
property that barycentric subdivision (which is the first step for building a barycentric dual) always produces a
simplicial complex. This is unlike the situation in circumcentric subdivision which requires that the complex
be a well-centered simplicial complex because otheraigdel’ may not be a simplicial complex. Thus if
in a computation a mesh is changing, the barycentric dual will remain well-defined whereas a circumcentric
dual may soon become invalid due to some circumcenters leaking out of their simplices. Maybe this problem
can be ameliorated by mixed Eulerian-Lagrangian methods where the mesh is moved for a few time steps
and then interpolation brings one back to a nice reference mesh. This has to be investigated further in future
work.

On the other hand it appears as if circumcentric duals are useful in building that part of the theory of
DEC that involves metric operations like Hodge star, flat and sharp. The dual(ef-arl)-face is an edge
perpendicular to it. Similarly the dual of an edge is(an— 1)-cell. Thus circumcentric duals seem to give
simple expressions for fluxes in the coordinate systems of faces and their dual normals. We don't claim that
circumcentric duality is the only way to make the operators that relate forms and vector field (such as discrete
flat) work. But at least its use in the metric parts of the theory seems to produce simple formulas that are
self-consistent and satisfy theorems like Gauss’ divergence theorem for vector fields. We should point out
that the generalized Stokes’ theorem is a non-metric theorem when expressed via forms and so it has nothing
to do with the dual.

Even the construction of circumcentric dual meshes may be computationally challenging in high dimen-
sions. Suppose we are given the vertices from which a primal mesh is to be built. Delaunay triangulation will
produce a simplicial complex in which the interiors of circumspheres do not contain other vertices. But our
requirement of well-centeredness is stronger and may require the introduction of new vertices. Even Delau-
nay triangulation for dimension higher than 2 is a computationally challenging task. See, for example, Bern
et al. [1995]. Delaunay triangulation is equivalent in complexity to complexity of finding convex hulls in one
higher dimension. See, for example, Boissonnat and Yvinec [1998].

For some computations the Delaunay triangulation is desirable in that it reduces the maximum aspect
ratio of the mesh, which is a factor in determining the rate at which the corresponding numerical scheme con-
verges. But in practice there are problems (for example those involving anisotropy) for which even Delaunay
triangulations are a bad idea and so well-centered simplices might not be very useful. See, for example,
Shewchuck [2002]; Bern et al. [1995].

In the generalization of DEC to some simple regular meshes as done in Section 9.4, the absence of well-
centeredness seems to cause no problem in computing quantities like Laplacian which do not involve a flux
across a boundary and are guantities to be evaluated at nodes. This is probably because the closed dual cells

of primal nodes are Voronoi cells and by definition these tile the underlying space even when the mesh is not
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well-centered. So vertex related quantities can be computed at least for regular non-simplicial meshes even
for non-well-centered complexes.

In this thesis we will ignore all these computational difficulties and assume that we are given a primal
mesh satisfying the required conditions and that the mesh is not changing with time. We will proceed to build

exterior calculus objects and operators on such a mesh.

2.7 Interpolation Functions

Later in the thesis we will need to interpolate values that are defined at either primal or dual vertices. For this

we will need some basis functions that we now discuss.

Definition 2.7.1. Let K be a well-centered manifold-like simplicial complex. Consider a 1-ring of a vertex
% ando” = 9, i.e., ann-simplex in the 1-ring. Then the following functions, all maps fri& to R are

calledinterpolation functions.

(i) ¢oo »n istheprimal-primal interpolation function supported erf* and it is the unique affine function

that has the value 0 at all verticesdaf other tharns? and the value 1 at°,

(i) ¢50,p(s0) is theprimal-dual interpolation function supported dn(c?) with value 1 there and 0 else-

where,

(i) ¢p(on),on is thedual-primal interpolation function supported dmt(c™) with value 1 there and 0

elsewhere,

(V) ép(om),D(00) IS thedual-dual interpolation function supported an(o”) and defined as the barycentric
basis for convex non-simplicial polyhedra as defined in Warren et al. [2003]. This requirds bea

flat complex. %

See Fig. 2.7 for a cartoon representation of the interpolation functions.

The primal-primal interpolation function is Whitney O-form (or element). Whitney forms of higher
degress are used by many authors working in DEC. We don’t make use of any higher degree Whitney forms

in this thesis, but that is likely to change in our future work. Whitney forms are defined in Section 3.3.

Remark 2.7.2. Sum and gradient of primal-primal interpolation functions: Note thatV¢,o .~ iS con-
stant inint(¢™) and normal to the face opposite to verték Its length (in the standard inner product induced

from R™V) is 1/h whereh is the height of vertex® above the face opposite &. Furthermore,

(2.7.1) D> goon(z) =1

c0<on
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Figure 2.7: Cartoon representation of the four types of interpolation functions defined in Def. 2.7.1. The
dotted arc represents a one-ring of triangles of which only 2 triangles are being showmhdperew: primal

(left) and dual (right) scalar datBpttom row:(left to right) primal-primal, primal-dual, dual-primal and dual-
dual interpolation functions. In primal-primal, data is barycentric interpolated (affinely) in each simplex; in
primal-dual it is made constant in each dual of primal vertex; in dual-primal it is made constant in each primal
simplex; and in dual-dual it is barycentric interpolated (rational polynomial) using the generalized barycentric
coordinates of Warren et al. [2003]. The simplicial complex can be non-flat in the first three cases.

forall z € o™ and so

(2.7.2) > Voo.n =0
o0<om
in the interior ofc™. Here the sum is over all simplice$' containing the vertex. %

2.8 Local and Global Embeddings

The operators of DEC are local and operate in local regions like a 1-ring, the support volume etc. Furthermore,
the quantities used in the formulas turn out to be intrinsic quantities, in the plane of each simplex, and they
are independent of how the 1-ring etc. is embeddeR’h As in the smooth case, a quantity like mean
curvature which depends on the embedding is not part of an exterior calculus with real valued forms. In the
general case the proper development of such quantities requires Lie algebra valued forms and a theory of
connections, which is something we do not address in this thesis. As a result it is not essential to embed the
entire discretized manifol&” and one can work instead with local embedding. It is also not important how
the local piece is embedded, as long as the metric in each simplex is respected and the metric on each shared
face between simplices agrees.

To achieve this one can define a local metric on the vertices of the simplicial complex which is now an
abstract simplicial complex, i.e. a collection of vertices and connectivity information. This was pointed out

to us by Alan Weinstein. Distances between two vertices are only defined if they are part of a cammon
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simplex in the simplicial complex. Then the local metric is a miap{(vo,v1) | vo,v1 € K, [vg,v1] <

o™ € K} — R. The axioms for a local metric are as follows,
(i) Positived(vg,v1) > 0, andd(vg, vg) = 0, Y[vg,v1] < o™ € K.
(i) Strictly Positive If d(vg,v1) = 0, thenvg = vy, V[vg, v1] < o™ € K.
(iii) Symmetry d(vo, v1) = d(v1,v0), Y[vo,v1] < 6™ € K.
(iv) Triangle Inequality d(vog,v2) < d(vg,v1) + d(v1,v2), Y[vg, v1,v2] < 0™ € K.

Now eachn-simplex can be locally embedded irié, and all the necessary metric dependent quantities can
be computed within the plane of the simplex. For example, the volumé:afgal cell will be computed as

the sum of the-volumes of the dual cell restricted to eactsimplex in its local embedding inf&".

Example 2.8.1. Local discretization of a Riemannian manifold: Suppose we are given a Riemannian
manifold and some points on it. To discretize this information we would first define an abstract simplicial
complex on it, i.e., “glue”, or “draw” a simplicial complex on the manifold, with the given points as the ver-
tices. The measurement of lengths of the edges of this complex gives the data needed for a local embedding.
For example for a surface we would embed each triangle individualR?insing the edge lengths from the
abstract complex as the lengths of the edges of the triangle. Now the metric is implicitly defined inside the
embedded triangle. Since adjacent triangles share an edge, the metric of the two matches on the edge which
is a useful feature. This is all that is needed for a local theory like DEC. Of course the information about
guantities like mean curvature, which depends on the embedding, is lost. These quantities are not a part of

the basic exterior calculus with real valued forms, even in the smooth case. ¢

2.9 Summary and Discussion

This chapter is not a repeat of what is found in algebraic topology textbooks although such books are the start-
ing point for it. We have given details about primal and dual complexes that should allow one to implement
the required concepts in a program. This is in contrast with most available treatments in algebraic topology,
where, for instance, orientation of dual complexes requires much more background than our geometric, al-
gorithmic interpretation. We have also discussed the primal orientation in more detail than is usual in DEC
literature where the concepts like comparing orientations, or the requirement of the complex being manifold-
like, are rarely mentioned. We have spelled out the restrictions that we place on our meshes in detail, such
as requiring well-centered, manifold-like oriented simplicial complexes. Ample examples have been given
to clarify all the technical terms and concepts that are introduced. The discussion on local embeddings is to
suggest that one does not need to be given the entire manifold of interest discretized and embedded globally

as a simplicial complex ilR" .
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We have compared barycentric and circumcentric duality. Some reasons were conjectured as to why
circumcentric duality might be preferable in those parts of DEC that involve metric. However, a full un-
derstanding of which duality is better when, remains yet to be achieved. This is in part due to the fact that
metric seems to play a role in the current version of DEC in operators where it should not. Even if the metric
information seems to cancel out overall, a much cleaner DEC will likely limit the use of metric to only Hodge
star, flat and sharp. We have started to address this and we will point out some preliminary results as we go

along.
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Chapter 3

Discrete Forms and Exterior Derivative

Results: Now we will define discrete forms, which are objects that discretize differential forms of smooth
theory. The objects that are important in this chapter are chains and dual chains, which are made up of
simplices and other cells. We take the standard view of discrete forms as cochains, that is, as certain types
of functions on chains. For discrete exterior derivative also, we use its standard definition, as a dual of the
boundary operator. As is well-known and as we point out later in this chapter, this makes a discrete Stokes’
theorem true by definition. The only thing new in this chapter is discrete pullback. We define it and show

that discrete exterior derivative and pullback commute as in smooth theory.

Shortcomings: We place no continuity requirements on discrete forms as cochains. But many authors
do and rightly so. To prove convergence of discrete objects and operators to their smooth counterparts, one
needs a topology on the space of all chains possible from discretization (and not just on the chains of a given
complex). Next one needs to assume that cochains are continuous in this topology and discrete operators
continuous in cochain topology. As stated previously, we have done no convergence analysis yet and it is an
important topic for future work. Therefore, in this thesis we will not require continuity in the definition of

cochains as functions on chains. However Section 3.7 we speculate on such topology issues.

3.1 Differential Forms and Discrete Forms

We will define the discrete analogue of differential forms. Some terms from algebraic topology will be
defined and used but it will become clear by looking at the examples that one can gain a clear and working
notion of what a discrete form is without any knowledge of algebraic topology.

In smooth theory O0-forms are functions, 1-forms are differentials and 2 or higher degree forms (and
vacuously even 0- and 1-forms) are antisymmetric tensors. See Chapter 6 of Abraham et al. [1988]. One of
the uses for forms is thatiaform can be integrated onamanifold as described in Chapter 7 of Abraham
et al. [1988]. Forms play a crucial role in modern geometric mechanics. For example, the symplectic form of

Hamiltonian mechanics is a 2-form and many differential equations of mechanics can be framed in terms of
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forms and vector fields. See, for instance, Marsden and Ratiu [1999], Abraham and Marsden [1978], Arnol
[1989]. Thus it is worthwhile to try and discretize forms. There is a huge amount of literature on this which
we summarize and then add to in this chapter.

In the discrete theory the role pfmanifold is played by a-chain (a formal sum of simplices). We will
find that the integration has been done at discretization and from then on the role of integration is replaced
by an evaluation operation — evaluation of a discrete form on a chain. Discrete forms will be defined as
objects that can be evaluated on chains and hence will be called cochains. This is one kind of duality. We
have already seen another, geometric duality in the previous chapter where under some conditions every
simplicial complex was found to have an associated circumcentric dual complex. Since there are primal and

dual complexes naturally there are primal and dual chains and so there are primal and dual discrete forms.

3.2 Primal Chains and Cochains

We start with a few definitions for which more details can be found on pages 27, 28 and 251 of Munkres
[1984].

Definition 3.2.1. Let K be a simplicial complex. We denote the free abelian group generated by a basis
consisting of orienteg-simplices by,C,, (K;Z) . This is the space of finite formal sums of the oriented
simplices, with coefficients iZ.. Elements ofC,(K;Z) are calledprimal p-chains Some examples are

shown in Fig. 3.1. O

Remark 3.2.2. Chains as arrays: Sincep-chains are formal sums with integer coefficients or elements
of a free abelian group one way of thinking about chains is thathain is simply an array or table of the
orientedp-simplices of the given complei. An integer is entered corresponding to each simplex. Two such

tables can be added by adding the corresponding entries etc. This set of tables is clearly an abeliah group.

We view discreter-forms as maps from the spaceothains toR. Recalling that the space pfchains
is a group we require these maps that define the forms to be homomorphisms into the additivR.group
Thus discrete forms are what are called cochains in algebraic topology. We will define cochains below in the
definition of forms but for more context and more details readers can refer to any algebraic topology text, for
example, page 251 of Munkres [1984].

This point of view of discrete forms as cochains is not new. Hassler Whitney did a lot of work in this
subject as detailed in Whitney [1957]. In applications the idea appears for example in the works of Bossavit
[2002b], Adams [1996], Dezin [1995], Hiptmair [1999], Sen et al. [2000]. Our point of departure is that the
other authors go on to develop a theory of discrete exterior calculus of forms only. We have both forms and
vector fields and in the current version of DEC we only interpolate 0-forms and vector fields. It is possible
that in future work we will use Whitney forms for interpolating discrete forms. The formal definition of

discrete forms follows.



32

Figure 3.1: Examples of a discrete 0-form, 1-form and 2-forms. In all of these mesh is assumed to be oriented
by orienting say, each triangle counterclockwise. The 0-form shown in top row is just numbers assigned to

vertices. The 1-form in bottom left is numbers attached to oriented edges. The edges have to be oriented
independently of the oriented triangles. On bottom right is a 2-form, here just numbers assigned to oriented
triangles. In each of these examples one could also have a multiplicity associated with each vertex, edge or

triangle, here assumed to be 1.

Definition 3.2.3. A primal discrete p-form « is a homomorphism from the chain groah (K’; Z) to the
additive grouR. Thus a discretg-form is an element dfiom(C),(K'), R) the space ofochains This space
becomes an abelian group if we add two homomorphisms by adding their valRe3 ire standard notation
for Hom(C),(K),R) in algebraic topology i€”(K;R). But we will often use the notatioft’)(X) for this
space as a reminder that this is the space of discrete (henéstihscriptp-forms on the simplicial complex
K. ThusQ(K) := C?(K;R) = Hom(Cp(K),R). O

Note that by the above definition fprchain}, a;c! (wherea, € Z) and a discretp-forma, o (3, a;ct)
= 3", a;a(c?) and for two discrete-formsa, 3 € QF(K) andp-chainc € C,(K;Z) we have(a + £)(c)
= a(c) + B(c).

Remark 3.2.4. Real coefficients in chains:We could just as well have defined the chain group as the set
of formal sums with real coefficients instead of integers so weféf(; R) instead ofC),(K;Z). This has
the advantage that this is a vector space withptsemplices of K as the basis. This is useful when doing

analysis on chains and cochains. It is also useful in the definitions of Whitney maps in the next segtion.
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3.3 Whitney and de Rham Maps

In this section we will discuss discretization of smooth forms by using the de Rham map, and interpolation of
cochains using the Whitney map. In the usual exterior calculus on smooth manifolds integratitorrok

on an orientable-dimensional manifold is defined in terms of the familiar integratiof®Ri This is done
roughly speaking by doing the integration in local coordinates and showing that the value is independent of
the choice of coordinates due to the change of variables theor@&h. ifor details on this see the first few
pages of Chapter 7 of Abraham et al. [1988].

In the discrete theory the above integration of smooth forms is used during discretization via the de Rham
map to be defined below. This map, in association with the pasting map, produces discrete forms from smooth
ones. Recall that a discrete form is a cochain hence a function on chains. The value of a discrete form on a
chain is defined as the value assigned during discretization via the de Rham and pasting maps. This is made
more clear in the following definitions and discussion.

Conversely Whitney maps allow us to define smooth forms corresponding to cochains. The definitions
we use are from Whitney [1957]. On pages 138-140 he introduces “elementary forms” which are now called
Whitney forms (Bossavit [1998]; Sen et al. [2000]). Whitney uses the notatiter de Rham map and
for what is now called the Whitney map and we will continue to use his notation. Amongst our interpolation
functions defined in Section 2.7, were the primal-primal interpolation functions writtep.as. and these
were the Whitney 0-forms.

Let M be a smooth triangulable-manifold and leti be a simplicial complex iiR"Y andr a homeomor-
phism of K onto M. Due to the local nature of DEC, as discussed in Section 2.8 we don’t need theldntire
to be discretized aK and embedded. It is enough to do the embedding locally as discussed in that section.
Herer restricted to a simplex ok is what we called the pasting map in Def. 2.2.1. Whitney [1957] requires
some conditions on this map, but we will use it only formally in this thesis and so we skip those technicalities.

For an abstract simplex? in M let the corresponding approximating simplextfe= 7—1(o?) in K.

Such simplices in/ form a complexL. We can define chainse C,(L; R) on this complex as formal linear
combination of simplices i, and integrate-forms onM over suctp-chains. This leads to the definition of
the de Rham map. The spacepathains now is a vector space with thaimplices as the basis elements. The

space of cochains will still be denoted@8(L; R) but it now stands for the vector space dualiL; R).

Definition 3.3.1. Given a smooth-form o € QP (M), the function/_ « is linear inc and hence definesja
cochaim)?« of L. The space of cochains of chainslirwill be denoted”?(L; R). The map)? : Q (M) —

C?(L;R) is called thede Rham mapand is defined by its value on simplice® € L:

WP (a)(07) = (P(a), o7 = / “.

