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Abstract
The discrete exterior calculus (DEC) is very promising, though not yet widely
used, discretization method for photonic crystal (PC) waveguides. It can be
seen as a generalization of the finite difference time domain (FDTD) method.
The DEC enables efficient time evolution by construction and fits well for
nonhomogeneous computational domains and obstacles of curved surfaces.
These properties are typically present in applications of PC waveguides that
are constructed as periodic structures of inhomogeneities in a computational
domain. We present a two-dimensional DEC discretization for PC waveguides
and demonstrate it with a selection of numerical experiments typical in the
application area. We also make a numerical comparison of the method with
the FDTD method that is a mainstream method for simulating PC structures.
Numerical results demonstrate the advantages of the DEC method.
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discrete differential forms, discrete exterior calculus, finite difference time domain method,
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1 INTRODUCTION

Photonic crystals (PCs) are periodic structures used to control the propagation of light. There are two basic structures of
PCs: dielectric rods in the air substrate and air holes in dielectric material. Silicon provides a high dielectric contrast with
air and is a common material used as dielectrics in PC devices and experimental research studies. A PC waveguide can
be constructed by removing a row of inhomogeneities (scatterers, dielectric rods, or air holes) from the PC slab. Since
the light is electromagnetic radiation, it scatters from the inhomogeneities in the PC, at certain frequencies the wave is
vanished by destructive interference and the light propagation is prevented. Such frequencies form a photonic bandgap
(PBG). With frequencies outside of the PBG the light can propagate through the PC. The light of the PBG frequency range
can propagate through the waveguide. The PBG is dependent on the geometrical properties of the PC, including the lattice
constant that describes the distance between the center of neighboring scatterers.

Because of the nanoscale size, geometrical structure, and material constraints, PCs with inhomogeneities
in three-dimensions are more challenging to fabricate than the two-dimensional ones.1 On the other hand,
three-dimensional structures that are long and uniform in the out-of-plane direction can be presented as two-dimensional
models. That is why the research interests are still focused on two-dimensional models. Computational tests with numeri-
cal models form a fast and cost-efficient way to test and design PCs. The numerical PC models are presented as propagation
of electromagnetic waves in heterogeneous domain or coupled systems involving two or more materials. Frequency
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2 MÖNKÖLÄ and RÄTY

domain computations give information about the PBG2,3 and with time domain simulations it is possible to analyze the
time evolution of light waves before constructing physical PC products.4

In order to be of practical use, the computational approaches are required to give accurate results in a reasonable
computing time. The finite difference time domain (FDTD) method has become the standard tool to run computer sim-
ulations in the field of study. However, the complex geometry of the PC models is challenging to simulate accurately and
efficiently with the conventional FDTD method. That is why the boundary element method (BEM)5 or hybrid methods
relying on the geometric flexibility of the finite element methods (FEM) have been applied.6-8 The main drawback of the
FEM-based simulation is that in time domain it typically requires the inversion or factorization of a sparse matrix at each
time step.9

The discrete exterior calculus (DEC) can be seen as a differential form based generalization of finite difference meth-
ods, including the FDTD. The DEC enables such grid structures that can handle complex domains. Since only inversion
of a diagonal matrix is required at each timestep, it also provides efficient time-stepping.10 The method is pioneered
in electromagnetic simulations by Bossavit and Kettunen,11 while the groundwork presented by Marsden’s group was
applied in computer vision and image processing12 and delivered the PyDEC software library.13 During the last decade,
the DEC has been applied to, for example, elastostatics,14 electromagnetics,15 quantum mechanics,16,17 and flow prob-
lems.18 Chen and Chew2 applied the method for PC band structure computations in frequency domain. They also have
shown that the method provides self-consistent and self-contained discrete electromagnetic theory.19 Recently, Kettunen
et al.20 have advanced the method with higher order Whitney forms and Toshniwal and Hughes21 have introduced
isogeometric discrete differential forms. Despite the wide number of considered application areas and numerical exper-
iments there exist only a few examples of wave propagation in heterogeneous domain in which the time-dependent
problem is discretized with the DEC. These include electromagnetic scattering by objects such as hexagonal ice crys-
tals or spherical particles randomly distributed into the surrounding media.10,22 In the ice crystal simulations, the object
has been considered to be large compared to the wavelength, while spherical particles were small compared to the
wavelength.

In this article, we simulate a PC structure of an array of cross-sections of dielectric rods in the air substrate. Although
our examples concentrate on demonstrating the feasibility of the DEC as a discretization scheme for PC waveguides, it is
worth mentioning a few application areas benefiting from such computational tools. The models considered in our numer-
ical studies form a basis in the design of optical logic gates and photonic circuits.23,24 More sophisticated, hydrogel-based,
PCs are important applications in the development of noninvasive optical glucose sensors.25 PCs also provide future
prospects in photovoltaic solar cell technologies.26

The rest of this article is organized as follows. In Section 2, we present the mathematical model, first in the vector field
notation and then in the language of differential forms. In Section 3, we discretize the differential form presentation in
space by the DEC and in time by the conventional leap-frog scheme and consider the boundary conditions at the discrete
stage. The numerical tests on transmission conditions, material properties, geometry approximation, mesh refinements
strategies, and band gaps of PCs are based on software implemented at the University of Jyväskylä and considered in
Section 4. The conclusions are presented in Section 5.

