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Abstract The current status of our knowledge of the 3-

neutrino mixing parameters and of the CP violation in the

lepton sector is summarised. The non-Abelian discrete sym-

metry approach to understanding the observed pattern of neu-

trino mixing and the related predictions for neutrino mixing

angles and leptonic Dirac CP violation are reviewed. Possible

tests of these predictions using the existing data on neutrino

mixing angles as well as prospective data from current and

future neutrino oscillation experiments (T2K, NOνA, Daya

Bay, T2HK, T2HKK, DUNE) are also discussed.

1 Introduction

Understanding the origins of the patterns of neutrino mixing

and of neutrino mass squared differences, revealed by the

data obtained in the neutrino oscillation experiments (see,

e.g., [1]), is one of the most challenging problems in neutrino

physics. It is part of the more general fundamental problem in

particle physics of understanding the origins of flavour, i.e.,

of the patterns of quark, charged lepton and neutrino masses,

and of the quark and lepton mixing.

We believe, and we are not alone in holding this view,

that with the observed pattern of neutrino mixing Nature is

“sending” us a Message. The Message is encoded in the

values of the neutrino mixing angles, leptonic CP viola-

tion (CPV) phases in the Pontecorvo, Maki, Nakagawa and

Sakata (PMNS) neutrino mixing matrix [2–5] and neutrino

masses. We do not know at present what is the content of

Nature’s Message. However, on the basis of the current ideas

about the possible origins of the observed pattern of neu-

trino mixing, the Nature’s Message can have two completely

different contents, each of which can be characterised by

one word: ANARCHY or SYMMETRY. In the ANARCHY

approach [6–8] to understanding the pattern of neutrino mix-
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ing it is assumed that Nature “threw dice” when “choosing”

the values of the neutrino masses, mixing angles and lep-

tonic CPV phases. The main prediction of the ANARCHY

explanation of the pattern of neutrino mixing is the absence

of whatever correlations between the values of the neutrino

masses, between the values of the neutrino mixing angles,

and between the values of the neutrino mixing angles and

the CPV phases, all of them being random quantities. As

a consequence, no specific values of, e.g., neutrino mixing

angles are predicted: the predictions of these (and other lep-

tonic) measurable quantities are in the form of distributions.

In contrast, one of the main characteristic features of the

SYMMETRY approach to neutrino mixing is the prediction

of the values of some of the mixing angles and/or of the

existence of correlations between the values of at least some

of the observables (angles, CPV phases) of the the neutrino

mixing matrix.

Within the SYMMETRY approach, the observed pattern

of neutrino mixing, which differs drastically from the quark

mixing pattern, can be naturally understood on the basis of

specific class of symmetries – the class of non-Abelian dis-

crete flavour symmetries (see, e.g., [9–11]). Thus, the spe-

cific form of the neutrino mixing can have its origin in the

existence of new fundamental symmetry in the lepton sec-

tor. The most distinctive feature of the approach to neutrino

mixing based on non-Abelian discrete flavour symmetries is

the predictions of the values of some of the neutrino mix-

ing angles and leptonic CPV phases, and/or of existence of

correlations between the values of at least some the neu-

trino mixing angles and/or between the values of the neu-

trino mixing angles and the Dirac CPV phase in the PMNS

matrix, etc. (see, e.g., [11–20]). Combining the discrete sym-

metry approach with the idea of generalised CP invariance

[21–23] – a generalisation of the standard CP invariance

requirement – allows to obtain predictions also for the Majo-

rana CPV phases in the PMNS matrix in the case of massive

Majorana neutrinos (see, e.g., [24–36] and references quoted
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therein). Most importantly, these predictions and predicted

correlations, and thus the discrete symmetry approach itself,

can be tested experimentally (see, e.g., [12,13,25,37–42]).

In the present article we review aspects of the sym-

metry approach to neutrino mixing based on the class of

non-Abelian discrete flavour symmetries, which is widely

explored at present (see, e.g., [11,35,36,43,44] and refer-

ences quoted therein.1) We will discuss also the typical phe-

nomenological predictions of the approach and their possible

tests in currently running and future planned neutrino oscil-

lation experiments.

Before discussing the discrete flavour symmetry approach

to neutrino mixing we would like to review briefly the current

status of our knowledge of neutrino masses, neutrino mixing

and leptonic CPV phases, the remaining fundamental prob-

lems in neutrino physics and the future prospects in this field.

2 The three-neutrino mixing

The experiments with solar, atmospheric, reactor and accel-

erator neutrinos have provided compelling evidences for the

existence of neutrino oscillations [2–4] – transitions in flight

between the different flavour neutrinos νe, νμ, ντ (antineu-

trinos ν̄e, ν̄μ, ν̄τ ) – caused by nonzero neutrino masses and

neutrino mixing (see, e.g., Ref. [1] for review of the relevant

data). The existence of flavour neutrino oscillations implies

the presence of mixing in the weak charged lepton current:

LCC = − g√
2

∑

l=e,μ,τ

lL(x) γανlL(x) W α†(x) + h.c.,

νlL(x) =
n

∑

j=1

Ul jν jL(x), (1)

where νl L(x) are the flavour neutrino fields, ν jL(x) is the left-

handed (LH) component of the field of the neutrino ν j having

a mass m j , and U is a unitary matrix – the PMNS neutrino

mixing matrix [2–5]. All compelling neutrino oscillation data

can be described assuming 3-neutrino mixing in vacuum,

n = 3. The number of massive neutrinos n can, in general,

be bigger than 3 if, e.g., there exist RH sterile neutrinos [5]

and they mix with the LH flavour neutrinos. It follows from

the current data that at least 3 of the neutrinos ν j , say ν1,

ν2, ν3, must be light, i.e., must have masses smaller than

roughly 1 eV, m1,2,3 ∼< 1 eV, and must have different masses,

m1 �= m2 �= m3.2

1 For early attempts see, e.g., [45–47].

2 At present there are several experimental inconclusive hints for exis-

tence of one or two light sterile neutrinos at the eV scale, which

mix with the flavour neutrinos, implying the presence in the neutrino

mixing of additional one or two neutrinos, ν4 or ν4,5, with masses

m4 (m4,5) ∼ 1 eV (see, e.g., Ref. [48]). For a recent discussion of

these hints and of the related implications see, e.g., Refs. [49,50].

In the case of 3 light neutrinos, the 3 × 3 unitary neutrino

mixing matrix U can be parametrised, as is well known, by 3

angles and, depending on whether the massive neutrinos ν j

are Dirac or Majorana particles, by one Dirac, or one Dirac

and two Majorana, CP violation (CPV) phases [51]:

U = V P, P = diag
(

1, ei
α21

2 , ei
α31

2

)

, (2)

where α21,31 are the two Majorana CPV phases and in the

“standard” parametrisation the matrix V is given by:

V =

⎛

⎝

c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13

s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

⎞

⎠ .

(3)

In Eq. (3), ci j = cos θi j , si j = sin θi j , the angles θi j ∈
[0, π/2], and δ ∈ [0, 2π) is the Dirac CPV phase. Thus,

in the case of massive Dirac neutrinos, the neutrino mix-

ing matrix U is similar, in what concerns the number of

mixing angles and CPV phases, to the Cabibbo, Kobayashi,

Maskawa (CKM) quark mixing matrix. The PMNS matrix

U contains two additional physical CPV phases if ν j are

Majorana particles due to the special properties of Majorana

fermions (see, e.g., Refs. [51–53]). On the basis of the exist-

ing neutrino data it is impossible to determine whether the

massive neutrinos are Dirac or Majorana fermions.

The probabilities of neutrino oscillations are functions of

the neutrino energy, E , the source-detector distance L , of

the elements of U and, for relativistic neutrinos used in all

neutrino experiments performed so far, of the neutrino mass

squared differences 	m2
i j ≡ (m2

i − m2
j ), i �= j (see, e.g.,

Ref. [52]). In the case of 3-neutrino mixing there are only

two independent 	m2
i j , say 	m2

21 �= 0 and 	m2
31 �= 0.

The numbering of neutrinos ν j is arbitrary. We will employ

the widely used convention which allows to associate θ13

with the smallest mixing angle in the PMNS matrix, and

θ12, 	m2
21 > 0, and θ23, 	m2

31, with the parameters which

drive the solar (νe) and the dominant atmospheric νμ and

ν̄μ oscillations, respectively. In this convention m1 < m2,

0 < 	m2
21 < |	m2

31|, and, depending on sgn(	m2
31), we

have either m3 < m1 or m3 > m2.

The existing data, accumulated over many years of studies

of neutrino oscillations, allow us to determine 	m2
21, θ12,

and |	m2
31(32)

|, θ23 and θ13, with a relatively high precision

[54,55]. Since 2013 there are also persistent hints that the

Dirac CPV phase δ has a value close to 3π/2 (see [56]). The

best fit values (b.f.v.) and the 2σ and 3σ allowed ranges of

	m2
21, s2

12, |	m2
31(32)

|, s2
23, s2

13 and δ, found in the analysis of

global neutrino oscillation data performed in [54] are given

in Table 1. Similar results were obtained in Ref. [55].

In both analyses [54,55] the authors find, in particular, that

the best fit value of the Dirac CPV phases δ is close to 3π/2:
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Table 1 The best fit values, 2σ

and 3σ ranges of the neutrino

oscillation parameters obtained

in the global analysis of the

neutrino oscillation data

performed in [54]. (The Table is

taken from Ref. [35].)

Parameter Best fit value 2σ range 3σ range

sin2 θ12/10−1 2.97 2.65–3.34 2.50–3.54

sin2 θ13/10−2 (NO) 2.15 1.99–2.31 1.90–2.40

sin2 θ13/10−2 (IO) 2.16 1.98–2.33 1.90–2.42

sin2 θ23/10−1 (NO) 4.25 3.95–4.70 3.81–6.15

sin2 θ23/10−1 (IO) 5.89 3.99–4.83 ⊕ 5.33–6.21 3.84–6.36

δ/π (NO) 1.38 1.00–1.90 0–0.17 ⊕ 0.76–2

δ/π (IO) 1.31 0.92–1.88 0–0.15 ⊕ 0.69–2

	m2
21/10−5 eV2 7.37 7.07–7.73 6.93–7.96

	m2
31/10−3 eV2 (NO) 2.56 2.49–2.64 2.45–2.69

	m2
23/10−3 eV2 (IO) 2.54 2.47–2.62 2.42–2.66

in [54], for example, the authors find δ = 1.38π (1.31π) for

	m2
31(32)

> 0 (	m2
31(32)

< 0). The absolute χ2 minimum

takes place for 	m2
31(32)

> 0. According to Ref. [54], the

CP conserving values δ = 0 or 2π are disfavored at 2.4σ

(3.2σ ) for 	m2
31(32)

> 0 (	m2
31(32)

< 0); the CP conserving

value δ = π in the case of 	m2
31(32)

> 0 (	m2
31(32)

< 0) is

statistically approximately 2.0σ (2.5σ ) away from the best fit

value δ ∼= 1.38π (1.31π). In what concerns the CP violating

value δ = π/2, it is strongly disfavored at 3.4σ (3.9σ ) for

	m2
31(32)

> 0 (	m2
31(32)

< 0).3 At 3σ , δ/π is found to lie

in the case of 	m2
31(32)

> 0 (	m2
31(32)

< 0) in the following

intervals [54]: (0.00–0.17(0.15))⊕(0.76(0.69)–2.00)). The

results on δ obtained in [55] differ somewhat from, but are

compatible at 1σ confidence level (C.L.) with, those found

in [54].

It follows also from the results quoted in Table 1 that

	m2
21/|	m2

31(32)
| ∼= 0.03. We have |	m2

31| = |	m2
32 −

	m2
21| ∼= |	m2

32|. The angle θ12 is definitely smaller than

π/4: the value of θ12 = π/4, i.e., maximal solar neutrino

mixing, is ruled out at high confidence level (C.L.) by the data

- one has cos 2θ12 ≥ 0.29 at 99.73% C.L. The quoted results

imply also that the value of θ23 can deviate by approximately

± 0.1 from π/4, θ12
∼= π/5.4 and that θ13

∼= π/20. Thus, the

pattern of neutrino mixing differs drastically from the pattern

of quark mixing.

It should be noted that in the more recent global analyses

[57,58], which used, in particular, updated results on sin2 θ23

from the NOνA experiment, the best fit value of sin2 θ23 for

NO spectrum was found to be larger than 0.54:

3 The quoted confidence levels for δ = 0, π and π/2 are all with respect

to the absolute χ2 minimum.

4 In what concerns the other two neutrino mixing angles θ12 and θ13,

the results reported in [54,57,58] differ insignificantly.

sin2 θ23 = 0.538 (0.554) [57],
sin2 θ23 = 0.551 (0.557) [58], NO (IO). (4)

Apart from the hint that the Dirac phase δ ∼ 3π/2, no

other experimental information on the Dirac and Majorana

CPV phases in the neutrino mixing matrix is available at

present. Thus, the status of CP symmetry in the lepton sec-

tor is essentially unknown. With θ13
∼= 0.15 �= 0, the Dirac

phase δ can generate CP violating effects in neutrino oscilla-

tions [51,59,60], i.e, a difference between the probabilities

of the νl → νl ′ and ν̄l → ν̄l ′ oscillations, l �= l ′ = e, μ, τ .

The magnitude of CP violation in νl → νl ′ and ν̄l → ν̄l ′

oscillations in vacuum, l �= l ′ = e, μ, τ , is determined by

[61] the rephasing invariant JC P , associated with the Dirac

CPV phase in U :

JCP = Im
(

Uμ3 U∗
e3 Ue2 U∗

μ2

)

. (5)

It is analogous to the rephasing invariant associated with the

Dirac CPV phase in the CKM quark mixing matrix [62]. In

the standard parametrisation of the neutrino mixing matrix

(3), JCP has the form:

JCP ≡ Im (Uμ3 U∗
e3 Ue2 U∗

μ2)

= 1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ. (6)

Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have

been determined experimentally with a relatively good preci-

sion, the size of CP violation effects in neutrino oscillations

depends essentially only on the magnitude of the currently

not well determined value of the Dirac phase δ. The cur-

rent data imply 0.026(0.027)| sin δ| � |JCP| � 0.035| sin δ|,
where we have used the 3σ ranges of sin2 θ12, sin2 θ23 and

sin2 θ13 given in Table 1. For the current best fit values

of sin2 θ12, sin2 θ23, sin2 θ13 and δ we find in the case of

	m2
31(2)

> 0 (	m2
31(2)

< 0): JCP
∼= 0.032 sin δ ∼= − 0.030

(JCP
∼= 0.032 sin δ ∼= − 0.027). Thus, if the indication that δ

has a value close to 3π/2 is confirmed by future more precise
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data, (i) the JCP factor in the lepton sector would be approxi-

mately by 3 orders of magnitude larger in absolute value than

corresponding JCP factor in the quark sector, and (ii) the CP

violation effects in neutrino oscillations would be relatively

large and observable.

If the neutrinos with definite masses νi , i = 1, 2, 3, are

Majorana particles, the 3-neutrino mixing matrix contains

two additional Majorana CPV phases [51]. However, the

flavour neutrino oscillation probabilities P(νl → νl ′) and

P(ν̄l → ν̄l ′), l, l ′ = e, μ, τ , do not depend on the Majo-

rana phases[51,63]. The Majorana phases can play important

role, e.g, in |	L| = 2 processes like neutrinoless double beta

((ββ)0ν-) decay (A, Z) → (A, Z +2)+e−+e−, L being the

total lepton charge, in which the Majorana nature of massive

neutrinos νi manifests itself (see, e.g, Refs. [52,53,64]).

Our interest in the CPV phases present in the neutrino mix-

ing matrix is stimulated also by the intriguing possibility that

the Dirac phase and/or the Majorana phases in UPMNS can

provide the CP violation necessary for the generation of the

observed baryon asymmetry of the Universe (BAU) [65,66]

(for specific models in which this possibility is realised see,

e.g., [67–70]; for a recent review see [71]). More specifi-

cally, if, e.g., all CP violation necessary for the generation

of BAU is due to the Dirac phase δ, which is possible within

the “flavoured” leptogenesis scenario [72,73] of generation

of baryon asymmetry, a necessary condition for reproducing

the observed BAU in this scenario (with hierarchical heavy

Majorana neutrinos) is [65] | sin θ13 sin δ| ∼> 0.09. This con-

dition is comfortably compatible with the measured value of

sin θ13 and with the best fit value of δ ∼ 3π/2.