To discretize a smooth form on M we define a cochaia,; on K by defining its value on a simplex
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7 (oP)=7P € K as

ag(t?) = (P (), o) .

Thus the cochaiy; on K is a discrete form produced from a smooth formMnby using a de Rham map

and a pasting map. %

Definition 3.3.2. Thenatural pairing of a discretep-form a; = ¥P(a) and ap-chainc in K is the value of

the discrete form on the chain, defined as the bilinear paitngc) = aq(c) := (YP(a), 7(c)). O

Remark 3.3.3. Discrete form-chain pairing in the limit: We can consider the limiting value of the eval-
uation of a discrete 1-form on a 1-simplex in a simplicial compléxThis limit is taken in the topology of
the underlying spaciX|. In the limit the average value of the pairing of 1-simplex and cochain becomes the
natural pairing of a form and tangent vector in the direction of the simplex. This can probably be generalized
to higher degree forms, but we have not done that yet. For 1-forms, the following informal calculation on a
smooth manifold makes the above statement more specific.

Let M be a smooth Riemannian manifold with inner prod{ict) andc, : (—e, +¢) — M be a curve on
M such that.(0) = 29 € M. Letv € T,, M andv = ¢.(0) anda a 1-form onM. Then

/ “ /_+ (o, ce(t) dt = 2¢ {a(zo), v)

Thus

(a(zo), v) = lim — / a

e—0 l(ce)

wherel(c,) is the length of the curve.. O

Let M be a smooth manifold andl its abstract simplicial complex as before. The Whitney maps are
defined by lifting the barycentric coordinates from the approximating comfgleé® the abstract simplicial
complexL on M and defining a partition of unity od/. For technical details see page 139 of Whitney
[1957]. We give the explicit expression for the maps below. The Whitney maps defined below allow us to
define smooth formgc, corresponding to cochainsg; of L. The space of cochains is the spadg L; R)
and in this section we will let? denote not only an oriented simplex or a chain, but also the cochain defined

by o7 (0%) = 67. Then thes? form a basis for the-cochains orl..

Definition 3.3.4. Given a simplexs? = [vy,,...,vy,] in L define theWhitney map ¢? : CP(L;R) —

QP(M) as a map from cochains dinto smooth forms o/ by:
p —
G ([Uags- 502, ) =D Y _da,dgag A...dgy, AL Adgy, .
=0

As mentioned above, we have abused notation and writtgn. .., vy, ] for the cochain onl. that takes

value 1 on that simplex and O elsewhere. An example of a Whitney mafui$ = ¢; and¢(v;v;) =
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¢;d¢p; — ¢; d¢;. This map can be formally extended to be from discrete form&do smooth forms on

M by using the pasting map to transfer values from the simplicés tuf the simplices of.. %

The de Rham and Whitney maps satisfy the following important propertiesr Ee©? (M) be a smooth
p-form on M, and letoy € C?(L; R) be a cochain otl.. Then

Yda=dya

pdag =doay

Yoag = aq
pI° =1

wherel? is the unit 0-cochain of, and on the RHS] is the constant function ol/ with value 1 everywhere.
There are other important properties that are given in Whitney [1957], page 139. For exampleifar afy

> oi(p) = 1 and> d¢;(p) = 0 which are like the properties of the usual barycentric coordinates on
ordinary simplices. The Whitney map, of a cochain dual to a simg|ég supported irt(c). The exterior

derivative of each Whitney map has the nice formula:

dd)([v)\o...v)\p]) = (p—|—1)!d¢)\0/\.../\d(]5,\p.

This expression, along with induction, is used in Whitney [1957] to show the very useful property that

/’ qﬁo;':(;g.

Thus for example, the Whitney 1-form corresponding to an edge when integrated on that edge gives the value
1. Because of the barycentric coordinate like properties of summing to 1 and having a sum of differentials
equal to 0 allows the Whitney forms to be used as the basis for defining forms from discrete forms. We do

not use this interpolation of any forms higher than degree 0, but expect to do so in future work.

3.4 Dual Chains and Cochains

In Chapter 2 we defined the dual cell complexk’). There is an associated cellular chain group which
Munkres [1984] callD,,(K). This is just the group of formal sums of cells with integer coefficients. In the
cells inD(K) the information about the constituent elementary dual simplices is lost. In computations we
often want to retain that information. For example, we are often interested in the value of some quantity on
each elementary dual simplex making up the dual cell. To retain this bookkeeping information we define a

duality operator which takes values in the chain graiycsd K; Z). This is done below.
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Definition 3.4.1. Let K be a well-centered manifold-like simplicial complex of dimensian The star

duality operator * : C\,(K,Z) — C,,—,(csd K; Z) is defined by

*(oP) = Z Sop, . on [c(o’p)7 c(oPt), ... 7c(o’")]

oP<LoPTl<. .. <o™

where the sign coefficient,» .~ is chosen as1 using algorithm in Rem. 2.5.1. O

This definition is similar to, but simpler than Def. 2.4.5. Here, ofily— p)-simplices are used in the
union. As sets, the s&(c?), andx (oP), are equal. The difference is in semantics and bookkeeping since in

*oP one retains the information about the simplices it is made of.

Definition 3.4.2. The subset of chains @, (csd K; Z) that are equal to the cells &f( K') as sets, forms a
subgroup ofC,(csd K; Z). This is the set of chaineK = {xco|oc € K}. As sets these form a cell complex
identitical toD(K). We will denote this subgroup @, (csd K'; Z) by C,(xK;Z). ThusxK is a basis set
for this. O

Definition 3.4.3. The star duality operator is a map from the primal simplicial complex to a subgroup
Cp(xK; Z) of the chain complex of the subdivision complex. But we can formally extend the star opera-

tor to a map fromkK to K by definingx x o? = +0P. Here the sign is defined by the following:
(3.4.1) * % (0P) = (=1)P(=P)gP,

In other words dual of the dual of a simplex is defined to be the same simplex with orientation adjusted by

+1. O

Definition 3.4.4. Cochains of cells irC,(xK; Z) are thedual discrete forms The space of dual-forms
will be denoted by2!) (xK). O

3.5 Maps Between Complexes and Pullback of Forms

A very important aspect of calculus on manifolds is the notion of maps between manifolds. This is important
for example in applications like elasticity where the object of interest is moving and changing shape with
time. Indeed maps are crucial for defining the flow of a vector field since the flow, for a fixed time, is a map
of a manifold to itself. Flow in turn is used in the smooth theory for defining Lie derivatives, a most important
operator in applications. See, for example, Abraham et al. [1988].

Most of this thesis deals with the discretization of objects and operators defined on only one manifold.
However, recently Marco Castrillon and Jerry Marsden pointed out the fact that even for defining operators
on a single manifold, pullbacks are useful. This is because naturality under pullbacks can rule out definitions
of operators that would not generalize to a full calculus on manifolds involving maps. We point out such an

example in the definition of the wedge product in Chapter 7.
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In a full calculus maps are used to pull back and push forward objects. For example vector fields can
be pushed forward and forms can be pulled back naturally. A discrete map is the unique piecewise affine
map obtained by extending a bijection between vertices of two complexes that are isomorphic in the category
of simplicial complexes. In algebraic topology such a map is called a simplicial homeomorphism or an
isomorphism. A more general concept is that of a simplicial map in which the simplex of one complex can be
mapped to a different dimension. The definitions reproduced here are actually a couple of Lemmas on pages

12 and 13 of Munkres [1984].

Definition 3.5.1. Let K and L be two simplicial complexes, anfl: K(© — L be a map. Suppose that
whenever verticesy . . . v,,, 0f K span a simplex of¢, the pointsf(vp), ..., f(v,) are vertices of a simplex

of L. Thenf can be extended to a continuous map K| — |L| such that

T = Zﬂivi =g(x) = Z,Uif(vi)
=0 =0
andg is called the (linearyimplicial map induced by the vertex mafr If f is a bijection andy . . . v,,, Span
a simplex ofK iff f(uvp),..., f(vm) span a simplex oL then the induced simplicial mapis a homeomor-
phism and called aimplicial homeomorphism, or anisomorphism, of K with L. O

Now we can define a discrete pullback. In the discrete theory, since forms are cochains, discrete pullback

is defined by making the change of variables formula true by definition.

Definition 3.5.2. Let K and L be simplicial complexes and : |K| — |L| be a piecewise affine simplicial
isomorphism between them. Then thrémal discrete pullback by ¢, of ap-forma € Q%(L), is written as

¢*a and defined by its evaluation orpesimplexc? € K by:

(p*(a),0) = (e, (")) -

Thus it makes a discrete version of the change of variable formula true by definition since the evaluation of a

form on a simplex is a discrete version of integration. %

3.6 Exterior Derivative

Now we can define the discrete exterior derivative which we will dadk in the usual exterior calculus. The
discrete exterior derivative will be defined as the dual with respect to the natural pairing defined above, of
the boundary operator which is defined below. This operator will turn out to be local, natural with respect to

pullbacks and its composition with itself will be 0, just as in smooth calculus.

Definition 3.6.1. The boundary operatord, : C, (K;Z) — Cp,_1 (K;Z) is a homomorphism defined by
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defining it on a simplex? = [vg, . .., v,],

P
0po” = By ([vo,v1, -, vp)) = D (=1)" [0, -+, Biy -, 0]
i=0

wherefvy, ..., 0;,. .., vy is the(p—1)-simplex obtained by omitting the vertex Note thav,0d,11 = 0. {

Example 3.6.2. Boundary of a triangle: Given an oriented trianglpy, v1, v2] the boundary by the above

definition is the chaitiy, v2] — [vo, v2] + [vg, v1] Which are the 3 boundary edges of the triangle. ¢

Definition 3.6.3. On a simplicial complex of dimensiom, achain complexis a collection of chain groups

and homomorphisms, such that

Op o1
Cp(K) —— -+ —— Co(K) —— 0,

O Op+41

0 —— Cu(K)

andd, 0 9,11 = 0. O

Definition 3.6.4. The coboundary operator 6? : C? (K) — CP*! (K) defined by duality to the boundary
operator using the natural bilinear pairing between discrete forms and chains. Specifically, for a discrete form
af € QN (K) and achair,;1 € Cpyq1(K;Z) we defined? by

(3.6.1) (6Pa®, ept1) = (@, Opy10p41)
that is

0 (aF) = a” 0 By .
This definition of the coboundary operator inducesdbehain complex

0 =—— C"K) L i CP(K) L M COK) =—— 0,

where it is easy to see théitt! o §» = 0. O

Definition 3.6.5. Thediscrete exterior derivative denoted byd : Q5(K) — QZ“(K) is defined to be the

coboundary operat@®. An example is shown in Fig. 3.2. %

Remark 3.6.6. Stokes’ Theorem: With the above definition of the exterior derivatide : Of(K) —
QZH(K) and the relationship between the natural pairing and integration one can regard equation (3.6.1) as
a discrete generalized Stokes’ theorem. Thus givertlaainc and a discrete-form « the discrete Stokes’

theorem, which is true by definition, states thdty, c) = (a, dc). O

Remark 3.6.7. Properties of discrete exterior derivative: By definition discrete exterior derivative is a

local operator. Furthermore, it also follows immediately from the definition #it!d? = 0, since the



Figure 3.2: Computation of discrete exterior derivative. A 1-form is shown on the left, as numbers on oriented
edges. Thel of this will be a 2-form. The computation of this 2-form is shown on an oriented shaded triangle

in the mesh. The same triangle is shown separately on the right. Its orientation induces an orientation on its
boundary, shown here as going counterclockwise. This makes the numbers on the edges change sign if the
induced orientation is opposite of that edge’s original orientation shown on the left. The sum of these numbers
is thed of the 1-form on the left evaluated on the shaded oriented triangle.

boundary of a boundary is empty. Finally, the discrete exterior derivative is natural with respect to discrete
pullback, i.e., it commutes with discrete pullback. To see this, note that ferQ}(L), ¢ : |[K| — [L| a

simplicial homeomorphism, ane’*! € K we have that :
(¢*(da), o) = (da,p(o?*)) = (a,0p(0?™)) = (¢* @, 007 "h) = (d(¢"a), o)

which shows the naturality of discrete pullback and exterior derivative. %

Definition 3.6.8. The dual boundary operatord, : C, (xK;Z) — Cp,_1 (xK;Z) is a homomorphism

defined by defining it oRc™ P = x[vg, ..., Vp—p),s

O [V, ooy Up—p] = Z *(8gn-pi1 ")
on—pt+lygn—p
For0 < p <n — 1, the signs,»-»+1 = +1 is chosen so that the orientation induceddn? by each of the
s,n-p+1 0" PTL s the same as the original orientationodf 7.
Forp = n the signs,: is chosen so that the orientationsdf,: o) is the same as that induced Diio!)
by D(¢). Thus for thep = n case, i.e., when defining the boundary of the Voronoi dual of a primal vertex
o, one orients the edges incident o so that they are all pointing inwards or outwards depending on the

orientation of the complex. %

Remark 3.6.9. Dual boundary is not the geometric boundary: The reason that it is not enough to define

the dual boundary as the geometric boundary is that near the boundary of a manifold that would be wrong.
For example consider the complex in Fig. 3.3. The dual of the vertex shown is the Voronoi region shown
shaded. Its geometric boundary has 5 sides (two half primal edges and 3 dual edges), whereas the dual

boundary according to the definition above consists of just the dual edges as it should. %
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Figure 3.3: The dual boundary is not the same as the geometric boundary near the boundary of the manifold.
See Rem. 3.6.9.

3.7 Speculations on Convergence

As mentioned earlier, in this thesis we do not address the issue of convergence. We don’t answer questions
like whether our operators converge to their smooth counterparts, and if yes, then how fast do they converge,
and so on. The answers will depend on what topologies on the spaces of chains and cochains are chosen. In
the case of chains we mean here the topology on the space of all chains obtained from discretization, not the
point set topology on the given simplicial complex. The cochains will have to be continuous in that topology

or satisfy even stronger requirements. It is not clear to us what topology to use or even how to pose the
guestion of convergence.

In practice when one takes a sequence of meshes converging to a limit the mesh itself will move and
change in its embedding space. Otherwise refining a coarse simplicial mesh would only give smaller sim-
plices without changing the geometric shape of the complex. It is also well known that the quality of trian-
gulation plays a subtle and important role in convergence questions. See for instance Shewchuck [2002].

Whitney [1957] defines three norms on chains and cochains — mass norm, sharp norm and flat norm.
According to Harrison [2003] none of these seems enough to get convergence. With the sharp norm one can
find Hodge star in the limit, but not the exterior derivative The flat norm carries with i but not Hodge
star. Mass continuity of cochains is also not enough to retrieve the full calculus in the limit. For example
Almgren [1965] has shown that mass continuous cochains are differential forms.

One possibility is to take the Hausdorff metric on the space of all chains obtainable from discretization
of a manifold. This makes sense in physical problems. Discrete forms will come from the measurement by
some physical device. These measurements should not change when the device is moved slightly. This is the

view taken by Bossavit [2002b]. We leave these convergence questions for future work.

3.8 Summary and Discussion

In this chapter we have covered the background material needed for defining discrete forms and discrete
exterior derivatives. This can be usually found in some form or other in most works in DEC and in alge-
braic topology. Perhaps the only unique aspect of this chapter (thanks to Castrillon Lopez [2003]) is the

introduction of a discrete pullback and the proof that it commutes with exterior derivative.
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One serious shortcoming of our work is that we have not done any convergence analysis. As afirst step, in
future work we plan to study convergence issues in flat meshes, before attempting the more difficult questions

of convergence for non-flat meshes.
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Chapter 4

Hodge Star and Codifferential

Results: We define a discrete Hodge star as an equality of averages between primal and their dual forms.
Hodge star is an operator that involves the metric. Thus the use of metric information, in the form or cir-
cumcentric duals appears in line with the nature of the Hodge star operator. Once the Hodge star is defined,
a codifferential can be defined which then immediately leads to a useful operator like the Laplace-Beltrami

operator, the generalization of the usual Laplacian of Euclidean space to manifolds.

Shortcomings: In some applications there is more than one metric involved, leading to multiple Hodge
star operators. An example is 3D electromagnetism in which two Hodge star operators appear. One way
to handle this is to use two different embeddings of the simplices, corresponding to the two metrics. The
other, is to use 4D spacetime electromagnetism, which has only 1 metric. The latter solution has the difficulty
that no edge must be in the light direction. This problem is specific to relativistic applications. We have not

studied these questions in detail yet.

4.1 Hodge Star

In the exterior calculus for smooth manifolds the Hodge star denotedn isomorphism between the space
of p-forms and(n — p)-forms. The Hodge star is useful in defining the adjoint of the exterior derivative and
this adjoint is called the codifferential. For the definition of Hodge star in the smooth case see page 411 of
Abraham et al. [1988].

The appearance gfandn — p in the definition of Hodge star may be taken to be a hint that primal and
dual meshes will play some role in the definition of a discrete Hodge star since the dyakohplex is an

(n — p)-cell. Indeed this is the case.

Definition 4.1.1. The discrete Hodge Staris a map* : Qf(K) — Q) ”(xK) defined by its value over

simplices and duals of simplices. LeK p < n — 1. For ap-simplexc? and a discrete-form «

(4.1.1) (xat, %o P) (o, 0P) .

= o]
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Here recall thato?| is the unsigneg-volume ofo? in the embedding spad” .

For p = 0 we define the Hodge star by

1

W <>|<oz,*00> = W <a,ao> .

Heres is £1. Its value depends on the orientation/gfand the dimensiom. The value ofs decided by
the following rule. Consider an edge > ¢ oriented so that it points away fronf. Give 9(xc?) the

orientation induced froma®. Then
s=(=1)""" sgn(9(xc?),xct).

That is, if the dual of an outgoing edge is oriented the same as the orientation induegtdayits boundary,
then the signs = (—1)"~1, otherwise it is the opposite of that.

Forp = n define the Hodge star by

(xcv, %0™) 1= L (o, 0™) .

[xo™| ~ slom|

Again s = +1 and the value of decided by the following rule. Give™ ! the orientation induced from".