2 THE MAXWELL EQUATIONS

Time-dependent propagation of electromagnetic waves is presented by the hyperbolic system of the Maxwell equations

𝜀

𝜕E
𝜕t
− ∇ ×H = JE, (1)

𝜇

𝜕H
𝜕t

+ ∇ × E = JH , (2)

∇ ⋅D = 𝜌E, (3)
∇ ⋅ B = 𝜌H , (4)

where E = (E1,E2,E3)T and H = (H1,H2,H3)T are the electric and magnetic field strengths, 𝜀 is the electric permittiv-
ity, 𝜇 is the magnetic permeability, and JE = (JE1, JE2, JE3)T is the current density of the electric charge which is assumed
to be divergence free, that is, ∇ ⋅ JE = 0. Respectively, we define the magnetic current density JH = (JH1, JH2, JH3)T .
Electric and magnetic charges are presented by 𝜌E and 𝜌H , respectively. The electric flux density D, electric field
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MÖNKÖLÄ and RÄTY 3

strength E, magnetic flux density B, and magnetic field strength H are related by the constitutive equations D =
𝜀E and B = 𝜇H. The electromagnetic wave propagates with the angular frequency 𝜔 at speed c(x) = 1∕

√
𝜇(x)𝜀(x).

The wavenumber 𝜅(x) = 𝜔∕c(x) describes how many waves there are for a 2𝜋 unit. The corresponding wavelength
is given by 𝜆(x) = 2𝜋∕𝜅(x) = c(x)∕f , where f = 𝜔∕2𝜋 is the frequency. The corresponding time-harmonic problem is
considered with

E(x, t) = (x) exp(−i 𝜔t), D(x, t) = (x) exp(−i 𝜔t),
H(x, t) = (x) exp(−i 𝜔t), B(x, t) = (x) exp(−i 𝜔t),

where x = (x1, x2, x3)T ∈ R3 is the spatial variable and i =
√
−1 is the imaginary unit. To truncate the domain Ω by an

absorbing boundary Γext, we can use the Silver–Müller boundary condition

H × n = −
√
𝜀

𝜇

(E × n) × n,

where n is the outward pointing normal vector, to complete the circulation along missing dual edges of a bound-
ary vertex. Another choice to restrict ourselves to a finite computational domain is to use a perfectly matched
layer (PML).27

To simulate dielectric rods in air, we concentrate on transverse magnetic (TM) modes. That is, E = (0, 0,E3)T ,
H = (H1,H2, 0)T , B = (B1,B2, 0)T , D = (0, 0,D3)T , JE = (0, 0, JE3)T , and JH = (JH1, JH2, 0)T . Under the circumstances, the
differential form representation corresponding to problem (1)–(4) is

dH̃ = 𝜕D̃
𝜕t
− J̃E, (5)

dẼ = −𝜕B̃
𝜕t
+ J̃H , (6)

dB̃ = �̃�H , (7)

dJ̃H =
𝜕�̃�H

𝜕t
, (8)

where d is the exterior derivative, Ẽ = E3 is a differential 0-form, H̃ = H1dx1 +H2dx2, B̃ = B1dx2 − B2dx1, and J̃H =
JH1dx2 − JH2dx1 are differential 1-forms, and D̃ = D3dx1 ∧ dx2, J̃E = JE3dx1 ∧ dx2, and �̃�H = 𝜌Hdx1 ∧ dx2 are differential
2-forms, and ∧ is the exterior product (wedge product) operator. The constitutive relations are D̃ = ⋆𝜀Ẽ and B̃ = ⋆𝜇H̃,
where⋆𝜀 and⋆𝜇 are permittivity and permeability related Hodge operators mapping a differential p-form to a differential
n − p form, where n is the spatial dimension. Respectively, we would have a 0-form H̃, 1-forms Ẽ, D̃, and J̃E, and 2-forms
B̃ and �̃�E for considering transverse electric (TE) modes.28 By replacing the time derivative operator 𝜕

𝜕t
by a multiplier

−i 𝜔, we get the corresponding time-harmonic problem.19

3 DISCRETIZATION

To discretize the computational domain Ω we construct a computational mesh. It is a collection of NΩ polygonal surface
elements Ωk, k = 1, … ,NΩ, such that Ω=

⋃NΩ
k=1Ωk. There are Ne edges ej, j = 1, … ,Ne, and Nv vertices vi, i = 1, … ,Nv,

in the mesh. In addition to this (primal) mesh we construct its dual mesh by connecting the nearest circumcenters (see
Figure 1). The elements of both the primal and dual mesh can be seen as surfaces bounded by edges bounded by vertices.
Thus, we can see a hierarchy of cells such that a vertex is a 0-cell, an edge between two 0-cells is a 1-cell, and a surface
surrounded by edges is a 2-cell. For each p-cell in the primal mesh there is a (2 − p)-cell in the dual mesh. That is, the
surface elements Ω∗i of the dual mesh are dual to the primal vertices vi and the edges e∗j of the dual mesh are dual to the
primal edges ej. The dual mesh of a primal mesh constructed of squares is constructed of squares and the dual mesh of a
primal mesh constructed of triangles is constructed of hexagons (see Figure 1). The spatial mesh step size, or edge length,
is denoted by h. In a nonuniform mesh, we mark the shortest edge length of the primal mesh as hmin and the largest edge
length of the primal mesh as hmax.
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4 MÖNKÖLÄ and RÄTY