The sign of 	m2
31(32)

cannot be directly and unambigu-

ously determined from the existing data.5 In the case of 3-

neutrino mixing, the two possible signs of 	m2
31(32)

corre-

spond to two types of neutrino mass spectrum. In the conven-

tion of numbering of neutrinos ν j employed by us the two

spectra read:

(i) spectrum with normal ordering (NO): m1 < m2 <

m3, 	m2
31(32)

> 0, 	m2
21 > 0, m2(3) = (m2

1 +
	m2

21(31)
)

1
2 ;

(ii) spectrum with inverted ordering (IO): m3 < m1 <

m2, 	m2
32(31)

< 0, 	m2
21 > 0, m2 = (m2

3 + 	m2
23)

1
2 ,

m1 = (m2
3 + 	m2

23 − 	m2
21)

1
2 .

Depending on the values of the lightest neutrino mass,

min(m j ), the neutrino mass spectrum can also be:

5 In the recent analysis of the global neutrino oscillation data performed

in [58] it was found that the case of 	m2
31(32)

< 0 is disfavored at 3.1σ

with respect to the case of 	m2
31(32)

> 0.

(a) Normal Hierarchical (NH): m1 ≪ m2 < m3, m2
∼=

(	m2
21)

1
2 ∼= 8.6 × 10−3 eV, m3

∼= (	m2
31)

1
2 ∼= 0.0506

eV; or

(b) Inverted Hierarchical (IH): m3 ≪ m2 < m2, m1
∼=

(|	m2
32| − 	m2

21)
1
2 ∼= 0.0497 eV, m2

∼= (|	m2
32|)

1
2 ∼=

0.0504 eV; or

(c) Quasi-Degenerate (QD): m1
∼= m2

∼= m3
∼= m0,

m2
j ≫ |	m2

31(32)
|, m0 ∼> 0.10 eV.

All three types of spectrum are compatible with the con-

straints on the absolute scale of neutrino masses. Determining

the type of neutrino mass spectrum is one of the main goals

of the future experiments in the field of neutrino physics6

(see, e.g., Refs. [1,74,86–90]).

Data on the absolute neutrino mass scale (or on min(m j ))

can be obtained, e.g., from measurements of the spectrum of

electrons near the end point in 3H β-decay experiments [91–

94] and from cosmological and astrophysical observations.

The most stringent upper bound on the ν̄e mass was reported

by the Troitzk [95] experiment:

m ν̄e < 2.05 eV at 95% C.L.

Similar result was obtained in the Mainz experiment [93] :

m ν̄e < 2.3 eV at 95% CL. We have m ν̄e
∼= m1,2,3 in the

case of QD spectrum. The KATRIN experiment [96], which

was commissioned on June 11, 2018, is designed to reach

sensitivity of m ν̄e ∼ 0.20 eV, i.e., to probe the region of the

QD spectrum.

Constraints on the sum of the neutrino masses can be

obtained from cosmological and astrophysical data (see, e.g.,

Ref. [97]). Depending on the model complexity and the input

data used one typically obtains [97]:
∑

j m j ∼< (0.3–1.3)

eV, 95% C.L. Assuming the existence of three light massive

neutrinos and the validity of the  CDM (Cold Dark Mat-

ter) model, and using their data on the CMB temperature

power spectrum anisotropies, polarisation, on gravitational

lensing effects and the low l CMB polarization spectrum

data (the low P data), etc. the Planck Collaboration reported

an updated upper limit on the sum of the neutrino masses

[98,99], which, depending on the data-set used, varies in the

interval:
∑

j m j < (0.340–0.715) eV, 95% C.L. Adding

data on Baryon Acoustic Oscillations (BAO) lowers the limit

to [98,99]:

∑

j

m j < 0.170 eV, 95% C.L. (7)

In spite of the remarkable progress made in the last 19

years in establishing the existence of neutrino oscillations

6 For a brief discussion of experiments which can provide data on the

type of neutrino mass spectrum see, e.g., Ref. [74]; for some specific

proposals see, e.g., Refs. [75–85].
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caused by non-zero neutrino masses and neutrino mixing and

in measuring the 3-neutrino oscillation parameters, one has

to admit that we are still completely ignorant about the funda-

mental aspects of neutrino mixing. We do not know whether

the massive neutrinos are Dirac or Majorana particles, what is

the neutrino mass ordering, what is the status of the CP sym-

metry in the lepton sector and what is the absolute neutrino

mass scale (i.e., the lightest neutrino mass). Determining the

nature – Dirac or Majorana – of massive neutrinos, the type

of spectrum the neutrino masses obey, establishing the status

of the CP symmetry in the lepton sector and determining the

absolute neutrino mass scale are among the highest prior-

ity goals of the programme of future experimental research

in neutrino physics (see, e.g., [1,86–90,100–102]), which

extends beyond 2030. The principal goal of the theoretical

studies in this field is the understanding at a fundamental

level the mechanism giving rise to neutrino masses and mix-

ing and to Ll -non-conservation. Are the observed patterns of

ν-mixing and of 	m2
21,31 related to the existence of a new

fundamental symmetry of particle interactions? Is there any

relation between quark mixing and neutrino mixing? What

is the physical origin of CPV phases in the neutrino mix-

ing matrix U? Is there any relation (correlation) between the

(values of) CPV phases and mixing angles in U? Progress in

the theory of neutrino mixing might also lead, in particular,

to a better understanding of the mechanism of generation of

baryon asymmetry of the Universe.

3 Origins of the pattern of neutrino mixing: the discrete

symmetry approach

3.1 The general framework

The observed pattern of neutrino mixing in the reference 3-

neutrino mixing scheme we are going to consider in what

follows is characterised, as we have seen, by two large mix-

ing angles θ12 and θ23, and one small mixing angle θ13:

θ12
∼= 33◦, θ23

∼= 45◦ ± 6◦ and θ13
∼= 8.4◦. These val-

ues can naturally be explained by extending the Standard

Model (SM) with a flavour symmetry corresponding to a

non-Abelian discrete (finite) group G f . This symmetry is

supposed to exist at some high-energy scale and to be bro-

ken at lower energies to residual symmetries of the charged

lepton and neutrino sectors, described respectively by sub-

groups Ge and Gν of G f . Flavour symmetry groups G f

that have been used in this approach to neutrino mixing and

lepton flavour include A4 [103,104], S4 [105–107], T ′ [108–

112], A5 [113,114], Dn (with n = 10, 12) [115–117], 	(27)

[118,119], the series 	(6n2) [120–124], to name several7

7 Some of the groups T ′, A5, etc. can be and have been used also for

a unified description of the quark and lepton flavours, see, e.g., Refs.

[36,108–112,125–130] and references quoted therein.

(see, e.g., Ref. [10] for definitions of these groups and dis-

cussion of their properties.8) The numbers of elements, of

generators and of irreducible representations of the groups

S4, A4, T ′, A5, D10 and D12 are given in Table 2. In what con-

cerns the group S4, it is well known that S4 can be generated

by two transformations, S and T (see, e.g.,[10]). However,

in the context of non-Abelian discrete symmetry approach to

neutrino mixing it often proves convenient to use the three

generators S, T and U of S4, indicated in Table 2, and these

generators are widely used in the literature on the subject

(see, e.g., the review article [11]). We will use the two gen-

erator formalism for the group S4 in the analysis performed

in Sect. 4.2.

The choice of the non-Abelian discrete groups A4, S4, T ′,
A5, etc. is related, in particular, to the fact that they describe

symmetries with respect to rotations on fixed large mixing

angles and, correspondingly, lead to values of the neutrino

mixing angles θ12 and θ23, which can differ from the mea-

sured values at most by sub-leading perturbative corrections,

with θ13 typically (but not universally) predicted to be zero.

The requisite corrections can most naturally be provided by

the unitary matrix Ue which originates from the diagonali-

sation of the charged lepton mass term and enters into the

expression of the PMNS neutrino mixing matrix (see, e.g.,

[131–133] and references quoted therein):

UPMNS = U †
e Uν . (8)

where Uν is a unitary matrix coming from the diagonalisation

of the neutrino mass term. More specifically, Ue diagonalises

the product Me M
†
e , where Me is the charged lepton mass

matrix in the charged lepton mass term Lℓ(x) (written in the

left-right convention):

Lℓ(x) = − l̃L(x) (Me)l̃ l̃ ′ l̃ ′R(x) + h.c., (9)

U †
e Me M†

e Ue = diag(m2
e, m2

μ, m2
τ ), (10)

l̃L(x) and l̃ ′R(x), l̃, l̃ ′ = ẽ, μ̃, τ̃ , being respectively the SU (2)

doublet and singlet left-handed (LH) and right-handed (RH)

components of the charged lepton fields in the basis in which

the charged lepton mass term Lℓ(x) is not diagonal, while

me, mμ and mτ are the masses of the charged leptons.9 In

certain classes of models, however, Ue coincides with the unit

3 × 3 matrix and the requisite corrections are incorporated

in a factor contained in the matrix Uν (see, e.g., [11,134]).

8 A4 is the group of even permutations of 4 objects and the symmetry

group of the regular tetrahedron. S4 is the group of permutations of 4

objects and the symmetry group of the cube. T ′ is the double covering

group of A4. A5 is the icosahedron symmetry group of even permuta-

tions of five objects, etc. All these groups are subgroups of the group

SU (3).

9 The LH components of the fields of the electron, muon, and tauon,

lL (x), l = e, μ, τ , are related to the fields l̃L (x) via the matrix Ue:

lL (x) = (U
†
e )

ll̃
l̃L (x).
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Table 2 Number of elements,

generators and irreducible

representations of some discrete

groups

Group Number of elements Generators Irreducible representations

S4 24 S, T (U ) 1, 1′, 2, 3, 3′

A4 12 S, T 1, 1′, 1′′, 3

T ′ 24 S, T (R) 1, 1′, 1′′, 2, 2′, 2′′, 3

A5 60 S̃, T̃ 1, 3, 3′, 4, 5

D10 20 A, B 11, 12, 13, 14, 21, 22, 23, 24

D12 24 Ã, B̃ 11, 12, 13, 14, 21, 22, 23, 24, 25

We shall assume in what follows that the weak-eigenstate

neutrino fields (in the basis in which charged lepton mass

term is not diagonal), νẽ(x), νμ̃(x) and ντ̃ (x), possess a Majo-

rana mass term, L
ν
M (x), and thus the neutrinos with definite

mass ν1, ν2 and ν3, are Majorana particles. In this case Uν

diagonalises the neutrino Majorana mass matrix Mν :

L
ν
M (x) = 1

2
νT

l̃ ′L
(x) C−1 M

νl̃ ′ l̃ ν
l̃ L

(x) + h.c.,

C−1 γα C = − γ T
α , (11)

U T
ν Mν Uν = diag(m1, m2, m3), (12)

where C is the charge conjugation matrix (see, e.g., [52]).

It should be noted, however, that the approach to neutrino

mixing we are discussing can be employed also if ν1,2,3 are

Dirac fermions (see, e.g., [14]), e.g., when the theory contains

right-handed neutrino fields ν
l̃ R

(x) which form a Dirac mass

term with the LH neutrino fields ν
l̃ ′L(x) l̃, l̃ ′ = ẽ, μ̃, τ̃ , and10

the total lepton charge L = Le + Lμ + Lτ is conserved.

In the approach under discussion it is standardly assumed

that the LH neutrino fields, ν
l̃ L

(x), and the LH components of

the charged lepton fields (in the basis in which charged lepton

mass term is not diagonal) l̃L(x), which form an SU (2)L

doublet in the Standard Theory, are assigned to the same

r-dimensional irreducible unitary representation ρr (g f ) of

the Group G f , g f being an element of G f . Thus, under the

action of G f , ν
l̃ L

(x) and l̃L(x) transform as follows:

ν
l̃ L

(x)
G f−−→ (ρr (g f ))l̃ l̃ ′ νl̃ ′L(x), g f ∈ G f , (13)

l̃L(x)
G f−−→ (ρr (g f ))l̃ l̃ ′ l̃

′
L(x), l̃ = ẽ, μ̃, τ̃ . (14)

In the cases of G f = A4, S4, T ′ and A5, which possess 3-

dimensional irreducible representations, ρ(g f ) is standardly

taken to be a 3-dimensional irreducible unitary representation

3, ρr (g f ) = ρ3(g f ). This is equivalent to the assumption of

10 The neutrino Dirac mass term in question originates [135] from an

SU (2)L × U (1)Yw invariant Yukawa-type term in the Lagrangian after

the spontaneous breaking of the Standard Theory SU (2)L × U (1)Yw

symmetry.

unification of the three lepton families at some high energy

scale. We are going to consider this choice in what follows.11

At low energies the flavour symmetry G f has necessarily

to be broken so that the electron, muon and tauon as well

as the three neutrinos with definite mass ν1, ν2 and ν3, can

get different masses. The breaking of G f is realised in spe-

cific models by scalar “flavon” fields, which are singlets with

respect to the Standard Theory gauge group but transform

under certain irreducible representations of G f and acquire

non-zero vacuum expectation values (VEVs), thus breaking

G f spontaneously. The breaking of the flavour symmetry G f

can leave certain subgroups of G f , Ge and Gν , unbroken in

the charged lepton and neutrino sectors. The unbroken sym-

metries Ge ∈ G f and Gν ∈ G f are residual symmetries of

the charged lepton and neutrino mass matrices.

The existence of a residual symmetry Ge ∈ G f in the

charged lepton sector implies that Me M
†
e is invariant with

respect to the action of Ge on the LH components of the

charged lepton fields l̃L(x), l̃ = ẽ, μ̃, τ̃ :

ρr (ge)
† Me M†

e ρr (ge) = Me M†
e , (15)

where ge is an element of Ge and ρr (ge) gives the action of

Ge on l̃L(x).

Similarly, if Gν is the residual symmetry of the neutrino

Majorana mass matrix Mν one has:

ρr (gν)
T Mνρr (gν) = Mν, (16)

where gν is an element of Gν and ρr (gν) determines the

action of Gν on ν
l̃ L

(x), l̃ = ẽ, μ̃, τ̃ . From Eq. (16) we get:

ρr (gν)
† M†

ν Mν ρr (gν) = M†
ν Mν . (17)

It follows from Eqs. (15) and (17) that Me M
†
e com-

mutes with ρr (ge), while M†
ν Mν commutes with ρr (gν). This

implies that Me M
†
e and ρr (ge) are diagonalised with one and

11 In specific models the choice ρr (g f ) = ρ3(g f ) is usually accom-

panied by the assumption that ẽR(x), μ̃R(x) and τ̃R(x) transform as

singlet irreducible representations of G f (see, e.g., [11]).
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the same matrix Ue, and that similarly, M†
ν Mν and ρr (gν) are

diagonalised by the same matrix U ◦
ν :

U †
e ρr (ge) Ue = ρ

diag
r (ge), (18)

(U ◦
ν )† ρr (gν) U ◦

ν = ρ
diag
r (gν). (19)

Given G f , ρr (g f ), and non-trivial Ge, ρr (ge) is uniquely

determined. As a consequence, the matrix Ue diagonalis-

ing ρr (ge) (and Me M
†
e ), which enters into the expression

for the PMNS matrix U , is either completely determined or

significantly constrained.12 Similarly, for given G f , ρr (g f ),

and non-trivial Gν , the matrix U ◦
ν disgonalising ρr (gν) (and

M†
ν Mν) will either be completely determined or strongly

constrained. One can show that the matrix Uν diagonalising

the neutrino Majorana mass matrix Mν and the matrix U ◦
ν

diagonalising M†
ν Mν are related, in general, in the follow-

ing way:

Uν = U ◦
ν P◦, P◦ = diag(1, ei

ξ21
2 , ei

ξ31
2 ). (20)

The phases ξ21 and ξ31 contribute respectively to the Majo-

rana phases α21 and α31 of the PMNS matrix (see Eq. (2)).

Thus, within the discussed approach the PMNS neutrino

mixing matrix U = U
†
e Uν is either completely determined

or else has a constrained form. The form of U one obtains

depends on the choices of G f , ρr (g f ), Ge and Gν .