If xo™~! points away fromka™, thens = (—1)"~! otherwise it is the opposite sign. O

Remark 4.1.2. Special treatment forp = 0 and n: The reason for the special treatmentpof= 0 and
n is as follows. The 0-simplices have no inherent orientation. Thug fer0, in equation 4.1.1, the RHS
is independent of orientation df, but LHS is not. Fop = n the opposite is true. Thus the formula must
be corrected by making the orientation-independent side depend on the orientakion esbme way. This
amounts to using the signed volume for the&olume in the formula. Thus fgs = 0 we must use a signed
volume=|xc?| on the LHS, and fop = n we must use a signed volumgo™| on the RHS of formula (4.1.1).

Note that for other values of, both sides of (4.1.1) depend on the orientatiorkgfsince forl < p <
n — 1, the orientation of the dual? changes when the orientation &f changes. The use of signed volume
only in the case oh-volumes is consistent with the fact that even in the smooth theory, inrmanifold,
then-volumes are signed, but lower dimensional volumes don’t have any intrinsic sign. For example, in the
plane we can assign a sign to an area, relative to the orientation of the manifold, in a well-define manner.
But we cannot do this for lengths. Which specific sign convention is chosen for-téumes, is a matter
of convention. We choose the one we do so that the boundary normals in the discrete divergence theorems of
Chapter 6 will point outwards.

As an example of the sign used, in dimensios: 2, if the complexkK is oriented by orienting all triangles
counterclockwise, then fgr = 0, the signed volume|xc®| used will be—|xo?], since(—1)""1 = —1. If K
was oriented the other way, this would bé-°|. In dimensiom: = 3, if the complex is oriented by orienting

each tetrahedron by the right-hand rule, then the signed voliwa€| will be +|o°|, since(—1)""1 = +1. ¢
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The idea that the discrete Hodge star maps primal discrete forms to dual forms and vice versa is well
known. See for example Sen et al. [2000]. However, notice we now make use of the volume of these primal
and dual meshes. Similar ideas seem to appear in Hiptmair [2002a] and Harrison [1999]. The definition
implies that the primal and dualveragesmust be equal. This idea has already been introduced, not in the
context of exterior calculus, but in an attempt at defining discrete differential geometry operators in Meyer
et al. [2002].

Lemma 4.1.3. For a p-forma we have thak x a = (—1)?(*~Plq.

Proof. The proof is a simple calculation using the property that for a simplex or acéelk x (o) =
(=1)P(n=P)gP (equation 3.4.1). [ |

4.2 Codifferential

Definition 4.2.1. Given a simplicial or a dual cell complek the discrete codifferential operator d :
QPN (K) — QB(K) is defined by (Q9(K)) = 0 and onp-+1 discrete forms to b8 = (—1)" 1 xd*5. O

With the discrete forms, Hodge star,andd defined so far we already have enough to do an interesting
calculation involving the Laplace-Beltrami operator. We will show this calculation in Section 6.1 after we

have introduced discrete divergence and curl operators.

4.3 Summary and Discussion

We have defined a discrete Hodge star when there is only 1 metric involved. We will see later, that this Hodge
star, yields definitions of discrete Laplace-Beltrami and various vector calculus operators that have been found
by other researchers. In some applications, multiple metrics are involved and this leads to multiple Hodge
star operators. What should be done when there are multiple metrics involved ?

An example, is 3D electromagnetism in a non-uniform medium. Here one has the constitutive relation-
shipsd = *.e andb = *,, wheree andh are 1-forms and andb are two forms. Thus.psilon andx,,u
are two different Hodge stars based on two different metrics. One obvious possibility for addressing this
might be to embed the simplices of the complex in multiple ways, once for each metric. As mentioned in
Section 2.8 each of these embeddings can be local. However we have not studied the implications of such a
method.

Another solution, specific to the case of electromagnetism, might be to use spacetime formulation which
involves only 1 metric. However, as pointed out to us by Castrillon Lopez and Fernandez Martinez [2003],
other difficulties arise in such a formulation. Consider for example spacetime with 1 spatial dimension. If
this is triangulated and a triangle has one edge in the light direction then the circumcenter will lie on this

edge. One possibility for avoiding this may to use prisms with faces in spatial direction and straight lines in
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time direction. But this would require generalizing DEC to such cell-complexes. Thus work remains to be
done in treating discrete Hodge star in problems in which multiple metrics are involved.

In the interpolation view of DEC that we will explore in future work, the codifferential, and hence the
Hodge star will be determined by requiring the codifferential to be adjoint of the exterior derivative. In the
end the use of a dual mesh may turned out to be a shortcut for that procedure. This needs to be explored

further.
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Chapter 5

Forms and Vector Fields

Results:  One of the unique aspects of our work is the simultaneous presence of forms and vector fields in
our theory, just as in smooth theory. This is in contrast with most previous works in this field which have had
one or the other but rarely both. One exception is the work of Bossavit, such as Bossavit [2003].

In this chapter we define discrete vector fields, and discrete sharp and flat operators for going between
1-forms and vector fields. Due to the presence of primal and dual meshes, the discrete theory has many
sharps and flats, unlike the smooth theory. The sharp and flat operators are used in Chapter 6 to define vector
calculus operators. In the case of two of the discrete flats defined here, we prove uniqueness, dictated by
requiring the discrete divergence theorem to be true.

Note that the flat and sharp are st for translating vector calculus into exterior calculus. In mechanics,
some quantities of interest adefinedwith these operators. An example is vorticity in fluid mechanics, which
is d u” whereu is the fluid velocity field. Here: is not a proxy for a 1-form, it is a genuine vector field. Thus

it is worthwhile to discretize sharps and flats.

Shortcomings: The discrete vector fields of this thesis are actually semi-discrete in that their domain of
definition is a finite discrete set but the values are in vector spaces. It is not yet clear if this is the only or
the best way to proceed with discretization of vector fields. Also, our study of discrete flats is more thorough
than that of discrete sharps and it still remains to be seen if there is a flat and a sharp in DEC which are
inverses of each other. This is required for some important vector calculus identities to be true. In this thesis,
discrete flats are defined systematically via interpolation, but the definitions of sharps are ad hoc. For a proper
definition of sharps, we believe that interpolation of 1-forms, say using Whitney maps, might be an important
step that we do not take in this thesis. Furthermore, the pairing between forms and vector fields suggested
here seems to be metric dependent unlike smooth theory. Interpolation of forms in future work may yield a

metric independent definition.
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5.1 Discrete Vector Fields

Just as discrete forms come in two flavors of primal and dual (being cochains of primal or dual chains)
discrete vector fields also come in two flavors. They are defined either on the primal nodes or the dual nodes.
Considered as vector valued 0-forms this data can then be interpolated in various ways using the 4 types of
interpolation functions defined in Def. 2.7.1. For example, the dual vector fields can be made constant inside
n-simplices or interpolated inside the Voronoi regions of primal vertices by using generalized barycentric
coordinates of Warren et al. [2003]. The primal vector fields can be made constant inside the Voronoi region
of a primal vertex, or linearly interpolated inside a primasimplex using the usual barycentric interpolation
inside simplices. See Def. 2.7.1 for more on interpolation.

Thus this leads to four types of interpolated vector fields defined almost everywhere on the underlying
spacd K|. These are either constant over primadimplices or over duat-cells or barycentric interpolated

in these regions. These ideas are made more precise in the following definitions.

Definition 5.1.1. A discrete dual vector field X on a well-centered manifold-like simplicial compléx is

a map from the 0-dimensional subcomplEy,), the dual vertices ob(K), to RY such that for everyo”,

X (%o™) is in the same plane ag, that isX (xo™) € P(c™). We will denote the space of such vector fields

by X,(xK). See Fig. 5.1 for an example. The arrows drawn at the centers of triangles (dual vertices) together

form an example of a dual vector field. O

Definition 5.1.2. Let K be aflat well-centered manifold-like simplicial complex of dimensionA discrete
primal vector field X is a map from the 0-dimensional subcomple¥’), the primal vertices ofs, to R™.
We will denote the space of such vector fieldsdy(K). See Fig. 5.1 for an example. The arrows drawn at

the primal vertices together are an example of a primal vector field. %

Remark 5.1.3. Why we require flat complex for primal vector fields: In this thesis we have defined the
primal vector fields only for flat meshes. This is because when the mesh is not flat (for instance a non-flat
piecewise linear surface i.e., a triangle mesh in 3D) then it is not obvious what should play the role of tangent
space at a vertex. It is important that at a fixed vertex the tangent space have dimeasnot depend

on the number of.-simplices around the vertex. This is something for future work. But note that in many
applications this is not a limitation since one can use dual vector fields which are perfectly well defined for
non-flat meshes. Also in many important applications in computational mechanics flat mesh case is very

common, for example in 3D elasticity (although not in thin shells). %

Definition 5.1.4. The following vector fields on the underlying space of a complex are defined by interpolat-

ing the discrete vector field data over various cells of the complex. We assuni€ ibat primal mesh.

(i) For aflat primal mestlK andX € X,(K), theprimal-primal interpolated vector field

DY X(0°) g0 o

om g0<om
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Figure 5.1: Examples of a dual (top) and a primal (bottom) discrete vector field in dimension 2. The primal
mesh is in solid lines and the dotted lines are subdivision edges. For the dual field (arrows at the circumcenters
of the triangles) the complex can be non-flat. Each vector should then be in the plane of its triangle. For the
primal field to be defined (arrows on primal nodes) the complex has to be flat in the current version of our
theory. See Def. 5.1.1, Def. 5.1.2 and Rem. 5.1.3.

is a continuous piecewise affine vector field|éf], affine in each-simplex and continuous gi|,

(i) For aflat primal mesh< andX € X,(K), theprimal-dual interpolated vector field
Z X(UU)%O,D(UO)
is a piecewise constant vector field which is defined in dagh’) (which is an open set ifi(|) and

constant there,

(ii) For a primal mesh (not necessarily fldt)andX € X;(xK), thedual-primal interpolated vector field

Z X(*O‘n)(ﬁD(an)’o—n

o
is a piecewise constant vector field which is definethit{c™) for eacho™ and is constant there,

(iv) For aflat primal mesti andX € X,(xK), thedual-dual interpolated vector field

Y Y X(0")n(om).n(00)

00 om0
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is a piecewise smooth vector field continuous At and smooth in each(o?).

See Def. 2.7.1 for more on interpolation. When we don'’t want to specify the type of interpolation we will use

the notationy X ¢ to mean one of the above types of interpolated vector fields. %

5.2 Smooth Flat and Sharp

As in the smooth exterior calculus we want to define the discretebjland sharpf) operators to relate
forms to vector fields. This allows one to write various vector calculus identities in terms of exterior calcu-
lus. Furthermore sharp and flat are important even for defining operators like divergence, gradient, curl and
Laplacian. The use of sharps and flats for some common 3D vector calculus identities can be seen for the
smooth case on page 426 of Abraham et al. [1988].

Now we recall the definitions of flat and sharp in the smooth case. Sharp and flat involve a metric so we

assume we have a Riemannian manifold.

Definition 5.2.1. Let M be a Riemannian manifold with metrit, )) anda € Q!(M) a 1-form. Then the
sharp (f) map from 1-forms to vector fields is defined tyr*,v)) = «(v) for every pointz € M and any
tangent vectorv € T, M. O

Recall that 1-forms are real valued linear functions on vector space$:9an the equation above is
a number. For finite dimensional manifolds the existence and uniqueness of this map is guaranteed by the
Riesz Representation Theorem. In coordinates the above definition can be written as followdeltbe
Riemannian metrig , )) and let the matrix corresponding to it in some local coordinatgs;pe In the same
coordinate system let; be the coordinates ef. Then the above definition is equivalent(to’)’ = g «;
where[g¥] is the inverse of the matrix corresponding to the metri¢he inverse of the sharp map is the flat

(b) map which maps vector fields to 1-forms. Thus it can be defined as follows.

Definition 5.2.2. Let M be as above andl € X (M) a vector field onM/. Then theflat (b)) map from vector
fields to 1-forms is defined by X, v)) = X" (v) for every pointz € M and tangent vectar € T, M. O

To see that andf are inverses of each other note that for vector fidddsndV on a Riemannian manifold

M we have

(X7, V) = X" (V) = (X, V)
(@) (V) = (b, V) = a(V).
Example 5.2.3. Sharp and flat in gradient: The most common example of the use of sharps and flats is the

gradient operator. See page 353 of Abraham et al. [1988] for details’ heta smooth real valued function
on M. Then the gradient of written V f is defined a&/ f = (df)* or equivalently(V f)* = df. ¢
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Figure 5.2: Top row: dual (left) and primal (right) vector field& for which X" is desired on the shared
edge ;Bottom row: (left to right) dual-primal, dual-dual, primal-primal and primal-dual interpolations. See
Def. 2.7.1 for more on interpolation. The bottom row corresponds to the configuration for the discrete flats
bapps Pddps Pppp @Ndbpap. A dual destination would yield 4 more flats for a total of 8 discrete flats.

5.3 Proliferation of Discrete Flats and Sharps

Unlike smooth exterior calculus the discrete theory has at least 8 flat operators. There are also multiple
discrete sharp operators. Consider first, discrete flats. The reason for the proliferation is first of all the
fact that we have primal and dual vector fields and 1-forms. In addition we can interpolate the data in the
discrete vector fields to get vector fields on the underlying spE¢elefined (almost) everywhere on it. This
interpolation can be done in 2 ways for each type of data. Thus with 2 types of data, 2 types of interpolations
and 2 types of destinations we get 8 flat maps.

We decorate the 8 flats with 3 letter subscripts, using d for dual and p for primal anchyytepd,

Dpdps Ppdds Pdpps Pdpd, Padp @andbaaa, for the various flats. Thus, for exampbe,,, is a flat operator taking a
(d)ual vector field, via a dual-(p)rimal interpolation, to a (p)rimal 1-form. See Fig. 5.2 for a pictorial depiction
of 4 of these. In Section 5.5 we derive the DPP-figt() and in Section 5.6 a few others.

For sharps we have to consider interpolation of data living on edges since the sharps are maps from
1-forms. In this thesis however we take a shortcut and give ad hoc definitions of some sharps without con-
sidering interpolation. In future work we will consider interpolation of 1-forms into the support volumes of
primal or dual edges and interpolation of primal 1-forms intsimplices using Whitney forms. In this thesis
we will decorate the discrete sharp operator$as fipd, fidap, fad, indicating only the type of source and
destination in the subscripts (and not the interpolation type). In Section 5.8 we define a PR;s)ampdin

Section 5.7 a PD-sharp for exact forms.

5.4 Discrete Flats

Now we describe the strategy for defining discrete flats. In the next two sections we specialize this to derive

expressions for some discrete flats. Here we start with some basic facts about the smooth flat which will lead
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us to the discrete definitions.
Let M be a Riemannian manifold with inner prodygt )) andY a smooth vector field od/. Letr be a

smooth curve o/ arbitrarily parameterized bye [t,, t,] C R. Then by definition of smooth flat

(5.4.1) /Y" :/tb«Y(r(t)),v'"(t)» dt .

Since the integral is parameterization independent we can choose arc-length parameteraatiore get

L
(5.4.2) / Y = / (Y (r(5)),7(s)) ds

wheref(s) is the unit vector along at the point-(s) and L is the length of- in the metric ofM.

Now, let X be a discrete primal or dual vector field on a simplicial comgiext can be interpolated into
almost all of the underlying spa¢f& | by using one of the four types of interpolations of Def. 5.1.4. Then we
can define the discrete flat in terms of the flat of the piecewise interpolated vector field using equation (5.4.1).
That is, defineX?, the discrete flat of discrete vector fieliby its evaluation on any piecewise smooth curve
rin |K| by

(5.4.3) <Xbar> = / (ZXQSY

where} " X ¢ is the notation for interpolated vector field. Then evaluate the RHS by using equation (5.4.1)
over the various pieces of In a discrete theory we will generally be interested in the case whenr! is a
1-chain (primal or dual).
By construction, the interpolated vector field X ¢ is defined almost everywhere and hence the integral
on the RHS is well defined almost everywhere/f]. However, there are curves jK | where the interpola-
tion is not defined. Specifically, primal-primal and primal-dual interpolation are defined everywhgkg.on
But primal-dual is not defined on the dual — 1)-faces and dual-primal is not defined on prinjal— 1)-
faces. The interesting parts of the definition of a discrete flat operator are these very cases and we address

this in the next two sections.

5.5 A Dual-Primal-Primal Flat

Let X € X4(xK) be a discrete dual vector field dfi where K can be non-flat. In the case of a DPP-flat, we
start with such aiX, i.e., data defined on the dual vertices. The interpolation used is dual-primal interpolation
(simplex-constant) and we are interested in evaluating the resulting discrete 1-form on a primell edfie

The interpolated vector field is

X = Z X(*UR)QSD(O-H),UH

on



50

() (b)

Figure 5.3: (a) For a boundary edge in 2D there is no ambiguity about the the dual vector field to use for
defining a DPP-flat. The vector in the triangle containing the edge is used ; (b) On the shared edge the vector
field is not well defined. In 2D the two values to choose from are in the triangles sharing the edge. See
Fig. 5.4, Def. 5.5.2, and the explanation of that definition for a resolution of the ambiguity.

and this interpolated vector field is piecewise constant almost everywhdi€ |orLet - be a straight line
segment on whicl is defined. For example can be a straight line in the interior of any face of a simplex.

In this case equation (5.4.2) of previous section, Withreplaced by the interpolated fiell becomes

(5.5.1) lX%%(j»L:«XF»

wherer is the unit vector along andr is the vector along the segmerand of the same length aslIn fact the
inner product is the standard inner product of the embedding $¥and so we can write equation (5.5.1)

as
(55.2) /ﬁ:«&@:Xﬁ.

We candefinethis to be the value ok’ on the straight line on which the interpolated field is defined.

However, as mentioned in the previous section, often the interesting cases are precisely the ones where
the interpolated fieldX is not defined. In the DPP-flat we want to evaluaté on primal edges and the
dual-primal interpolated vector field is undefined precisely there. Fig. 5.3 explains the situation with a 2D
examples.