F I G U R E 1 Examples of square and triangular primal mesh elements (solid line) and the corresponding dual mesh elements (dashed
line)

3.1 Discrete exterior calculus

The discrete counterpart of a differential p-form is a discrete differential p-form, or p-cochain.29 The cochains defined on
the primal mesh are primal cochains, and the cochains defined on the dual mesh are dual cochains. The primal 0-cochain
E, associated with the primal vertices, and the primal 1-cochains B and JH , associated with the primal edges, are presented
as column vectors with components

Ei =
∫vi

Ẽ, Bj =
∫ej

B̃, JH j =
∫ej

J̃H , i = 1, … ,Nv, j = 1, … ,Ne. (9)

Respectively, the dual 1-cochain H, associated with the dual edges, and dual 2-cochains D and JE, associated with the
dual surfaces, are presented as column vectors with components

Hj =
∫e∗j

H̃, Di =
∫Ω∗i

D̃, JEi =
∫Ω∗i

J̃E, i = 1, … ,Nv, j = 1, … ,Ne. (10)

The discrete analog of the Hodge star operator presents the constitutive relations at the discrete level. At this point the
choice of circumcentric duality between primal and dual mesh is crucial since it provides the diagonality of the discrete
Hodge operator that is also a key element of the efficiency of the time-stepping.

We present the discrete Hodge star operator, that may vary with the properties of the medium, as ⋆ and clarify the
associated material properties with a subscript. The discrete Hodge star operator ⋆𝜀 maps a primal 0-cochain E to the
dual 2-cochain D taking into account permittivity 𝜀. Since D = ⋆𝜀E should hold, we can construct its inverse, ⋆−1

𝜀
, as an

Nv × Nv diagonal matrix with components

⋆𝜀
−1
ii = Ei

Di
=
∫vi

Ẽ

∫Ω∗i
D̃
=

E3(xvi)
∫Ω∗i

D ⋅ d
=

E3(xvi )
𝜀E ⋅ nΩ∗i |Ω

∗
i |
= 1
𝜀|Ω∗i |

, i = 1, … ,Nv, (11)

where d is the differential vector element of surface area normal to the ith dual mesh surface Ω∗i , |Ω∗i | is the surface
area of the ith dual mesh surface, and xvi gives the coordinates of the vertex vi. Respectively, we set H = ⋆𝜈B. The discrete
Hodge star operator ⋆𝜈 maps a primal 1-cochain B to the dual 1-cochain H taking into account permeability 𝜇, such that
𝜈 = 𝜇−1. It is an Ne × Ne diagonal matrix with the diagonal components

⋆𝜈 jj =
Hj

Bj
=
∫e∗j

H̃

∫ej
B̃
=
∫e∗j

H ⋅ dl

∫ej
B ⋅ dl

=
∫e∗j

H ⋅ dl

∫ej
𝜇H ⋅ dl

=
H ⋅ ne∗j |e

∗
j |

𝜇H ⋅ nej |ej|
= 𝜈

|e∗j |

|ej|
, j = 1, … ,Ne, (12)

where |e∗j | is the length of the jth dual mesh edge and |ej| is the length of the jth primal mesh edge.
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MÖNKÖLÄ and RÄTY 5

Discrete exterior derivative d0 is a boundary operator acting on 0-cochains to produce 1-cochains. It is a sparse Ne ×
Nv matrix presenting the incidence number between each edge ej, j = 1, … ,Ne, and each vertex vi, i = 1, … ,Nv. The
incidence number is 0 if vi is not a point of ej. If an edge ej has a vertex vi, the value at the jth row and the ith column of the
incidence matrix is±1, depending on the relative orientation of the edge, that is, whether vertex vi is the end or start point
of edge ej. Respectively, the discrete exterior derivative d1 is a NΩ × Ne matrix and it operates on 1-cochains to produce
2-cochains. If the edge ej is a boundary of face Ωk, the value at the kth row and the jth column of the incidence matrix is
±1, depending on the relative orientation between the face and the edge element (see Figures 2 and 3). The other values
of the discrete exterior derivative, for the cases edge ej is not a boundary of face Ωk, are zeros.

We can summarize the discrete calculus presented above as a diagram

F I G U R E 2 An example orientation of the edges ei, i = 1, … , 12, and the corresponding discrete exterior derivative matrices d0 and d1

for a square primal grid with vertices vj, j = 1, … , 9. The counterclockwise orientation of faces Ωk, k = 1, … , 4, is assumed to be positive.