It should be clear from the preceding discussion that the

residual symmetries Ge and Gν , in particular, play a crucial

role in obtaining a specific form of the PMNS matrix. If,

in particular, Ge ≡ Gν , we would have Ue = U ◦
ν and the

PMNS matrix will be trivial, which is ruled out by the data.

The largest possible exact symmetry of the charged lepton

Dirac mass term Lℓ(x) (mass matrix Me) is U (1) × U (1) ×
U (1). The largest possible exact symmetry of the neutrino

Majorana mass term L
ν
M (x), with mass matrix Mν having

three non-zero non-degenerate eigenvalues, is Z2 × Z2 × Z2.

Making the standardly used simplifying assumption that G f

is a subgroup of SU (3), the largest possible symmetries of

Lℓ(x) and L
ν
M (x) reduce to U (1)×U (1) and Z2 × Z2 owing

to the SU (3) determinant condition. The residual symmetry

group Ge should be a subgroup of U (1) × U (1), while Gν

should be contained in Z2 × Z2 (U (1) × U (1)) in the case

of massive Majorana (Dirac) neutrinos. Thus, Ge and Gν

should be Abelian groups.

It follows from the preceding discussion that the possible

discrete symmetries Ge of the charged lepton mass term leav-

ing Me M
†
e invariant are: (i) Ge = Zn , with integer n ≥ 2,

or (ii) Zm × Zk , with integers m, k ≥ 2. The maximal sym-

metry Gν of the Majorana mass term of the LH flavour neu-

trino fields ν
l̃ L

(x) is the Z2 × Z2 (sometimes referred to as

12 Obviously, if Ge is trivial consisting just of the unit element of G f ,

i.e., if G f is completely broken in the charged lepton sector, Ue would

not be constrained.

the Klein four group) symmetry. Gν can obviously be just

Z2. These two possible types of Gν are associated with two

approaches in constructing realistic models of lepton flavour:

the direct approach with Gν = Z2 × Z2 and the semi-direct

approach with Gν = Z2. Since the neutrino Majorana mass

term (mass matrix Mν) possesses always a Z2 × Z2 sym-

metry, the second Z2 factor appears accidentally in mod-

els employing the semi-direct approach. The symmetry G f

might be completely broken by the neutrino Majorana mass

term L
ν
M (x), i.e., the Z2 × Z2 group of symmetry of L

ν
M (x)

might not necessarily be a subgroup of G f . This corresponds

to the so-called indirect approach in lepton flavour model

building.

The group A4, for example, has three subgroups Z2, four

subgroups Z3 and one subgroup Z2 × Z2, while S4 has nine

Z2, four Z3, three Z4 and four Z2 × Z2 subgroups. The

bigger groups T ′, A5, etc. all have a certain number of Z2,

Z3, Z2 × Z2, etc. subgroups.13

As we have indicated in the Sect. 1, one of the main

characteristics of the discussed approach to neutrino mixing

based on discrete flavour symmetries is that it leads to cer-

tain specific predictions for the values of, and/or correlations

between, the low-energy neutrino mixing parameters, which

can be tested experimentally. These predictions depend on

the chosen G f , ρ(g f ), Ge and Gν . We give a few examples

[11–14,22,25,30,33,37,136].

I. In a large class of models one gets sin2 θ23 = 0.5.

II. In different class of models one finds that the values of

sin2 θ23 and sin2 θ13 are correlated: sin2 θ23 = 0.5(1 ∓
sin2 θ13 + O(sin4 θ13)).

III. In certain models sin2 θ23 is predicted to have specific

values which differ significantly from those in cases

I and II [13]: sin2 θ23 = 0.455; or 0.463; or 0.537;

or 0.545, the uncertainties in these predictions being

insignificant.

IV. Certain class of models predict a correlation between

the values of sin2 θ12 and sin2 θ13: sin2 θ12 =
1/(3 cos2 θ13) = (1 + sin2 θ13 + O(sin4 θ13))/3 ∼=
0.340, where we have used the b.f.v. of sin2 θ13.

V. In another class of models one still finds a correla-

tion between the values of sin2 θ12 and sin2 θ13, which,

however, differs from that in Case IV: sin2 θ12 =
(1 − 3 sin2 θ13)/(3 cos2 θ13) = (1 − 2 sin2 θ13 +
O(sin4 θ13))/3 ∼= 0.319, where we have used again

the b.f.v. of sin2 θ13.

VI. In large classes of models in which the elements of the

PMNS matrix are predicted to be functions of just one

real continuous free parameter (“one-parameter mod-

13 For complete list of the subgroups of the groups T ′, A5, 	(6n2)

and of the larger groups employed in the discrete flavour symmetry

approach to neutrino mixing see, e.g., Ref. [10].
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els”), the Dirac and the Majorana CPV phases have

“trivial” CP conserving values 0 or π . In certain one-

parameter schemes, however, the Dirac phase δ = π/2

or 3π/2.

VII. In theories/models in which the elements of the PMNS

matrix are functions of two (angle) or three (two angle

and one phase) parameters, the Dirac phase δ satisfies

a sum rule by which cos δ is expressed in terms of the

three neutrino mixing angles θ12, θ23, θ13 and one (or

more) fixed (known) parameters θν which depend on

the discrete symmetry G f employed and on the residual

symmetries Ge and Gν [12–14]:

cos δ = cos δ(θ12, θ23, θ13; θν). (21)

In these cases the JC P factor which determines the mag-

nitude of CP violation effects in neutrino oscillations,

is also completely determined by the values of the three

neutrino mixing angles and the symmetry parameter(s)

θν :

JC P = JC P (θ12, θ23, θ13, δ) = JC P (θ12, θ23, θ13; θν).

(22)

If in the model considered a correlation of the type corre-

sponding to Case II (case IV or case V) takes place, θ23 (θ12)

in the sum rule for cos δ and the expression for the JC P factor

has to be expressed in terms of θ13 using the correlation.

The predictions listed above, and therefore the respective

models, can be and will be tested in the currently running

(T2K [100] and NOνA [137]) and planned future (JUNO

[86], T2HK [101], T2HKK [102] and DUNE [89]) experi-

ments.

As an illustration of the preceding discussion we will con-

sider first the example of the tri-bimaximal mixing as an

underlying symmetry form of the matrix Uν (U ◦
ν ).

3.2 Symmetry forms of Uν : tri-bimaximal mixing

Consider the case of G f = S4, i.e., the group of permuta-

tions of four objects. S4 is isomorphic to the group of rota-

tional symmetries of the cube. It has 24 elements, two singlet,

one doublet and two triplet irreducible representations. As

was indicated earlier, we will assume that ρr (g f ) = ρ3(g f ),

i.e., that ν
l̃ L

(x) and l̃L(x) transform under one of the two

3-dimensional irreducible unitary representations of S4. In

what follows, with the exception of Sect. 4.2, we will work

with the three generators of the group S4, S, T and U . These

generators satisfy the following presentation rules (see, e.g.,

[10]):

S2 = T 3 = (ST )3 = U 2 = (T U )2 = (SU )2 = (ST U )4 = 1, (23)

1 being the unit (identity) element of S4, i.e., it is the 3 × 3

unit matrix in the case of the triplet representations of S,

T and U . In what follows we will use the basis [138] in

which S, T and U have the following form in the two triplet

representations14:

S = 1

3

⎛

⎝

−1 2 2

2 −1 2

2 2 −1

⎞

⎠ , T =

⎛

⎝

1 0 0

0 ω2 0

0 0 ω

⎞

⎠ and

U = ∓

⎛

⎝

1 0 0

0 0 1

0 1 0

⎞

⎠ , (24)

where ω = e2π i/3. For simplicity we use the same nota-

tion (S, T and U ) for the generators and their 3-dimensional

representation matrices.

Assume next that [139] (see also, e.g., [11,14])

Ge = Z T
3 = {1, T, T 2}, Gν = Z S

2 × ZU
2 = {1, S, U, SU },

(25)

where Z T
3 and Z S

2 × ZU
2 are two specific Z3 and Z2 × Z2 sub-

groups of S4.15 In this case we have, in particular: ρ3(ge) =
1, T, T 2, T being the diagonal matrix given in Eq. (24). As

a consequence, Ue, which diagonalises ρ3(ge) = T , is just

a diagonal phase matrix, whose phases are unphysical (they

can be absorbed by the charged lepton fields in the weak

charged lepton current of the weak interaction Lagrangian),

while Me is a diagonal matrix with the masses of the electron,

muon and tauon as diagonal elements.

It follows from Eq. (23) that ρ3(gν) = S and ρ3(g
′
ν) = U

commute. In the triplet representation of the generators of

S4 employed by us, Eq. (24), S and U are real symmetric

matrices. Thus, they are diagonalised by a real orthogonal

matrix. The matrix which diagonalises both ρ3(gν) = S and

ρ3(g
′
ν) = U , with S and U given in Eq. (24), is the orthogonal

tri-bimaximal (TBM) mixing matrix [140–142]:

U ◦
ν = VTBM =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

2

3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (26)

14 As can be shown, the results one obtains for the form of the PMNS

matrix are independent of the chosen basis for the generators of the

discrete symmetry group G f .

15 S and U are order two elements of S4 (since S2 = U 2 = 1) and they

commute. Correspondingly, Z S
2 × ZU

2 = {1, S, U, SU } is a subgroup

of S4. Similarly, T is order 3 element of S4 and Z T
3 = {1, T, T 2} is a

subgroup of S4.
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Indeed, it is not difficult to check that

V
†
TBM S VTBM = diag(−1, 1,−1), (27)

V
†
TBM U VTBM = ± diag(1, 1,−1). (28)

Thus, in the discussed case of S4 symmetry and residual

symmetries Ge = Z T
3 and Gν = Z S

2 × ZU
2 , the PMNS

matrix has the TBM form [139], U = U ◦
ν P◦ = VTBM P◦.

We can cast VTBM in the form:

VTBM = R23

(

θν
23

)

R13

(

θν
13

)

R12

(

θν
12

)

, θν
23 = −π/4,

θν
13 = 0, θν

12 = sin−1 1√
3
, (29)

where R23(θ
ν
23), R13(θ

ν
13) and R12(θ

ν
12) are 3 × 3 orthogonal

matrices describing rotations in the 2–3, 1–3 and 1–2 planes,

respectively. We see that in the case of the TBM symmetry

form we have sin2 θν
12 = 1/3, sin2 θν

23 = 1/2 and sin2 θν
13 =

0. Without additional corrections leading to θ13
∼= 0.15 �= 0,

the TBM symmetry from of the PMNS matrix is ruled out

by the data.

We will consider next two cases of realistic models based

on the flavour symmetries G f = A4 and G f = S4, in

which the corrections to the underlying symmetry form of

the PMNS matrix are obtained by “decreasing” the residual

symmetry Gν from Z2 × Z2 symmetry to Z2,

3.3 Neutrino mixing from A4 symmetry

The group A4 has two generators S and T , which satisfy the

presentation rules given in Eq. (23). In the triplet represen-

tation of interest and in the Altarelli-Feruglio basis [143], S

and T have the form given in Eq. (24).

Assume next that (see, e.g., [11,14])

Ge = Z T
3 = {1, T, T 2}, Gν = Z S

2 = {1, S}, (30)

where Z T
3 and Z S

2 are two specific Z3 and Z2 subgroups of

A4. In this case we have, in particular: ρ(ge) = 1, T, T 2,

T being the diagonal matrix given in Eq. (24). As a conse-

quence, Ue, which diagonalises ρ(ge) = T , as in the case

discussed in the preceding subsection, is just a diagonal phase

matrix, whose phases are unphysical, while Me is a diagonal

matrix with the masses of the electron, muon and tauon as

diagonal elements.

The most general matrix which diagonalises ρ(gν) = S,

with S given in Eq. (24) has the form:

U ◦
ν = VTBM U13(θ

ν
13, α), (31)

where VTBM is the tri-bimaximal (TBM) mixing matrix given

in Eq. (26), and

U13(θ
ν
13, α) =

⎛

⎝

cos θν
13 0 sin θν

13 eiα

0 1 0

− sin θν
13 e−iα 0 cos θν

13

⎞

⎠ . (32)

The angle θν
13 and the phase α in U13(θ

ν
13, α) are arbitrary

free parameters. Indeed, it is not difficult to convince oneself

that

S = U◦
ν diag(−1, 1,−1) (U◦

ν )† = VTBM diag(−1, 1,−1) V T
TBM.

(33)

Thus, the matrix U13(θ
ν
13, α) appears in the matrix U ◦

ν diag-

onalising S as a consequence of the degeneracy of the first

and third eigenvalues of S.

We see that in the A4 model considered, the underlying

symmetry form of the PMNS matrix is the tri-bimaximal

mixing, VTBM. The matrix U13(θ
ν
13, α) provides the neces-

sary corrections to VTBM that lead, in particular, to θ13 �= 0.

Thus, the model considered contains two free parameters –

the angle θν
13 and the phase α.

Taking into account the results for the forms of Ue and

U ◦
ν we have obtained and Eq. (20), we get the following

expression for the PMNS matrix:

UPMNS = U ◦
ν P◦ = VTBM U13(θ

ν
13, α) P◦

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

2

3
c

1√
3

√

2

3
s eiα

− c√
6

+ s√
2

e−iα
1√
3

− c√
2

− s√
6

eiα

− c√
6

− s√
2

e−iα 1√
3

c√
2

− s√
6

eiα

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

P◦ ,

(34)

where c ≡ cos θν
13 and s ≡ sin θν

13.

We will consider next the phenomenological predictions

of the discussed A4 model of neutrino mixing. Comparing,

for example, the absolute values of the elements of the first

rows of the PMNS matrix in Eq. (34) and in the standard

parametrisation, Eqs. (2) and (3), we get:

sin2 θ13 = 2

3
s2, sin2 θ12 cos2 θ13 = 1

3
. (35)

Comparing the Uμ3 elements and using the first relation in

the preceding equation we find:

sin2 θ23 = 1

c2
13

| c√
2

+ s√
6

eiα |2 = 1

2
+ s13

2

(2 − 3 s2
13)

1
2

(1 − s2
13)

cos α.

(36)
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To leading order in s13 we have:

1

2
− s13√

2
∼< sin2 θ23 ∼<

1

2
+ s13√

2
, or 0.391 ∼< sin2 θ23 ∼< 0.609,

(37)

where the numerical values correspond to the maximal

allowed value of sin2 θ13 at 3σ C.L. The interval of pos-

sible values of sin2 θ23 in Eq. (37) lies within the 3σ ranges

of experimentally allowed values of sin2 θ23 for NO and IO

spectra, quoted in Table 1.

Further, using the constraint |Uμ2|2 = 1/3 (or |Uτ2|2 =
1/3) following from the form of UPMNS in Eq. (34), we obtain

the following sum rule for the Dirac phase δ:

cos δ = cos 2θ23 cos 2θ13

sin 2θ23 sin θ13 (2 − 3 sin2 θ13)
1
2

, (38)

where we have expressed cos θ12 sin θ12 in terms of sin θ13

using Eq. (35).

It follows from the preceding brief discussion that θ13 and

θ23 of the standard parametrisation of the PMNS matrix are

equivalent to the two independent parameters θν
13 and α of

the considered A4 model, while the angle θ12 and the Dirac

phase δ can be considered as functions of θ13 and θ23.16

The phase α and the Dirac phase δ are related via

sin 2θ23 sin δ = sin α. (39)

This relation follows from the equality between the expres-

sions of the rephasing invariant JCP, Eq. (6), in the standard

parametrisation of the PMNS matrix and in the parametrisa-

tion defined in Eq. (34).

