
IEEE SIGNAL PROCESSING MAGAZINE [90] NOVEMBER 2009 1053-5888/09/$26.00©2009IEEE

 Digital Object Identifier 10.1109/MSP.2009.934155

Discrete Fourier
Transform on Multicore

[Franz Franchetti, Markus Püschel,

Yevgen Voronenko, Srinivas Chellappa, and José M.F. Moura]

T
 his article gives an overview on the
techniques needed to implement the
discrete Fourier transform (DFT) effi-
ciently on current multicore systems.
The focus is on Intel-compatible mul-

ticores, but we also discuss the IBM Cell and,
briefly, graphics processing units (GPUs). The per-
formance optimization is broken down into three
key challenges: parallelization, vectorization, and
memory hierarchy optimization. In each case, we
use the Kronecker product formalism to formally
derive the necessary algorithmic transformations
based on a few hardware parameters. Further code-level
optimizations are discussed. The rigorous nature of this
framework enables the complete automation of the imple-
mentation task as shown by the program generator Spiral.
Finally, we show and analyze DFT benchmarks of the fastest
libraries available for the considered platforms.

INTRODUCTION
The evolution of computing platforms is at an historic inflection
point: after years of exponential growth, central processing unit
(CPU) frequency has stalled due to physical limitations.
However, the theoretical floating point peak performance, a
critical measure for the processing abilities of a platform, con-
tinues to increase at the pace predicted by Moore’s law. The rea-
son is an increase in parallelism in the form of multiple
processor cores and vector processing abilities [1].

The consequences for signal processing software are dramatic:
it means the end of free speedup for legacy software and a dra-
matically increased difficulty of writing high-performance code
since the programmer now has to use multiple threads and vector
instruction sets and tune the code to the memory hierarchy.
Unfortunately, this process is platform specific: performance does
not port easily. Failure to apply these optimizations by hand can
result in dramatic performance losses, as shown in Figure 1. The
figure shows the performance (in gigafloating point operations
per second (Gflop/s); higher is better) for four implementations of
the DFT, arguably the most important signal processing function
and focus of this article. All implementations use fast Fourier

[A review of optimizations necessary
 for good multicore performance]

© PHOTO F/X2

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [91] NOVEMBER 2009

transform (FFT) algorithms with roughly the
same number of operations. Yet, the perfor-
mance difference between the best and worst
is a factor of 12–35. The bottom line shows the
implementation from Numerical Recipes [2]
based on a standard radix-2 iterative FFT. The
next line is one of the best scalar (standard C
code) implementations and is five times faster,
since it is tuned to the memory hierarchy. The
next one gains up to another factor of three by
using streaming single instruction, multiple
data (SIMD) extensions (SSE) vector instruc-
tions. Finally, the fastest code uses up to four
processor cores and speeds up the code by
another factor of three for larger sizes. The
performance drop for very large sizes is due to
inevitable cache misses once the working set
cannot be held in the largest cache.

The main reasons for the achieved speedup
are algorithmic: all top three lines are based on nonstandard FFT
variants whose structure matches the architectural constraints
imposed by this multicore platform. Equally notable, the source
code for the fast implementations were not written by a human
but automatically produced by a tool called Spiral [3]–[5] that
we developed and whose framework underlies this article.

We present a tutorial-style overview of the optimizations
needed to achieve good performance on Intel multicore plat-
forms (top line in Figure 1), the IBM Cell, and briefly touch on
GPUs. Starting from a standard recursive FFT, we use the
Kronecker product formalism to derive the necessary structural
or algorithmic optimizations. Necessary code-level optimiza-
tions are also discussed. In this way, we address all three key
problems identified in Figure 1: multiple cores, vector instruc-
tion sets, and the memory hierarchy.

Finally, we show and analyze performance benchmarks of
the fastest libraries for Intel Core, IBM Cell, and GPUs.
Specifically, we show benchmarks for the FFT in the west
(FFTW) [6]–[8], Intel’s Integrated Performance Primitives
(IPP), Spiral-generated libraries, FFT for the IBM Cell (FFTC)
Broadband Engine [9], and [10] for the GPU. Other libraries and
related work will be introduced throughout the article.

FRAMEWORK
There are two fundamentally different ways of representing linear
transforms like the DFT: as matrix-vector products or using sum-
mations. Correspondingly, fast algorithms are represented either
with a matrix formalism as in [11] and [12] or as nested summa-
tions as in most signal processing books. In this section, we intro-
duce the matrix formalism and use it to express various classical
FFTs. Later in the article, we use this formalism as a tool for
structural manipulation of FFTs to derive variants that can be
efficiently mapped to current multicore systems. The formal
nature of the approach makes computer generation of FFT librar-
ies possible, as we have demonstrated with the tool Spiral [13]
that we developed and briefly discuss later.