F I G U R E 3 An example orientation of the edges ei, i = 1, … , 19, and the corresponding discrete exterior derivative matrices d0 and d1

for a triangular primal grid with vertices vj, j = 1, … , 10. The counterclockwise orientation of facesΩk, k = 1, … , 10, is assumed to be positive.
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6 MÖNKÖLÄ and RÄTY

and present the spatially discretized counterpart of system (5)–(8) as

dT
0 H = 𝜕D

𝜕t
− JE, (13)

d0E = −𝜕B
𝜕t
+ JH , (14)

d1B = 𝜌H , (15)

d1JH =
𝜕𝜌H

𝜕t
. (16)

3.2 Leap-frog time-stepping

For time discretization we apply the staggered leap-frog type discretization familiar from the conventional FDTD method.
The one-dimensional time domain from t = t0 to t = tN is divided into time step intervals, each of length Δt. We evaluate
Equations (13) and (15) at time t = tn+ 1

2 and Equations (14) and (16) at time t = tn and approximate the time derivatives
by the second order central finite difference method, applied to variables B and E staggered in time, such that

𝜕B(tn)
𝜕t

= Bn+ 1
2 − Bn− 1

2

Δt
,

𝜕E(tn+ 1
2 )

𝜕t
= En+1 − En

Δt
, n = 0, … ,N − 1. (17)

That is, B is updated at half-integer timesteps, while E is updated at integer timesteps. The initial conditions are set as
B−

1
2 and E0. To update the primal 1-cochain B, representing the magnetic flux through the mesh edges, and the primal

0-cochain E, representing the electric field located on the mesh vertices, we use the formulas

⎧
⎪
⎨
⎪
⎩

Bn+ 1
2 = Bn− 1

2 − Δt(d0En − Jn
H),

En+1 = En + Δt⋆−1
𝜀
(dT

0 ⋆𝜈 Bn+ 1
2 + J

n+ 1
2

E ).
(18)

The coupled system of equations (18) provides time-stepping that is explicit and conditionally stable. To consider the
stability of the time evolution, we present the system of equations (18) in a modified recursive form

(
Bn+ 1

2

En+1

)

=

(
INe −Δtd0

Δt⋆−1
𝜀

dT
0⋆𝜈 INv − Δt2

⋆
−1
𝜀

dT
0 ⋆𝜈 d0

)(
Bn− 1

2

En

)

+

(
Δt 0

−Δt⋆−1
𝜀

dT
0⋆𝜈 Δt⋆−1

𝜀

)⎛
⎜
⎜
⎝

Jn
H

J
n+ 1

2
E

⎞
⎟
⎟
⎠
, n = 0, … ,N − 1,

(19)
where INe on the upper left block of the coefficient matrix is an Ne × Ne identity matrix, whereas INv on the lower right
block of the coefficient matrix is an Nv × Nv identity matrix. By substituting, time step by time step, all the formulas of the
earlier time steps to the formula with n = N − 1, we find that the closed form representation to the solution, at the end of
the considered time period, is

(
BN− 1

2

EN

)

=

(
INe −Δtd0

Δt⋆−1
𝜀

dT
0⋆𝜈 INv − Δt2

⋆
−1
𝜀

dT
0 ⋆𝜈 d0

)N (
B−

1
2

E0

)

(20)

+
N−1∑

k=0

(
INe −Δtd0

Δt⋆−1
𝜀

dT
0⋆𝜈 INv − Δt2

⋆
−1
𝜀

dT
0 ⋆𝜈 d0

)k (
Δt 0

−Δt⋆−1
𝜀

dT
0⋆𝜈 Δt⋆−1

𝜀

)⎛
⎜
⎜
⎝

JN−1−k
H

J
N−1−k+ 1

2
E

⎞
⎟
⎟
⎠
. (21)

By assuming Jn
H = J

n+ 1
2

E = 0 ∀ n, we have uN = GN u0, where

uN =

(
BN− 1

2

EN

)

, G =

(
INe −Δtd0

Δt⋆−1
𝜀

dT
0⋆𝜈 INv − Δt2

⋆
−1
𝜀

dT
0 ⋆𝜈 d0

)

, u0 =

(
B−

1
2

E0

)

. (22)
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MÖNKÖLÄ and RÄTY 7

For a conditionally stable scheme, we need to find such choices of parameters that the numerical solution remains
bounded. A necessary condition for stability is that the absolute values of the all eigenvalues of G must be less or
equal to one and G must have a complete set of distinct eigenvalues and eigenvectors.30 Instead of the eigenval-
ues 𝜆 for the matrix G we search for eigenvalues �̂� = 𝜆 − 1 for matrix ̂G = G − I(Ne+Nv). We consider the eigenvalue
equation ̂Gu = �̂�u, where u is the eigenvector, multiply the first row from left by ⋆−1

𝜀
dT

0⋆𝜈 and solve it with respect
to the first component of u, and substitute the result to the second row of the equation to get the characteristic
equation

�̂�

2 + Δt2
⋆
−1
𝜀

dT
0 ⋆𝜈 d0�̂� + Δt2

⋆
−1
𝜀

dT
0 ⋆𝜈 d0 = 0. (23)