As it is not difficult to show, the phase α contributes also

to the Majorana phase α31 of the PMNS matrix, Eqs. (2) and

(3):

α31

2
= ξ31

2
+ α2 + α3, (40)

where

α2 = arg

(

− c√
2

− s√
6

eiα

)

, α3 = arg

(

c√
2

− s√
6

eiα

)

,

(41)

sin α2 = − s√
6

sin α

s23 c13
= − tan θ13 cos θ23 sin δ, (42)

sin α3 = − s√
6

sin α

c23 c13
= − tan θ13 sin θ23 sin δ, (43)

16 Actually, any pair of the four parameters θ12, θ23, θ13 and δ can play

the role of the two independent parameters of the model.

where we have used Eq. (39). In Eqs. (42) and (43), sin δ can

be considered as a function of θ23 and θ13 (see Eq. (38)). We

also have:

sin(α − α2 − α3) = − sin δ. (44)

That the phasesα2 andα3 contribute to the Majorana phase

α31 can be seen by casting the parametrisation of UPMNS in

Eq. (34) in the standard parametrisation form, Eqs. (2) and

(3). This can be done by multiplying the matrix in Eq. (34)

on the right by P∗
33 P33 with P33 = diag(1, 1, ei(α2+α3)), and

absorbing P33 in P◦. The phases e−iα3 and e−iα2 , which

after that appear respectively in the Uμ3 and Uτ3 elements

of UPMNS in Eq. (34), are removed from these elements by

phase redefinition of theμ∓ and τ∓ fields in the weak charged

lepton current (1). As a consequence of these simple manipu-

lations the phase factor eiα3 (eiα2 ) appears in the Uμ1 and Uμ2

(Uτ1 and Uτ2) elements of UPMNS, while the phase factor eiα

of the Ue3 element (see Eq. (34)) changes to ei(α−α2−α3). The

phases in P33 P◦ contribute to the Majorana phases α21/2 and

α31/2.

The phenomenology of neutrino mixing described by the

PMNS matrix given in (34), apart from the relation (39) and

the contribution of the phase α to the Majorana phase α31,

Eqs. (40)–(43), as well as of the relation (44), was discussed

in [144]. The prediction for sin2 θ12 in Eq. (35) and the sum

rule for the Dirac phases δ, Eq. (38), can also be obtained

from the general results on neutrino mixing in the case of A4

lepton flavour symmetry derived in [14].

Thus, the A4 model considered predicts17 (i) a correla-

tion between the values of sin2 θ12 and sin2 θ13: sin2 θ12 =
1/(3(1 − sin2 θ13)), (ii) an interval of possible values of

sin2 θ23, which depends on sin θ13, and (ii) a sum rule for

the Dirac CPV phase δ by which cos δ is expressed in terms

of the two measured neutrino mixing angles θ13 and θ23. In

this model the Majorana phases α21 and α31 remain undeter-

mined due to the contribution respectively of the phases ξ21

and ξ31, which are not fixed.

The correlation between sin2 θ12 and sin2 θ13 leads to the

prediction sin2 θ12 = 0.340, where we have employed the

best fit value of sin2 θ13 in Table 1. This value lies outside

the 2σ , but is inside the 3σ , currently allowed intervals of

values of sin2 θ12. Using the best fit values of sin2 θ23 and

sin2 θ13 for the NO and IO neutrino mass spectrum, given in

Table 1, and the sum rule for cos δ, Eq. (38), we find:

cos δ = 0.728 (− 0.865),

δ = ± 43.32◦ (180◦ ± 30.07◦), NO (IO). (45)

17 The result for sin2 θ12 and the sum rule for cos δ can be obtained

respectively from Eq. (58) in subsection 4.1 and Table 3 (Case B1) in

[14] by setting sin2 θ◦
12 = 1/3 and sin2 θ◦

23 = 1/2.
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If instead we use the best fit values for NO (IO) spectrum of

sin2 θ23 = 0.538 (0.554) and sin2 θ13 = 0.02206 (0.02227)

reported in [57] we get:

cos δ = − 0.353 (−500),

δ = 180◦ ± 69.4◦ (180◦ ± 60.0◦), NO (IO). (46)

Thus, as a consequence primarily of the fact that cos δ ∝
cos 2θ23, the predictions for cos δ, and correspondingly of

δ, depend strongly on the values of sin2 θ23 and can differ

significantly for the two neutrino mass orderings. The values

of δ = 43.32◦, 110.6◦ and 120◦ are strongly disfavored (if

not ruled out) by the current data. It should be added that the

difference between the predictions of cos δ (δ) for NO and IO

neutrino mass spectra are due to the difference between the

best fit values of sin2 θ23 for the two spectra (see Table 1 and

Eq. (4)). For sin2 θ23 = 0.5 we have for both spectra cos δ =
0, or δ = π/2, 3π/2, with δ = π/2 strongly disfavored by

the current data.

It follows from the preceding results that the high precision

measurement of sin2 θ12 combined with the data on sin2 θ13

will allow to critically test the predicted correlation between

sin2 θ12 and sin2 θ13 of the considered A4 model. The high

precision measurement of sin2 θ23, the data on sin2 θ13 and a

sufficiently precise determination of δ will make it possible

to test the sum rule predictions for δ of the model. With the

indicated tests the A4 model of neutrino mixing discussed in

the present subsection will be either verified or ruled out.

3.4 Neutrino mixing from S4 symmetry

We will consider next a second rather simple example of

generation of neutrino mixing based on the S4 symmetry.

We recall that the three S4 generators S, T and U satisfy the

presentation rules given in Eq. (23). In the triplet representa-

tion of interest and in the basis employed by us S, T and U

are given in Eq. (24).

In this case let us assume that (see, e.g., [14])

Ge = Z T
3 = {1, T, T 2}, Gν = Z SU

2 = {1, SU }, (47)

where Z T
3 , as we have discussed, is a Z3 subgroup also of

S4 and Z SU
2 is one of the Z2 subgroups of S4. As in the case

of A4 symmetry considered in the preceding subsection, Ue,

which diagonalises ρ(ge) = T , is effectively a unit 3 × 3

matrix and Me is a diagonal matrix containing the masses of

the charged leptons.

The matrix U ◦
ν , which diagonalises the element ρ(gν) =

SU of Z SU
2 (and M†

ν Mν), with S and U given in Eq. (24),

has the following general form:

U ◦
ν = VTBM U23(θ

ν
23, β), (48)

where VTBM is the TBM mixing matrix and

U23(θ
ν
23, β) =

⎛

⎝

1 0 0

0 cos θν
23 sin θν

23 eiβ

0 − sin θν
23 e−iβ cos θν

23

⎞

⎠ ,

(49)

the angle θν
23 and the phase β being arbitrary free parame-

ters. The form of U ◦
ν follows from the fact that the element

ρ(gν) = SU , as is easy to verify, is diagonalised by VTBM.

However, in the resulting diagonal matrix the 2nd and the

3rd eigenvalues are degenerate and thus it is invariant with

respect to a unitary transformation with U23(θ
ν
23, β):

SU = ± VTBM diag(−1, 1, 1) V T
TBM = ± VTBM U23(θ

ν
23, β)

diag(−1, 1, 1) (VTBM U23(θ
ν
23, β))†. (50)

We see that also in the model with S4 symmetry under dis-

cussion, the underlying symmetry form of the PMNS matrix

is again the TBM one, VTBM. The matrix U23(θ
ν
23, β) pro-

vides the necessary corrections to VTBM leading, e.g., to

θ13 �= 0.

Similarly to the model based on the A4 symmetry dis-

cussed in the previous subsection, the S4 model we are dis-

cussing contains two free parameters - the angle θν
23 and

the phase β. However, as we show below, the testable phe-

nomenological predictions of the model with S4 symmetry

differ significantly from the analogous predictions of the A4

model.

From Eqs. (26), (49) and (20) we get for the PMNS matrix:

UPMNS = U ◦
ν P◦ = VTBM U23(θ

ν
23, β) P◦

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√

2

3

cν
23√
3

sν
23√
3

eiβ

− 1√
6

cν
23√
3

+ sν
23√
2

e−iβ − cν
23√
2

+ sν
23√
3

eiβ

− 1√
6

cν
23√
3

− sν
23√
2

e−iβ
cν

23√
2

+ sν
23√
3

eiβ

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

P◦ ,

(51)

where cν
23 ≡ cos θν

23 and sν
23 ≡ sin θν

23.

Proceeding as in Sect. 3.3 we find:

sin2 θ13 = 1

3
sin2 θν

23, sin2 θ12 = 1

3
cos2 θν

23 = 1 − 3 sin2 θ13

3(1 − sin2 θ13)
.

(52)

The neutrino mixing parameter sin2 θ23 is determined by θν
23

(or θ13) and β and its value is not predicted:

sin2 θ23 = 1

c2
13

| − cν
23√
2

+ sν
23√
3

eiβ |2

= 1

2
−

√
2 s13

(1 − 3 s2
13)

1
2

(1 − s2
13)

cos β. (53)
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To leading order in s13 we have:

1

2
−

√
2 s13 ∼< sin2 θ23 ∼<

1

2
+

√
2 s13, or

0.293 ∼< sin2 θ23 ∼< 0.707, (54)

where the numerical values are obtained for the maximal

value of sin2 θ13 allowed at 3σ C.L. The interval of values

of sin2 θ23 in Eq. (54) is larger than the 3σ experimentally

allowed NO and IO intervals of values of sin2 θ23 (see Table

1).

The Dirac phase δ satisfies the following sum rule:

cos δ =

1

6
− c2

23 + 2

3c2
13

(c2
23 − s2

23 s2
13)

2c23 s23 s13 c12s12

= (− 1 + 5s2
13) cos 2θ23

2
√

2 sin 2θ23 s13 (1 − 3s2
13)

1
2

, (55)

where we expressed c12s12 in terms of θ13 using Eq. (52),

c12 s12 =
√

2

3c2
13

(1 − 3s2
13)

1
2 . (56)

We also have:

sin 2θ23 sin δ = sin β. (57)

Similarly to the phases α of the A4 model considered in

the preceding subsection, the phase β of the discussed S4

model contributes to the Majorana phase α31 in the standard

parametrisation of the PMNS matrix (see Eqs. (2) and (3)):

α31

2
= ξ31

2
+ β2 + β3, (58)

where

β2 = arg

(

− cν
23√
2

+ sν
23√
3

eiβ

)

, β3 = arg

(

cν
23√
2

+ sν
23√
3

eiβ

)

,

(59)

sin β2 = sν
23√
3

sin β

s23 c13
= tan θ13 cos θ23 sin δ, (60)

sin β3 = sν
23√
3

sin β

c23 c13
= tan θ13 sin θ23 sin δ, (61)

where we have used Eqs. (51) and (57) and sin δ in Eqs. (60)

and (61) can be considered as a function of θ23 and θ13 (via

Eq. (55)). We also have:

sin(β − β2 − β3) = − sin δ. (62)

The model with UPMNS = VTBM U23(θ
ν
23, β) was dis-

cussed on general phenomenological grounds in [145], where

the predictions given in Eqs. (52) and (55) were obtained

and the dependence of δ on sin2 θ23 for a set of different val-

ues of θ13 was studied graphically. The correlation between

sin2 θ21 and sin2 θ13 and the sum rule for cos δ can also can

be obtained from the general results for the group S4 derived

in [14].18

Thus, as in the A4 model, θ13 and θ23, or any pair of

the four parameters θ12, θ23 θ13 and δ, can be considered

as the two independent parameters of the S4 model. The

model predicts a correlation between the values of sin2 θ12

and sin2 θ13, which for the best fit value of sin2 θ13 implies

sin2 θ12 = 0.319. This prediction lies in the current 1σ

allowed interval of values of sin2 θ12. Using Eqs. (55), (56)

and the best fit values of sin2 θ23 and sin2 θ13 from Table 1,

we also get the following predictions for cos δ in the cases of

NO and IO neutrino mass spectra:

cos δ = − 0.338 (0.402),

δ = ± 109.73◦ (± 66.27◦), NO (IO). (63)

Using instead the best fit values of sin2 θ23 and sin2 θ13 for

NO (IO) spectrum from [57] we find rather different results

due essentially to the difference in the best fit values of

sin2 θ23:

cos δ = 0.167 (0.237),

δ = ± 80.38◦ (± 76.30◦), NO (IO). (64)

The values δ = 109.73◦, 66.27◦, 80.38◦ and 76.30◦ are

strongly disfavored by the current data. As in the A4 model,

the difference between the predictions of cos δ (δ) for NO and

IO neutrino mass spectra are a consequence of the difference

between the best fit values of sin2 θ23 for the two spectra (see

Table 1 and Eq. (4)). For sin2 θ23 = 0.5 we have for both

spectra cos δ = 0, or δ = π/2, 3π/2, also in the S4 model,

with δ = π/2 strongly disfavored by the current data.

As we have seen, the A4 and S4 models considered lead to

largely different predictions for sin2 θ12 and, if θ23 �= π/4,

for cos δ (δ) as well. These predictions can be used to dis-

criminate experimentally between the two models. In both

A4 and S4 models we have discussed the Majorana phases

are not predicted.

3.5 Comment on the symmetry breaking

The discrete symmetry approach to neutrino mixing we

have discussed so far allows to explain quantitatively the

observed pattern of neutrino mixing. A complete self-

consistent (renormalisable) theory based on this approach

18 In [14] a different basis for the S4 generators S, T and U has been

employed. The results of interest for, e.g., sin2 θ12 in Eqs. (52) and

the sum rule for cos δ, Eq. (55), follow respectively from Eq. (66) in

subsection 4.2 and Table 3 (Case B2) in [14] by setting sin2 θ◦
12 = 1/6

and sin2 θ◦
13 = 1/5.
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should include also a mechanism of neutrino mass genera-

tion as well as details of breaking of the flavour symmetry

G f to the residual symmetries Ge and Gν in the charged lep-

ton and neutrino sectors. As a rule, the non-Abelian flavour

symmetry G f is broken spontaneously by a set of scalar

fields, flavons, which are singlets with respect to the Stan-

dard Theory SU (2)L × U (1)YW gauge symmetry but trans-

form according certain irreducible representations of G f ,

couple in a G f -invariant manner to the LH lepton dou-

blet fields and RH charged lepton SU (2)L singlet fields via

Yukawa-type (typically non-renormalisable effective) inter-

actions. These Yukawa-type effective interactions appear in

the low-energy limit of a theory which is renormalisable

at some high energy scale  where the symmetry G f is

exact (see, e.g., [9,43,44,136,146]). The flavons develop

non-zero vacuum expectation values in specific directions

(“vacuum alignment”). In the case of the A4 model consid-

ered in Sect. 3.3, for example, the A4 symmetry breaking

leading to Ge = Z T
3 and Gν = Z S

2 and generating Majorana

mass term for the LH flavour neutrino fields can be achieved

(i) by assigning ẽR(x), μ̃R(x) and τ̃R(x) to the three differ-

ent singlet representations of A4 1, 1′′ and 1′ (see Table 2),

respectively, (ii) by introducing two A4 triplet and two A4

singlet flavon scalar fields, which develop vacuum expecta-

tion values in specific directions, and (iii) by using the rules

of tensor products of irreducible representations for A4 (for

further details see, e.g., [9–11]).

Discussing the flavon sectors of the models considered is

beyond the scope of the present article. Examples of com-

plete self-consistent (renormalisable) models, in which the

breaking of the flavour symmetry G f to desired residual

symmetries Ge and Gν with the help of sets of flavon fields

developing non-zero vacuum expectation values in requisite

directions and, thus, generating Ge− invariant charged lepton

mass term and Gν− invariant neutrino Majorana mass term,

include, e.g., the models in Refs. [24,25,130,146–149]; for

a review see, e.g., Ref. [43].

3.6 Alternative symmetry forms of Uν : bimaximal, golden

ratio and hexagonal mixing

Thus, TBM can only be an underlying approximate sym-

metry form of the PMNS neutrino mixing matrix. Other

widely discussed underlying (approximate) symmetry forms

of the PMNS matrix include: (i) bimaximal (BM) mix-

ing19 [151,152], (ii) the golden ratio type A (GRA) mixing

[113,153,154], (iii) the golden ratio type B (GRB) mixing

[115,155], and iv) hexagonal (HG) mixing [116,117]. For all

these forms, including the TBM one, the matrix U ◦
ν has the

19 Bimaximal mixing can also be a consequence of the conservation of

the lepton charge L ′ = Le − Lμ − Lτ (LC) [150], supplemented by

μ − τ symmetry.

form: U ◦
ν = R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12) with θν

23 = −π/4

and θν
13 = 0:

U ◦
ν = R23

(

θν
23 = −π/4

)

R12

(

θν
12

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos θν
12 sin θν

12 0

− sin θν
12√

2

cos θν
12√

2
− 1√

2

− sin θν
12√

2

cos θν
12√

2

1√
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (65)

The value of the angle θν
12, and thus of sin2 θν

12, depends on

the symmetry form of U ◦
ν . For the TBM, BM, GRA, GRB and

HG forms we have: (i) sin2 θν
12 = 1/3 (TBM), (ii) sin2 θν

12 =
1/2 (BM), (iii) sin2 θν

12 = (2+r̃)−1 ∼= 0.276 (GRA), r̃ being

the golden ratio, r̃ = (1+
√

5)/2, iv) sin2 θν
12 = (3− r̃)/4 ∼=

0.345 (GRB), and v) sin2 θν
12 = 1/4 (HG).

