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Abstract—This paper demonstrates how discrete exterior
calculus tools may be useful in computer vision and graphics.
A variational approach provides a link with mechanics.

I. INTRODUCTION

Many problems in computer vision, image processing and

computer graphics can be posed naturally as variational

problems. Examples are template matching, image restora-

tion, image segmentation, computation of minimal distortion

maps and many others. See for example the special issue

of the International Journal of Computer Vision (December

2002, Volume 50, Issue 3).

Therefore, new mathematical and computational tools that

have been developed for solving variational problems in other

areas can be usefully employed in computer vision, image

processing and computer graphics.

An emerging general tool which we believe will be useful

for the computational solution of variational problems in

computer vision and related fields is the development of a

calculus on discrete manifolds. We have made some progress

in this field (Hirani [15] and Desbrun et al [7]) by developing

a discrete exterior calculus (DEC). Bits and pieces of such a

calculus have been appearing in literature but we believe [15]

and [7] introduce several key new concepts in a systematic

way. Our development of DEC includes discrete differential

forms, discrete vector fields and the operators acting on

these. In related work, a discrete calculus leads for example,

to the proper definition of discrete divergence and curl

operators which has applications such as a discrete Hodge

decomposition of 3D vector fields on irregular grids (Tong

et al [35]).

A closely related area in which a great deal of progress

has been made, is discrete mechanics (see, e.g., Marsden

and West [29] and Lew et al [27]). The main idea there

is to discretize the variational principle itself rather than the

Euler-Lagrange equations. In these and related references, the

discretization is in time only, but one of the most promising

areas in which DEC methods can be used is in spatially

extended mechanics; that is, in classical field theory or

networks of interconnected systems, where discrete methods

have been developed and applied; see, for instance Lew et. al.

[26]. We believe that there are important lessons to be learned

from discrete mechanics when solving variational problems

in computer vision and graphics.

This development of a discrete calculus, when combined

with the methods of discrete mechanics and other recent work

(e.g., [4], [5], [13], [14], [21], [22], [30], [34]) is likely to

have promising applications in a field like computer vision

which offers such a rich variety of challenging variational

problems to be solved computationally. As a specific example

we consider the problem of template matching and show how

numerical methods derived from a discrete exterior calculus

are starting to play an important role in solving the equations

of averaged template matching. We also show some exam-

ple applications using variational problems from computer

graphics and mechanics to demonstrate that formulating the

problem discretely and using discrete methods for solution

can lead to efficient algorithms.

II. TEMPLATE MATCHING AND DEC

We start with a concrete example of a vision problem in

which discrete exterior calculus turns out to play an important

role in computations. This is the problem of deformable

template matching. Deformable template matching is a tech-

nique for comparing images with applications in computer

vision, medical imaging and other fields. It has been reported

on extensively in the literature. See for example, Younes

[39], Trouvé [36], [37], Grenander and Miller [10] and the

references therein.

Template matching is based on computing a deformation

induced distance between two images. The “energy” required

to do a deformation that takes one image to the other defines

the distance between them. The deformations are often taken

to be diffeomorphisms of the image rectangle, i.e smooth

maps with smooth inverse. The energy can be defined using

various metrics on the space of diffeomorphisms.

In this way of posing the problem, template matching is

similar to the way fluid mechanics is formulated. In fluid

mechanics, averaged equations have been shown to have the

property that length scales smaller than a certain parameter

in the equation are averaged over correctly and don’t need

to be resolved in a numerical solution. See Marsden and

Shkoller [28] for details. Motivated by this, in Hirani et al

[16] we derived the partial differential equation that we call

the Averaged Template Matching Equation (ATME). This

equation can also be written in a div, grad, curl form or

in Lie derivative form. The unknown in ATME is the time

dependent vector field that makes the initial image flow to

the final image while minimizing the kinetic energy.

Our hope in deriving the ATME was that it would allow

matching while ignoring features smaller than a fixed size.

This property has not yet been verified but some progress
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has been made in the analysis of the equation in one and two

spatial dimensions. For example, in [6] we show how natural

boundary conditions leads to the reduction of the boundary

value problem of template matching into a parameterized

initial value formulation. Specifically we derive the form

that the initial velocity must take to distort one image to

the other while satisfying the ATME. This initial condition

is a piecewise smooth, continuous function with a jump in

the derivative at edges of the image.

Holm’s group has analyzed and computed the solutions

of the ATME and related equations in one and two-spatial

dimensions. In 1D, Holm et al [12], [17], [18] found that

the initial condition that they called a peakon leads to stable

solutions in which the initial peakons move like solitons.