Since⋆−1
𝜀

dT
0 ⋆𝜈 d0 is a diagonalizable matrix, multiplying it from right by the matrix of eigenvectors P and from left by the

inverse of the matrix of eigenvectors P−1 results to the diagonal matrix with the eigenvalues of⋆−1
𝜀

dT
0 ⋆𝜈 d0. Consequently,

by multiplying Equation (23) from right by P and from left by P−1 results to the characteristic equation

�̂�

2 + Δt2
𝜂�̂� + Δt2

𝜂 = 0, (24)

where 𝜂 are the eigenvalues of ⋆−1
𝜀

dT
0 ⋆𝜈 d0. Thus, the eigenvalues for G are

𝜆 = �̂� + 1 = 1 − 2
⎛
⎜
⎜
⎝

(
Δt2

𝜂

4

)
±

√(
Δt2

𝜂

4

)2

− Δt2
𝜂

4

⎞
⎟
⎟
⎠
. (25)

If Δt2
𝜂

4
> 1,

1 − 2
⎛
⎜
⎜
⎝

(
Δt2

𝜂

4

)
+

√(
Δt2

𝜂

4

)2

− Δt2
𝜂

4

⎞
⎟
⎟
⎠
< −1, (26)

and the largest absolute value of the eigenvalues is larger than one. For Δt2
𝜂

4
= 1, there exists nondistinct eigenvalues

𝜆 = 1 − Δt2
𝜂∕2 and the stability is not satisfied. Thus, a necessary stability condition is Δt2

𝜂∕4 < 1, that is, Δt < 2∕
√
𝜂.

In the case of square primal mesh elements, presented as an example in Figure 2, symbolic formulas for the eigenvalues
𝜂 are obtained by an eigenvalue algorithm for heptadiagonal matrices.31

3.3 Computational domain and boundary conditions

PCs are periodically structured electromagnetic media. In certain cases, PCs may exhibit photonic band gaps (PBG),
which are ranges of frequency in which light cannot propagate through the structure. To consider the phenomenon, we
model a 2D square symmetrical PC, constructed of the cross-section of dielectric rods in the air substrate, in a rectangular
domain illustrated in Figure 4. The radius of each dielectric rod is r and the lattice constant a = 1 is the distance between
the centers of two nearest dielectric rods. Due to symmetry, we can restrict ourselves to simulate a rectangular domain
[0, 10] × [0, 1], that is, a single row of the crystal, and terminate the upper and lower boundary with a perfect magnetic
conductor (PMC) or periodic boundary condition.

The update formulas (18) naturally implement a PMC boundary.2 To enforce the periodic boundary condition we
could use a cylindrical shape of the domain and a mesh with a suitable metric to derive the discrete Hodge star
operators. However, here we get to the same result by modifying the update formulas derived for the rectangular
domain. The computational domain is discretized, also with a triangular primal mesh, such that each point on the
lower boundary corresponds to a point on the upper boundary with the same x1-coordinate. Let 𝜎 be a map relat-
ing the indices of the bottom vertices to the corresponding indices on the top vertices. Using a projection matrix of
the form

Pi;i = Pj;𝜎(j) = P𝜎(j);j = 1 for all top vertices vi and bottom vertices vj,
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8 MÖNKÖLÄ and RÄTY

F I G U R E 4 Illustration of the simulation setup, solid lines are joined together and dashed lines represent absorbing boundaries, the
single dot on the right side is the reference point where electric field strength is recorded.

F I G U R E 5 Completing the circulation around a boundary node vi

we can join the values of the top and bottom vertices of the mesh. Also noting that on the cylindrical mesh the dual area
of a point joined by the periodic boundary condition should be the sum of the dual areas of the joined points, we get the
modification

⋆̂𝜖{j;j} = ⋆̂𝜖{𝜎(j);𝜎(j)} = ⋆𝜖{j;j} + ⋆𝜖{𝜎(j);𝜎(j)}

for all bottom boundary vertices j.
The left- and right-hand sides of the computational domain are considered as absorbing boundaries. The absorbing

boundary condition is implemented on the boundary of the domain as J
n+ 1

2
E = ⋆𝜕En with

⋆𝜕ii = −
√
𝜀

𝜇

1
2
(|el| + |em|) , (27)

where i is the index of a boundary vertex and |el| + |em| is the sum of the lengths of the boundary edges linked to the ith
boundary vertex vi (see Figure 5). All the terms ⋆𝜕ii have the same sign because the simplices have the same orientation.

4 NUMERICAL RESULTS

In this section, we present numerical tests on transmission conditions, material properties, geometry approximation,
mesh refinements strategies, and band gaps of PCs and compare the triangular DEC discretization with the square element
based FDTD discretization. We have used the DEC code implemented in C++ at the University of Jyväskylä.15 In principle,
the solver is based on generalized finite differences, covering as a special case also the FDTD method. That is, it is possible
to compare the DEC discretization with a computational mesh with triangular face elements with the FDTD as a special
case constructed with a computational mesh with rectangular face elements. However, we used for the FDTD tests a
program implemented in Matlab by the second author.
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MÖNKÖLÄ and RÄTY 9

For all the simulations we set 𝜇 = 1.0 and modeled the material properties by varying the values of 𝜀. The time domain
simulations are initialized at t = 0 and finished at t = 200. With the FDTD we have used time step length Δt = 9h∕10

√
2

and with the DEC Δt = hmax∕4, where hmax is the largest edge length of the primal mesh. This implies that in the FDTD
discretizationsΔt∕h ≈ 0.64 and in the DEC discretizationsΔt∕hmin varies between 0.55 and 0.88 and the stability criteria
are satisfied. The band structure graphs are obtained as eigenvalue problem solutions in frequency domain by following
Chen and Chew.2 We start with naive examples to demonstrate the simulation challenges and proceed to conquer them
by adjusting material properties and optimizing and refining the mesh.