As we have seen in Sects. 3.2 and 3.4, the TBM form of

U ◦
ν can originate from G f = S4 symmetry [105–107] (with

residual symmetry Gν = Z S
2 × ZU

2 ). It can be obtained also

from a G f = A4 symmetry [103] (with Gν = Z S
2 and the

presence of accidental μ − τ (i.e., Z2) symmetry, see, e.g.,

[146])).20

The group G f = S4 can also be used to generate the BM

from of U ◦
ν (e.g., by choosing Gν = Z2 combined with an

accidental μ − τ symmetry) [14,105–107,136].

The GRA form of U ◦
ν can be obtained from the group A5

[113,114], which is the group of even permutations of five

objects and is isomorphic to the group of rotational symme-

tries of the icosahedron. In this case sin2 θν
12 = 1/(r̃

√
5) ∼=

0.276.

The GRB and HG forms of U ◦
ν can be generated using the

groups G f = D10 [115] and G f = D12 [116,117], respec-

tively. The dihedral groups D10 and D12 are the groups of

symmetries (rotations and reflections) of the regular decagon

and dodecagon.21 D10 and D12 lead respectively to θν
12 =

π/5 (or sin2 θν
12 = (3 − r̃)/4 ∼= 0.345) and θν

12 = π/6 (or

sin2 θν
12 = 1/4). The angles π/5 and π/6 are the external

angles of the decagon and dodecagon.

For all the five underlying symmetry forms of U ◦
ν listed

above we have (i) θν
13 = 0, which should be corrected to the

measured value of θ13
∼= 0.15, and (ii) sin2 θν

23 = 0.5, which

20 The TBM form of U◦
ν can also be derived from G f = T ′ - the double

covering group of A4 (see, e.g., [10]) – with Gν = ZS
2 , provided the

left-handed (LH) charged lepton and neutrino fields each transform as

triplets of T ′ (see, e.g., [14] for details). Actually, as can be shown [156],

when working with 3-dimensional and 1-dimensional representations

of T ′, there is no way to distinguish T ′ from A4.

21 The groups D10 and D12, as it is indicated in Table 2, have 1-

dimensional and 2-dimensional irreducible representations, but do not

have 3-dimensional irreducible unitary representations. The problem of

how the GRB and HG forms of U◦
ν can be generated using the groups

G f = D10 and G f = D12, respectively, is discussed in Refs. [115–117]

and we refer the interested reader to these articles.
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might also need to be corrected if it is firmly established that

sin2 θ23 deviates significantly from 0.5. In the case of the BM

form sin2 θ12 = 0.5, which is ruled out by the existing data

and should be corrected. Finally, the value of sin2 θν
12 for the

HG form lies outside the current 2σ allowed range of sin2 θ12

and might need also to be corrected.

The requisite corrections to the discussed underlying

symmetry forms of the PMNS matrix can be generated in

each specific case by “decreasing” the residual symmetry

Gν which leads to a given symmetry form. In the case of

G f = S4 (G f = A4), as we have seen, this can be achieved

by “decreasing” Gν from Z2 × Z2 (Z2 + the “accidental”

μ − τ (i.e., Z2)) symmetry to Z2, leading to additional “cor-

recting” matrix factor in U ◦
ν .

As we have mentioned earlier, the corrections can also be

provided by the matrix Ue. This approach was followed in

[12–14,33,39,40,133] and corresponds to the case of G f (i)

either broken to Ge = Z2, or (ii) completely broken, by the

charged lepton mass term. In this case the PMNS matrix has

the following general form [131]:

U = U †
e Uν = (Ũe)

† �U ◦
ν P◦. (66)

Here Ũe is a 3 × 3 unitary matrix and � is a diagonal phase

matrix. The matrix Ũe was chosen in [12,39,40,133] to have

the following two forms:

A0 : Ũe = R−1
23 (θe

23) R−1
12 (θe

12) ; B0 : Ũe = R−1
12 (θe

12).

(67)

where θe
12 and θe

23 are free real angle parameters. These two

forms appear in a large class of theoretical models of flavour

and studies, in which the generation of charged lepton masses

is an integral part (see, e.g., [25,125–127,130,132]). The

phase matrix � in cases A0 and B0 is given by [12,133]:

A0 : � = diag
(

1, e−iψ , e−iω
)

;

B0 : � = diag
(

1, e−iψ , 1
)

. (68)

The phases ω and/or ψ serve as a source for the Dirac CPV

phase δ of the PMNS matrix and contribute to the Majorana

CPV phases of the PMNS matrix α21 and α31 [12]. We recall

that the diagonal phase matrix P◦ in Eq. (66) is given in Eq.

(20): it contains two phases, ξ21 and ξ31, which also contribute

to the Majorana phases α21 and α31, respectively.

3.7 Predictions for the Dirac CPV Phase

3.7.1 The cases of TBM, BM, GRA, GRB and HG symmetry

forms corrected by Ue

Consider the case of the five underlying symmetry forms of

U ◦
ν – TBM, BM, GRA, GRB and HG – corrected by the

matrix Ue, with the PMNS matrix given in Eq. (66) and the

matrices Ũe and � as given in Eqs. (67) and (68). In this

setting the Dirac phase δ of the PMNS matrix was shown to

satisfy the following sum rule [12]:

cos δ = tan θ23

sin 2θ12 sin θ13

[

cos 2θν
12 +

(

sin2 θ12 − cos2 θν
12

)

×
(

1 − cot2 θ23 sin2 θ13

)]

. (69)

Within the approach employed this sum rule is exact22 and

is valid for any value of the angle θν
23 [13] (and not only for

θν
23 = −π/4 of the five discussed symmetry forms of U ◦

ν ).

As we see, via the sum rule cos δ is expressed in terms

of the three neutrino mixing angles θ12, θ23, θ13 and one

fixed (known) parameter θν
12 which depends on the under-

lying symmetry form (TBM, BM, GRA, GRB, HG) of the

PMNS matrix. The difference between the cases A0 and B0

of forms of Ũe in Eq. (67) is, in particular, in the correla-

tion between the values of sin2 θ23 and sin2 θ13 they lead to.

In case A0 of Ũe, the values of sin2 θ23 and sin2 θ13 are not

correlated and sin2 θ23 can differ significantly from 0.5 [12].

For the form B0 of Ũe we have [12]:

sin2 θ23 = 1

2

1 − 2 sin2 θ13

1 − sin2 θ13

∼=
1

2
(1 − sin2 θ13). (70)

Thus, in contrast to the case A0, in case B0 the value of

sin2 θ23 is correlated with the value of sin2 θ13 and as a con-

sequence sin2 θ23 can deviate from 0.5 insignificantly – only

by 0.5 sin2 θ13.

Qualitatively, the result in Eq. (69) for δ can be understood

as follows. In the parametrisation defined in Eq. (66) with U ◦
ν ,

Ũe and � given in (65) and, e.g., by forms B0 in Eqs. (67)

and (68), we have:

UPMNS = R12(θ
e
12)� R23(θ

ν
23) R12(θ

ν
12) P◦. (71)

The phase ψ in the phase matrix � serves as a source for

the Dirac phase δ (and gives a contribution to the Majo-

rana phases α21,31 [12]). It follows from Eq. (71) that in

the case under discussion, the three angles θ12, θ23, θ13 and

the Dirac phase δ of the standard parametrisation of UPMNS

are expressed in terms of the three parameters θe
12, ψ and

θν
12 (θν

23 = −π/4). This suggests that it will be possible to

express one of the four parameters θ12, θ23, θ13 and δ, namely

δ, in terms of the other three, hence Eq. (69). Although the

case of Ũe having the form A0 in Eq. (67) is somewhat more

22 The renormalisation group corrections to the sum rule for cos δ, Eq.

(69), in the cases of neutrino Majorana mass term generated by the

Weinberg (dimension 5) operator added to (i) the Standard Model, and

(ii) the minimal SUSY extension of the Standard Model, have been

investigated in [157,158]. They were found in [157] to be negligible,

e.g., when the Weinberg operator was added to the Standard Model.
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complicated, in what concerns cos δ one arrives to the same

conclusion and result [12].

Given the values of sin θ12, sin θ23, sin θ13 and θν
12, cos δ

is determined uniquely by the sum rule (69). This allows

us to determine also | sin δ| uniquely. However, in absence

of additional information, sgn(sin δ) remains undetermined,

which leads to a two-fold ambiguity in the determination of

the value of δ from the given value of cos δ.

The fact that the value of the Dirac CPV phase δ is deter-

mined (up to an ambiguity of the sign of sin δ) by the values

of the three mixing angles θ12, θ23 and θ13 of the PMNS

matrix and the value of θν
12 of the matrix U ◦

ν , Eq. (65), is the

most striking prediction of the models considered. This result

implies that in the schemes under discussion, the rephasing

invariant JCP associated with the Dirac phase δ, Eq. (6), is

also a function of the three angles θ12, θ23 and θ13 of the

PMNS matrix and of θν
12:

JCP = JCP(θ12, θ23, θ13, δ(θ12, θ23, θ13, θ
ν
12))

= JCP(θ12, θ23, θ13, θ
ν
12). (72)

This allows to obtain predictions for the values of JCP for

the different symmetry forms of Ũν (specified by the value

of θν
12) using the current data on θ12, θ23 and θ13.

In [12], by using the sum rule in Eq. (69), predictions

for cos δ, δ and the JCP factor were obtained in the TBM,

BM, GRA, GRB and HG cases for the b.f.v. of sin2 θ12,

sin2 θ23 and sin2 θ13. It was found that the predictions of

cos δ vary significantly with the symmetry form of Ũν .

For the b.f.v. of sin2 θ12 = 0.308, sin2 θ13 = 0.0234

and sin2 θ23 = 0.437 found for NO spectrum in [56],

for instance, one gets [12] cos δ = (− 0.0906), (− 1.16),

0.275, (− 0.169) and 0.445, for the TBM, BM (LC), GRA,

GRB and HG forms, respectively. For the TBM, GRA,

GRB and HG forms these values correspond to δ =
± 95.2◦,± 74.0◦,± 99.7◦,± 63.6◦. For the b.f.v. given in

Table 1 and obtained in the global analysis [54] one finds in

the cases of the TBM, BM (LC), GRA, GRB and HG forms

the values given in Table 3. Due to the different NO and IO

b.f.v. of sin2 θ23, the predicted values of cos δ and δ for IO

spectrum differ (in certain cases significantly) from those for

the NO spectrum.

Three comments are in order. First, according to the results

found in [54] and quoted in Table 1, the predicted values of

δ lying in the first quadrant are strongly disfavored (if not

ruled out) by the current data. Second, the unphysical value

of cos δ in the BM (LC) case is a reflection of the fact that the

scheme under discussion with BM (LC) form of the matrix

U ◦
ν does not provide a good description of the current data

on θ12, θ23 and θ13 [133]. Physical values of cos δ can be

obtained in the case of the NO spectrum, e.g., for the b.f.v. of

sin2 θ13 if the value of sin2 θ12 (sin2 θ23) is larger (smaller)

than the current best fit value23 [12,39,40]. However, with

the b.f.v. of sin2 θ23 quoted in Eq. (4), the BM (LC) form is

strongly disfavored for both NO and IO spectra.

Third, the A4 and S4 models considered Sects. 3.3 and

3.4 lead to largely different predictions for sin2 θ12 and, if

θ23 �= π/4, for cos δ as well, which differ also from the

predictions for cos δ we have obtained in the cases of the five

different symmetry forms – TBM, BM, GRA, GRB, HG –

and the matrix Ũe given by the forms A0 and B0 in Eq. (67).

These predictions can be used to discriminate experimentally

between the different models.

The results quoted above imply [12] that a measurement

of cos δ can allow to distinguish between at least some of the

different symmetry forms of U ◦
ν provided θ12, θ13 and θ23 are

known, and cos δ is measured, with sufficiently high preci-

sion.24 Even determining the sign of cos δ will be sufficient

to eliminate some of the possible symmetry forms of Ũν .

These conclusions were confirmed by the statistical anal-

yses performed in Refs. [39,40] where predictions of the sum

rule (69) for (i) δ, cos δ and the rephasing invariant JCP using

the “data” (best fit values and χ2-distributions) on sin2 θ12,

sin2 θ13, sin2 θ23 and δ from [56], and (ii) for cos δ, using

prospective uncertainties on sin2 θ12, sin2 θ13 and sin2 θ23,

were derived for the TBM, BM (LC), GRA, GRB and HG

symmetry forms of the matrix Ũν . Both analyses were per-

formed for the case of NO neutrino mass spectrum. The

results for the IO spectrum are similar. The aim of the first

analysis, the results of which for JCP are shown in Fig. 1 and

are summarised in Table 4, was to derive the allowed ranges

for δ and JCP, predicted on the basis of the current data on the

neutrino mixing parameters for each of the symmetry forms

of U ◦
ν considered (see [39,40] for details of the analysis). It

was found in [39,40], in particular, that the CP-conserving

value of JCP = 0 is excluded in the cases of the TBM, GRA,

GRB and HG neutrino mixing symmetry forms, respectively,

at approximately 5σ , 4σ , 4σ and 3σ C.L. with respect to the

C.L. of the corresponding best fit values which all lie in the

interval JCP = (− 0.034)−(− 0.031) (see Table 4). The best

fit value for the BM (LC) form is much smaller and close to

zero: JCP = (−5 × 10−3). For the TBM, GRA, GRB and

HG forms at 3σ we have 0.020 ≤ |JCP| ≤ 0.039. Thus, for

these four forms the CP violating effects in neutrino oscilla-

tions are predicted to be relatively large and observable in the

T2HK and DUNE experiments [89,101]. These conclusions

hold if one uses in the analysis the results on the neutrino

23 For, e.g., sin2 θ12 = 0.34 allowed at 2σ by the current data, we have

cos δ = −0.943. Similarly, for sin2 θ12 = 0.32, sin2 θ23 = 0.41 and

sin θ13 = 0.158 we have [12]: cos δ = −0.978.

24 Detailed results on the dependence of the predictions for cos δ on

sin2 θ12, sin2 θ23 and sin2 θ13 when the latter are varied in their respec-

tive 3σ experimentally allowed ranges can be found in [39,40].
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Table 3 Predicted values of

cos δ and δ for the five symmetry

forms, TBM, BM, GRA, GRB

and HG, and Ũe given by the

form A0 in Eq. (67), obtained

using Eq. (69) and the best fit

values of sin2 θ12, sin2 θ23 and

sin2 θ13 for NO and IO neutrino

mass spectra from Ref. [54]

(From Refs. [39,41].)

Scheme cos δ (NO) δ (NO) cos δ (IO) δ (IO)

TBM − 0.16 ± 99◦ − 0.27 ± 106◦

BM (LC) − 1.26 cos δ-unphysical − 1.78 cos δ-unphysical

GRA 0.21 ± 78◦ 0.24 ± 76◦

GRB − 0.24 ± 105◦ − 0.38 ± 112◦

HG 0.39 ± 67◦ 0.48 ± 62◦

0.04 0.02 0.00 0.02 0.04
JCP

2

4

6

8TBM

0.04 0.02 0.00 0.02 0.04
JCP

2

4

6

8BM LC

0.04 0.02 0.00 0.02 0.04
JCP

2

4

6

8GRA

0.04 0.02 0.00 0.02 0.04
JCP

2

4

6

8

N

GRB

0.04 0.02 0.00 0.02 0.04
JCP

2

4

6

8

Nσ

HG

σ

Nσ Nσ Nσ

Fig. 1 Nσ ≡
√

χ2 as a function of JCP. The dashed lines represent the

results of the global fit [56], while the solid lines represent the results we

obtain for the TBM, BM (LC), GRA (upper left, central, right panels),

GRB and HG (lower left and right panels) neutrino mixing symmetry

forms. The blue (red) lines are for NO (IO) neutrino mass spectrum.