Other initial conditions broke up into peakons that moved

around and collided elastically. Interestingly, the initial con-

dition for the 1D problem that we derived from the natural

boundary conditions is a peakon. Recently Holm’s group has

discovered solutions to the two spatial dimension case. These

are collections of peakons along one dimensional curves that

move and collide in very interesting soliton-like ways. In the

2D case (see also [19]), the crucial step in the numerical

solution was the use of mimetic discretization of the ATME

written using div, grad and curl. Mimetic discretization (see,

for example, [23]) is related to a basic form of discrete

exterior calculus involving discrete forms. This suggests to

us that DEC should be highly relevant to template matching.

III. DISCRETE EXTERIOR CALCULUS

In [15] and [7] we present a theory of discrete exterior

calculus motivated by potential applications in computational

methods for field theories (elasticity, fluids, electromag-

netism) as well as in areas such as vision and graphics. This

theory has a long history but we have aimed at a comprehen-

sive, systematic, applicable, treatment. Many previous works,

are incomplete both in terms of the objects that they treat as

well as the types of meshes that they allow. For more details

on the large body of work on DEC, see [15].

Our vision of this theory is that it should proceed ab

initio as a discrete theory that parallels the continuous one.

General views of the subject area of DEC are common in the

literature, but they usually stress the process of discretizing

a continuous theory and the overall approach is tied to this

goal. However, if one takes the point of view that the discrete

theory can stand in its own right, then the range of application

areas is naturally enriched and increases. Applications to

graphics will illustrate this point.

Applications to Variational Problems. A major applica-

tion areas we envision is to variational problems, be they

in mechanics, optimal control, vision or graphics. A key

ingredients in this direction that should play a key role is that

of AVI’s (asynchronous variational integrators) designed for

the numerical integration of mechanical systems, as in Lew et

al [26]. These integration algorithms respect key features of

the continuous theory, such as their (multi)symplectic nature

and exact conservation laws. They do so by discretizing

the underlying variational principles of mechanics rather

than discretizing the equations. It is well-known (see the

reference just mentioned for some of the literature) that

variational problems come equipped with a rich exterior

calculus structure and so on the discrete level, such structures

will be enhanced by the availability of a discrete exterior

calculus.

There are other variational problems that motivate DEC.

For instance, in many problems one requires a hierarchical

and network structure for solving large systems (eg, to simu-

late a swarm of complex agents or power or internet systems)

to enable one to simulate at a variety of resolutions and

also to make use of parallel strategies together with message

and information passing. In such a network setting, many

problems involve optimization (such as optimal throughput

in an internet setting) and optimization problems are also

variational and so have an associated DEC structure that

comes along with the problem. In such a spatially distributed

problem, one has a discrete system ab initio, and so it is

natural to begin with the discrete problem from the start.

We have already mentioned the variational nature of several

problems in computer vision and graphics in the Introduction.

Structured Constraints. Many constraints in numerical al-

gorithms involve differential forms, such as the divergence

constraint for incompressibility of fluids as well as the fact

that differential forms are naturally the fields in electromag-

netism and some of Maxwell’s equations are expressed in

terms of the divergence and curl operations on these fields.

Preserving, as in the mimetic differencing literature, such

features directly on the discrete level is another one of the

goals, overlapping with our goals for variational problems.

The Objects in DEC. To develop a discrete theory, one must

define discrete differential forms along with vector fields and

operators involving these. We define these on discrete man-

ifolds that are piecewise affine simplicial complexes (such

as a triangle mesh embedded in 3D). Once discrete forms

and vector fields are defined, a calculus can be developed by

defining the discrete exterior derivative (d), codifferential (δ)

and Hodge star (∗) for operating on forms, discrete wedge

product (∧) for combining forms, discrete flat (♭) and sharp
(♯) operators for going between vector fields and one forms
and discrete contraction operator (iX ) for combining forms

and vector fields. Once these are done one can then define

other useful operators. For example a discrete Lie derivative

(£X ) can be defined by requiring that the Cartan magic

(or homotopy) formula hold. A discrete divergence in any

dimension can also be defined. A discrete Laplace-deRham

operator (∆) can be defined using the usual definition of
dδ + δd. When applied to functions this is the same as the

discrete Laplace-Beltrami operator (∇2) which is the defined

as div ◦ curl. We define all these operators in DEC.
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IV. DISCRETE MECHANICS