4.1 Transmission

Here we examine a method for finding the transmission coefficients for different wavelengths of TM-polarized light
through a 2D square symmetrical PC. We send a incident wave from all of the left side boundary vertices by adding to
their values at time instance t the modified Gaussian function

g(t) = e−((t−t0)∕d)2 sin(2𝜋fm(t − t0)), (28)

where d = 3∕𝜋fm defines the half-bandwidth of the pulse and fm is the center of the frequency area of interest.32 The
wavelength 𝜆 inside the surrounding medium is one half of the lattice constant a. Furthermore, the time shift t0 = 3d
reduces the effect of the initial discontinuity when the source is turned on at t = 0. Equation (28) is discretized as gn =
g(nΔt), leading to an additional update formula

En|lhs = En|lhs + gn

on the left-hand side boundary vertices.33

The transmission coefficient is computed by repeating the simulation twice, one simulation measuring transmitted
waves with the dielectric rods and one as incident wave in the homogeneous domain without dielectric rods.34 During the
simulations, we obtain in time domain the field histories at a reference point on the right-hand side of the most right-hand
rod as En

rods and En
no rods, n = 0, … ,N − 1, respectively. Further, the time domain values are transformed to the frequency

domain values Erods(𝜔) and Eno rods(𝜔), respectively, with the discrete Fourier transform to get the transmission coefficient
in decibels for frequency 𝜔 as

20 ⋅ log10

(
|Erods(𝜔)|
|Eno rods(𝜔)|

)
. (29)

In the first example, we discretize the computational domain by a triangle mesh with 10 edges (11 mesh points) per
unit length on the boundary (see Figure 6). We set 𝜆 = 1, radius of each dielectric rod r = 0.3𝜆, and permittivity of rods
𝜀

max = 5.9, while for air 𝜀 = 1.0. Simulating the setup with fm = 0.45, d = 6a∕𝜋 and 𝜔 = 6∕𝜋 leads to graphs presented in
Figure 7 showing clear gaps in the transmission coefficient around frequencies 0.3 and 0.6.

The results presented in Figure 8 are in good agreement with the band structure considerations presented by Chen
and Chew.2 However, in our simulations, the PBG seems to extend below the frequency 0.3 unlike in the band structure
diagram. This is likely because these modes in the band structure diagram correspond to diagonally traveling waves which
our simulations do not address. Modeling of the circular cross-sections of the rods together with the coarseness of the
mesh is a source of inaccuracies.

F I G U R E 6 Computational domain and primal mesh with 10 edges (11 mesh points) per unit length on the boundary. The
cross-sections of the rods are colored in gray.
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10 MÖNKÖLÄ and RÄTY

F I G U R E 7 Simulation results for r = 0.3 and 𝜀max = 5.9

F I G U R E 8 Band structure of PC with r = 0.3 and 𝜀max = 5.9

4.2 Adjusted material and geometry approximation for the dielectric rods

Since geometric modeling of the circular cross-sections of the rods is an important source of error, we observe this
error source by numerical tests and propose remedies by adjusting both the mesh and the material properties. With
both the conventional FDTD and the DEC it is common to model the rods or other inhomogeneities by adjusting
the permittivity of a mesh point based on whether the point is within the radius of the cross-section of the rod or
not. We tested how a strict rectangular approximation limits the choice of mesh resolution, that is, the number of
mesh points per unit length, by setting the radius of cross-sections of the rods r = 0.2 and electric permittivity of
the rods 𝜀max = 8.9 and using several mesh resolutions. The effective area of the cross-section of the dielectric rod
was set as

Aeff =
∑

i

𝜀i − 1
𝜀

max − 1
|Ω∗i |,
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MÖNKÖLÄ and RÄTY 11

where the sum goes over all the vertices inside a periodic cell, 𝜀i is the permittivity assigned to the vertex i, and |Ω∗i | is the
area of the dual face of the vertex i. Effective radius reff is the radius of a circle with an area of Aeff. The wave field strength
is measured at reference point (9.0, 0.5).

In Figure 9, we see that effective radius reff = 0.2 provides the transmission curve (left bottom figure) without signifi-
cant loss of accuracy for all tested mesh resolutions of 22, 32, 34, and 39 points per unit length (marked by red stars in the
top figure). The deviation in the effective radius of the cross-section of the rod is shown to decrease the accuracy of the
transmission simulation, as is presented for the mesh resolutions of 29, 33, 37, and 40 points per unit length (marked by
blue stars in the top figure) in the right bottom figure in Figure 9. Thus, for the FDTD, that is, rectangular face elements,
the geometry approximation of the rods is poor, unless a very fine mesh is used, and can be significantly improved by
scaling the permittivity of a point based on how much of the corresponding dual area is inside the circle.