We focus on the DFT but note that the framework extends to
a large class of linear transforms [3].

DFT
The DFT of n input samples x0, c , xn21 is defined in summa-
tion form as

 yk5 a
0#,,n

vn
k,x,, 0 # k , n, (1)

with vn5 exp 122pj/n 2 . Stacking the x, and yk into vectors x
and y yields the equivalent form of a matrix-vector product

 y5DFTn x, DFTn5 3vn
k, 40#k,,,n. (2)

We drop x and y and simply think of the matrix DFTn as the
transform, implicitly assuming that it is multiplied to x. Fast
algorithms are now expressed as factorizations of DFTn using
the formalism described next.

MATRIX FORMALISM
We denote with In the n 3 n identity matrix, and the butterfly
matrix with

 DFT25 c1 1
1 2 1

d . (3)

The Kronecker product of matrices A and B is defined as

 A # B5 3ak,,B 4, for A5 3ak,, 4.
It replaces every entry ak,, of A by the matrix ak,,B. Most impor-
tant are the cases where A or B is the identity. As examples, we
show in Figure 2 the structure and dataflow of the “dual” con-
structs I4 # DFT2 and DFT2 # I4. The former is obviously paral-
lel, the latter has vector structure: it can be viewed as a single
DFT2 operating on vectors of length four instead of scalars. This
will be crucial later.

0

5

10

15

20

25

30

35

40

16 64 256 1k 4k 16k 64k 256k 1M

DFT (Single Precision) on Intel Core i7 (Four Cores)

Performance [Gflop/s] Versus Input Size

Best Vector and Parallel Code

Best Vector Code

Best Scalar Code

Numerical Recipes

Multiple Threads: 3×

Vector Instructions: 3×

Memory Hierarchy: 5×

[FIG1] Naive DFT implementations based on only minimizing the operations
count underperform considerably on modern multicore CPUs.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [92] NOVEMBER 2009

The stride permutation matrix Lm
mn permutes the elements

of the input vector as in1 jAjm1 i, 0 # i , m, 0 # j , n. If
the vector x is viewed as an n 3 m matrix, stored in row-major
order, then Lm

mn performs a transposition of this matrix. Further,
if P is a permutation (matrix), then AP5 P21AP is the conjuga-
tion of A with P. Note that y5 APx implies Py5 APx, i.e., A is
performed on vectors permuted with P.

There are various identities connecting these constructs [14]
as shown in Table 1. For example, (9) shows how to translate the
duals in Figure 2 into each other. The Kronecker product natu-
rally arises in two-dimensional (2-D) and three-dimensional
(3-D) DFTs that, respectively, can be written as

 DFTm3n5DFTm # DFTn, (13)
 DFTk3m3n5DFTk # DFTm # DFTn. (14)

RECURSIVE DIT FFT
The matrix formalism can be used to express FFTs as factoriza-
tions of the matrix DFTn in (2). As an example, the recursive
general-radix decimation in time (DIT) Cooley-Tukey FFT for
n5 km is

 DFTk m5 1DFTk # Im 2T m
n 1Ik # DFTm 2Lk

n. (15)

Here, T m
n is a diagonal matrix containing the twiddle factors.

Figure 3 shows the special case 165 4 3 4. Using this algo-
rithm on an input vector x means (reading Figure 3 from right
to left):

L4
16: ■ Read x at stride four.

I4 # DFT4: ■ Apply four DFT4s on consecutive chunks.
T4

16: ■ Scale by the diagonal elements of T4
16.

DFT4 # I4: ■ Apply four DFT4s at stride four.