(From Ref. [39].)

mixing parameters and δ, obtained in the more recent global

analyses [54,57,58].

In Fig. 2 (left panel) we present the results of the statistical

analysis of the predictions for cos δ, namely the likelihood

function versus cos δ within the Gaussian approximation (see

[39,40] for details) performed using the b.f.v. of the mixing

angles for NO neutrino mass spectrum given in Ref. [56] and

the prospective rather small 1σ uncertainties (i) of 0.7% on

sin2 θ12, planned to be reached in JUNO experiment [86], (ii)

of 3% on sin2 θ13, foreseen to be obtained in the Daya Bay

experiment [159,160], and (iii) of 5% on sin2 θ23, expected to

be reached in the currently running and future planned long

baseline neutrino oscillation experiments. In the proposed

upgrading of the currently taking data T2K experiment [100],

for example, θ23 is estimated to be determined with a 1σ error

of 1.7◦, 0.5◦ and 0.7◦ if the best fit value of sin2 θ23 = 0.50,

0.43 and 0.60, respectively. This implies that for these three

values of sin2 θ23 the absolute (relative) 1σ error would be

0.0297 (5.94%), 0.0086 (2%) and 0.0120 (2%). This error

on sin2 θ23 is expected to be further reduced in the future

planned T2HK [101] and DUNE [89] experiments.
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Table 4 Best fit values of JCP

and cos δ and corresponding 3σ

ranges (found fixing

χ2 − χ2
min = 9) for the five

symmetry forms, TBM, BM,

GRA, GRB and HG, and Ũe

given by the form A0 in Eq. (67)

obtained using the data from

[56] for NO neutrino mass

spectrum. (From Refs. [39,40],

where results for IO spectrum

are also given.)

Scheme JCP/10−2 (b.f.v.) JCP/10−2 (3σ range) cos δ (b.f.v.) cos δ (3σ range)

TBM − 3.4 [− 3.8,− 2.8] ∪ [3.1, 3.6] − 0.07 [− 0.47, 0.21]
BM (LC) − 0.5 [− 2.6, 2.1] − 0.99 [− 1.00, [− 0.72]
GRA − 3.3 [− 3.7,− 2.7] ∪ [3.0, 3.5] 0.25 [− 0.08, 0.69]
GRB − 3.4 [− 3.9,− 2.6] ∪ [3.1, 3.6] − 0.15 [− 0.57, 0.13]
HG − 3.1 [− 3.5,−2.0] ∪ [2.6, 3.4] 0.47 [ 0.16, 0.80]
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Fig. 2 The likelihood function versus cos δ for NO neutrino mass

spectrum after marginalising over sin2 θ13 and sin2 θ23, for the TBM,

BM (LC), GRA, GRB and HG symmetry forms of the mixing matrix

U◦
ν . The figure is obtained by using the prospective 1σ uncertainties

in the determination of sin2 θ12, sin2 θ13 and sin2 θ23 within the Gaus-

sian approximation. In the left (right) panel sin2 θ12 is set to its b.f.v. of

[56] 0.308 (is set to 0.332), the other mixing angles being fixed to their

NO best fit values taken from [56]. See text for further details. (From

Ref. [39].)

As we have already remarked, the BM (LC) case is very

sensitive to the b.f.v. of sin2 θ12 and sin2 θ23 and is disfavored

at more than 2σ for the b.f.v. found in [56] for the NO spec-

trum. This case might turn out to be compatible with the data

for larger (smaller) measured values of sin2 θ12 (sin2 θ23).

This is illustrated in Fig. 2 (right panel).

The measurement of sin2 θ12, sin2 θ13 and sin2 θ23 with

the quoted precision will open up the possibility to distin-

guish between the BM (LC), TBM/GRB, GRA and HG

forms of Ũν . Distinguishing between the TBM and GRB

forms seems to require unrealistically high precision mea-

surement of cos δ.25 Assuming that | cos δ| < 0.93, which

means for 76% of values of δ, the error on δ, 	δ, for an

error on cos δ, 	(cos δ) = 0.10 (0.08), does not exceed

	δ � 	(cos δ)/
√

1 − 0.932 = 16◦ (12◦). This accuracy is

planned to be reached in the future neutrino experiments like

25 Self-consistent models or theories of (lepton) flavour which lead to

the GRB form of U◦
ν might still be possible to distinguish from those

leading to the TBM form using the specific predictions of the two types

of models for the neutrino mixing angles. The same observation applies

to models which lead to the GRA and HG forms of U◦
ν .

T2HK, T2HKK (ESSνSB) [101,102,161]. Therefore a mea-

surement of cos δ in the quoted range with 	(cos δ) = 0.08

will allow one to distinguish between the TBM/GRB, BM

(LC) and GRA/HG forms at approximately 3σ C.L., if the

precision achieved on sin2 θ12, sin2 θ13 and sin2 θ23 is the

same as in Fig. 2.

A more detailed study of the possibility to distinguish

between BM (LC), TBM, GRB, GRA and HG forms of U ◦
ν

using the prospective data from DUNE and T2HK exper-

iments was performed in [41]. Some of the results of this

study are illustrated in Fig. 3. As is shown in [41] and is

indicated by Fig. 3, the combined analysis of the data from

the DUNE and T2HK experiments would allow to distin-

guish between TBM and HG (GRA) symmetry forms of the

PMNS matrix at approximately 3σ (2σ ) confidence level;

and the same data would allow to distinguish between GRB

and HG (GRA) forms at more than 3σ (at approximately 2σ )

confidence level. Using the data from the T2HK, T2HKK and

DUNE experiments is expected to lead to a better discrimina-

tion between the different symmetry forms of UPMNS owing
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Fig. 3 Sensitivities of the

experiments DUNE, T2HK and

their combined (prospective)

data to the symmetry form

parameter sin2 θν
12 allowing to

distinguish between the TBM,

GRA, GRB, and HG symmetry

forms under the assumption that

one of them is realised in

Nature. In the top left and right

panels the assumed true

symmetry forms are respectively

TBM (sin2 θν
12 = 1/3) and GRA

(sin2 θν
12 = 0.276), while in the

bottom left and right panel these

forms are GRB

(sin2 θν
12 = 0.345) and HG

(sin2 θν
12 = 0.25). See text for

further details. (From Ref. [41].)
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to the better prospective sensitivity to δ of the combined data

from the T2HK and T2HKK experiments.

In what concerns the BM (LC) form, as we have already

discussed, it is not compatible with the best fit values of the

neutrino mixing angles (leading to | cos δ| > 1), but is viable

if the 2σ ranges of the neutrino mixing angles are taken into

account. If, e.g., one keeps sin2 θ13 and sin2 θ23 fixed at their

best fit values for NO spectrum, one finds cos δ = − 1, and

thus a viable BM (LC) mixing form, for sin2 θ12 = 0.334,

which is the upper limit of the allowed 2σ range of sin2 θ12

(see Table 1). For the indicated choice of values of sin2 θ13,

sin2 θ23 and sin2 θ12 the BM form, as was shown in [41], can

be distinguished from the other four symmetry forms – TBM,

GRB, GRA and HG – at more than 5σ using only the data

from the DUNE experiment.

3.7.2 Alternative Cases and the Power of Data

In [13] the analyses performed in [12,39,40] was extended by

obtaining sum rules for cos δ for UPMNS having the general

form given in Eq. (66) and the following forms of Ũe and

U ◦
ν

26:

C0. U ◦
ν = R23(θ

ν
23)R12(θ

ν
12) with θν

23 = −π/4 and θν
12

as dictated by TBM, BM, GRA, GRB or HG mixing,

and (i) Ũe = R−1
13 (θe

13) (� = diag(1, 1, e−iω)), (ii)

Ũe = R−1
23 (θe

23)R−1
13 (θe

13) (� = diag(1, e−iψ , e−iω)),

and (iii) Ũe = R−1
13 (θe

13)R−1
12 (θe

12) (� = diag(1, e−iψ ,

e−iω));

D0. U ◦
ν = R23(θ

ν
23)R13(θ

ν
13)R12(θ

ν
12) with θν

23, θν
13 and θν

12

fixed by arguments associated with symmetries, and iv)

Ũe = R−1
12 (θe

12) (� = diag(1, e−iψ , 1)), and v) Ũe =
R−1

13 (θe
13) (� = diag(1, 1, e−iω)).

26 In [13] a systematic analysis of the forms of Ũe and U◦
ν , for which

sum rules for cos δ of the type of Eq. (69) could be derived, but did not

exist in the literature, was performed.
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The sum rules for cos δ were derived first for θν
23 = −π/4

for the cases listed in point C0, and for the specific values of

(some of) the angles in U ◦
ν , characterising the cases listed in

point D0, as well as for arbitrary fixed values of all angles

contained in U ◦
ν . In certain models with sin2 θν

13 �= 0, sin2 θ23

is predicted to have specific values which differ significantly

from those in case B0 [13]: sin2 θ23 = 0.455; or 0.463; or

0.537; or 0.545, the uncertainties in these predictions being

insignificant.

Predictions for correlations between neutrino mixing

angle values and/or sum rules for cos δ, which can be tested

experimentally, were further derived in [14] for a large num-

ber of models based on G f = S4, A4, T ′ and A5 and all

symmetry breaking patterns, i.e., all possible combinations

of residual symmetries, which could lead to the correlations

and sum rules of interest:

(A) Ge = Z2 and Gν = Zn , n > 2 or Zn × Zm , n, m ≥ 2;

(B) Ge = Zn , n > 2 or Ge = Zn × Zm , n, m ≥ 2 and

Gν = Z2;

(C) Ge = Z2 and Gν = Z2;

(D) Ge is fully broken and Gν = Zn , n > 2 or Zn × Zm ,

n, m ≥ 2;

(E) Ge = Zn , n > 2 or Zn × Zm , n, m ≥ 2 and Gν is fully

broken.

The three LH neutrino fields and the three LH charged lep-

ton fields were assumed in [14] to transform under the action

of G f by a 3-dimensional irreducible representation of G f .

In this case, as we have already remarked, the results obtained

for A4 and T ′ coincide. For each pattern, sum rules, i.e., rela-

tions between the neutrino mixing angles and/or between the

neutrino mixing angles and the Dirac CPV phase δ, when

present, were derived. We note that neutrino mixing sum

rules can exist also in the case of pattern D (E) if due to addi-

tional assumptions (e.g., additional symmetries) the other-

wise unconstrained unitary matrix Ue (Uν) is constrained to

have the specific form of a matrix of U (2) transformation in

a plane or of the product of two U (2) transformations in two

different planes [12–14,39,40,133]. Thus, the cases of pat-

terns D and E leading to interesting phenomenological pre-

dictions are “non-minimal” from the point of view of the sym-

metries employed (see, e.g., [25,125–128,130]), compared

to patterns A, B and C characterised by non-trivial resid-

ual symmetries present in both charged lepton and neutrino

sectors, which originate from just one non-Abelian flavour

symmetry.

As was shown in [14], in the case of pattern A, U ◦
ν is fixed

by Gν . There are three different general sub-cases, A1, A2

and A3 , corresponding to Ue determined up to a unitary

rotation in the 1–2, 1–3 and 2–3 plane, respectively. In sub-

cases A1 and A2 one obtains a correlation between sin2 θ23

and sin2 θ13 and a sum rule for cos δ, while in sub-case A3,

sin2 θ13 and sin2 θ12 are predicted and δ is not constrained:

sin2 θ23 = 1 − cos2 θ◦
13 cos2 θ◦

23

1 − sin2 θ13

, A1, (73)

cos δ = cos2 θ13(sin2 θ◦
23 − cos2 θ12) + cos2 θ◦

13 cos2 θ◦
23(cos2 θ12 − sin2 θ12 sin2 θ13)

sin 2θ12 sin θ13| cos θ◦
13 cos θ◦

23|(cos2 θ13 − cos2 θ◦
13 cos2 θ◦

23)
1
2

, A1, (74)

sin2 θ23 = sin2 θ◦
23

1 − sin2 θ13

, A2, (75)

cos δ = −cos2 θ13(cos2 θ◦
12 cos2 θ◦

23 − cos2 θ12) + sin2 θ◦
23(cos2 θ12 − sin2 θ12 sin2 θ13)

sin 2θ12 sin θ13| sin θ◦
23|(cos2 θ13 − sin2 θ◦

23)
1
2

, A2, (76)

sin2 θ13 = sin2 θ◦
13, sin2 θ12 = sin2 θ◦

12, cos δ − unconstrained, A3, (77)

where the angles θ◦
13, θ◦

23 and θ◦
12 are fixed once the flavour

symmetry group G f and the residual symmetry subgroups

Ge and Gν are specified.

In the case of pattern B, of which there are also of three

different sub-cases, B1, B2 and B3, corresponding to Ue fixed

by Ge and U ◦
ν determined up to a unitary rotation in the 1–

3, 2–3 and 1–2 plane, respectively, there exist a correlation

between sin2 θ12 and sin2 θ13 and a sum rule for cos δ (sub-

cases B1, B2), or sin2 θ13 and sin2 θ23 are predicted while δ

remains unconstrained (sub-case B3):
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sin2 θ12 = sin2 θ◦
12

1 − sin2 θ13

, B1, (78)

cos δ = −cos2 θ13(cos2 θ◦
12 cos2 θ◦

23 − cos2 θ23) + sin2 θ◦
12(cos2 θ23 − sin2 θ13 sin2 θ23)

sin 2θ23 sin θ13| sin θ◦
12|(cos2 θ13 − sin2 θ◦

12)
1
2

, B1, (79)

sin2 θ12 = 1 − cos2 θ◦
12 cos2 θ◦

13

1 − sin2 θ13

, B2, (80)

cos δ = cos2 θ13(sin2 θ◦
12 − cos2 θ23) + cos2 θ◦

12 cos2 θ◦
13(cos2 θ23 − sin2 θ13 sin2 θ23)

sin 2θ23 sin θ13| cos θ◦
12 cos θ◦

13|(cos2 θ13 − cos2 θ◦
12 cos2 θ◦

13)
1
2

, B2, (81)

sin2 θ13 = sin2 θ◦
13, sin2 θ23 = sin2 θ◦

23, cos δ − unconstrained, B3, (82)

where, as in the case of pattern A, θ◦
12, θ◦

23 and θ◦
13 are fixed

once the symmetries are specified.

Finally, in the case of pattern C, of which there are alto-

gether nine sub-cases, corresponding to Ue and U ◦
ν , each

determined by Ge and Gν up to a unitary rotations in the

i– j and k–l planes, respectively, i– j=1–2,1–3,2–3, k–l= 1–

2,1–3,2–3, there is either a correlation between sin2 θ13 and

sin2 θ12, or between sin2 θ13 and sin2 θ23, or else a sum rule

for cos δ. We number them as in [14], i.e., cases C1–C9. Four

of them lead to sum rules for cos δ, which have the form:

C1, (i j, kl) = (12, 13) :

cos δ = sin2 θ◦
23 − cos2 θ12 sin2 θ23 − cos2 θ23 sin2 θ12 sin2 θ13

sin θ13 sin 2θ23 sin θ12 cos θ12
,

(83)

C3, (i j, kl) = (12, 23) :

cos δ = sin2 θ12 sin2 θ23 − sin2 θ◦
13 + cos2 θ12 cos2 θ23 sin2 θ13

sin θ13 sin 2θ23 sin θ12 cos θ12
,

(84)

C4, (i j, kl) = (13, 23) :

cos δ = sin2 θ◦
12 − cos2 θ23 sin2 θ12 − cos2 θ12 sin2 θ13 sin2 θ23

sin θ13 sin 2θ23 sin θ12 cos θ12
,

(85)

C8, (i j, kl) = (13, 13) :

cos δ = cos2 θ12 cos2 θ23 − cos2 θ◦
23 + sin2 θ12 sin2 θ23 sin2 θ13

sin θ13 sin 2θ23 sin θ12 cos θ12
.