Many standard integrators used for simulating mechan-

ical systems fail to respect the mechanical structure (like

momenta, energy, symplectic form etc.) and often have

misleading numerical dissipation. Recently progress has been

made in the development of variational discrete mechanics,

both in the fundamental theory and in the applications to

challenging problems. These include collision algorithms

and the development of AVI’s (Asynchronous Variational

Integrators). Variational integrators are based on a discretiza-

tion of Hamilton’s principle (or the Lagrange-d’Alembert

principle if there is dissipation or external forces present),

which underlies essentially all of mechanics, from particle

mechanics to continuum mechanics. Preserving the basic

variational structure in the algorithm retains the structure

of mechanics (such as conservation laws) at the algorith-

mic level. This avoids many of the problems with existing

integrators, such as spurious dissipation, which may take

very expensive runs to eliminate by standard techniques.

With an appropriate development of the connection between

mechanics and geometry in the discrete setting, one will be

able to use for geometry the technology described in this

section. The theory of variational integrators has its roots

q(a)

q(b)

δq(t)

Q

q(t) varied curve

qi

qN

δqi

qi varied point

Fig. 1: Continuous vs. discrete variational principles.

in Hamilton-Jacobi theory and parts of the basic theory go

back to, e.g., Moser and Veselov and its numerical analysis

is due to a variety of groups, such as Suris, Marsden and

Wendtlandt. The strategy is to start with a Lagrangian L(q, q̇)
and requires Hamilton’s principle, namely to make the action

integral stationary: δ
∫

b

a
L(q, q̇) dt = 0 for fixed endpoints,

which leads to the Euler-Lagrange equations. This theory has

a PDE counterpart in which one makes a space-time integral

stationary which is appropriate for elasticity and fluids, for

example.

In Discrete Mechanics, one approximates the action in-

tegral for time ∆t which gives the discrete Lagrangian:

Ld(q0, q1, ∆t). The discrete action sum, defined by Sd =
∑

N−1

k=0
Ld (qk, qk+1, ∆tk) is required to satisfy discrete vari-

ational principle: Extremize Sd given fixed end points, q0

and qN . This yields the DEL (discrete Euler–Lagrange)

equations: D2Ld (qi−1, qi, ∆ti−1) + D1Ld (qi, qi+1, ∆ti) =
0 (where D2 denotes the second slot derivative, etc.). This

gives an update rule (qi−1, qi) �→ (qi, qi+1), which is called
a variational integrator. To get energy conservation, one

can vary the time steps and get: D3Ld (qi−1, qi, ∆ti−1) −

D3Ld (qi, qi+1, ∆ti) = 0, which encodes the discrete version
of conservation of energy.

For example, let L(q, q̇) = 1

2
q̇T Mq̇−V (q), where M is a

symmetric positive-definite mass matrix and V is a potential

function; the Euler-Lagrange equations are the standard ones:

Mq̈ = −∇V (q). Approximating the action integral
∫

T

0
L dt

using the rectangle rule yields the finite difference equation

M
(

(qk+1 − 2qk + qk−1)/∆t2
)

= −∇V (qk) while another
choice gives the well-known Newmark method for the pa-

rameters γ = 1

2
and β = 0. Thus, this simple example is

closely connected with simple symplectic integrators such as

the mid-point rule and the Newmark algorithm. More sophis-

ticated quadrature rules lead to more accurate integrators.
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Fig. 2: Energies: (a) non-dissipative system computed using

variational and non-variational integrators vs a benchmark

calculation; variational methods do not artificially dissipate

energy ; (b) dissipative system computed with variational

midpoint and Runge-Kutta – note the accurate energy be-

havior of the variational method, vs the higher order Runge-

Kutta method (with artificial dissipation).

Variational integrators preserve the symplectic structure, a

classical property of mechanical systems. It is believed that

this preservation is related to the good numerical properties

of these integrators. These integrators also have a natural

discrete Noether’s theorem (preserve momenta) for systems

with symmetry. They also have excellent energy behavior for

mechanical systems (see, eg., [26]), even with some dissipa-

tion added, compared to conventional schemes. Figure 2 (a)

and (b) show that the energy behavior of even low order

variational integrators can be better than that of higher order

conventional integrators for both conservative and dissipative

mechanical systems. More relevant for shells and continua,

is the development of AVI’s or Asynchronous variational

integrators ([26]), that allow one to take different time steps

at different points, which is important for efficiency. Figure

2 (c) shows an example of energy behavior for a long-time

run in a 3D dynamic elasticity calculation; one sees that the

energy behavior is still excellent; this is true for both the

global energy and the energy balance between modes.