In Fig. 5.3 (a) the primal edge! in question is a boundary edge, the top edge of the middle triangle
in the figure. Even though the interpolation is not definedodnit is clear that usingt = X(0?) in
equation (5.5.2), where? = o', will complete the definition of DPP-flat in this case. This won’t work in
higher dimension. For example in dimension 3, a boundary edge may be shared by many tetrahedra. The
more interesting case is shown in Fig. 5.3 (b). Now the edigin question is the edge shared by the two
triangles. Since the dual-primal interpolationfis not defined orr', what should one use fo¥ on the
RHS of equation (5.5.2) ? The answer is in Def. 5.5.2 and the reasoning for it follows.

Let 0! € K be a shared edge. To give meaning to equation (5.5.2) fer ' we propose to use
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an average, constant value &f alongo!. One should use a local average, using only the values of the

interpolated vector field from neat'. For example oneould extendX to ¢! by defining it to be

"l

_ |g
X = =X (xc").
Z Za”>al|0n| ( )

ool
Orin general
= Qgn
X = =X (%"
Z Z ne g1 Qo ( 7 )
ool o >o

wherea,~ are constants equal to the volume of the portiom®fchosen in the weighting ok (xo™). We
prove in Corollary 6.1.4 that discrete divergence theorem (Theorem 6.1.3) for a general dual discrete vector

field is true if and only if the factors,~ are theuniquefactors that appear Def. 5.5.2, i.e., if and only if
agn =[xt N o™

which is equivalent to
Agn - ‘*Jlﬁdn‘

Za’">01 Agn B ‘*Ul‘

The geometric meaning of these factors is the content of the following simple proposition.

Proposition 5.5.1. For a primal meshik of dimensiom, a primal edges! € K, and ann-simplexs” > o,

the following geometric identity is true :

kol no™  |Vono™|
ot] Vel

Proof. Consider an arbitrary, simply connected, compact subset of a hyperpldke, ine, an object of
dimensionn — 1. Let V' be its(n — 1)-volume. Now consider the object obtained by translating the shape in

a transverse direction while scaling it uniformly and linearly in each af its 1 dimensions until it reaches

a size 0. That point will be called the apex and the original object the base. This pyramid like structure will
be called a pyramid. If the transverse direction is orthogonal to the hyperplane containing the original object,
we will call the resulting pyramid a right pyramid. For example, in dimension 3, if one starts with a triangle,
one gets a tetrahedron. Starting with a square, one ends up with the usual pyramid. In dimension 2, if one
starts with an edge one gets a triangle.

The volume of a pyramid, created from a base object of voliifris (1/(n + 1))V h whereh is the
orthogonal distance of the apex from the base. For example the area of a trigng® isasex height. The
volume of a tetrahedron id /3) basex height. The support volume of an edge in dimensiotonsists of
2k right pyramids, two in each of thi n-simplices containing the edge. For example the support volume
of a shared edge of two triangles, consists of 4 right triangles. By construction, both the pyramids in each

n-simplex will be congruent and hence of same volume. The base object of each of these is the dual of the
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Figure 5.4: In DPP-flat the ambiguity about the vector field value at shared edge is resolved by defining a
weighted average vector field on the support volume of the edge. The average vector field is defined as being
constant there. The vectors are weighted by fraction of the support volume of the shared edge that falls in the
corresponding:-simplex (in this case triangles). There is a simple expression for this fraction, as stated in
Prop. 5.5.1. This leads to the definition of the DPP-flat in Def. 5.5.2. In Corollary 6.1.4 we show that these
are theuniquefactors that make the discrete divergence theorem true.

edge lying inside the-simplex. This is the quantitjo* No™|. Thus the volume of each of the two pyramids

in eacho™ is
Featalad I _1
2 n+1°
Thus
[Vor o™ _ 2 xot No™| (lot]/2) (1/(n+1))
Vo] 2 o] (lot]/2) (1/(n +1))
which proves the desired identity. |

Definition 5.5.2. Let K be a simplicial complex of dimension andX € X,;(K) a given dual vector field
on K. Thediscrete DPP-flatis a mapq,,, : X4(xK) — QL (K) and is defined by its evaluation on a primal

1-simplexo! by

1 n
b 1\ _ |xotnam| ny =1
(553) <X dpp70' > = Zl WX(O’ ) -0
oo
where X (¢") - &' is the usual dot product of vectors R anda?! stands for the vector corresponding to
o' and with the same direction as the orientatiorrbf The sum is over als™ containing the edge'. The

volume factors are in — 1 dimensions. We will sometimes wrif&” instead ofX "aer. O

In the smooth theory the flat and sharp are inverses of each other. The next proposition shows that at least
the DPP-flat does not have an inverse in the literal sense. We have not investigated yet, if an inverse exists in

some other, for example, averaged sense.

Proposition 5.5.3. The discrete flabqp,, iS neither surjective nor injective. Thus it does not even have a

one-sided inverse.

Proof. Fig. 5.5 shows an example of a vector field that is not zero but whose DPP-flat is 0. Since the discrete

DPP-flat function is a linear function of the vector field data, this implies that it is not injective. It is also
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Figure 5.5: A dual vector field that shows that thg, is not one-one. The arrows are based at circumcenters
and are supposed to be of equal lengths and orthogonal to the corresponding outer boundary edge.

not surjective. Just consider an equilateral triangle and a 1-form that takes value 1 on each edge. There is no

vector field whose DPP-flat will give this 1-form. |

5.6 Other Discrete Flats

Now we will discuss the remaining 7 types of discrete flats. For some we give the explicit expression and for

the more complicated ones we describe the construction in words.

PPP-flat:  Barycentric interpolation inside an-simplex reduces to barycentric interpolation along the

edge, i.e., linear interpolation along the edge. Thus we have'fer [vg, v1 ]
()= [ x5

whereX is the linear interpolation of the valués(vy) and X (v;) alongo.

PPD-flat:  Here the vectors at the vertices @t are linearly interpolated inside the simplex. Xfis this

interpolation then for™~1 < o
<Xbppd,01> :/ X %ot
o—l

PDP-flat:  The vector field in Voronoi region of each vertex is constant. Thusfoe [vg, v1]

5:1
<Xbpdp, 01> = X(vo) - 5+ X(v1)

X(vo) + X (v1) #

and so the average value along the edge is used.
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PDD-flat:  Like the previous case, the interpolated vector field is constant in the Voronoi region of a
vertex. Letoc”~! < o™ and consider the dual edge™ ! where the flat is to be evaluated. This dual edge
intersectsr™~! at the circumcenter(oc™~1). Thusevery pointon the dual edge is equidistant to every vertex

0¥ < o1, Thus clearly the valueX (¢°) should be combined with the same factor 1. Indeed this is also
the conclusion of Corollary 6.1.8 of the proof of primal discrete divergence theorem in Chapter 6. In other

words, a primal discrete divergence theorem is true if and only if PDD-flat is defined as below:

(v iy £ X

c0<on—1

where we have useer™ ! to mean both the dual edge and the dual edge considered as a vector.
DPP-flat:  This has been derived in the previous section.

DPD-flat: HereX is made constant inside ansimplex. Letxc”~! be the dual edge on which we want

to evaluate the flat. We define

<depd,*01> = Z X(o™) - (xa™ P No™)

o—n>0-n—1

where by abuse of notatiorg™~! N ¢” stands for the vector corresponding to the dual edge'in

DDP-flat andDDD-flat: These two require the new barycentric interpolation of Warren et al. [2003] and

we will not use them in this thesis.

5.7 A Primal-Dual Sharp for Exact Forms

As mentioned in Section 5.3 a proper development of the discrete flat operator should probably start with
interpolating the discrete 1-form data. The two choices for interpolation might be into the support volume,
and into the simplex by using Whitney forms of Section 3.3. We do not do that in this thesis, and instead, we
shortcut the process of interpolation and define 4 types of sharps based on 2 types of sources and 2 types of
destination. Of these we will only discuss PD-sharp for exact forms and PP-sharp.

To motivate the definition of primal-dual sharp for exact forms we do the following simple calculation of
gradient. Letf be the function that is obtained by linearly interpolating iniasimplex the discrete 0-form

f - Thus for a point: € ¢™, using the interpolation functions we have that

flyw (@)= D F(0°) dgogn(x).

o0<on
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Taking the usual gradient of this smooth functioriin o™ we have

(5.7.1) (VO oy = D F(0°)Vo0,0m -
g0<om
Let [vo, . ..,v,] = ¢™. Then by equation (2.7.2) we have that

v¢vo,07’ - - Z V(bvi’gn .

1<i<n

Substituting this into (5.7.1) we get

(v.f)|1nt(,7n) = Z f(Ui)v¢vi,U”

0<i<n

= 3 f@)Vouon = > f(00)Vu0n

1<i<n 1<i<n
= Y (f(vi) = f(00)Vu, o -
1<i<n

Thus
(Vf)’hlt(gn) = Z (f(vz) - f(vO))Vvai,U" :

1<i<n
Note that here the coefficienf§v;) — f(vo) are nothing bud f evaluated on the eddey, v;]. Since
Vf = d f in the simplex interior, the above equation suggests the following definition for a primal-dual

sharp.

Definition 5.7.1. Let f be a discrete O-form on a primal mestf;, a simplex in this mesh anda vertex of

o™. Then thediscrete primal-dual sharp for exact formsis defined by

(5.7.2) ((df)fed x0™) = (f(0°) = f(v)) Vg0 on
o0<on
We state without proof that the value is independent of whighchosen as the distinguished vertex. This is

clear from the calculation of gradient done above. A pictorial depiction of this formula is in Fig. 5.6

We did not define the primal-dual sharp for general forms because in that case the choice of the vertex
v will in general, affect the answer. One could try to take all vertices®obne by one, and use some sort
of weighting, such as«c® N ™| /™. Then in equation (5.7.2) abovg(c") — f(v) would be replaced by
<a, [00, v]> whereq is the discrete 1-form whose sharp is desired. However, this is an ad hoc weighting and
as we have been stressing, perhaps the right way to build discrete sharps is to first interpolate the discrete

1-forms, using, for example, Whitney maps.
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Figure 5.6: The geometry of PD-sharp for exact forms. The color coding shows the values that are related.
The arrows are gradients of primal-primal interpolation functions. The sum is taken at a vertex, any vertex
will do and will give the same result. The value of the exact form on each edges incident on that vertex is
used.

5.8 A Primal-Primal Sharp

If we start with a primal 1-form and want to produce from it a primal vector field at a vertex, then one ad
hoc definition is to compute the sharp in each simplex of a one-ring around the vertex. This can be done
by using that vertex as the distinguished vertegf equation (5.7.2) and using evaluations of the 1-form

on edges instead of evaluation®ff in that equation. Then one can use some weighting for each simplex,

say the portion of the Voronoi region that falls in each simplex. Or, the fraction of volume that the simplex
represents, of the one-ring volume. The former choice would lead to the following definition. Unlike our
uniqueness result in the discrete flat case, we have not attempted any uniqueness proofs in discrete sharps,

since the future development will probably involve interpolation of 1-forms.

Definition 5.8.1. Let K be a flat simplicial complex of dimensionand leta € Q}(K) be a discrete primal
1-form. Thediscrete primal-primal sharp is #,, : Q4 (K) — X4(K) (but we'll just write ) and is defined

by its evaluation on a given vertexas follows

[*xvNo™

o™

(5.8.1) af(v) =Y (a,[v,0") Y

[v,09] o [v,00]

V¢JU Neal

The outer sum is over all 1-simplicés, ¢°] containing the given vertex and the inner sum is over at®
containing the 1-simplefv, ¥]. The volume factors are in dimensian The mapss,o .~ are the primal-

primal interpolation functions. A pictorial depiction is in Fig. 5.7. O

5.9 Composing Sharps and Flats

Note thathy,, goes from dual vector fields to primal 1-forms. By} goes from primal 1-forms to primal

vector fields. Thus although sharp and flat in the smooth theory are inversethdsgmarticular the discrete

sharp and flats cannot be inverses of each other. We have see also in Prop. 5.5.3 that the DPP-flat cannot have
an inverse in the usual sense.

The incompatibility of domains and codomains for DPP-flat and PP-sharp seems similar to the incon-
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Figure 5.7: The geometry of PP-sharp definition. The color coding shows the quantities that are related. The
arrows are the gradients of interpolation functions.

sistency of domains and ranges of mimetic div, grad, curl described on page 85 of Hyman and Shashkov
[19974a]. It is possible that analogous to the discrete Hodge star case some flats and sharps are inverses in
terms of averages but this is something we have not studied yet. Neither have we studied all possible com-
binations of discrete flats and sharps. We also note that we implicitly define a sharp and flat in Tong et al.
[2003] so thativ o curl = 0 andcurl o grad = 0. Although we do not use DEC formalism there, the above
result, which in exterior calculus is a consequence of sharp and flat being inverses of each other, is reproduced
in Section 9.3. O

5.10 Natural Pairing of Forms and Vector Fields

In the smooth theory pairing of forms and vector fields is a metric independent operation. At a point on the
smooth manifold, 1-forms are the usual linear algebraic duals of the vectors at that point. So the pairing is
just evaluation of the real-valued linear functions (1-forms) on the vector at that point.

Here we define the natural pairing of discrete 1-forms and vector fields that seems to depend on a metric.
After that we suggest how we may give a metric independent definition. We can use equation in Def. 5.2.1
which is the definition of in the smooth case but now we use it as the definition of the natural pairing. This

gives us the following definition for discrete natural pairing.

Definition 5.10.1. Let K be a flat simplicial complex of dimension « € Q) (K) a discrete primal 1-form
andX € X,(K) adiscrete primal vector field. Then theliscrete natural pairing, «(X) at a 0-simplex°

is defined as

where- is the usual dot product in the embedding spite O

In future work we intend to consider interpolation of 1-forms using Whitney forms and also into the

support volumes of edges. Once the form is interpolated, one can use the smooth definition of pairing between



58

forms and vector fields to yield a discrete definition of pairing.

5.11 Summary and Discussion

The focus of this chapter has been the definition of sharps and flats. These are metric dependent operators that
were defined in the smooth theory, so that vector calculus could be brought under the umbrella of exterior
calculus. In this chapter we have made explicit the translation between discrete forms and discrete vector
fields using the metric information in specific, geometric formulas. In works on DEC that use vector fields

as proxies for forms, this is usually done implicitly by assuming flat space, and often e®h i@ur
development is explicit and general and works for non-flat meshes, when the choice of vector field and
interpolation scheme allows non-flatness. This allows one to define discrete vector calculus operators using
DEC. This is not essential for equations of mechanics, but it does help in discretizing equations that are
written in terms of div, grad and curl.

We have been able to define flats by using interpolation of vector fields which we treat as vector valued 0-
forms. For a proper definition of sharps it may be necessary to first interpolate 1-forms. Instead, here we gave
some ad hoc definitions. One drawback of these definitions is that the resulting definition of form-vector field
pairing is metric dependent. We also did not demonstrate a discrete sharp-flat inverse pair. In addition, we
showed that one of the discrete flats that we studied in detail cannot have an inverse in the usual sense. There
may be an inverse pair, or the inverse may exist in some kind of average manner. That is for future study.
Indirect evidence that such might be the case comes from our other work, on vector field decomposition in
which we have found vector calculus operators that satisfy the usual identities which are, in smooth theory, a

consequence of sharp and flat being inverses of each other and the fakct that 0.
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Chapter 6

Div, Grad, Curl and Laplace-Beltrami

Results:  In smooth theory, divergence is defined in terms of the Lie derivative of a volume form. We
will define it first via an identity of exterior calculus involving flat operator. We show that we get a primal
and a dual discrete divergence theorem. Corollaries of the proofs of these also show that the factors in the
definition of DPP-flat and PDD-flat are unique. Also, in the 2D case our formula for discrete divergence is
the same as that appearing in other literature such as Polthier and Preuss [2002]. Then we briefly discuss
the other definition of divergence, based on derivative of volume. We define Laplace-de Rham operator,
of which, a special case is the Laplace-Beltrami of functions on manifolds. In a 2D calculation, our DEC
definition reproduces a well-known Laplace-Beltrami formula found in computer graphics by Meyer et al.
[2002]. The formula can also be derived variationally, using a DEC framework, as shown to us recently by
Castrillon Lopez and Fernandez Martinez [2003]. Our discrete gradient is defined using the PD-sharp for
exact forms from the previous chapter and another one using an averaging property of the PP-sharp. For curl
we show a 2D definition and a 3D definition and show that the 2D formula in DEC agrees, modulo an area

factor, with that found by Polthier and Preuss [2002].

Shortcomings: The definition of divergence involves two Hodge stars and a flat operator. It is an identity

in smooth theory that the metric inherent in these, finally enters the divergence formula only via the volume
form. We have not shown that the same is true in discrete theory. However we give some preliminary
comments on the volume based definition of divergence in this chapter. We have derived a 3D curl in our
other work in Tong et al. [2003] that satisfies all the usual vector calculus identities. But we have not yet
reproduced that definition via a DEC derivation. We think that the proper definitions of a general gradient
and 3D curl requires that the sharp operator be build from interpolation of 1-forms, like the flat was built from

interpolation of O-forms.



60
6.1 Divergence

In the smooth theory, divergence is defined via a Lie derivativ&dby X ) = £ x 1 wherep is the volume

form associated with the given metric. In future work we plan to explore this definition in the discrete theory.
Some preliminary comments about this are given at the end of this section, in the context of Def. 6.1.9 where a
volume based definition is given. This volume based definition is the straightforward, intuitive interpretation
of the Lie derivative definition.

The main content of this section however, is the definition of a discrete divergence using an identity from
smooth theory. We don’t know yet if Lie derivative based definition and the present definition will turn out
to be identical. But we point out that the present flat based definition does result in a discrete divergence
theorem, for both primal and dual vector fields. This is the content of Theorem 6.1.3 and 6.1.7. First we
prove some lemmas that establish a discrete divergence theorem on a singlecdli@nd a single primal

n-simplex. Later we combine many dualcells or primaln-simplices to produce the divergence theorems.

Definition 6.1.1. For a discrete vector field thediscrete divergencediv(X) is defined to be
div(X) := —6X" = «d*X".

