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Abstract 

 
In this paper, a method is introduced how to process 
the Discrete Fourier Transform (DFT) by a single-
layer neural network with a linear transfer function.  
By implementing the suggested solution into neuro- 
hardware, advantage can be taken of actual parallel 
processing of spectral components of different 
frequencies and of different coefficients of each 
spectral line. When computing the DFT due to input 
data pre-processing for a certain neural network 
solution, a stand alone solution of neural networks 
without the necessity of additional computational 
resources can be achieved. 
 
1. Introduction 
 
Neural networks are used in many different application 
domains in order to solve various information 
processing problems. They have proven to be 
successful in pattern recognition, pattern classification, 
function approximation, prediction, optimization, and 
controlling [6]. The basic processing elements of 
neural networks are artificial neurons. In order to 
perform complex tasks, these neurons have to be 
interconnected in an adequate way by arranging them 
in an appropriate architecture and setting the weights 
of their interconnections. The setting of weights is 
performed during a training phase. In a supervised 
learning process, input data and target data pairs are 
presented to the network and the weights of the 
connections are altered by a learning algorithm as long 
as for (ideally) all input data, the output values of the 
network match to the target data [5]. 
To find an efficient solution to a certain problem, pre-
processing of input data is essential to reduce the 
complexity of the network and the time needed for 
training [1], [3], [7]. 
In many applications, time signals of physical values 
serve as input raw data for neural networks. To reduce 
the size of the network, it is often recommendable not 
to use the time signal itself but to extract certain 

features from this time signal. In a large number of 
cases, using a part of the frequency spectrum of time 
signals as actual input data for a neural network turns 
out to be suitable. Using the spectrum of a time signal 
can reduce the size of the input vector of a neural 
network and can therefore diminish the complexity and 
the size of the neural network necessary for solving a 
certain problem. 
In [8], an extensive overview about applications using 
frequency spectra as input data for neural networks is 
given. Applications are various and include domains 
like acoustic signal analysis, speech analysis, analysis 
of bio-signals, vibration monitoring, analysis of energy 
supply systems, or image recognition.  
For discrete time signals, the frequency spectrum of 
these signals can be calculated with the Discrete 
Fourier Transform (DFT). With a digital computer, the 
DFT can be calculated quite easily. However, by using 
a computer for this calculation, the potential advantage 
of parallel processing of different frequency 
components is lost and a stand alone solution of a 
neural network is not achievable. 
In this paper, a solution is presented how to process the 
DFT of discrete time signals by a neural network, 
which offers the advantage of actual parallel 
processing and for the application of data pre-
processing for neural networks the possibility of a 
neural network stand alone solution. 
 
2. Related work 
 
Until now, not many investigations have been 
performed concerning the calculation of frequency 
spectra by neural networks. In [4], the advantage of 
parallel processing of digital cellular neural networks 
(CNNs) is exploited to calculate the Fast Fourier 
Transform (FFT). However, the disadvantage of the 
FFT is that it can only be applied to time signals, 
which consist of 2N sampling points, where N is a 
positive integer value. 
[2] describe how to substitute the FFT calculation of 
harmonic distortions in power systems by neural 



networks. However, these networks do not perform a 
FFT calculation. 
In literature, up to now, no solution can be found how 
to compute a DFT by neural networks. 
 
3. Frequency spectra of discrete time 
signals 
 
When calculating the frequency spectrum of discrete 
time signals, it has to be distinguished between two 
cases: aperiodic and periodic time signals. Their 
differences will be discussed in the following. 
 
3.1. Aperiodic signals 
 
When sampling an aperiodic signal with dirac impulses 
of a distance of a sampling time Ts, the spectrum of 
the signal can be calculated with the formula  
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Figure 1 illustrates a discrete time signal and its 
frequency spectrum.  

As can be seen from this figure, the spectrum is 

periodic with a period of 
π2
ST

=Ω . By using a low 

pass filter, the periodically repeating components of 
the frequency spectrum can be eliminated and there 
only remains the first period, which is symmetric 
round the frequency f = 0. Therefore, the Nyquist 
theorem has to be fulfilled, according to which the 
bandwidth of the signal has to be smaller than half the 
sampling frequency:  
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3.2. Periodic signals 
 
The form of the spectrum of a discrete periodic signal 
is shown in figure 2.  

Assuming that the time period of the sampling signal is 
an integer multiple of the sampling time Ts, the 
frequency spectrum is a periodic line spectrum with 
lines at multiples of  
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The spectrum of the signal is calculated by the discrete 
Fourier Transform (DFT). The kth spectral line can be 
calculated by the formula 
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where k = 0, 1, 2, 3, …, N-1. 
 
As can be seen from this formula, N spectral lines of a 
periodic sampling signal can be calculated from N 
sampling values. In sum, for a calculation of N spectral 
lines, N2 complex multiplications are necessary. For 
realistic values of N = 1000, this results in a non-
neglectable computation effort. 
The advantage of the DFT is that the whole 
information of a measurement signal is represented in 
N sampling values and spectral lines, respectively. 