V. OTHER APPLICATIONS OF DISCRETE MECHANICS

AND EXTERIOR CALCULUS

Parametrization is a central issue in graphics. Parameteriz-

ing a 2D mesh in 3D amounts to computing a correspondence
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Fig. 3: Many parametrization techniques (b-c) are not robust to mesh irregularity, exhibiting large distortions for irregular, yet

geometrically smooth meshes, as in (a). Nonlinear techniques (d) achieve better results, but often require several minutes of

computational time. With the same boundary conditions, our newly-developed, variationally-based technique quickly generates

smooth parametrizations, regardless of the mesh irregularity (sampling quality) as shown by the two texture-mapped members

(e-f) of the novel parametrization family (denoted Intrinsic Parametrizations) [8].

between a discrete surface patch and an isomorphic planar

mesh through a piecewise linear mapping which assigns each

mesh node a pair of coordinates (u, v) referring to its position
on the planar region. Such a one-to-one mapping provides a

flat parametric space, allowing one to perform any complex

operation directly on the flat domain rather than on the curved

surface. This facilitates most forms of mesh processing,

such as surface fitting, texture mapping [33], or remeshing.

This last application, for instance, is widely used both in

the graphics and the mesh generation community interested

in finite element computations: while graphics applications

tends to minimizes the number of triangles or quadrangles

used to represent a geometry, physical computations often

require special element shape quality to ensure optimal

accuracy. A good parametrization of a given (often scanned-

in) geometry has been proven crucial for the efficiency of

both isotropic and anisotropic remeshing [2], [1].

Much work on parametrization has been published over

the last ten years. Almost all techniques explicitly aim at

producing least-distorted parametrizations, and vary only by

the distortions considered and the minimization processes

used. Early work used the notion of flattening to obtain

an isomorphic planar triangulation (for instance, [3]), min-

imizing ratio of angles between the 3D triangles and their

associated 2D versions. Others (see, for instance, [24]) con-

sidered spring-like energies that can be quickly minimized

by a linear system solver when the boundary has been fixed

to an arbitrary contour (with the noticeable exception of [25]

where only a few internal points need to be fixed by the

user). More recently, a number of authors have proposed

nonlinear formulations to define optimal parametrizations.

The MIPS [20] method for instance finds a “natural bound-

ary” that minimizes their highly non-linear energy [20].

Unfortunately, this requires considerable computational effort

(even if hierarchical solvers can be used). Sander and co-

authors [33] proposed another nonlinear energy for the very

specific problem of texture stretch distortion.

Most of these techniques proposed to minimize a con-

tinuous energy over a piecewise linear surface. However,

the choice of the energy and its discretization seems very

arbitrary, and most of these techniques may visually result

in non-smooth parametrizations and therefore non-smooth

textured meshes as in Figure 3(b-c). It thus seems that

here again, a discrete variational approach would be very

appropriate and would provide the necessary robustness and

guaranteed smoothness quality we need in parametrizations.

It turns out that a number of independent authors have pro-

posed a discrete harmonic parametrization (see, for instance

[31]) who derived the same linear condition for harmonic-

ity either using differential geometry, harmonic maps, or

finite elements. A boundary condition is still needed before

computing a discrete conformal mapping. We have recently

generalized this approach and proposed a new, variationally-

based family of parametrizations, based on Minkowski func-

tionals to measure discrete distortion measures. Our results,

depicted in Figure 3(e&f), seem to prove the validity of our

approach. Unlike the previous techniques, we can find very

smooth parametrizations independently of the mesh regular-

ity. Furthermore, we have also experimented with natural

boundary conditions to provide a natural, optimal conformal

parametrization that does not require any specification of

a boundary mapping as we present in [8]. Numerical ex-

periments confirm the importance of this discrete variational

approach for conformal geometry compared to, for instance,

much more computation-intensive circle packing techniques.

Geometric Flows and Mesh Smoothing. These parametriza-

tion results using simple, additive, geometric invariants also

have direct applications to mesh smoothing, and more gen-

erally, to geometric flows. We have partially studied this

topic [9] by proposing a variational approach to smoothing

that is equivalent to the mean curvature flow. But this time,

we did use a direct discrete formulation, by simply stating

the process as an area minimization. The results, compared

to previous fairing methods, have again proven once again

the importance of finding the “right” discretization.