The above definition is actually a theorem in smooth exterior calculus and a consequence of the Lie derivative
based definition. See, for example, page 458 of Abraham et al. [1988]islfa dual vector field, the discrete

flat used above isy,,. For a primal vector fielth,qq is used. In other words X € X4(xK) then

(6.1.1) (div(X),0%) = *d xX aer

and if X € X4(K) then

(6.1.2) (div(X),x0™) =« d X pdd |

Thus for a dual vector field, divergence is a primal O-form, and for a primal vector field divergence is a dual

O-form. O

The divergence defined as above satisfies a discrete divergence theorem. This is proved for a dual vector
field in the following lemma and theorem. For a primal vector field, we only sketch the proof. We will now
prove the discrete divergence theorem for dual vector fields overdaalls, starting with the result over a

single dualn-cell.

Lemma 6.1.2 (Divergence Theorem on a Dual-cell). Let K be a primal mesh, not necessarily flat, and
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of dimensiom, andc?, a vertex in it. LetX € X,(xK) be a dual vector field on the complex. Then

(6.1.3) [x0®| (div(X),0% = > Y [xo'no” <X<*“")'|i)'

ol>=00 on>ol
where the edges!' are oriented so that they all point outwards.

Proof. First we indicate why we call this a divergence theorem. Hgréo!| is a unit normal perpendicular
to the boundary of the regiorr® and pointing outwards. This region is the Voronoi region of the vertex
wherediv(X) is being evaluated. The quantity o' N ™| is the length of the part of the dual edgecdf
that is in the simplex™. Thus equation (6.1.3) is a statement of the divergence theorem over the Voronoi
regionxc?, i.e., the integral of divergence over this region equals the the flux tfrough the boundary of
this region.

In this proof we will writeb as a shorthand fog,,,. Sincediv(X) = »d *X”, as expected, the divergence
is a scalar. In particular because the flat used is DPP-flafaisda dual vector fieldX” is a primal 1-form
and so due to the two Hodge statsy(X) is a primal 0O-form. Thus we can compute it at a primal verté,
This is the quantity

(div(X),0%) = (+d+X",0°) .

Using the definition of Hodge star we get

L<*d>s<Xb,UO>: 1 <>x<>x<d*Xb,*aO>.
|0°] s [xo?|

Heres is the sign+ as discussed in the Hodge star definitionGeandn-simplices in Chapter 4. Assume,
without loss of generality, that the orientation/gfis the one that makes= (—1)"~!. Then, sincés’| = 1,

we get

(~1)"
x0?]
(~1)"

= <d *X",*ao>
x|

(div(X),0%) = <>|<>|<d*Xb,*UO>

= 7(_1)71_1 <>«<Xb78(*00)> .

[x0?]

The second equality is by application of definition of Hodge star and the last one above is by application of

discrete Stokes’ theorem. But by Def. 3.6.8 of dual boundary,

d(xo%) = Z *(s510")

oly>o0

where the signs,1 = +1 is chosen to that the edges: o' all point inwards or outwards, depending on the

orientation of K as explained Def. 3.6.8. In our case, the orientation has been chosen so that they will all
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point outwards. See Def. 4.1.1 and Def. 3.6.8 for an explanation.
For simplicity of notation in the calculation that follows, we will useinstead ofs,: o. That is, we will
assume that the edge$ have been oriented so that they all point outwards. Now we can use the linearity of

the pairing of forms and chains and write

-1 n—1 -1 n—1 1
(Gl i |*30| <*Xb,8(*ao)> = [Gl) |*30| <*Xb, Z *xC >

oly»o0

) S
|*UO| ol>og0

Another use of the definition of discrete Hodge star now gives

1 b, 1 1 |xo b 1
7|*O'U| Z (xX°,x0") = Py Z Tfl| (X, 0%).

Now we can use the definition of DPP-flat operator and we get that

1 xall, 0 4 1 |xo
6.1.4 X =
©19 ot 2o, ot K = R 2 o

1y 50

1 n
n
> [xo - | X (o) - 31
[xo!|

|xo'no” ﬂa"| "
Z Z e X(xo™) - o

ol>=00 gngl

= o 2 X et (X |Z|>

ol>=0c0 gm0l

I*ff"\

wherec! all point outwards. Thus we have finally that

-1
|*UO\ (div(X E E |*0’ No”| X(*a")-—a
ot

ol=00 oneol
which we wanted to show. [ |

Theorem 6.1.3 (Divergence Theorem on a Dual-Chain). Letc be a dualn-chain which, as a set, is a

simply connected subset|df|. Then the discrete divergence theorem is true over this set.

Proof. It is enough to show that for two adjacent duatells the contributions due to the shared dual edge
cancel in the RHS of equation (6.1.3). Consider two such adjacentrdoells. Letv, andv; be the two
vertices of which these are the dual cells. Since the cells are adjacent, there is gdnoeddeand its

dual is the only shared face. That edge appears with opposite signs for the two versions of equation 6.1.3
corresponding ta, andwv,. The coefficients are otherwise the same. Thus the term corresponding to that

edge cancels. |

Corollary 6.1.4 (Uniqueness of DPP-flat).The discrete divergence theorem on a dualell is true if and
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only if the factors in the DPP-flat definition, Def. 5.5.2, are

|xol M o™
ol

Proof. Suppose in the proof of Lemma 6.1.2 above we replace the definitidfiof in equation (6.1.4) by

one that uses arbitrary factdis.. Thus we have, in the proof of Lemma 6.1.2, that

(div(X),0%) = ! Z |*;1|| Z bon X (x0™) - 5!

|*oO| 2 1ol 2

6:1
|*O—O| Z Z |*U |bo—ﬂ (X(*U |0_1|> .

ol=00 on-ol

Since the divergence theorem must be true for any dual vectorXiele can choose one which is 0 every-
where except in one™ = ¢°. Then the divergence theorem is true|itr! N 0" = |xo!|b,~ for some

ol < o™, which implies that

b | %ol nom|
- o]
Sinces™ was arbitrary, this proves the desired uniqueness. |

Remark 6.1.5. Divergence of dual vector field in primal is O: If divergence is computed by Def. 6.1.1,

for a dual vector field inside a primalsimplex, the DPD-flat is used. An easy calculation shows that then

the divergence at the center of the simplex is 0, because in the calculation, there is a sum of the dot product
of a vector with the dual edges which are scaled so that the sum is 0. Thus one gets the correct answer in this
case. To compute the divergence inside a primal simplex but for a primal vector field, one uses a PDD-flat

and this results in the following Lemma. %

Lemma 6.1.6 (Divergence Theorem on a Primab-simplex). Let K be a flat primal mesh of dimension

ando' avertex init. LetX € X4(K) be a primal vector field on the complex. Then

n—1
§ . . - *0
(6.1.5) 0" (div(X), %0y = Yo" ( > X ) Teom 1]
on—1<gn o0<on—1

where the orientation of” is such that the dual edges™ ! point outwards. If the given orientation is the
other one then RHS is multiplied byl.

Sketch of proofThe proof consists of application of the definitions, as in the proof of Lemma 6.1.2. The
only difference is that PDD-flat is used. Thus the vector field is interpolated to be constant in the Voronoi

dual of each primal vertex. [ ]

Theorem 6.1.7 (Divergence Theorem on a Primak-chain). Letc be a primaln-chain which, as a set, is

a simply connected subset|éf|. Then the discrete divergence theorem is true over this set.
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Sketch of prooflt is enough to show this for two adjacent primakimplices. It follows due to the fact that
the shared face is oriented oppositely by the adjacent simplices while the vector field data is the same. This

causes a cancellation giving us the proof over the two simplices. |

Corollary 6.1.8 (Uniqueness of PDD-flat). The discrete divergence theorem on a primaimplex is true

if and only if the factors in the PDD-flat definition in Section 5.6 are 1.
Proof. Similar to the proof of Cor. 6.1.4. ]

Now we will give the formal definition of divergence via the volume form. We have not worked out the
resulting discrete formula in all cases, but in 2D, it appears to give the same result as the definition used

above.

Definition 6.1.9. Let X be a discrete primal vector field on a flat compléxandc® a vertex ink. Extend
X to X in anysmooth fashion to a neighborhood of the boundary vertices of the on&ting) aroundos°.
Then the discrete divergence on the one-ring is defined by

(div(X),0%) [St(0)| = L] [u(St(0"))
t=0

where; is the affine simplicial homeomorphism extended from from the flowXofestricted to the ver-

tices. O

We intend to explore this definition in future work. The nice property of this is that the metric enters only

via the volume form as it should.

6.2 Gradient

In smooth theory the gradient of a function(id f)#. Thus it converts the metric independent quantity into

a metric dependent one. For a primal O-form the gradient can easily be computed in the interior of the
primal simplex by first interpolating the 0-form from the vertices to the interior using the affine, barycentric
interpolation functions, and then taking the gradient. Since the interpolation is affine, the gradient is a constant
vector and we can associate it with the dual of the simplex. This is the primal-dual gradient defined below.
For the primal-primal gradient, one has to necessarily combine the information from the one ring around a
vertex in some way, and for now we propose an ad hoc method using the primal-primal sharp.

As we mentioned in Section 5.8, the right way to define sharp is to interpolate 1-forms first. But we have
not done that in this thesis, and instead we have given an ad hoc definition. Similarly one can give ad hoc
definitions for dual-dual and dual-primal sharps and consequently for those gradients. But we will not do
that here. In summary, the only reliable gradient we give here is the obvious one, the primal-dual gradient.

We note however, that our primal-primal gradient, when interpreted for regular nonsimplicial 2D rectangular
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mesh, gives a standard, finite difference formula for the gradient. The primal-dual and primal-primal gradients

are defined below.

Definition 6.2.1. Let K be a primal mesh of dimensionand f € QJ(K) a discrete primal 0-form, i.e., a
real valued function on the vertices Af. Then thediscrete primal-dual gradient of f writtengrad 4 f or

Vpaf is defined agd f)*»<. That is, using Definition 5.7.1 of discretéts value onxo™ is:

(6.2.1) ((df)frd x0™) =D (f(0°) = f(0) Voo gn
o0<om
wherew is a vertex ofo™ and we state without proof that the definition is independent of whiishchosen.

Given a vertew € K thediscrete primal-primal gradient of f is defined agd f)f» by

*xvNo™
6:2.2) S TP S VLR E) B SR ALLAE P
ol=[v,09] o =[v,09]
The outer sum is over all 1-simplicés, o°] containing the given vertex and the inner sum is over at®
containing the 1-simplefo, °]. The volume factors are in dimensian The mapss,o .~ are the primal-

primal interpolation functions. O

6.3 Curl

In vector calculus, curl is usually defined in dimension 3 and sometimes as a scalar in dimension 2. In the
smooth exterior calculus notation these ard,X” in dimension 2 and*d X”)* in dimension 3, whereX
is a smooth vector field ifR? or R3 respectively. In geometric mechanics the use of curl may be replaced
by d of a 1-form. One example is vorticity in fluid mechanics, whicklig” in geometric theory of fluid
mechanics, buturl v in the more common engineering literature. Notice that the sharp is not required in the
geometric mechanics definition of vorticity. In any case, having a discrete curl in exterior calculus is useful
for translating equations that have been written using curl. Due to the multiplicity of discrete sharps and flats
there will be many definitions of discrete curls. We have not explored all these, and give only one definition
each in the 2D and 3D case.

We first define the 2D curl and show that the DEC definition results in the same formula, modulo an area

factor, as one found by Polthier and Preuss [2002]. This is the content of Rem. 6.3.2.

Definition 6.3.1. Let K be a primal mesh of dimension 2 aid € X,(xK) a dual vector field. Then the

discrete 2D dual-primal curl is defined by

curlgp X = * d XPard
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Figure 6.1: Curl in 2D

Remark 6.3.2. DEC 2D curl compared to Polthier and Preuss [2002]: The DEC definition of the 2D
dual-primal curl coincides with one found by Polthier and Preuss [2002], modulo an area factor that their
definition does not have. Consider the configuration shown in Fig. 6.1. According to Polthier and Preuss

[2002], the discrete curl in 2D that assigns vectors to primal nodes is
(curl(X),0%) == > X(x0?)-7'(0?)

whereo! (c2) is the outer edge of triangte?. Let us compute the DEC version of the 2D curl. For simplicity
of notation we will use instead ofhqpq. Sincexd X" is a 0-form, we can evaluate it at a verte%. In
Fig. 6.1 this is marked as the poi@whose one-ring is shown in that figure. Let the complex shown in the

figure be oriented by orienting each triangle counter clockwise. By definition of discrete Hodge star we have

L <*de,UO> = L <de,*O'0> .
a9 —|xc9]
Then, by discrete Stokes’ theorem we have
(curl X, 0") = L <Xb 8(*00)> .
) _‘*o_ol )

By the definition of dual boundary, and because of the orientation chosen for the complex we get

1
0\ _ b 0
(curl X,0") = o0 gO<X ,0(x0 )>
where the negative sign has canceled with the one coming from the dual boundary definition and-all the
are pointing outwards.

The flat to be used is the DPD-flat. This consists of simply taking the dot product of the vector inside

each triangle with the dual edges, when evaluafiigon the dual edges. This is because in DPD-flat the dual
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vector field inside the triangle is interpolated to be constant inside the triangle. Thus the above RHS becomes

|*c1r0| 33 X(x0?) - (x0 0?).

ol g2»0l
Collecting terms by the triangles we get
1
{curl X, o) = ool 220 1ZQX(*JQ) - (x0t No?).
o“>oY o- <0

In the case of the triangle shown with the dual edges in Fig. 6.1, theXgrm, . X (xo?) - (xo* N o?) in
the RHS above becomes simply

—

X(B) - AB+ X(B)-BC.

The term according to Polthier and Preuss [2002] should be

%X(B)-P-Q’.
But
X(B).E+X(B)-R)*:X(B).(?+F):X(B)-A_C’:%X(B)-PQ

where the last equality is due to the elementary geometric fact that the length of the edge joining midpoints
of two sides is half the remaining side of the triangle and in the same direction as it. Thus the DEC formula is
the same as the one given in Polthier and Preuss [2002] except that we have an additional fagtof bf

For the 3D curl one needs to define sharp operator. We have given a primal-dual sharp for exact forms
and a primal-primal sharp in Chapter 5. Of these, only the primal-dual sharp for exact forms is satisfactory.
Thus the correct formulation of 3D discrete curl will have to wait a better development of sharp, which will
possibly involve interpolation of 1-forms. For completeness we give here the definition of a discrete 3D curl

using the usual smooth exterior calculus definition of curl.
Definition 6.3.3. Let K be a flat simplicial complex of dimension 3. L&t € X,(K) be a discrete primal
vector field. Then théiscrete 3D curlis defined by

curl(X) = (xd(X%))*

where the operators b andf on RHS are the discrete operators. %

Remark 6.3.4. Curl and vector calculus identities: Recall that in smooth exterior calculus the identity
div o curl = 0 follows from the fact thati> = 0. This is becauséiv(curl(X)) = d * ([*(dX”)]*) and
is the inverse ob. However as we pointed out in Section 5.9, in the discrete case we have to use the right

combination off andb. For example, in this chapter we have used a dual-primal flat and a primal-primal



Figure 6.2: The variable names used in formula (6.4.1) for the Laplace-Beltrami of a triangle mesh, found by
Meyer et al. [2002]. The complex does not have to be flat.

sharp. The composition has no chance of being identity. We point out that various vector calculus identities
are true in our vector field decomposition work Tong et al. [2003]. The proof is reproduced in Section 9.3.

Thus the information about the right flat and sharp to use is probably hidden in that work. %

6.4 Laplace-Beltrami

The Laplace-Beltrami operator is the generalization to curved surfaces, of the usual Laplacian of flat space.
In the smooth case the Laplace-Beltrami operator on smooth functions is definetitobdiv o curl = dd.
See, for example, page 459 of Abraham et al. [1988]. In the smooth case the Laplace-Beltrami on functions is
a special case of the more general Laplace-deRham opéyat@® (M) — QF (M) defined byA = dé+éd.

In this section we show that this definition of Laplace-Beltrami leads to a well-known formula for discrete

Laplace-Beltrami found by Meyer et al. [2002]. The formula that they found was

1

(6.4.1) Af(xi) =57

> (ot agj +cot By) (f(xi) — f(x;))

JEN1(4)

where the angles and points shown are marked in Fig. 6.2. The4estands for an area around the pount

Meyer et al. [2002] also showed that the use of the Voronoi area around the vertex is optimal in some sense.
Recently, Castrillon Lopez and Fernandez Martinez [2003] showed us that the Laplace-Beltrami we derive

can be obtained from a discrete variational principle, by extremizing a discrete Dirichlet energy. This shows

that, at least in this case of harmonic maps, discretizing the smooth Lagrangian and obtaining the discrete

Euler-Lagrange equations gives the same result as first obtaining the Euler-Lagrange equations and then

discretizing them. Thus in this case the application of variational principle commutes with discretization via

DEC.

Example 6.4.1. Laplace-Beltrami on a triangle mesh: As an example we compute hefef on a primal

vertexo® wheref € Q%(K) andK is a (not necessarily flat) triangle mesHif. Suppose thak is oriented
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by orienting all its triangles counterclockwise. Sinrtg = 0 by definition, we have that

<Af, O'O> = <5df,00>
= —(xd xdf,o°) .