F I G U R E 9 Approximating the circular cross-sections of a dielectric rod with rectangles, the accuracy of the approximation and
simulation results depend strongly on the number of mesh points per unit length.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7144 by U
niversity O

f Jyväskylä L
ibrary, W

iley O
nline L

ibrary on [11/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 MÖNKÖLÄ and RÄTY

In Figure 10, we demonstrate the effect of scaling the permittivity. The horizontal axis represents the modeling accu-
racy used to calculate the scaled permittivity for points near the boundary of a rod, and the value 1 corresponds to no
scaling. The accuracy of the solution (red line in Figure 10) is directly related to the difference in effective radius (blue
line in Figure 10) when the difference between radiuses is greater than 0.001. The radius of cross-sections of the rods was
r = 0.2, so this corresponds to an error of 0.5%. For values smaller than this, it is likely still an important factor.

With the DEC, utilizing also triangular elements, we can model the mesh so that it approximates the cross-section of
a dielectric rod more accurately. First we model the rod with a regular n-gon so that the effective area is exactly equal to
the area of the rod cross-section. Since the edges of the n-gon need to be edges of the dual mesh, we draw appropriate
sized circles to the n-gon vertices and construct tetragons based on the intersection points of these circles. The remaining
areas are filled with a triangular mesh. The resulting mesh, for a low level discretization, of 11 points per unit length
on the boundary is illustrated in Figure 11. In what follows, we call the mesh obtained by this construction as optimal
or optimized mesh. This method can be straightforwardly generalized to accurately model arbitrary shaped material
boundaries.

We consider the accuracy of the space discretization methods by comparing the transmission graphs, and measure
the difference between the methods X and Y as the root mean square deviation (RMSD) calculated as

RMSD(X ,Y ,F) =

√∑
f∈F (xf − yf )2
√
|F|

,

where the sum goes over all the discrete frequencies of interest F, xf and yf are the transmissions in decibels correspond-
ing to the frequency f , obtained by methods X and Y , respectively, and |F| is the number of discrete frequencies. The
compared models are the FDTD with no permittivity scaling, the FDTD with permittivity scaling, and the DEC with an
optimized mesh. Each of the compared simulations is setup so that they have exactly the same effective radius. For the
first comparison we use the radius of the dielectric rod r = 0.2, electric permittivity 𝜀max = 8.9, and 36 mesh points per
unit length on the boundary. For the second comparison r = 0.3, 𝜀max = 5.9, and there were 31 mesh points per unit length
on the boundary. The frequency-transmission graphs through 6 layers and comparison between the models are shown in
Figures 12 and 13, where the difference between the compared solutions is presented as a black graph, the transmission
of the first mentioned method as a blue graph and the last mentioned method as a red graph. The deviation seems to be

F I G U R E 10 Difference between transmission graphs compared to the difference between the effective radius of the cross-sections of
dielectric rods. The compared simulations used a discretization of 23 and 24 mesh points per unit length.
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MÖNKÖLÄ and RÄTY 13

F I G U R E 11 A mesh optimized for modeling the geometry of the rod. The colored area is the union of all the dual faces of vertices
within the rod.

F I G U R E 12 Difference and root mean square deviation between the different methods for r = 0.2, 𝜀max = 8.9, and 36 mesh points per
unit length on the boundary
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14 MÖNKÖLÄ and RÄTY

F I G U R E 13 Difference and root mean square deviation between the different methods for r = 0.3, 𝜀max = 5.9, 31 mesh points per unit
length on the boundary

largest in areas where there is a sudden change in transmission. This is natural since these are also the most challeng-
ing parts to model accurately. The deviation seems to also increase with frequency, which is likely due to the decreasing
wavelength and consecutively the number of mesh points per wavelength getting smaller. Some of the spikes in the error
graphs could also be attributed to a slight frequency shift. The increase in the edge length, or mesh stepsize, raised all
of the RMSDs as could be expected. In all the test cases, the obtained transmission graph was qualitatively valid. Per-
mittivity scaling and mesh optimization have the benefit that they can be applied with high accuracy to any radius and
discretization.

4.3 Mesh refinement

We study numerically the convergence rate and accuracy of the FDTD with parameter scaling and the DEC with an
optimal mesh. The FDTD setup is truncated with a CFS-PML absorbing boundary layer27 on the left and right side
of the computational domain. The top and bottom sides are joined to effectively make the simulation area a cylin-
der. For the first test case, we study transmission through 6 layers, r = 0.2, and 𝜀

max = 8.9. The reference solution is
calculated by linear extrapolation of three FDTD simulations using discretizations of 80, 90, and 100 points per unit
length. The error for each simulation result is calculated as the RMSD to this reference solution. The results shown
in Figure 14 show clear convergence in terms of mesh edge length. For the DEC, we have reported both the largest
edge length (red stars in Figure 14, “DEC max dx”) and the smallest edge length (black stars in Figure 14, “DEC min
dx”). The convergence of the DEC in terms of the largest edge length has the same trend as the convergence of the
FDTD (blue stars in Figure 14). Thus, the maximum edge length is the limiting factor for the accuracy and the use of
a mesh that optimizes the material boundary modeling gains no significant improvement in the overall accuracy with
this choice of parameters, geometry, and mesh refinement. Repeating the experiment for r = 0.3 and 𝜀max = 5.9 shows
(see Figure 15) a slight increase in accuracy for the DEC. By comparing the transmission graphs in Figures 12 and 13,
we also observe that the transmission graph with this test’s parameters is a bit smoother in the sense that it has gentler
slopes.