Simple Constitutive Laws for Simulation. Several complex
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(a) (b)

Fig. 4: Discrete Constitutive Equations for Thin-Shells: (a) Real footage vs. Simulation of a Hat: top, a real hat is dropped

on a table; bottom, our shell simulation captures the bending of the brim. (b) We can also model a curled, creased, and

pinned sheet of paper. By altering dihedral angles of the flat reference configuration, we effect plastic deformation. While

the rendering is texture-mapped, we use flat-shading of the triangles to emphasize the discrete structure of the underlying

mesh. The final shape is fully simulated: the artist only indicates the curl radius, the crease sharpness, and the pin positions.

Fig. 5: Denoising of Geometry: we initially developed a

variational approach to smoothing of arbitrary meshes in

order to remove the spurious noise from scanned meshes

even when the original sampling is highly irregular and very

coarse [9]. Recent results from our parametrization work

mentioned above have made clear that another family of

discrete smoothing flows exists.

physical simulations such as thin-shell or cloth animation are

overly computationally-intensive for computer animation. No

simpler method is known to obtain similar effects (buckling,

wrinkles) at low cost. Our initial work on surface invariants

helped us to design new plausible constitutive laws, with

very good numerical properties (since they derive from

variational principles). For instance, a fabric could be defined

as behaving like a weighted mix between an area-preserving

and a conformal surface – properties that are actually very

close to reality for a number of fabrics such as denim

or leather. Similarly, the Kirchhoff-Love theory of thin-

shells can be substituted by a simpler constitutive law, very

attractive for Computer Graphics as having similar properties

(buckling for instance) but with better numerical properties

and therefore significantly reduced computation times. The

simplest expression of flexural energy for piecewise-linear

geometry that we have considered is the square trace of the

difference between the shape operator on the undeformed

surface and the pullback of the one on the current, deformed

surface [11]. As depicted in Figure 4, the visual impact of

this extremely simple model matches the expected behavior.

Movie clips showing an animation of the falling hat can

be found at http://multires.caltech.edu/pubs/DS-CDROM. We

intend to analyze the convergence properties, as well as to

develop further, more complex discrete models of thin-shell

and other deformable objects.

Discrete Hodge Decomposition. To develop a discrete 3D

Helmholtz-Hodge decomposition, we followed the 2D ap-

proach of Polthier [32] and defined the curl-free part of a

vector field ξ as the critical point of the functional:
∫

Ω
(∇u−

ξ)2 dV and the divergence-free part as the critical point of the

functional:
∫

Ω
(∇×�v−ξ)2 dV , which matches its differential

analog. Use is made of two discrete operators Div and

Curl. We have also introduced a multiscale representation of
the projected fields, where fine-scale details are successively

suppressed while main features are preserved. Such a hier-

archical decomposition is interesting for numerical purposes

as well as visualization. Our resulting multiscale vector field

decomposition is a versatile computational tool: we have

already explored several applications as presented in [35],

from a vector field processing and visualization toolbox, to

the animation of fluids and elastic objects on irregular grids

(Figure 6).

VI. CONCLUSIONS

The intent of this paper is to demonstrate that a discrete

exterior calculus can be a powerful and versatile tool, not

only for mechanics, but also in graphics, visualization and

computer vision. It has close connections with mimetic

differencing and other techniques that are known to give

good numerical results, such as those involving constraints

that can be written in terms of differential forms, such as a

divergence constraint. Even in classical field theories, such as

electromagnetism, there is much activity in applying DEC-

like ideas. We expect that a further development of DEC and
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Fig. 6: Even on curved 2-or 3-manifolds, the variationally-

based vector field decomposition separates the curl-free and

the divergence-free components of a vector field. The bottom

figure shows the vector field of a 3D dataset (turbulence

behind a moving car), decomposed using our technique.

Represented is the divergence-free part ∇× �v of the vector

field, evidenced by particle tracing and a LIC cross-section

of this component; the potential �v is also represented on

the right side. The false color cross-sections represent the

magnitudes of these fields.

its applications will also be of continued use in graphics and

vision problems; we outlined a few possible application areas

in this paper.
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Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In
Computer Graphics (SIGGRAPH ’99 Proceedings, 317–324.

[10] Grenander, U. and M.I. Miller [1998], Computational anatomy: an
emerging discipline. Quarterly of Applied Mathematics LVI, 617–694.

[11] Grinspun, E., A.N Hirani, M. Desbrun, and P. Schröder [2003],
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