Now by using the definition of discrete Hodge star followed by the discrete Stokes’ theorem we get

o]

(xdxdf,o%) = (dxdf,x0")

—[xa|

- (xdf,0(xc?)) .

x|

The explanation for the use of signed volumpc®| was given in Rem. 4.1.2. Thus

(Af,00) = 10‘ (+df,8(x0")) .

|xo

By Def. 3.6.8 of the dual boundary,
I(x0®) = Z *(sp10h)

ol»oY
wheres,:1 = +1 is a sign, that depends on the orientationfofindo!. In dimension 2, with triangles of
K oriented counterclockwise, the definition of dual boundary dictates that the egdgesare all pointing
outwards. For simplicity, as usual, in the following we will 8étto bes,: o', which means that all edges

incident ono® are now all pointing outwards. Thus,

(xdf, 8(*UO)> = <*df, Z *01>

oly»o0

= Z <*df,*al>.

ol=g0
Now another use of the definition of discrete Hodge star gives

[xo!|

(xdf,xo') = (df,o") .

o]

But then by discrete Stokes’ theorem we have that
(df,0') = f(v) = £(0°)

whereo! = [0°, v]. Putting all this together we get that

*0'1
6.4.2) (Ao = o 3 FE @) - 500,

ol=[c0,v]
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Then a geometric calculation shows that the above expression is the same as the formula (6.4.1) found by
Meyer et al. [2002], without using discrete exterior calculus. As mentioned before, this formula is also ob-
tained by a discrete variational principle as shown to us recently by Castrillon Lopez and Fernandez Martinez
[2003]. ¢

6.5 Summary and Discussion

In our future work the divergence will be defined via the Lie derivative of the volume form, as outlined in
Def. 6.1.9. For such a development, the vector field is extended in any smooth fashion, to the neighborhood
of vertices, and the mesh is moved with the flow of the vector field. The vectors can actually be placed at
any point, not just at the dual or primal vertices. Of course, then one would have to decide, what volume is
being used in that case — for example the convex hull of the points. If the vectors are placed at the primal
vertices, this definition of divergence can be pursued even in the current setting of DEC, without interpolation
of forms, since the volume form is defined everywhere. In hindsight, this is really the approach to divergence
we should have taken, since the metric dependence of divergence should only be through the volume form.
It should not have anything to do with Hodge duality, dual meshes or flat operator. The definition we used,
should actually be a theorem in the new setting.

In the interpolation view of DEC that we envision in the future, and as outlined in Section 1.5, the sharp
would be defined after interpolating 1-forms. This should yield a better definition of the 3D curl, that satisfies
various vector calculus identities. Similarly, that should yield a better primal-primal gradient, since in the
interpolation point of view, operators are defined even pointwise.

That said, we should point out that the definition of divergence we have given yields a nice divergence
theorem. Also, the formula in dimension 2, seems to be the same as the one obtained by the new, change of
volume point of view of divergence outlined above. The 2D curl we derive has been found by others, without
the use of DEC. The primal-dual gradient is a good definition, it even uses the idea of interpolation and the

primal-primal gradient yields a gradient on regular nonsimplicial meshes, as shown in Section 9.4.



71

Chapter 7

Wedge Product

Results:  As in the smooth case, the discrete wedge product we will construct is a way to build higher
degree forms from lower degree ones. Some common applications of the wedge are, for example in defining
the Lagrangian for harmonic maps,&g A = d f. In spacetime electromagnetism in vacuum, starting with a
1-form A one defines the Lagrangian usidgl A xd A. Thus the wedge product is of practical significance

in important applications. In this thesis we give two different definitions for the primal-primal wedge, one of
which is due to Castrillon Lopez [2003], and we state some of the properties that our primal-primal wedge

satisfies.

Shortcomings: For a complete treatment, the dual-dual and primal-dual discrete wedge products should
be defined. We only give speculative suggestions for the other cases here. One definition of primal-primal
wedge we give, uses the metric. This use of metric is not satisfying because in the smooth theory, the
definition does not use the metric. Furthermore, the discrete wedge should commute with discrete pullbacks.
The metric dependent definition doesn’t. Recently Castrillon Lopez [2003] showed us a definition of discrete
wedge which does not use the metaied which commutes with discrete pullbacks. We include it here for

completeness.

7.1 Primal-Primal Wedge

For information about the smooth case see the first few pages of Chapter 6 of Abraham et al. [1988]. We give
two definitions of a primal-primal wedge here. The first definition is the one we had been working with until
recently. The second definition was suggested to us recently by Marco Castrillion and it has the nice property
that it is natural under pullbacks, i.e., his definition commutes with discrete pullbacks. This is an example of
how naturality under pullbacks can be used as a criterion for selecting definitions in the discrete case, even
when the operator being defined, like the wedge, is on only one manifold. The other obvious advantage of

his definition is that metric is not used in the definition. His definition is Def. 7.2.1.
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Definition 7.1.1. Given a primal discreté form o € Q% (K) and a primal discreteform 5! € Q) (K) the

discrete primal-primal wedge product A : Q%(K) x Q4(K) — QT (K) defined by the evaluation on a

k + 1 simplexc**! = [vo, ..., vp4] as follows,
1 . |0k+l N *Vr(k |
(711) <O[k A ﬂl, O'k+l> = W Z Slgn(7)|ak—+l|()(a ~ /8)(7_((7k+l))
TESk4i141

where Si1;+1 IS the permutation group and its elements are thought of as permutations of the numbers
0,...,k + . Heresign(7) is the sign of the permutation, being+1 if 7 is even and-1 if it is odd.
The notationr(o**) stands for the simplef, (), . . ., v-(x+1)]. Finally the notation(c — 3)(7(c**)) is

borrowed from algebraic topology (see, for example, page 206 of Hatcher [2002]) and is defined as
(a ~ ﬁ)(T(Uk-H)) = <Oé, [UT(O)? cee )U’T(k)}><ﬁ? [’U'r(k)a cee 7UT(k+l)]> .

O

The above expression looks complicated but the idea behind it, and its computation is really simple. What
it amounts to, is evaluating the forasand 3 on thek and! simplices emanating from each vertex of the
simplex o**! on which the wedge product is being evaluated. The sign of the permutai®there to
provide the anti commutativity property. The volume factor is provided to make the computation democratic,
by giving an appropriate weight to each vertexséf-'. The following example of wedge product between

two 1-forms should clarify the notation.

Example 7.1.2. Let « and 8 be two 1-forms whose wedge product has to be computed, sol = 1.
The definition above gives the value @fA 3 on a triangles? = [vg, v1,v2]. According to the definition
above the permutation group to be usedisi+1 = Ss. Thust are elements of the set of permutations of
{0,1,2}. We will write the elements of; as 1-0-2, 2-0-1, 0-1-2, 2-1-0, 1-2-0 and 0-2-1 with the obvious
interpretation. The signs of these are+, +, —, + and — respectively. Let the volume factors appearing
in (7.1.1) be denoted b¢,, C;, andCs, i.e., let

o N
=
Then
(7.1.2) (aAB,[vo,v1,v2]) = %[—(10(04, [v1,v0]) (B, [vo, v2]) + Cola, [v2, v0]) (B, [vo, v1])

+ Cr{e, [vo, v1])(B, [v1, v2]) — C1{a, [va, v1]) (B, [v1, vol)
— Caa, [vg, v2]) (B, [v2, v1]) + Cala, [v1,v2]) (B, [v2, vo])]

Thus the formula says to go around the 3 vertices of the triangle evaluatingd 5 on the two edges
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B

Figure 7.1: Pictorial depiction of 1 term in the sum in equation (7.1.2).

emanating from the vertex, then switching the arguments with an appropriate sign. The weighting factor is
the area of the triangle corner obtained by intersecting the Voronoi cell of the vertex with the triangle divided

by the area of the triangle. A pictorial depiction of 1 term in the equation above is in Fig. 7.1. ¢

The definition Def. 7.1.1 discussed above has some nice properties and some undesirable properties. If
a smooth volume:-form and a volume-form are discretized and their primal-primal wedge computed on a
(k + 1)-simplex, the result is the volume of the simplex. Also, this wedge satisfies most of the properties of

the smooth wedge. Specifically the following lemma is true.

Lemma 7.1.3. The discrete wedge product: Q% (K) x Q4 (K) — Q4(K) satisfies the following proper-

ties:
(i) Anti-commutativity o A gF = (=1)F 3! A oF.
(i) Leibniz rule d(a* A 81) = (da*) A B+ (—1)%a* A (dBY).

(iii) Associativity for closed formsFor o € Qk(K), 8! € QL(K), ™ € Q7(K), such thatda® = 0,
dpl = 0,dy™ = 0, we have that(a® A B!) Ay™ = a* A (85 Ay™).

Proof. See Desbrun et al. [2003]. |

Remark 7.1.4. Lack of associativity: According to Givental [2003] this lack of associativity in general,
and a special status for closed forms, is not an accident. Putting the “democratic weighting” aside, the wedge
definition works for any simplicial complex (such as singular cochains, for instance). It is known that it is
in principal impossible to make a universal definition anti-commutative associative. This phenomenon
has been studied a lot in algebraic topology or homological algebra and gives rise to the concepts of Massey
products and homotopy-associative algebras.

In our situation, one can define on the chain coml€X,d) a sequence of operations: the binary
operationa, b — ab (the wedge product), some triple operatiam, ¢ — [a, b, ] etc. such that the deviation
of each operation from some kind of associativity property is measured by the differential of the previous

operation. The key example is:

(ab)e — a(be) = da,b,c] — [da,b,c] — [a,d b, c] — [a,b,d].
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The signs correspond to evenb, ¢ and in general should be changed by the factors

(_ 1>deg(a) and(— 1)deg(a)+deg(b)

in the last two summands. This implies that the product is associative on the cohomology i.eq,Wwhen
are closed, thefub)c — a(bc) is exact. Our statement that it is not just exact but 0 is a bit surprising but not

impossible in this context. %

Remark 7.1.5. Wedge product and interpolation of forms: It has been pointed out by Sen et al. [2000]

that if the wedge product is defined by first interpolating the discrete forms by using the Whitney maps, the
resulting wedge product is still non-associative. Intuitively, this lack of associativity, and the lack in our case,
stem from the fact that one is not defining the wedge product pointwise. Thus it seems that one must not only
interpolate, but also specify, say, a vertex at which the evaluation must take place, to have a good chance of
getting associativity. This point of view seems to appear in Hiptmair [2002a] and we intend to explore this in

future work. O

Remark 7.1.6. Absence of naturality under pullback: Consider a simplex™ and an affine map : R —

R™. Then in general the circumcenternst invariant under such maps. That is, in genesét(c™)) #
c(p(a™)). Now suppose that we are given two simplicial complexes with a simplicial homeomorghism
between them. If we use Def. 7.1.1 for the wedge then in general the wedge will not commute under discrete

pullback. That is, in general we wifiot have that

(" (@A B),0) = (aAB,p(a)) .

This appears to be not a good sign for that discrete definition, since the above property in the smooth theory
should follow from the change of variables theorem. Fortunately, the alternative definition presented in the

next section does satisfy this property. %

7.2 Alternative Primal-Primal Wedge

Now we give the other definition of primal-primal wedge, shown to us recently by Castrillon Lopez [2003],

which has the nice properties of not using the metric and of being natural under discrete pullbacks.

Definition 7.2.1 (Castrillon Lopez [2003]). Given a primal discreté form o* € QF(K) and a primal
discrete form 8! € Q(K) the natural (in the sense of commuting with discrete pullbagissyete primal-
primal wedge product A : Q5(K) x QL(K) — Q' (K) defined by the evaluation on/a+ I simplex

Pt = [vg, ..., vr4] as follows,

(7:2.1) (ak A Bl oM = m Y sign(r)(a — B)(r()).

TESk4i41
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Remark 7.2.2. Comparison of factors: In the above definition, equation (7.2.1) can be rewritten as

1
k+1+1)(k+1)

(o A BL, ot =

Y sigu(r)(a— B)(r(e"H)

TESK4i+1

~ (k+D)! 2 Sign(T)ﬁ(a — B)(r(a* ).

TESk+1+1
Comparing this with equation (7.1.1) we find that the factor

|0’k+l M *V7 (k) |
|o—]€+l|

in that definition has been replaced by
1

E+1+1°
Thus a metric dependent factor has been changed into a constant factor. This is what makes Def. 7.2.1 natural

under discrete pullback. Note also that

k+1
o N *Vr(k 1
= S
TESk41+1 TESk+4i41
a property that is useful in proving properties of the discrete wedge. %

7.3 Summary and Discussion

In the last two sections we have discussed the primal-primal wedge product in some detail. We defined it
in two ways, one of which due to Castrillon Lopez [2003] has the nice feature of being defined without the
use of metric and of commuting with discrete pullbacks. Since forms can be dual as well, for a complete
treatment of discrete wedge product we should define dual-dual and primal-dual wedges. In this section we
give only some preliminary suggestions for these definitions and do not study the properties of these wedge
products.

Given a dual discreté form &* € Q% (xK) and a dual discreteform 3 € Q) (xK) thediscrete dual-
dual wedge productA : Qk(xK) x Q4 (xK) — Q’;”(*K) might be defined (modulo some factors that have

been left out) by the evaluation orkat | dual cellg¥+! = xo"~*=! = x[vy, ..., v,_x_;] as follows.

<@k /\Bl76,k+l> :<@k /\Bl7*a_n7k7l>

= Z sgn(o" kL [Vktis - 0n]) Z sign(7)

onsgn—k—1 TESk41

: <é¥ka*[v7'(0)a s Ur(l=1) Vk+1s - - - 7vn]><ﬁlv*[v7(l)7 coy Ur(k41—1)s Vk+15 - - - 7vn}>
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wheres™ = [vy, ..., v,], and we have without loss of generality assumed #ffat* ! = +[vy4q, ..., v,].
Here we have left out the factor to be used, and that is for future work.

As mentioned in the preamble of this chapter, in some important applications, the Lagrangian can be
written asa A xa. These are a complementary primal-dual pair, i.e., their degrees sumTbe cochain
obtained by such a wedge product df and(n — k)-form could be defined on the support volumes of all the
k-simplices. Recall that these tile the underlying spdcge

Let o € QF(K) be a primalk-form and"~* € Qn~*(xK) a dual(n — k)-form. Thusa and( are
a complementary primal-dual pair. Thiéscrete primal-dual wedge productA : Q% (K) x QZ*’“(*K) —

(Vi (K)) can be defined by the evaluation on the support volume bfsamplex as follows. Here

Q% (Vi (K)) are the cochains on thecells that are the support volumesiegimplices. The value of
<Oék A Bnik, V(Tk>

will likely involve terms like
(a*,0%) (Bxd").
One obvious weighting factor to use for such a term might be

Liok| [xok nom|
i

1
2

Here the numerator is the volume of that part of support volliinethat is formed by* and its dual and
lies inside some™. But again these factors are metric dependent, which may not be good.

However, recently Castrillon Lopez and Fernandez Martinez [2003] used a similar construction in the
special case ofi = 2 andk = 1 to do a discrete variational derivation of the Euler-Lagrange equation for
d f A xd f. The solutions of these are harmonic maps on a surface. Their variational derivation yielded the
same Laplace-Beltrami operator that we defined in Chapter 6. They have shown that starting from a smooth
Lagrangian, one can derive the equation for harmonic maps and discretize it, or discretize the Lagrangian
and derive the discrete equation for harmonic maps using DEC. In both cases the resulting discrete Euler-

Lagrange equations are the same.
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Chapter 8

Interior Product and Lie Derivative

Results: In this thesis, we are trying to build a discrete exterior calculus which treats vector fields and
forms as separate entities, as does smooth theory. One motivation is that Lie derivatives of forms and vector
fields are two very different things. This is expanded upon in Sec. 8.1 below. In this chapter we will discuss
interior product and Lie derivatives of forms. First, we will derive an identity relating smooth interior product

to Hodge star and wedge products. This yields an algebraic, discrete interior product. However since in
the discrete theory we are only concerned with integrals of forms we can use the notion of extrusion of a
manifold by the flow of a vector field to define integral of interior product. This is an idea of Bossavit [2003]
and it leads to another definition of discrete interior product. A similar distinction exists in our discrete Lie
derivative definition. Use of the Cartan homotopy formula leads to an algebraic definition of Lie derivative,
and a flow-out formula that we prove, leads to another, flow based definition. In this Chapter we argue that

interpolation of forms becomes a must for a proper definition of Lie derivative.

Shortcomings: Our algebraic definition of interior product uses metric information in the form of Hodge
star and flat. We prove here that in the smooth case this metric dependence cancels out. But we don’t know
if this cancellation happens in the discrete case also. We have not studied carefully which properties are
satisfied by the two definitions of interior product we give here. Nor have we studied if the two are the same
in the discrete case.

A wedge product is involved in the algebraic definition. Thus the Lie derivative of a wedge product
ends up with a wedge of three forms, if the algebraic definition is used. Due to the lack of associativity for
general forms, one risks losing the important property of Leibniz rule for Lie derivative, except perhaps, for
closed forms. This was pointed out to us by Alan Weinstein. We give here the discrete version of the flow-
out formula for Lie derivative, to the extent possible without interpolation of forms. This is one of the key
examples that shows the importance of interpolation of forms. In fact Bossavit [2003] uses the interpolation
approach approach for interior product. But we haven't seen a Lie derivative development like this. Neither
have the properties of such an interior product been studied in detail.

The smooth definition of Lie derivative, and hence this interpolated one, depends on derivatives. Hence,
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ultimately, the discrete definition for higher degree forms may turn out to be independent of the extension

(interpolation) used. Finally, we do not discuss the Lie derivatives of vector fields at all in this thesis.

8.1 Separation of Forms and Vector Fields

In Chapter 5 we defined discrete vector fields and the discrete sharps and flats for going between 1-forms and
vector fields. One use for sharps and flats is of course, to be able to translate vector calculus into exterior
calculus, allowing one to discretize equations written in vector calculus notation. But there is another, more
important reason for defining sharps and flats. As mentioned in Chapter 5, this is that in mechanics some
guantities arelefinedusing these operators. An example from Chapter 5 worth repeating for emphasis, is that
of vorticity in fluid mechanics. In geometric treatment of fluid mechanics vorticity is defindd@asHerew

is the velocity field of the fluid, a genuine vector field which is not a proxy for a 1-form.

In many applied fields, vector calculus has been given prominence over differential forms even when
forms would have been more appropriate and simpler to use. In 3D, time-dependent electromagnetism,
the quantities of interest should be modeled by differential forms, not vector fields. When the Maxwell
system is written like this, thenly place where metric plays a role, is in the constitutive, material dependent
relationships! = x.e andb = x,,, wheree andh are 1-forms and andb are two forms. When Maxwell's
equations are written in terms of vector fields, which is the more common formulatioralthiba fields that
appear are proxies for 1-forms and 2-forms.