(86)

The neutrino mixing angles in these cases should be treated

as free parameters. Other two cases, C5 and C9, yield corre-

lations between sin2 θ12 and sin2 θ13:

C5, (i j, kl) = (23, 13) : sin2 θ12 = sin2 θ◦
12

1 − sin2 θ13

,

cos δ − unconstrained, (87)

C9, (i j, kl) = (23, 23) : sin2 θ12 = sin2 θ◦
12 − sin2 θ13

1 − sin2 θ13

,

cos δ − unconstrained. (88)

In cases C2 and C7, instead, there are correlations between

sin2 θ23 and sin2 θ13:

C2, (i j, kl) = (13, 12) : sin2 θ23 = sin2 θ◦
23

1 − sin2 θ13

,

cos δ − unconstrained, (89)

C7, (i j, kl) = (12, 12) : sin2 θ23 = sin2 θ◦
23 − sin2 θ13

1 − sin2 θ13

,

cos δ − unconstrained. (90)

Finally, in case C6, (i j, kl) = (23, 12), cos δ is unconstrained

and sin2 θ13 is predicted to be equal to sin2 θ◦
13. In cases C2,

C5, C6, C7 and C9, as is indicated above, cos δ remains

unconstrained.

Given the fact that the group A4 has eight Abelian sub-

groups (three Z2, four Z3 and one Klein group K4 isomor-

phic to Z2 × Z2), the group S4 possesses 20 Abelian sub-

groups (nine Z2, four Z3, three Z4 and four Z2 × Z2 groups,

see, e.g., [11]), and A5 has 36 Abelian subgroups (fifteen

Z2, ten Z3, five Z2 × Z2 and six Z5, see, e.g., [162]) the

total number of the different residual symmetry patterns A,

B and C to be analysed is extremely large. For the group

A4 (T ′) alone there are altogether 64 cases (up to permu-

tations of rows and columns of the predicted neutrino mix-

ing matrix). It is quite remarkable that of these extremely

large number of cases only a very limited number turned

out to be phenomenologically viable, i.e., to be compat-

ible with the existing data on the neutrino mixing angles

[14,42]. In the case of the group G f = A4 (T ′), for exam-

ple, only one case was found to be phenomenologically viable

[14,42], i.e., to be compatible with the experimentally deter-

mined values (including the 3σ uncertainties) of the three

neutrino mixing parameters sin2 θ12, sin2 θ13 and sin2 θ23.

Namely, this is case B1 with (Ge, Gν) = (Z3, Z2), which

yields (sin2 θ◦
12, sin2 θ◦

23) = (1/3, 1/2) and corresponds to

the TBM mixing matrix corrected from the right by the

U13(θ
ν
13, α) transformation in the 1–3 plane (see sub-section

3.3). The case B1 is common also to the two other groups S4

123



Eur. Phys. J. C (2018) 78 :709 Page 21 of 29 709

and A5. For G f = S4, there are 6 more viable cases. The A5

flavour symmetry leads to 7 additional phenomenologically

viable cases.

One arrives at this results for the number of phenomeno-

logically viable cases in the following way. For the groups

S4 and A5 there are respectively altogether 8 and 13 cases,

which are acceptable a priori, i.e., which lead to UPMNS with-

out zero entries. They are summarised in Table 3 (for S4) and

Table 4 (for A5) of Ref. [42]. In Tables 3 and 4 in [42] the

specific values of sin2 θ◦
i j in each case are also given. How-

ever, the case B1, as we have already noticed, is common to

all the three flavour symmetry groups A4 (T ′), S4 and A5,

while four cases, C1, C3, C4 and C8, are shared by S4 and

A5. Thus, there are 16 cases in total, which lead to different

predictions for sin2 θ12 or sin2 θ23 and/or cos δ. A statisti-

cal analysis of these predictions showed [42] that two cases,

namely, C4 (for both S4 and A5) and B2A5II (i.e., the second

of the two B2 cases with G f = A5, characterised by dif-

ferent fixed values of θ◦
12 and θ◦

13) are globally disfavored at

more than 3σ confidence level by the current data (including

the uncertainties) on sin2 θ12, sin2 θ23 and sin2 θ13 [57]. As a

consequence, only 14 cases altogether turned out to be phe-

nomenologically viable at present. Five of them, B1, B1A5,

B2S4, B2A5, C9A5
27, lead to sharp predictions for sin2 θ12,

and four others, A1A5, A2A5, C2S4, C7S4, to similarly sharp

predictions for sin2 θ23. The six phenomenologically viable

cases A and B lead also to predictions for cos δ, while five

out of the eight viable cases C, C1, C3, C3A5 (which differs

from C3 that is common to S4 and A5), C4A5 (which differs

from C4) and C8, also lead to predictions for cos δ.

Statistical analysis of these 14 cases was performed in

[42] using the best fit values of the three neutrino mixing

parameters sin2 θi j from [57] and taking into account the

prospective (1σ ) uncertainties in the determination of the

mixing angles, planned to be achieved in currently running

(Daya Bay [159,160]) and the next generation (JUNO [86],

T2HK [101], DUNE [89]) of neutrino oscillation experi-

ments: 3% on sin2 θ13 [159,160], 0.7% on sin2 θ12 [86] and

3% on sin2 θ23 [89,101]. This analysis revealed that only

six cases would be compatible with the indicated prospec-

tive data from the Daya Bay, JUNO, T2HK, DUNE neutrino

oscillation experiments.

In Fig. 4, we present the likelihood functions for sin2 θ12

and sin2 θ23, obtained for NO and IO spectra in all the cases

compatible at 3σ with the current global data [57]. The cor-

responding likelihood profiles are very narrow because their

widths are determined by the small experimental uncertainty

27 The notation XG f means case X, X = A1, A2,…,B1,…,C1,…,C9,

corresponding to the group G f , G f = A4, S4, A5. The group is not

indicated in cases B1, C1, C3 and C8 (see below) because case B1 is

common to the A4, S4 and A5 groups, while each of the cases C1, C3

and C8 is shared by the S4 and A5 groups.

on sin2 θ13. In the upper (lower) panel, the dashed line corre-

sponds to the likelihood for sin2 θ12 (sin2 θ23) extracted from

the global analysis. The dotted line represents the prospective

precision on sin2 θ12 (sin2 θ23) corresponding to 1σ uncer-

tainty of 0.7% (3%), which is planned to be achieved by

JUNO [86] (DUNE [89] and T2HK [101]). It is obtained

under the assumption that the best fit value(s) of sin2 θ12

(sin2 θ23) will not change in the future. If it is indeed the

case, then, as is clear from Fig. 4, all five models leading to

the predictions for sin2 θ12 will be ruled out by the JUNO

measurement of this parameter.

The results of statistical analysis of the predictions for

cos δ are summarised in Fig. 5. The dashed line stands for

the likelihood extracted from the global analysis [57]. At

present, all (almost all) values of cos δ are allowed at 3σ for

NO (IO) spectrum. We also show the dash-dotted and dotted

lines which represent two benchmark cases. The first case,

marked as “Future 1”, corresponds to the current best fit NO

(IO) value [57] δbf = 234◦ (278◦) and the prospective 1σ

uncertainty on δ of 10◦. The second case, “Future 2”, corre-

sponds to the potential best fit value δbf = 270◦ (for both NO

and IO cases) and the same 10◦ error on δ. The likelihoods

in cases C peak at values of | cos δ| ∼ 0.5–1. Looking at the

dotted line, we see that if in the future the best fit value of

δ shifted to 270◦ and the next generation of long-baseline

experiments managed to achieve the 1σ uncertainty on δ of

10◦, all cases C viable at the moment would be disfavored at

approximately 3σ C.L. only by the measurement of δ.

The results of the studies [14,42] summarised in the

present subsection lead to the important conclusion that

although the number of cases of non-Abelian discrete sym-

metry groups and their subgroups that can be used for descrip-

tion of lepton mixing is extremely large, only a very limited

number survive when confronted with the existing data on

the three neutrino mixing angles. This limited number of

presently phenomenologically viable cases will be further

considerably reduced by the precision measurements of the

three neutrino mixing angles and the Dirac phase δ in the

currently running (Daya Bay) and future planned (JUNO,

T2HK, T2HKK, DUNE) neutrino oscillation experiments.

As was shown in [42] and we have briefly discussed, if the

best fit values of sin2 θ12, sin2 θ23 and sin2 θ13 as found in

[57] would not change significantly in the future, only six

cases would be compatible with the prospective data from

the Daya Bay, JUNO, T2HK and DUNE neutrino oscilla-

tion experiments. This number would be further reduced by

a precision measurement of the Dirac phase δ.

4 Flavour symmetry combined with generalised CP

symmetry

In all models discussed by us the Majorana phases α21 and

α31 remain undetermined. The values of the Majorana CPV
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Fig. 4 Upper [lower] panel: predictions for sin2 θ12 [sin2 θ23] obtained

using the current global data on the neutrino mixing parameters.

“Future” refers to the scenario with sin2 θbf
12 = 0.307 [sin2 θbf

23 =

0.538 (0.554) for NO (IO)] (current best fit values) and the relative 1σ

uncertainty of 0.7% [3%] expected from JUNO [DUNE and T2HK].

See text for further details. (From Ref. [42].)

phases are instead constrained to lie in certain narrow inter-

vals, or are predicted, in theories which in addition to a flavour

symmetry possess at a certain high-energy scale a “gener-

alised CP” (GCP) symmetry [21]. The GCP symmetry, as the

term suggests, is a generalisation of the traditional (canon-

ical) CP symmetry. The GCP symmetry should be imple-

mented in a theory based on a discrete flavour symmetry in

a way that is consistent with the flavour symmetry [22,23].

At low energies the GCP symmetry is broken, in general, to

residual CP symmetries of the charged lepton and neutrino

sectors.

The GCP transformations are applied on the LH and RH

components of the charged lepton fields l̃L(x) and l̃R(x) and

on the LH neutrino fields ν
l̃ L

(x) – the fields in terms of which

the general charged lepton and neutrino Majorana mass terms

are formed, Eqs. (9) and (11). The transformations of interest

are defines as follows:

l̃L(x)
C P−−→ i(X L)

l̃ l̃ ′γ0C l̃ ′L(x ′)
T

, (91)

l̃R(x)
C P−−→ i(X R)

l̃ l̃ ′γ0C l̃ ′R(x ′)
T

, (92)

ν
l̃ L

(x)
C P−−→ i(X L)

l̃ l̃ ′γ0C ν
l̃ ′L(x ′)

T
, (93)

where l̃ = ẽ, μ̃, τ̃ , X L and X R are 3 × 3 unitary matrices

and x ′ = (t,−x). The transformations of l̃L(x) and ν
l̃ L

(x)

should involve the same matrix X L in order to ensure the CP

invariance of the CC weak interaction Lagrangian, expressed

in terms of the SM SU (2)L lepton doublet fields l̃L(x) and

ν
l̃ L

(x):

LCC = − g√
2

∑

l̃=ẽ,μ̃,τ̃

l̃L(x) γα ν
l̃ L

(x) W α†(x) + h.c.. (94)

The GCP symmetry will hold then in the lepton sector if it is

a symmetry of the charged lepton and neutrino mass terms,
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Fig. 5 Predictions for cos δ obtained using the current global data on

the neutrino mixing parameters. “Future 1” refers to the scenario with

δbf = 234◦ (278◦) for NO (IO) spectrum (current best fit values) and

the 1σ uncertainty on δ of 10◦. “Future 2” corresponds to δbf = 270◦

and the 1σ uncertainty on δ of 10◦. See text for further details. (From

Ref. [42].)

Eqs. (9) and (11), i.e., if the charged lepton and neutrino

Majorana mass matrices satisfy the following constraints:

X
†
L Me X R = M∗

e , or (95)

X
†
L Me M†

e X L = (Me M†
e )∗, (96)

X T
L Mν X L = M∗

ν . (97)

In the presence of flavour symmetry the form of the GCP

transformations is significantly constrained. Indeed, con-

sider a GCP transformation on a generic field ϕ(x) which

is assigned to an r-dimensional irreducible unitary represen-

tation ρr (g) of G f :

ϕ(x)
C P−−→ Xr ϕ∗(x ′), (98)

where Xr is a unitary matrix. The action of the CP transfor-

mation on the spinor indices in the case of ϕ being a spinor

[shown explicitly in Eqs. (91)–(93)] has been omitted here

for simplicity. If both the flavour symmetry and the GCP

symmetry hold, the theory under study should be invariant

also under the following sequence of transformations: a GCP

transformation, followed by a flavour symmetry transforma-

tion, which in turn is followed by an (inverse) GCP transfor-

mation, i.e., under

ϕ(x)
C P−−→ Xr ϕ∗(x ′)

G f−−→ Xr ρr (g f )
∗ ϕ∗(x ′)

C P−1

−−−→ Xr ρr (g f )
∗ X−1

r ϕ(x). (99)

In order for the theory to be invariant under this sequence

of transformations the resulting transformation should be a

flavour symmetry transformation of ϕ(x) corresponding to

an element g′
f of G f , which can differ from g f :
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Xr ρr (g f )
∗ X−1

r = ρr (g
′
f ), g f , g′

f ∈ G f . (100)

This equation represents a consistency condition which has

to be satisfied in order for the implementation of the GCP

symmetry in the theory to be compatible with the presence of

a flavour symmetry [22,23]. For a discrete flavour symmetry

group G f , the consistency condition (100) will hold if it is

satisfied by the group’s generators.

Let us denote by HCP = {X L} the full set of GCP transfor-

mations X L acting on ν
l̃ L

(x) and l̃L(x), which are compatible

with a given flavour symmetry group G f , i.e., which satisfy

the consistency condition (100) in which Xr is replaced by

X L and ρr (g f ) is the irreducible unitary representation of G f

to which ν
l̃ L

(x) and l̃L(x) are assigned. We denote further by

H ν
CP = {Xν} and H ℓ

CP = {Xℓ} the sets of GCP transforma-

tions Xν and Xℓ which are compatible respectively with the

residual flavour symmetries Gν and Gℓ of the neutrino and

charged lepton sectors, i.e., of the neutrino Majorana and

charged lepton mass terms. Xν and Xℓ satisfy consistency

conditions in which ρr (g f ) (ρr (g
′
f )) is replaced respectively

by ρr (gν) ( ρr (g
′
ν)) and ρr (gℓ) (ρr (g

′
ℓ)), where gν, g′

ν ∈ Gν

and gℓ, g′
ℓ ∈ Gℓ.

The sets HCP, H ν
CP and H ℓ

CP are not groups by them-

selves. They are sets of GCP transformations, which always

involve conjugation of the fields they act upon; H ν
CP and H ℓ

CP

are subsets of HCP. These sets become groups only if they

are extended by (at least) an identity element which does

not conjugate fields (see, for instance, Appendix B of Ref.

[22]). When one writes a semi-direct product of G f and HCP,

G f ⋊ HCP, and the semi-direct28 products of Gν and H ν
CP,

Gν ⋊ H ν
CP, and of Gℓ and H ℓ

CP, Gℓ⋊ H ℓ
CP, it is always implic-

itly assumed that HCP, H ν
CP and H ℓ

CP are appropriate groups,

which are obtained from a single generating GCP transfor-

mation, as explained in Appendix B of Ref. [22]. In this case

H ν
CP and H ℓ

CP are subgroups of HCP.

4.1 Implications for the majorana phases

As we have discussed in Sect. 3.1, the unitary matrix Uν

which diagonalises the neutrino Majorana mass matrix Mν

and enters into the expression for the PMNS matrix, Eq. (8),

is related to the unitary matrix U ◦
ν diagonalising M†

ν Mν

and ρr (gν) in the following way: Uν ≡ U ◦
ν P◦, where

P◦ = diag(1, ei
ξ21

2 , ei
ξ31

2 ) (see Eq. (20)). The phases ξ21

and ξ31 contribute respectively to the Majorana phases α21

and α31 of the PMNS matrix, Eq. (2). These phases remain

undetermined by the flavour symmetries under discussion.

We will consider next the implications of a residual GCP

symmetry H ν
CP ⊂ HCP, which is preserved in the neutrino

28 In the case of Gν or Ge being a Z2 symmetry, the corresponding

product becomes direct.

sector, for the determination of ξ21 and ξ31, and thus of the

Majorana phases α21 and α31.

In the case of a residual GCP symmetry H ν
CP, the neutrino

Majorana mass matrix satisfies the condition given in Eq.