 
 

Figure 1: Frequency spectrum of discrete, 
aperiodic time signals 

 

 
Figure 2: Frequency spectrum of discrete, 

periodic time signals 
 



Precondition for its application is that the measurement 
signal is representative within the constrained time 
interval STN ⋅ . One problem with the application of 
the DFT is that most measurement signals are not 
periodic. Therefore, for a continuous signal, there has 
first to be cut out a certain “window” within which the 
continuous signal is substituted by its sampling signals 
at the points of time STN ⋅ . For applying the DFT, it 
is then assumed that the windowed, sampled signal is 
continued periodically. With certain constraints, the 
DFT can also be applied to aperiodic signals in order 
to deliver information about its spectrum at multiples 
of ω0. As for a neural network the input vector always 
has to consist of discrete values, the application of the 
DFT for data pre-processing is justified.  
 
4. Neural network for DFT calculation 
 
The aim of this paper is to present a solution how to 
process the DFT by using neural networks. Therefore, 
principally two different approaches are conceivable. 
The first possibility is to train a neural network with a 
number of “input data”-“target data”-pairs of time 
signals and their correlating frequency spectra and 
“hope” that the weights of the networks are altered in 
an adequate way by the learning algorithm in order to 
be able to generalize also over unseen signals after the 
training process. However, experiments performed 
with different network architectures, different numbers 
of layers and neurons in these layers, as well as 
neurons with different transfer functions showed that 
with a realistic effort, neural network structures could 
not learn to process DFT calculations for unseen input 
signals.  
As it turned out, in order to achieve that a neural 
network processes a DFT, a strategy has to be applied 
which maps the mathematical formula of the DFT to 
the structure of a neural network. This method does not 

require network training. The concept shown in the 
following: 
As outlined in section 3.2, by applying the DFT, the kth 
spectral line of a discrete time signal is calculated by 
the formula 
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This section now investigates how a neural network 
can be used to calculate the DFT of a discrete time 
signal by considering this formula. 
Regarding the neural network as black box in a first 
step, the input vector of the neural network is the time 
signal x(n) at N discrete points of time and the output 
shall be the spectral value X(k). From N time values, 
there can be maximally calculated N spectral values. 
To get the spectral value X(k), each of the N time 

values x(n) has to be multiplied by the factor N
jkn
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and all these products have to be summed up. It now 
turns out that this task can be performed by a neuron 
without bias, with a linear transfer function, and with 

the values N
jkn

e
π2

−
as weights of the input signals. The 

structure of a neuron that performs this task is 
illustrated in figure 3. 
To calculate a whole spectrum, for each required 
frequency value, one such neuron needs to exist. If for 
instance 20 spectral values shall be calculated, 20 
parallel neurons are necessary, each of them receiving 
the same input values and only differing in their 
weights depending on the value k. The resulting 
network structure is illustrated in figure 4. To preserve 
the overview, the values of the weights of the 
particular connections are not depicted. As already 
mentioned, the values of the weights are not learned 

from examples but result from the factor N
jkn

e
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formula 1 and differ from each other by the values n 
and k. All connections coming from the input x(0) 

always have the weight 1
20
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Connections coming from the input x(1) have the 
values 
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K  depending on the 
output k they contribute a value to. For the remaining 
connections, the same principle of weights calculation 
is applied by just altering the value of n. 
 

 
 

Figure 3 Neuron for calculation of spectral 
value X(k) 



 
5. Simulation and testing 
 
To test the introduced neural network DFT calculation 
concept, it was tested in a MATLAB simulation by 
comparing the output values of the neural network 
solution with the values calculated when directly 
applying the DFT to the same input data. 
By using the MATLAB neural network toolbox, a 
single-layered neural network with a linear transfer 
function can easily be realized and its weights, which 
are stored in a matrix, can be set to the adequate 
values.  
In order to calculate the DFT algorithmically, the 
MATLAB command fft can be applied to the input 
data vector. The function fft applies the FFT if its input 
vector consists of 2N values (were N is a positive 
integer value), and it applies the DFT for all other 
input vector sizes. 
For test purposes, from time signals with 1001 
measurement points, 100 spectral values were 
calculated by using a one-layer neural network with 
consisting of 100 neurons with a linear transfer 
function. The weights of the input layer corresponded 
to the e-function of formula 1. 
A comparison to the results of the fft-function of 
MATLAB showed the output values of the neural 
network were exactly equal to the spectral values 

provided by the neural network, which proves that the 
neural network is suitable for performing DFT 
calculations. 
 
6. Conclusion 
 
In this paper, a concept was outlined how to calculate 
the Discrete Fourier Transform (DFT) with a single-
layered neural network with a linear transfer function. 
This offers an efficient method for calculating the 
DFT. When being implemented in neuro hardware, the 
neural network offers the advantage of actual parallel 
processing of spectral components of different 
frequencies and of different coefficients of each 
spectral line. 
The application of the introduced concept is 
particularly recommendable for data pre-processing of 
input data of neural networks as with this method, 
there is no necessity for additional computational 
resources for the pre-processing stage. 
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Figure 4 Neural network for calculation of k 
spectral values 