In R3, this prevalent confusion between 1-forms, 2-forms and vector fields, all of which have a basis size

of 3, takes the following form. For example, given a vector fiEldnR? given by

F= Fla% +F28% +F3%

we can identify it with the 1-forn¥” = Fydx + Fody + Fydz. With the standard inner product &' we
can identify ' also with the 2-formx(F®) = Fyda A dy — Faodx A dz + Fidy A dz. Most previous works
on DEC like theories that do talk about vector fields, do so in this way, by using vector fields as proxies for
differential forms. One exception is the work of Bossavit [2003]. The cost of this choice, and the importance
of the exterior calculus approach, has become clear in computational electromagnetism. Many researchers
in that field have explained this in their papers and books. For excellent treatments see for example Bossavit
[1991]; Mattiussi [2000].

Our motivation for keeping forms and vector fields distinct is our introduction of a discrete Lie derivative
into the theory. Lie derivative of a tensor is its derivative along the flow of a vector field. ‘Arfid89] has

also called it the fisherman’s derivative (page 198 of Alth§l989]) :

the flow carries all possible differential-geometric objects past the fisherman, and the fisherman

sits there and differentiates them.



79

See Abraham et al. [1988] for a thorough treatment of Lie derivatives of tensors and vector fields. Lie
derivatives of forms and vector fields are very different things. For exampleisif 1-form andX a vector
field in R3 then in general

(£xa)f # £x(af).

Similarly, if 8 is a 2-form then in general
(+(£x8)F # £x((+0)F) -

Thus if one was to identify 1-forms or 2-forms3 with their corresponding vector fieldg and(x3)* then
the Lie derivative along a vector field would turn out to bevrong This is why in certain applications it is

very important to keep the distinction between forms and vector fields.

8.2 Algebraic Discrete Interior Product or Contraction

Interior product is an operator that allows one to combine a vector field and a form. For a smooth manifold
M the interior product of a vector field € X(M) with ak + 1 form o € QF+1(M) is written asiya and

for vector fieldsX, . .., X € X(M) the interior product in smooth exterior calculus is defined by
iXa(Xh PN ,Xk) = Oz(X,Xl, N 7Xk:) .

Thus it is an operator that does not depend on the metric. We will first define the interior product by using
an identity that is true in smooth exterior calculus. Since we have not seen this identity we state it here with

proof. As the proof shows, the metric dependence cancels out in the smooth case.

Lemma 8.2.1. Given a smooth manifold/ of dimension: and a vector fieldX € X(M) and ak-form

a € QF(M) we have that
(8.2.1) ixa = (1) R« (xa A XP).

Proof. For properties of the interior product that we use in this proof see page 429 of Abraham et al. [1988].
Recall thatiy is R-linear. Moreover, for a smooth functiohe Q°(M) we have thatxa = fixa. This
is due to the multilinearity ofv. As a result it is enough to show the result in terms of basis elements. In
particular letr € S,, be a permutation of the numbels...n such that- (1) < ... < 7(k) andr(k + 1) <

. < 7(n). Since the identity (8.2.1) to be proved is a pointwise statement, pick a chavf anound
an arbitrary pointc € M and lete,,..., e, andel,...,e" be respectively the bases for the tangent and
cotangent spaces, M and7 M. Let X =e

;) forsomej € {1,...,n} andleta = e™@ A ... A ™R,
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Then it is enough to show that
(8.2.2) iET(_j)eT(l) A ANeT®) = ()RR (e (eT DAL A TR A eTO))
It is easy to see that the LHS is Qjif> k and itis

(1) Y e WAL A AL AeT®)

otherwise. Here™() means:™() is omitted from the wedge product. Now on the RHS of (8.2.2) we have
that
w(e™ WAL A e P =sign(T)(eT* D AL A ™M),

Thus RHS is equal to
(=D)E=R) gign(7) * (e7*FFD AL A e A eTW))

which is 0 as required if > k. So assume thdt< j < k. We need to compute
w(eTFFD A AT ATy

This is
s WA NeD A, pe®

where the sigs = +1 to be determined is the one that makes
seT* DA AT AT ATDA L ATD AL AR = i

for the standard volume form = e' A ... A ™. This shows that = (—1)7=!(—1)*=*) sign(r). (This
technique to determine signs of wedge product involving permuted basis elements also appears on page 412
of Abraham et al. [1988]). Thus RHS = LHS as required. |

Definition 8.2.2 (Algebraic). Let K be a simplicial complexX € X,(K) a primal discrete vector field and

a € QF(xK) a dualp-form. Then thadiscrete primal-dual interior product is defined as
ixa:=(—1)P"P) s (xa A X°).

A discretedual-primal interior product can be defined analogously. O

A valid criticism of such a definition is the metric dependence. We saw in the proof of Lemma 8.3.2 that
the metric dependence cancels out in the smooth case. But we don't know if the same is true in the discrete

case. This will be studied in future work. In the next section we give a different definition of interior product.
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This has appeared in Bossavit [2003] and is given here for completeness.

8.3 Interior Product via Extrusion

Recently, Bossavit [2003] described the importance of interior product in some applications in electromag-
netism and gave a very interesting definition, based on the idea of extruding objects under the flow of a vector
field. We develop this here for completeness and because this led us to a similar definition of Lie derivative
which will be given in a later section. We point out however, that we only know how to give the definition in
special cases. In particular, the vector field must be primal, and it must lie along primal edges. For a general
primal vector field, we only know how to give the definition for a particulasimplex. In that case, the vector

at a primal vertex can be decomposed uniquely into vectors along the edges, since the edges emanating from
a vertex, form a basis for the plane of thesimplex. In the case of a full one-ring, the decomposition will

not be unique. To get a general definition, we have to interpolate forms, which we intend to explore in future

work. Now we give some preliminaries.

Definition 8.3.1. Let M be a smooth manifold of dimensionand X € X(M) a smooth vector field on
it. Let S be a submanifold (dimensidn with & < n). As S is carried by the flow for a time, it stays a
submanifold ift is less than the lifetime of every point ¢h We will call such a submanifold at timethe

flowed-out submanifold and denote it bys;. We will call the manifold obtained by sweepirtgalong the

flow of X for time ¢ as theextrusion of S by X for time ¢ and denote it bfE x (S, t). O

Lemma 8.3.2 (Bossavit [2003]).

(8.3.1) /Sixﬁz %

Jrve™
t=0 JEx (S,t)

Sketch of proof Prove instead that

AT

Then by first fundamental theorem of calculus the desired result will follow. To prove the above, take coordi-

-

nates onS and carry them along with the flow and define the transversal coordinate to be the fiowfbis
is the proof that Bossavit [2002a] sketches. |

Using the identity in equation (8.3.1) we shall define a discrete interior product like Bossavit [2003]. The
idea is to define the discrete interior product by using a discretization of equation (8.3.1). The discrete version
then is not an identity to be proved but true by definition. We don’t claim that such a discretization converges
to the smooth identity. As in the rest of the thesis, we leave such convergence questions for future work.

Now let X € X;(K) be a discrete primal vector field agde Q’;“(K), a primal discreték + 1)-form.

UsingR®" in place ofM and ak-simplexc* € K in place of the submanifold we get the following discrete
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version of equation (8.3.1)

83.2 (ixf.0") = S (5 Ex(0h0)
t=0

We will define the interior product on a prim@t + 1)-simplexc®** = o*. Since the interior product is
linear w.r.t X it is enough to give the definition in terms of a basis vector of the plardot. The corner
basis ofc**+! consists ofk vectors that span* and 1 vector along an edge. We will now derive the
discrete definition foi 5 3 from the discretized identity 8.3.2. It will be clear from the derivation that if any
of the other basis elements are chosen, which all span the plafe thfe interior product will be 0. This is
the discrete analogue of the property thato ix = 0. As mentioned at the start of this Section, the vector
fields allowed in our definition are restricted to be along edges.

We will do the derivation by first interpolating the primal vector whichrisbased at® and 0 on all
other nodes. Parameterize the edgavith ¢ € [0, 1]. Assume without loss of generality thaft is the origin
of Rk¥*+1, in which o**! is embedded. Let = (xy, ..., z;) be coordinates oR**1. In these coordinates,
the vector field alongr' is Z(t) = &' (1 — ¢). SinceZ(0) = 0, the solution of this system of ODEs is
Z(t) = ol (t — (17)/2.

Now Ez: (o%,t) is a(k + 1)-simplex that is a subset ef**!. It also has the same bases™! and
this base isr*. In fact it is the simplex obtained by joining the poiitt) € R**! to all the points in* by
straight lines. Now we will assume that the value of a discrete form on part of a simplex is proportional to

the ratio of volumes of that part and the full simplex. With this assumption, we have

(BB (0"1)) _ [Ba(o*1)
(3.0%¥1) o]
(1/(k+1) 10" h(t)
(/G+ 1) [oF h

whereh(t) is the height ofz(t) abovecs* andh is the height of the other end point of aboves”. By
geometry, this ratio of heights(t) /1 is

h@®) _ IZ@)]

he ot
=1 t2
()
o] 2

(8.Bn(c*. 1) _ 1 (-2

(B, o*+1y = kt1 (B,0"+1) a

Thus, fort <1

and so taking time derivative of both sides and settirg0 we get

. 1 |
(g1 8,0%) = iy (0™ -
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Thus interior product of an edge vect®t with a (k + 1)-form, evaluated on a simplex*, is the average

value on thgk + 1)-simplex built from the edge ' and the simplex*.

8.4 Algebraic Lie Derivative

Once the interior product has been defined, onededimethe Lie derivative by the Cartan magic formula.

In this, if the algebraic definition of interior product is used, then there is a potential problem with Leibniz
property of the Lie derivative. The algebraic definition Def. 8.2.2 involves a wedge product. Since the wedge
product is not associative, except for closed forms, the Leibniz property of Lie derivative might not hold.

This is the property that
.ng(Oé/\ﬂ) = £X(Oé)/\ﬁ+04/\£x(ﬁ).

This possibility was pointed out to us by Weinstein [2003]. We don't know whether this is a problem in
practice or not, butindeed Leibniz property of the Lie derivative is an important property, and its lack probably

will be a problem in applications. Nevertheless we give the algebraic definition below.

Definition 8.4.1. Let K be a simplicial complexX € X,(K) a primal discrete vector field ande QF (xK)
a dualp-form. Then thediscrete primal-dual Lie derivative is defined using the interior product and the

Cartan magic (or homotopy) formula (see Abraham et al. [1988] as

£xw:=ixdw+dixw.

8.5 Lie Derivative From Flow-Out Formula

An alternative to the algebraic approach detailed above is a method based on flowing out simplices similar
to the idea for interior product sketched above. It appears as if, for Lie derivative, this approach cannot be
carried through without interpolation of forms, which is something we intend to do in the future. We use this
as an argument that interpolation of forms may be required for a proper definition of a discrete Lie derivative.
It may turn out, that the resulting formula is independent of the interpolation, but at least its derivation seems
to require interpolation of forms. We develop the discrete formula of the Lie derivative, based on this flow-out
approach, to the point where we see that the interpolation is required. It appears that even this, can be done
only for special vector fields, that lie along primal edges. This is a strong argument in favor of interpolation
of forms.

Below, we give an identity from the smooth case from which the discrete definition of a flow-out Lie
derivative follows if interpolation of forms is allowed. But then one can argue that the smooth formula for

Lie derivative should be used with the interpolated forms. This would allow all primal vector fields, and not
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just those along edges. We agree with this argument and intend to pursue the interpolation approach in future

work. For completeness however, we now state and prove the identities referred to above.

Lemma 8.5.1. Let S, S; be as above ang@ be ak-form onM. Then

3.

t=0+J St

(8.5.1) /S,Exﬁ: %

Proof. By the Lie Derivative Theorem (Theorem 6.4.1 of Abraham et al. [1988]) we have that for any

d
FA(£xP) = _F75.

Integrating both sides froifato ¢ and using the fact thdtj 5 = 5 we get
t
/ F*(£xB)dr = F'B— 3.
0

In the above equation both sides &réorms onM and are functions af, so they are time dependénforms

on M. Beingk-forms onM they can be integrated onkadimensional submanifold a¥/. Integrating both

/g/OtF:<£Xﬂ>dr=/gFt*ﬁ—fgﬁ.

Now interchange the order of integration on the LHS and on RHS use the faqfstlﬁatﬁ = fst 8. This

/Ot/srfxﬁdT/Stﬁ/Sﬂ.

Both sides are real valued functionstoffaking derivative w.r.t of both sides and using the first fundamental

sides onS we get
yields

theorem of calculus we get

d
£x8 = 3.
/St X ar J,

Evaluating both sides at= 0 we get the desired result. |

To derive a discrete definition of Lie derivative from the flow-out formula (8.5.1) we sketch the idea with
an example. Suppose the mesh consists of 1 tetrahedyom , v, v3] and we are given a discrete primal
1-form a.. Let X be the primal vector field taking the vald@ atv,, wherea! is the vector along the edge
[v1,v2]. See Fig. 8.1. At the other nodes,is 0. We are interested in computing the Lie derivatfigea and
evaluating it on the edgey, v1].

By a reasoning exactly similar to the one carried out in the case of the extrusion based formula for interior
product, we get to a step that requires the computation of the value of the lafomthe edgéug, Z(t)]
whereZ(¢) is a point along the edde; , v2]. Then a time derivative of this value has to be taken. Due to this,
it may turn out that the answer finally only depends on the valueaf [vg, v1] and the vector alonf, , va].

Nevertheless, we see here that the intermediate step requires the interpolati@o d@f can be evaluated
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v
0
Vi

Figure 8.1: The configuration for computing the flow-out formula of Lie derivative of a 1-form. The vector
field is nonzero only at; and has the length and direction of the eflgevs]. It is linearly interpolated to

be 0 at vertex,. This is the restriction, to an edge, of the barycentric interpolation of the vector field inside
the tetrahedron. We wish to evaluate the Lie derivative of a 1-form on the[eglge].

on [vo, Z(t)] which lies inside the triangl@g, v1, v2] and somewhere between the primal edggsv; | and
[vo, v2]. But once interpolation of forms is accepted as a method, one might as well just use the definition of
the smooth Lie derivative. This is the plan we intend to pursue further in our future work. We sketch the idea

using O-forms.

Remark 8.5.2. Interpolation Lie Derivative for Zero Forms: Consider for example a flat 2D mesh and

the vector fieldX to be a primal vector field. Define

d

(xDE) = 5 eife")

t=0

wheref is an arbitrary smooth extension pfandy; is the flow of an arbitrary smooth extension®f Thus

d

(£xf)(0°) = —

= (fowt)

t=0
= (df)(0%) X(o°).

Here we have not done anything more than use the definitions from smooth theory. Thus everything is defined

pointwise, and the result only depends on the given discrete data and is independent of the extensipn used.

8.6 Summary and Discussion

This Chapter presents the strongest arguments in favor of an interpolation approach. Here we have seen that
in the case of interior products and Lie derivatives, the purely discrete approach can be pushed only so far.
One can get algebraic definitions, for both, but the lack of associativity can rule out the important Leibniz

property of Lie derivative, except perhaps for closed forms. The extrusion and flow-out based definitions also
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have limitations. Firstly, only special vector fields are allowed. Secondly, for the Lie derivative defined like
this, the intermediate calculation seems to require the interpolation of forms. Once interpolation of forms
is allowed however, it makes sense to use the smooth definitions of various operators to give the discrete
definitions. This leads to an alternative development of the metric independent part of DEC, and we will

pursue this in future work. In Rem. 8.5.2 we sketched the idea for doing this with O-forms.
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Chapter 9

Other Work

In this chapter we describe some of the other, related work that we have done recently. Some of this is work
which does not yet fall directly into DEC. The rest is in DEC but very speculative and very preliminary.
The first few sections describe template matching, discrete shells, and vector field decomposition. These are
included here because our future work on these topics is likely to be influenced by our DEC work. Moreover,
some of these have influenced our thinking on DEC. The last few sections describe some preliminary and
speculative work, like some basic calculations on lattices and on nonsimplicial meshes. Also included, are

some early thoughts on building general discrete tensors into DEC.

9.1 Template Matching

Deformable template matching is a technique for comparing images with applications in computer vision,
medical imaging and other fields. It has been reported on extensively in the literature. See for example, the
references in Hirani et al. [2001]. Template matching is based on the notion of computing a deformation
induced distance between two images. The “energy” required to do a deformation that takes one image to
the other defines the distance between them. The deformations are often taken to be diffeomorphisms of the
image rectangle, i.e smooth maps with smooth inverse. The energy can be defined using various metrics on
the space of diffeomorphisms.

In this way of posing the problem, template matching is similar to the way fluid mechanics is formulated.
In fluid mechanics, averaged equations have been shown to have the property that length scales smaller than
a certain parameter in the equation are averaged over correctly and don’t need to be resolved in a numerical
solution. See Marsden and Shkoller Marsden and Shkoller [2001] for details. Motivated by this, in Hirani
et al. [2001] we derived the Averaged Template Matching Equation (ATME) :

(9.1.1) v+ (diva)v + (u- V)v + (Du)’v=0
(9.1.2) v=(1-a*A)u
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According to Holm [2003] this equation can be written in div, grad, curl form.

Our hope in deriving the ATME was that it would allow matching while ignoring features smaller than
a fixed size. This property has not yet been verified but some progress has been made in the analysis of
the equation in one and two spatial dimensions. For example, in Chapman et al. [2002] we showed how
natural boundary conditions lead to the reduction of the boundary value problem of template matching, to a
parameterized initial value formulation. Specifically, we derived the form that the initial velocity must take
to take one image to the other while satisfying the ATME. This initial condition was a piecewise smooth,
continuous function with a jump in the derivative at edges of the image.

Independently, Fringer and Holm [2001] and Holm [2003] have analyzed and computed the solutions
of the ATME and related equations in one and two spatial dimensions. In 1D they found that the initial
condition we derived (which they called a peakon) leads to stable solutions in which the initial peakons move
like solitons. Any other initial condition that they tried immediately broke up into peakons that proceeded to
move around and collide elastically. More interestingly, recently they have discovered solutions in the two
spatial dimension case. These turn out to be one dimensional string like peakons that move and collide in very
interesting soliton like ways. The crucial step in the numerical solution was the use of mimetic discretization
of the ATME when it is written using div, grad and curl. Mimetic discretization (Hyman and Shashkov
[19974a]) is related to a basic form of DEC involving only discrete forms and on logically rectangular meshes.
Our development of DEC should now allow the solutions to be computed on simplicial, irregular meshes.
Another way to write the ATME is using Lie derivatives, and again, DEC should prove useful in discretizing
that.