RECURSIVE FFT VARIANTS
Looking at Table 1, it becomes clear that many variants of (15)
can be derived. For example, simple transposition using that

DFTn
\ 5DFTn yields the decimation in frequency (DIF) Cooley-

Tukey FFT

 DFTkm5 L m
n 1Ik # DFTm 2T m

n 1DFTk # Im 2 . (16)

The four step algorithm [11], [15], [16]

 DFTkm5 1DFTk # Im 2T m
n Lk

n 1DFTm # Ik 2 (17)

was originally developed for vector computers. It produces the
longest possible unit stride vector operations at the cost of a
transposition. The six step algorithm [11], [17]

 DFTkm5 Lk
n 1Im # DFTk 2Lm

n T m
n 1Ik # DFTm 2Lk

n. (18)

was originally developed for distributed memory machines. It
produces fully local computation at the cost of three global

xy xy

+

+
+

+

+

+

−

−

−

− −

−

−

−
+

+

(a) (b)

[FIG2] Dataflow (right to left) of a parallel and its “dual”
vector construct. (a) y5 (I4 # DFT2)x. (b) y5 (DFT2 # I4)x.

xy

DFT16 =

DFT4 ⊗ I4 I4 ⊗ DFT4T4
16 L4

16

[FIG3] Cooley-Tukey FFT (15) for 165 4 3 4 as matrix formula
and as (complex) data-flow graph (from right to left). Some
lines are bold to emphasize the strided access.

[TABLE 1] FORMULA IDENTITIES TO MANIPULATE FFT
ALGORITHMS. A IS n 3 n, AND B AND C ARE m 3 m. A\ IS
THE TRANSPOSE OF A.

 1BC 2 \ 5 C\B\ (4)
 1A # B 2 \ 5A\ # B\ (5)
 Imn5 Im # In (6)
 A # B5 1A # Im 2 1 In # B 2 (7)
A # 1BC 2 5 1A # B 2 1A # C 2 (8)
 A # B5 Lmn

n 1B # A 2Lmn
m (9)

 1Lmn
m 2215 Lmn

n (10)
 Lkmn

n 5 1Lkn
n # Im 2 1 Ik # Lmn

n 2 (11)
 Lkmn

km 5 1 Ik # Lmn
m 2 1Lkn

k # Im 2 (12)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [93] NOVEMBER 2009

transpositions (all-to-all data exchanges). Both (17) and (18)
are derived from (15) using (9) and (10). The required matrix
transposition can be blocked using (11) and (12) for more effi-
cient data movement.

For a 2-D DFT, applying (7) to (13) yields the row-column
algorithm

 DFTm3n5 1DFTm # In 2 1Im # DFTn 2 . (19)

The 2-D vector radix algorithm [18] is derived from (6)–(10)

 DFTmn3rs5 1DFTm3r # Ins 2 Im#Lr
rn#Is 1T n

mn # T s
rs 2

 1Imr # DFTn3s 2 Im#Lr
rn#Is 1Lm

mn # Lr
rs 2 .

Higher-dimensional versions are derived similarly, and the
associativity of # gives rise to more variants.

ITERATIVE FFT ALGORITHMS
A second class (historically earlier) of FFT algorithms based on
(15) are the iterative FFT algorithms, obtained by recursively
expanding (15) and again using Table 1. The simplest are radix-r
forms (usually r5 2, 4, 8), which require an FFT size of n5 rk
(more complicated mixed-radix radix variants always exist).

The DIT triple-loop FFT [11], [19],

 DFTrk5 Rr
rk

q
k21

i50
Di

rk 1Irk2 i21 # DFTr # Iri 2 (20)

is the simplest iterative algorithm. Rr
rk

 is the radix-r digit reversal
permutation and Di

rk

 contains the twiddle factors in the ith stage.
A radix-2 version is implemented by Numerical Recipes [2]. A vari-
ant of (20) is the Pease FFT [20], [11], which has constant geome-
try, i.e., the control flow is independent of the stage; however, it
also requires the digit reversal permutation. It was originally
developed for parallel computers, and its regular structure makes
it a good choice for field-programmable gate arrays (FPGAs) or
application-specific integrated circuits (ASICs).

The Stockham FFT [11], [21]

 DFTrk5q
k21

i50

1DFTr # Irk21 2Di
rk 1Lr

rk2 i

Iri 2 (21)

is self-sorting, i.e., it does not have a digit reversal permutation. It
was originally developed for vector computers.

DFT VARIANTS AND OTHER FFTs
In practice, several variants of the DFT in (2) are needed including
forward/inverse, interleaved/split complex format, for complex/real
input data, in place/out-of-place (y5 x or not), and others [22].
Fortunately, most of these variants are close to the standard DFT
in (2), so fast code for the latter can be adapted. An exception is the
DFT for real input data, which has its own class of FFTs (see [4] for
an overview using the above formalism). This article focuses on
the standard one-dimensional (1-D) interleaved (alternating real
and imaginary parts) complex DFT in (2).

DFT algorithms fundamentally different from (15) include
prime-factor (n is a product of coprime factors), Rader (n is
prime), and Bluestein or Winograd (any n) FFTs and can also be

expressed in the above formalism [11]. In practice, these are most-
ly used for small sizes ,32, which then serve as building blocks
for large composite sizes via (15).