As earlier mentioned, the error is related to the rate of change in the transmission graph and increases with fre-
quency. Both of the methods tended to overestimate transmission in places where the slope of the transmission graph
is positive and underestimate if the slope was negative, which could be the result of a slight frequency shift. This is
demonstrated in Figure 16. Based on the above mentioned observations, we choose three points (marked as black stars
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MÖNKÖLÄ and RÄTY 15

F I G U R E 14 RMSD to the reference solution for different levels of discretization (r = 0.2 and 𝜀max = 8.9)

F I G U R E 15 RMSD to the reference solution for different levels of discretization (r = 0.3 and 𝜀max = 5.9)

in the top figure in Figure 16) in the transmission graph and take a closer look of the transmission with respect to
the edge length. In the bottom figure in Figure 16, we present the results with the FDTD with scaling (blue stars) and
the DEC in terms of the largest edge length (red stars) and the reference solution (black star) for each of the chosen
frequencies.

Since the compared methods had different boundary conditions (Silver–Müller and PMC for DEC, CFS-PML and
periodic for FDTD) we should investigate if the choice of boundary condition has an affect on the results. Using the same
rectangular mesh for both methods and measuring the RMSD of the transmission graphs, we get the results presented
in Figure 17. Comparing this to Figure 14 or Figure 15, we conclude that the deviation is nearly an order of magnitude
smaller and conclude that the use of different boundary conditions is not a significant error factor in the comparisons
presented above.
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16 MÖNKÖLÄ and RÄTY

F I G U R E 16 Transmission for different frequencies and discretizations

F I G U R E 17 The difference between the boundary conditions
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MÖNKÖLÄ and RÄTY 17

4.4 Photonic band gap

A photonic band gap is a range of frequencies in which there does not exist propagating waves for any wavenumber, but
there are propagating waves above and below the band gap. To find the band gap frequencies we compute, for r = 0.2,
band structure graphs with two different permittivities. We present the graphs along the points G, X, and M (see Figure 18)
of the Brillouin zone35 for the TM modes. We are considering a normally incident wave, and thus we can concentrate
on the section [G,X] of the band structure. In Figures 19 and 20, we illustrate the band structures, side-by-side with the
transmission graphs, with 𝜀max = 8.9 and 𝜀max = 5.9, respectively. We observe two band gaps bounded by the blue dashed
lines in both figures. The photonic band gaps are clearly positioned in the frequencies related to the pits in the trans-
mission graphs. By introducing a line defect to the PC, frequencies within the bandgap are strongly confined inside the
line defect.

In the last numerical tests, we use the DEC space discretization with r = 0.2, 𝜀max = 8.9, hmax = 1∕32, and hmin ≈
0.4hmax in an area of 15 × 7 periodic cells with the rods in the middle row removed. We set a narrow width modified
Gaussian pulse, first centered around the frequency 0.4 and in another test run centered around the frequency 0.5, as a
source in the middle of the left-hand side boundary and simulate with respect to time with Δt ≈ 0.008. As expected from
the band structure and transmission graph 19, only the pulse corresponding to the frequency 0.4 is confined within the
line defect (see Figure 21).

F I G U R E 18 The band structure is calculated by solving an eigenvalue problem at the points of the irreducible Brillouin zone
highlighted in red

F I G U R E 19 Comparison of the band structure and transmission graphs for r = 0.2, 𝜀max = 8.9
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18 MÖNKÖLÄ and RÄTY

F I G U R E 20 Comparison of the band structure and transmission graphs r = 0.3, 𝜀max = 5.9

F I G U R E 21 Pulses centered around frequencies 0.4 (left) and 0.5 (right) in a photonic crystal array

5 CONCLUSIONS

We presented two-dimensional DEC discretization for PCs and demonstrated it with numerical experiments on material
properties, geometry approximation, and mesh refinement strategies and demonstrated how the band gap frequencies are
related to the transmission conditions. Modeling the circular cross-sections of the dielectric rods accurately and running
the simulations computationally efficiently is a challenging task especially if only rectangular mesh elements can be
used. However, the accuracy can be increased by scaling the permittivity on the rod boundary and adjusting the radius to
better match the area. With the DEC, utilizing more generalized or mixed types of polygonal elements, there is also the
option of designing the mesh to better match the nonpolygonal material boundaries. Hence, the DEC is well-suited for
PC waveguide problems and with the diagonal discrete Hodge star operator it is computationally efficient especially in
time-domain simulations.
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