9.2 Discrete Shells

The work described in this section is joint work with Mathieu Desbrun, Eitan Grinspun and Petéd&chr

See Grinspun et al. [2003] for details. A shell is a thin flexible structure whose rest configuration is non-flat.
Previously such models required complex continuum mechanics formulations and correspondingly complex
algorithms but we have derived a shell model in the discrete setting of triangle meshes.

The stored energy functional for a discrete shell consists of a membrane part, that measures area and
length changes, and a flexural part that accounts for the energy stored by out of plane bending. The key new
part of our work in discrete shells is the measurement of bending strain by the difference between the shape
operator on the reference configuration andghkbackof the shape operator on the deformed configuration.

We use the commuting of trace and pullback to obtain a simple expression for the strain. Here we state
and prove this elementary result. This proposition was also proved independently by Grinspun and Desbrun
[2003].

Proposition 9.2.1. Lety : M — M be a diffeomorphism. Her& is the reference configuration of the shell

and M is the current. LetS and S be the shape operators dW and M respectively. Theflr (¢*S) =
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©*(Tr S).

Proof. For a pointz € M we have by definition and by the inverse function theorem that

©*S =Ty ' 0 SoTwp

= [T:f%@]_l 0SoTzp
whereT is the tangent map (derivative). Thus

Tr (¢*S) = Tr ([Ti(,o]—1 080 TW)

=" (TrS) .

What this proposition allows one to do is to compare these traces at corresponding points of the reference

and deformed configurations. This is because now we can compute
Tr (¢*S = 5) =Tr(¢*S) —Tr S

which makes sense only because of the proposition above. Discrete shells is an example of a subject in which
we take the approach that everything be defined on the discrete mesh. Thus, future development of this will

benefit from a development of DEC.

9.3 Discrete Multiscale Vector Field Decomposition

The work described in this section is joint work with Mathieu Desbrun, Santiago Lombeyda and Yiying
Tong (Tong et al. [2003]). In Section 8.1 we have mentioned that in DEC we keep the distinction between
differential forms and vector fields. But there are applications in which the use of vector field proxies for
forms is acceptable. One such application is the discrete decomposition of vector fields.

There is a Hodge decomposition theorem for smooth manifolds without boundaries that states that for
any k-form w € QF(M) there exist uniquex € Q*~1(M), 3 € QF*1(M) andy € QF(M) such that
w=da+ d6 +vandAvy = 0. There is also a generalization of this theorem for manifolds with boundary.
For details see pages 538— 541 of Abraham et al. [1988]. If we use vector field proxies for elements of
QL(M) we get that any vector field can be decomposed into a gradient (curl-free), curl (divergence-free) and
harmonic parts.

We have developed an algorithm for vector field decomposition for discrete vector fields on a 3D simpli-
cial mesh. The decomposition is done variationally and also leads to a definition of discrete divergence and

discrete curl. The curl-free part of a vector figlds the critical point of the functionalf,. (V f — €2 dv
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and the divergence-free part is the critical point of the functioffalfV x V' — €)? dV. This vector field
decomposition work was done without using the DEC framework, but it was our first hint that interpolation
should play a role in DEC. We will denote the discrete divergence and cipivandCurl and the gradient

and curl of interpolated fields by andV x.

Definition 9.3.1. Let K be a flat simplicial complex of dimension B/ € X,(xK) a dual discrete vector

field andv a given vertex. Then define

(9.3.1) (Div W)(v) := Z 0% Ve o5 - W (x0?)
o3=v
(9.3.2) (Curl W)(v) := Y |07 Vo8 x W(x0?).
o3
In this SectionDiv andCurl are our notations for discrete divergence and discrete curl. %

The following proposition was proved by Yiying Tong in Tong et al. [2003] and is reproduced here in

DEC notation for completeness.

Proposition 9.3.2 (Tong et al. [2003]) Let K be a flat simplicial complex of dimension 3, a¥ids X4(xK)

a dual discrete vector field. Denote by a piecewise affine vector field obtained by linearly interpolating
V in the interior of each tetrahedron using the primal-primal interpolation functions. fLee a primal
discrete O-form and’ a piecewise affine function obtained by linearly interpolatjhip the interior of each

tetrahedron. Then away from the boundaryrof the discrete operatorBiv and Curl satisfy the following

identities :
(9.3.3) Div(VxV)=0
(9.3.4) Curl(Vf) =0.

HereV x andV are the usual smooth curl and gradient operators.

Proof. First we need a simple result about volumes of tetrahedra. For a tetrahetitena, b be two of
its vertices and le§!, be the edge vector that does not contain these vertices, oriented along the direction
Voa,03 X Vo, 3. FOr conciseness we have writtép for ¢, s etc. Then

=1

0% Voa x Vo = Zeb.

To see this let-? be the face opposite tg 0 the dihedral angle at ed@g,, andh,, h, the heights of vertices

a andb above their respective opposite faces. Then

1 =1 =1

1 1 o
3 _ |2 &G ab __ “ab
|0°| Vo x Vo = 3|0 | hg he T Slne‘ éb‘ =%

Q
IS
o
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Now to prove (9.3.3) note that for any vertgx

DIV(V X V)(p) = 3 Vépos - (V x Vo |07

o3>p

= Vépos- | > Voaos x V(xa) | |0
o3>p a;é:r3
aFp

= > N V(xa) (Véper X V) |0

a3=p a<o®

aF#p

5:1
=Y ZV(*a)~%:O.

a3=p a=o?

aFp

The third equality is from a basic identity about scalar triple products and the second last one is from the
result about tetrahedral volume derived above. This resulting sum is null, because the orienteﬁ;gdges

form a loop aroungb. To prove (9.3.4) we use similar reasoning and show that

(Carl(VA)(p) = Y Vopos x (V)i |0°|

o3>p

=Y > (Vépos X Voaes) fla) |0°]
o3>=p a;ﬁa3
aFp

-3 ¥ @ Ugazo.

a3=p a=o?
aFp

Thus we have shown that the vector calculus identities in equation (9.3.3) and (9.3.4) are true. B

The discrete divergencBiv here, is related to the dual-primal divergence of DEC, but is taken over
the full one-ring, rather than the Voronoi dual of a vertex. In the first identity proved above, we have thus, a
composition of primal-dual curl followed by a dual-primal divergence. In the second identity the compaosition
is of a primal-dual gradient followed by a dual-primal curl. Thus in this work we have been able to find the
pairs of operators that can be composed.

It was our vector field decomposition work described in this Section, that first suggested to us the useful-
ness of interpolation of forms and vector fields. The idea of interpolation and its role in current and future
DEC is discussed in Section 1.5 and in various places in the thesis. Also, it is in this vector field decompo-
sition that we have found a nice definition of 3D curl that satisfies the usual vector calculus identities. This

means that the hints for defining a sharp and a flat that are inverses of each other, might be found in this work.
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9.4 Regular Nonsimplicial Meshes

In this section we report some very preliminary ideas about regular nonsimplicial meshes, like square and
rectangular meshes and a regular hexagonal mesh in 2D. Note that these are not simplicial complexes, al-
though they are cell complexes. If we only include the edges and vertices, as in lattices, then indeed the mesh
becomes a dimension 1 simplicial complex.

For example consider vertices at integer pair locations on the plane and edges between nodes that are
distance one from each other. If the square area is not included, but only the edges and vertices are, then this
complexis a simplicial complex of dimension 1. The dual of a vertex is the plus shaped region starting from
the vertex and going halfway along the 4 edges incident on the node. The dual of an edge is the midpoint of
the edge. One can include even longer distance interaction. For example, if edges of length 2, or diagonal
edges etc. are also included, the complex is still a simplicial complex of dimension 1.

For such a mesh which is of dimension 1, it makes sense to compute gradients along the edges. This is
the primal-dual gradient and the result is placed in the middle of the edges, which are the duals of edges. In
the primal-dual gradient formula (6.2.1), in the dimension 1 case, theWefm ,: is a vector along the edge
o' pointing towardss°. Note that here® is in o'. The vector has length/|o|. Thus one will get the usual
definition of gradient along the edges. It does not make sense to compute operators like the two dimensional
Laplacian because the complex is of dimension 1.

Now we will consider the regular meshes not as dimension 1 lattices, but with the areas or volumes
included. In 2D, a square or rectangular the mesh such as above is a dimension 2 cell complex but it is not a
simplicial complex. In what follows we consider a 2D square mesh and a 2D hexagonal mesh. We compute
the gradient for the 2D square mesh. We do this by simply applying a formula analogous to (6.2.2) which
was for simplicial case. The gradients of the shape functions are replaced by corresponding normals. The
result is a standard formula for gradients on uniform meshes. Although we don't show a similar computation
for a rectangular grid, we have checked that the correct gradient formula results from such a procedure on the
rectangular grid as well. The Laplacian on such grids is also reproduced by the DEC formula for Laplacian.
Similarly we compute Laplacian on a hexagonal grid by using the DEC formula for Laplacian and find a
standard formula for the Laplacian on such grids.

These calculations are being presented just as curiosities, not as a suggestion for extending DEC to non-

simplicial cases.

Example 9.4.1. Gradient on a square mesh in 2D:
Consider a flat uniform mesh with square cells of side lerigduch as the one shown in Figure 9.1.
Let f be a O-form on this, i.e., real values defined at the nodes of the mesh. We will simply use the for-

mula (6.2.2) for discrete gradient and replace quantities that don’t make sense in a nonsimplicial mesh by the
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Figure 9.1: Portion of a grid on which gradient is to be defined. The dashed region is the Voronoi cell of the
vertexv. The length of the side of each squaréianda,b, etc. are names of the nodes.

corresponding geometric quantity. With such replacements the formula becomes :

*vNec 5
0.4.1) VHw = ¥ e -] 3 0 G,
ol=[v,09] c2>col
Hereo! = [v,0"] is an edge containing the vertexando?, ¢? is a square cell in the mesh, assumed to be
of size|c?| = h?. Leté, andé, be unit vectors in the horizontal and vertical directions. The noripal.-
replaces the gradient of the shape function that appeared in the simplicial case in formula (6.2.2). If in the
figure of the mesh shown here the squarés the northeast square adjacentidhen for example,
S, €x
Ng,e2 = 7
The Voronoi cellkv shown as shaded in the figure, also has afeahereas the quantitywvnc?| = h?/4
is the area of the overlap region between the dashed square and any one of the primal mesh squares adjacent
to v. We will use the shorthand, for f(x). The first sum in formula (9.4.1) is over edges that contain
These are the four edges going to vertiagsc andd from v. For each such edge, say a] the second sum
is over all squares? that contain this edge. Fdv, a] these are the two squares above and below the edge

[v, a]. Thus for each edge there will be 2 terms and hence 8 terms in total. This gives :

h?/4 e, h?/4 e,
Q(fa _f'u) hé4 %"’2 (.fb_fv) hé4 %l
(V) () = h2/4 e, h?/4 ¢
2(fe— fv) 7 (*ﬁ) +2(fa— fo) T (*ﬁy)
_ faffcé +fb7fdé
- 2h " 2n Y

which is a standard discrete approximation of the gradient on a uniform square mesh. We state without proof

that this works for a rectangular grid as well. ¢

Example 9.4.2. Laplacian on a hexagonal mesh:Refer to Fig. 9.2. We want to compute the discrete
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Figure 9.2: (a) Hexagonal grid; (b) The Laplacian is computed at pgirsince the trianglesyv, v, etc. are
not well-centered, the circumcentets. etc. lie outside them, but the computation of Laplacian still yields
the correct discrete Laplacian on hexagonal grids.

Laplacian at the vertex,. If f is a O-form, we will simply use the DEC formula for Laplace-Beltramifof

We will use the simplicial complex formed from the “stencil” consistingygf v1, vo andvs. The complex
consists of the three triangles inside the dashed lines shown in Fig. 9.2 (b). The Voronsiglisashown

as shaded. Note that the 3 triangles in the primal mesh are not well-centered. But we will still use the DEC
formula (6.4.2) for Laplace-Beltrami.

Thus we want to compute

)= 5 P60~ )
o) = ool , 2=, 1o 0)) -

The quantity|xvo| is the area of the shaded triangle in Fig. 9.2 (b)4 s the length of each side of the
hexagonal mesh, this area is

|*xvg| =

3v3
2YIOp2
4

The dual edges that appear in the Laplacian formula above, are the sides of the shaded triangle in the figure.

For a hexagonal mesh with each edg¢hese dual edges have lengtBh. Thus we have

4

(Af,v0) = 13 (3f(v1) + 27 (2) + 5 flus) - 4f(vo)>

which is the finite difference formula for discrete Laplacian on a hexagonal grid appearing, for example, in
Iserles [1996]. ¢
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9.5 General Discrete Tensors

For a complete theory of discrete exterior calculus, one must also include general tensors. The tensors we have
included so far are forms, which are antisymmetric tensors. But there are numerous applications that involve
other types of tensors. One example is elasticity. For example, the stress tensor there is not a differential
form. Perhaps, one way to build general tensors into the discrete theory is to define tensors by taking discrete
tensor products of discrete 1-forms. This would require a discrete pairing between forms and vectors. For
example one could build a (2,0)-tensor from 1-formand 3, by defining the general tensar® 3 by its

evaluation on vector fields andV by
(@' @)U, V) =aU)B(V).

We have proposed a discrete pairing of forms and vector fields in Section 5.10. That is not very satisfactory
because of the use of metric operator sharp, to define an operator of natural pairing between forms and vector
fields, which should be metric independent. Perhaps with interpolation of forms that we are envisioning in

our future work, one can get a more natural definition of pairing, and hence of general tensors.

9.6 Summary and Discussion

The first three Sections of this Chapter are geometric computations on discrete meshes, and as such will
benefit from an implementation and further development of DEC. Some of these have also influenced our
work on DEC, for example, by pointing out the need for interpolation.

The speculative work we have described here are just some simple hints about how we might extend DEC
to include general tensors and how some simple finite difference formulas can be reproduced by using the

DEC formula, even when the mesh in question is not simplicial.
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Whitney forms, 48
Whitney map, 32

| K|, seeunderlying space
adjacent, 9
associativity

lack of, 73

basis, 11
corner, 11
polyline, 11

Bd, 8

boundary, 35
dual, 37

cell, 9
cell complex, 9, 17
cells, 16
chains
as arrays, 29
primal, 29
circumcenter, 14
circumcentric
subdivision, 15
circumcentric dual
compared with barycentric, 22
circumcentric subdivision
example of, 15
csd, seecircumcentric subdivision
closed star, 9
cochains, 30

codifferential, 42
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contraction
algebraic, 80
corner basis, 11
curl
2D, 65
dual-primal, 65

D(K), 17
de Rham map, 31
4, seecodifferential
discrete form, 30
discretization, 8
discretization and charts, 10
divergence, 60
divergence theorem
dual, 60
DPP flat, 52
dual block,seedual cell
dual cell, 16
elementary dual simplex of, 17
proper face of, 17
dual cell decomposition, 17
dual cells
examples of, 18
properties of, 19
dual discrete forms, 34
dual induced orientation, 22
dualp-skeleton, 17
dual-primal-primal flat, 52
duality

need for, 23



elementary dual simplex, 19
examples of, 18
exterior derivative

example of, 37

flat
discrete, 48
smooth, 47
flat simplicial complex, 9
forms

complementary, 76

geometrically independent, 8
gradient, 65
primal-dual, 65

primal-primal, 65

hexagonal mesh, 93
Laplacian on a, 93

Hodge star, 40

homeomorphic, 19

homotopy-associative algebra, 73

induced orientation, 12, 37
Int, 8
interior product

algebraic, 80
interpolation function, 24

inverse, 56

Lie derivative, 83
and interpolation, 85

linear simplicial complex, 9

manifold-like simplicial complex, 13

Massey products, 73
mesh

primal, 13

natural pairing, 32, 57
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one-ring, 9
open simplex, 8
orientation, 11
dual induced, 22
induced, 12, 22, 37
relative, 12
orientation algorithm, 20
oriented simplex, 11

oriented simplicial complex, 13

p-chains, 29
p-skeleton, 17
p-volume, 9
paring
forms and vector fields, 57
pasting map, 10
plane, 9, 45
identical
example of, 13
same, 19
polyline basis, 11
polytope, 9
primal discrete form, 30
primal mesh, 13
pullback, 35
natural under, 71, 74
primal, 35
pyramid, 51
right, 51

real coefficients, 30

relative orientation, 12

sgn, seerelative orientation
sharp
discrete, 48

smooth, 47



simplex, 8
boundary of, 8
closed star of, 9
dimension, 8
face, 8
proper, 8

interior of, 8

interpolation function, 24

one-ring of, 9
open, 8
orientation of, 11
oriented, 11
plane of, 9
volume of, 9
well-centered, 14
simplex orientation
comparison of, 12
with basis, 11
with permutations, 11
simplicial
homeomorphism, 35
isomorphism, 35
map, 35
simplicial complex, 9
flat, 9
linear, 9
manifold-like, 13
oriented, 13
polytope of, 9
skeleton of, 9
subcomplex of, 9
topology on, 9
underlying space of, 9
well-centered, 14
simplicial triangulation, 9

skeleton, 9

103

square mesh, 92
gradient on a, 92
*, seeHodge star
*K, 34
Stokes’ Theorem, 36
subcomplex, 9
subdivision simplex, 15, 19
subgroup, 34

support volume, 20, 48

tensors, 95

transverse, 19
underlying space, 9

V,, seesupport volume

vector field
dual, 45
dual-dual, 45
dual-primal, 45
interpolated, 45
primal, 45
primal-dual, 45

primal-primal, 45

wedge, 71, 74
applications of, 71
primal-dual, 76
primal-primal, 71, 74

wedge product
properties, 73

well-centered simplex, 14

well-centered simplicial complex, 14