(97), X L ∈ H ν
CP being the GCP transformation defined in

Eq. (93). Using Eq. (12) we find:

(Xd
L)T Md

ν Xd
L = Md

ν , with Md
ν = diag(m1, m2, m3),

Xd
L = U †

ν X L U∗
ν . (101)

For m1 �= m2 �= m3 and29 min(m j ) �= 0, j = 1, 2, 3, as it

is not difficult to show (see, e.g., [22,33,165]), the unitary

matrix Xd
L can have only the following form:

Xd
L = diag(± 1,± 1,± 1), (102)

where the signs of the three non-zero entries in Xd
L are not

correlated. Further, using that Uν = U ◦
ν P◦, we obtain from

Eq. (101) [165]:

(U ◦
ν )† X L (U ◦

ν )∗ = P◦ Xd
L P◦

= diag
(

± 1,± eiξ21 ,± eiξ31

)

. (103)

Thus, we come to the conclusion that the phases ξ21 and ξ31

will be determined provided i) the matrix U ◦
ν , which diago-

nalises M†
ν Mν and ρr (gν) (see Eq. (19) and the related dis-

cussion) is fixed by the residual flavour symmetry Gν , and (ii)

the GCP transformations X L ∈ H ν
CP, which are consistent

with Gν , are identified.

4.2 Concrete examples of symmetries

Now we turn to concrete examples [33]. For G f = A4 we

choose to work in the Altarelli-Feruglio basis [143], in which

the S and T generators have the form given in Eq. (24). Pre-

serving the S generator, i.e., choosing Gν = Z S
2 = {1, S},

leads to U ◦
ν = VTBM, provided there is an additional acci-

dental μ–τ symmetry [9]. The twelve GCP transformations

consistent with the A4 flavour symmetry for the triplet repre-

sentation in the chosen basis have been found in [26], solving

the consistency condition

X L ρ∗(g) X−1
L = ρ(g′), g, g′ ∈ A4. (104)

These transformations can be summarised in a compact way

as follows:

X L = ρ(g), g ∈ A4, (105)

29 It follows from the neutrino oscillation data that m1 �= m2 �= m3, and

that at least two of the three neutrino masses, m2,3 (m1,2) in the case of

the NO (IO) spectrum, are non-zero. However, even if m1 = 0 (m3 = 0)

at tree level and the zero value is not protected by a symmetry, m1 (m3)

will get a non-zero contribution at least at two loop level [163,164]

and in the framework of a self-consistent (renormalisable) theory of

neutrino mass generation this higher order contribution will be finite.

123



Eur. Phys. J. C (2018) 78 :709 Page 25 of 29 709

i.e., the GCP transformations consistent with the A4 flavour

symmetry are of the same form as the flavour symmetry

group transformations [26]. They are given in Table 1 in [26]

together with the elements Ŝ and T̂ to which the generators

S and T of A4 are mapped by the consistency condition in

Eq. (104). Further, since in our case the residual flavour sym-

metry Gν = Z S
2 ×Z2, where the Z S

2 factor corresponds to the

preserved S generator, only those X are acceptable, for which

Ŝ = S. From Table 1 in [26] it follows that there are four

such GCP transformations, namely, ρ(E), ρ(S), ρ(T 2ST )

and ρ(T ST 2), where E is the identity element of the group.

The last two transformations are not symmetric in the chosen

basis, and, as shown in [26], lead to partially degenerate neu-

trino mass spectrum with two equal masses (see also [22]),

which is ruled out by the existing neutrino oscillation data.

Thus, we are left with two allowed generalised CP transfor-

mations, ρ(E) and ρ(S), for which we have:

V
†
TBM ρ(E) V ∗

TBM = ρ(E) = diag(1, 1, 1), (106)

V
†
TBM ρ(S) V ∗

TBM = diag(−1, 1,−1). (107)

Finally, according to Eq. (103), this implies that the phases

ξ21 and ξ31 can be either 0 or π . The same conclusion holds

for a T ′ flavour symmetry, because restricting ourselves to the

triplet representation for the LH charged lepton and neutrino

fields, there is no way to distinguish T ′ from A4 [156].

In the case of G f = S4 considered in [33], the authors

chose to work with the two generators S and T of S4 in the

basis given in [136]. In this case the generators S and T

satisfy the following presentation rules:

S2 = T 4 = (ST )3 = (T S)3 = 1. (108)

Although the presentation rules for S and T given above

differ from the presentation rules when the third generator

U for S4 is employed, Eq. (23), we will keep the notation S

and T for the two generators satisfying the presentation rules

(108) in the discussion which follows. In the basis chosen in

[136] and used in [33], S and T have the following form in

the two triplet representations of interest:

S = ±

⎛

⎜

⎜

⎜

⎝

0 − 1√
2

− 1√
2

− 1√
2

1
2

− 1
2

− 1√
2

− 1
2

1
2

⎞

⎟

⎟

⎟

⎠

,

T = ±

⎛

⎜

⎜

⎜

⎝

− 1 0 0

0 − i 0

0 0 i

⎞

⎟

⎟

⎟

⎠

, (109)

The residual symmetry Gν = Z S
2 × Z2, where the Z S

2 fac-

tor corresponds to preserved S generator in the chosen basis

Table 5 The ten symmetric generalised CP transformations X = ρ(g)

consistent with the S4 flavour symmetry for the triplet representation ρ

in the chosen basis [136], determined by the consistency condition in

Eq. (100). The mapping (T, S) → (T̂ , Ŝ) is realised via the consistency

condition applied to the group generators T and S, i.e., Xρ∗(T )X−1 =
ρ(T̂ ) and Xρ∗(S)X−1 = ρ(Ŝ). E denotes the identity element of S4.

(From [33].)

g, X = ρ(g) T → T̂ S → Ŝ

(ST 2)2 T S

T 3 T 3 T 3ST

E T 3 S

T T 3 T ST 3

T 2 ST 2 ST S S

ST 2 S T T 2 ST 2

S T ST S

T 2 T 3 T 2 ST 2

ST S ST 2 ST 2 ST

T ST T 2 S T ST 2 S

and the second one arises accidentally (corresponding to a

μ–τ symmetry), leads to the bimaximal mixing, U ◦
ν = VBM

[136]. As in the previous example, the GCP transformations

consistent with the S4 flavour symmetry are of the same form

as the flavour symmetry group transformations [23]. Solving

the consistency condition in Eq. (104), in [33] ten symmetric

GCP transformations consistent with the S4 flavour symme-

try for the triplet representation in the chosen basis were

found. They are summarised in Table 5 together with the ele-

ments T̂ and Ŝ to which the consistency condition maps the

group generators T and S.

From Table 5 we see that there are four symmetric GCP

transformations consistent with the preserved S generator,

namely, ρ(E), ρ(S), ρ(T 2ST 2) and ρ(ST 2ST 2). Substitut-

ing them and U ◦
ν = VBM in Eq. (103), one finds [33]:

V
†
BM ρ(E) V ∗

BM = ρ(E) = diag(1, 1, 1), (110)

V
†
BM ρ(S) V ∗

BM = diag(1,−1, 1), (111)

V
†
BM ρ(T 2ST 2) V ∗

BM = diag(−1, 1, 1), (112)

V
†
BM ρ(ST 2ST 2) V ∗

BM = diag(−1,−1, 1). (113)

Therefore also in this case the phases ξ21 and ξ31 are fixed

by the residual GCP symmetry to be either 0 or π . As was

shown in [33], these results for the phases ξ21 and ξ31 hold

also for G f = A5 and Gν = Z2 × Z2, generated by S̃ and

T̃ 3 S̃T̃ 2 S̃T̃ 3 and leading to the GRA mixing, U ◦
ν = UGRA

(see Sect. 3.6), when the flavour symmetry is combined with

the GCP symmetry.

If the matrix Ue originating from the charged lepton sector

is non-trivial, as like in the cases A and B defined by equa-

tions (66), (67) and (68), the Majorana phases α21 and α31 of
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the PMNS matrix receive also contributions from the phases

associated with Ue in the PMNS matrix [12]. In the specific

examples of the forms A and B of Ue, the phases ω and/or

ψ of the matrix � in Eqs. (66) and (68), as we have already

remarked, serve as a source for the Dirac CPV phase δ of the

PMNS matrix and contribute to the Majorana phases α21 and

α31 [12]. In these cases the Majorana phases α21 and α31 are

determined by the sums respectively of the phases ξ21 and

ξ31 and of the indicated additional contributions due to the

phases in the matrix �. As a consequence, α21 and α31 have

non-trivial values which differ from 0 or π even when ξ21

and ξ31 are fixed by the employed residual GCP symmetry

to be either 0 or π [12,33].

As we have indicated earlier, the Majorana phases play

important role, e.g, in |	L| = 2 processes like neutrinoless

double beta ((ββ)0ν-)decay (A, Z) → (A, Z +2)+e−+e−,

L being the total lepton charge, in which the Majorana nature

of massive neutrinos νi manifests itself (see, e.g, Ref. [1]).

Determining the values of the Majorana phases allows to

make predictions for the basic (ββ)0ν− decay parameter –

the effective neutrino Majorana mass (see, e.g, Refs. [12,33,

35,53]).

4.3 Examples of models

In the scenarios involving a GCP symmetry, which were

most widely explored so far (see, e.g., [22,24,26,28–30]),

a non-Abelian flavour symmetry G f consistently combined

with a GCP symmetry HCP is broken to residual Abelian

symmetries Ge = Zn , n > 2, or Zm × Zk , m, k ≥ 2,

and Gν = Z2 × H ν
CP of the charged lepton and neutrino

mass terms, respectively.30 The factor H ν
CP in Gν stands

for a remnant GCP symmetry of the neutrino mass term.

In such a set-up, Ge fixes completely the form of the uni-

tary matrix Ue which diagonalises the product Me M
†
e and

enters into the expression of the PMNS matrix. At the same

time, Gν fixes the unitary matrix Uν , diagonalising the neu-

trino Majorana mass matrix Mν up to a single free real

parameter – a rotation angle θν . Given the fact that the

PMNS neutrino mixing matrix UPMNS is given by the prod-

uct UPMNS = U
†
e Uν , all three neutrino mixing angles are

expressed in terms of this rotation angle. In this class of

models one obtains specific correlations between the values

of the three neutrino mixing angles, while the leptonic CPV

phases are typically predicted to be exactly 0 or π , or else

π/2 or 3π/2. For example, in the set-up considered in [22]

and based on G f ⋊ HCP = S4 ⋊ HCP broken to Ge = Z T
3

30 We note that in Refs. [26,28] the residual symmetry Ge of the charged

lepton mass term is augmented with a remnant CP symmetry H ℓ
CP as

well.

and Gν = Z S
2 × H ν

CP with H ν
CP = {U, SU },31 the authors

find:

sin2 θ13 = 2

3
sin2 θν, sin2 θ12 = 1

2 + cos 2θν

= 1

3
(

1 − sin2 θ13

) , sin2 θ23 = 1

2
, (114)

| sin δ| = 1, sin α21 = sin α31 = 0. (115)

It follows, in particular, from the results on the neutrino

oscillation parameters – best fit values, 2σ and 3σ allowed

ranges – obtained in the global fit of neutrino oscillation data

[54] and summarised in Table 1, as well as in the more recent

analyses [57,58], that the prediction quoted in Eq. (114) for

sin2 θ12 lies outside of its currently allowed 2σ range.32 In

what concerns the prediction sin2 θ23 = 1/2, according to

[57,58], it lies within the 1σ (2σ ) allowed range of sin2 θ23

for NO (IO) spectrum.

Other examples of one (real angle) parameter models

based on the flavour symmetry groups A4, S4 and A5 com-

bined with GCP symmetry can be found, e.g., in Refs.

[24,26,28–31,166]. Most of them share some of the prop-

erties of the model discussed above: the correlation between

sin2 θ12 and sin2 θ13, the predictions that | sin δ| = 1,

sin α21 = sin α31 = 0. Some of the models predict sin δ = 0,

which is disfavored by the results of the global neutrino data

analyses (see Table 1). In certain set-ups the Majorana phases

α21 and α31 take non-trivial values while | sin δ| = 1.

In a class of models based on the groups G f = 	(3n2)

and G f = 	(6n2) of flavour symmetry combined with GCP

symmetry the neutrino mixing angles and the CPV phases

are functions of one real angle and one or two discrete phase

parameters, which depend on the parameter n which charac-

terises the size of the group G f (see, e.g., [27,68,167–169]).

Due to the presence of the additional discrete valued phases,

the CPV phase δ can have non-trivial and non-maximal val-

ues, i.e., one can have | sin δ| �= 1, 0. In this class of mod-

els, as a rule, there exist correlations between the values of

sin2 θ12, sin2 θ23 and of sin2 θ13 in the form of, e.g., the

following relations [168,169]: 3 cos2 θ13 sin2 θ12 = 1 and

sin2 θ23 = 0.5 ± 0.5 tan θ13

√

2 − tan2 θ13. The first correla-

tion 3 cos2 θ13 sin2 θ12 = 1 is typical for the models under

discussion, while the second one or similar occur in most of

them. For the best fit value of sin2 θ13 given in Table 1, the

quoted relations lead to the predictions: sin2 θ12 = 0.340 and

sin2 θ23 = 0.396 or 0.604. As we have already noticed, the

31 We recall that S, T and U are the generators of S4 in the basis for its

3-dimensional representation specified in Eq. (24).

32 We have used the best fit value of sin2 θ13 to obtain the prediction

of sin2 θ12 = 0.341 leading to the quoted conclusion. Using the 2σ

allowed range for sin2 θ13 leads to a minimal value of sin2 θ12 = 0.340,

which is still larger than the maximal allowed value of sin2 θ12 at 2σ

C.L., but inside its 3σ allowed range.
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value sin2 θ12 = 0.340 is outside the 2σ , but within the 3σ

allowed ranges of sin2 θ12 found in [54,57,58]. As it follows

from the results reported, e.g., in [58], both predicted values

of sin2 θ23 lie outside the 3σ allowed range of sin2 θ23.

Theoretical models based on the approach to neutrino mix-

ing that combines discrete symmetries and GCP invariance,

in which the neutrino mixing angles and the leptonic CPV

phases are functions of two or three parameters have also

been considered in the literature (see, e.g., [25,32–35]). In

these models the residual symmetry Ge of the charged lepton

mass term is typically assumed to be a Z2 symmetry or to be

fully broken. In spite of the larger number of parameters in

terms of which the neutrino mixing angles and the leptonic

CPV phases are expressed, the values of the CPV phases are

still predicted to be correlated with the values of the three

neutrino mixing angles. A set-up with Ge = Z2 × H e
CP and

Gν = Z2 × H ν
CP has been considered in [34]. The result-

ing PMNS matrix in such a scheme depends on two free

real parameters – two angles θν and θe. The authors have

obtained several phenomenologically viable neutrino mix-

ing patterns from G f = S4 combined with HCP, broken to

all possible residual symmetries of the type indicated above.

Models allowing for three free parameters (two real angles

and one phase) have been investigated in [25,32,33,35]. In,

e.g., [32], the author has considered G f = A5 combined with

HCP, which are broken to Ge = Z2 and Gν = Z2 × H ν
CP. In

this case, the matrix Ue depends on an angle θe and a phase

δe, while the matrix Uν depends on an angle θν . In these two

scenarios the leptonic CPV phases possess non-trivial values.

5 Outlook

The results obtained in Refs. [12–14,22,25,30,33,35,37,39–

42,136] and in many other studies (quoted in the present and

the cited articles) show that a sufficiently precise measure-

ment of the Dirac phase δ of the PMNS neutrino mixing

matrix in the current and future neutrino oscillation exper-

iments, combined with planned improvements of the pre-

cision on the neutrino mixing angles, can provide unique

information about the possible discrete symmetry origin of

the observed pattern of neutrino mixing and, correspond-

ingly, about the existence of new fundamental symmetry in

the lepton sector. Thus, these experiments will not simply

provide a high precision data on the neutrino mixing and

Dirac CPV parameters, but will probe at fundamental level

the origin of the observed form of neutrino mixing. These

future data will show, in particular, whether Nature followed

the discrete symmetry approach for fixing the values of the

three neutrino mixing angles and of the Dirac and Majorana

CP violation phases of the PMNS neutrino mixing matrix. We

are looking forward to these data and to the future exciting

developments in neutrino physics.
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