FROM MATRIX FORMULAS TO IMPLEMENTATIONS
Table 2 shows how to translate matrix formulas into basic sequen-
tial loop code. However, strictly applying the upper part of the
table will lead to low performance. The last three entries show
optimized translations. The last two show how a diagonal scaling
is always fused with subsequent loops and how permutations are
(almost) always done as readdressing in the subsequent loop. The
shown translation of y5 1Lm

mn # Ik 2x replaces every scalar in the
shown translation of y5 Lm

mnx by a vector of length k, similar as
in Figure 2(b).

Further, different types of implementations are possible, briefly
discussed next.

SINGLE-SIZE KERNELS
For small input sizes #32 or 64, matrix formulas are often imple-
mented as fully unrolled code blocks. In this case array scalariza-
tion and, to a lesser extent, algebraic optimizations and scheduling
are used to achieve best performance and can be completely auto-
mated [3], [7], [23], [24]. For example, a DFT8 kernel is imple-
mented in a few tens of lines of code.

SINGLE-SIZE LOOP CODE
If the input size is known in advance, a fixed formula or data flow
can be chosen and implemented using nested loops arising from

[TABLE 2] FROM MATRIX FORMULAS TO CODE. THE SUBSCRIPT
OF A, B SPECIFIES THE (SQUARE) MATRIX SIZE. x[b:s:e]
DENOTES THE SUBVECTOR OF x STARTING AT b, ENDING AT e,
EXTRACTED AT STRIDE s. THE DIAGONAL ELEMENTS OF D ARE
STORED IN AN ARRAY WITH THE SAME NAME.

MATRIX FORMULA MATLAB PSEUDOCODE

y5 1An
Bn 2x t[0:1:n-1] = B(x[0:1:n-1]);

 y[0:1:n-1] = A(t[0:1:n-1]);

y5 aq
k21

i50
Aibx y = x;

 for (i=0; i<k; i++)

 x = y;
 y = A(i, x);

y5 1 Im # An 2x for (i=0; i<m; i++)

 y[i*n:1:i*n+n-1] = A(x[i*n:1:i*n+n-1]);

y5 1Am # In 2x for (i=0; i<n; i++)

 y[i:n:i+m*n-n] = A(x[i:n:i+m*n-n]);

y5Dnx for (i=0; i<n; i++)

 y[i] = Dn[i]*x[i];

y5 Lmn
m x for (i=0; i<m; i++)

 for (j=0; j<n; j++)

 y[i+m*j:1:i+m*j] =
 x[n*i+j:1:n*i+j];

y5 Lmn
m # Ik 2x for (i=0; i<m; i++)

 for (j=0; j<n; j++)

 y[k*(i+m*j):1:k*(i+m*j)+k-1] =

 x[k*(n*i+j):1:k*(n*i+j)+k-1];

 y5 1Am # In 2Dmn
x for (i=0; i<n; i++)

 t= Dmn[i:n:i+m*n-n] *
 x[i:n:i+m*n-n];

 y[i:n:i+m*n-n] = A(t);

y5 1 Im # An 2Lmn
m x for (i=0; i<m; i++)

 y[i*n:1:i*n+n-1] = A(x[i:m:i+n*m-m]);

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [94] NOVEMBER 2009

tensor products and iterative products. As discussed before, scaling
and readdressing is merged into kernels for high performance.
These implementations can be generated automatically using
Spiral [3], [23], [25]. One such single-size implementation can
require up to a few hundred lines of code.

GENERAL-SIZE LOOP CODE
Only iterative algorithms lend themselves to general-size loop
code implementation. Again, readdressing is folded into the com-
putational kernel. An example is the Numerical Recipes code [2],
which implements (20) for r5 2 as a triple loop in about one page
of C code.

GENERAL-SIZE RECURSIVE CODE
Translating formulas into recursive code is complicated but is at
the heart of several high-performance portable general-size FFT
libraries [8], [26]–[28]. A tutorial for a recursive radix-4 FFT is
given in [29], leading to about two pages of C code. Extension to
vector and multicore platforms considerably increases the code
size: for example, FFTW contains more than 200,000 lines of code.
The implementation of such libraries was also automated using
Spiral [4], [28].

MAPPING FFTs TO MULTICORE CPUs
Historically, the Kronecker product formalism was used to
develop FFTs for parallel target platforms such as small-scale
and massive multiprocessors and vector computers [11], [16],
[30]. We now discuss how to extend this approach to state-of-
the-art multicore CPUs. The new hardware characteristics that
need to be captured are: 1) multiple cores communicating
through shared caches or explicit messages, 2) SIMD short
vector instructions, and 3) the memory hierarchy and its
transfer restrictions, such as caches and DMA-based streaming
memory. We will address each of these features in three steps.
First, we identify relevant hardware parameters. Second, we
identify a set of matrix formulas that can be mapped efficiently
for these parameters. Third, we derive a variant of the recur-
sive Cooley-Tukey FFT (15) that is a member of this set. In
each case, we also briefly discuss the mapping to actual code
including further relevant code-level optimizations. In the sec-
tion “Benchmarks on Multicore CPUs,” we then instantiate the
concepts and algorithms to an Intel Core and the Cell BE and
briefly discuss GPUs and FPGAs.

Choosing recursive algorithms is not a requirement. It is
possible to start from iterative algorithms or combine one or
two steps of recursion with an iterative algorithm and achieve
reasonable performance (as demonstrated by several vendor
libraries). However, many current high-performance libraries
for cache-based machines implement the recursive FFT algo-
rithms [3], [4], [6], [26], [27], [31] discussed here.

PARALLELISM: MULTIPLE CORES
The multicore CPUs we target may have shared caches (Fig-
ure 4), private caches, or scratchpads (local stores) with data
being transferred in packets. Cache coherent architectures
transfer data implicitly between private and shared caches as
required. Data transfer between scratchpads has to be man-
aged explicitly by the programmer. In each case, to obtain best
performance it is crucial to ensure that the whole data con-
tent in a transfer (e.g., cache line or DMA packet) is used by
the receiver (spatial locality) and that the number of transfers
is minimized (temporal locality).

MACHINE MODEL
We assume that the packet size is a multiple of an atomic
packet size of m complex numbers. For instance, on a cache-
based memory hierarchy, a cache coherency event, a cache
miss, or an eviction always transmits a whole cache line (e.g.,
64 B translates into m5 8 for complex single-precision). In
scratchpad-based systems like the Cell, DMA packets need to
be of sufficient size: to yield reasonable performance, a Cell
DMA transfer between SPEs should be at least 128 B (m5 16
for complex single-precision numbers) and a multiple of 16.

We consider CPUs with p cores. Well-designed parallel code
is load balanced (all cores have the same amount of work),
with minimal data transmission between cores, performed in
packets of size m. On shared memory multicores this implies
that the code is free of false sharing (two cores accessing dif-
ferent elements in the same cache line).

Matrix formulas solely built from

 Ip # A, Dn, P # Im 1P permutation, Dn diagonal 2
with A a m 3 n matrix and m 0m, n can be implemented efficient-
ly as parallel code; we call them parallel constructs. Namely,
Ip # A is load balanced and embarrassingly parallel [see Figure
2(a)], i.e., it does not require any communication. The same holds
for scaling by Dn. Finally, the communication pattern Pn # Im
transmits entire packets of size m between cores. Note that prod-
ucts of parallel constructs are again parallel constructs.

MULTICORE COOLEY-TUKEY FFT
We now state a multicore FFT built exclusively from parallel con-
structs, derived using Table 1 [5]

 DFTmn5 1Ip # 1DFTm # In/p 2 2 11Lp
mp#In/pm2#Im2Tm

mn

 1Ip # 1Im/p # DFTn 2Lm/p
mn/p 2 1 1Lp

pn # Im/pm 2 # Im 2 .
 (22)

Core Core

Data Cache

Bus

1 2 4 4 5 1 1 3

6 3 5 7

+ + + +

v0 v1

v2

Vector Registers

Vector
Operation
add v2, v0, v1

[FIG4] Shared cache in a multicore CPU and SIMD vector
extensions.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [95] NOVEMBER 2009

Implementation of (22) on a cache-based system relies on the
cache coherency protocol to transmit cache lines of length m
between cores and requires a global barrier. Implementation on a
scratchpad-based system requires explicit sending and receiving of
the data packets, and depending on the communication interface
additional synchronization may be required.

Equation (22) can be used as outermost recursion to enable
multicore parallelization. The smaller DFTs are then expanded
using the short vector Cooley-Tukey FFT (23) or the vector recur-
sion (29) shown later in this section.

Historically, the Pease and the six step FFT (18) were starting
points for parallel iterative or recursive implementations, but due
to changed tradeoffs these algorithms are no longer a good choice
in many cases.

MAPPING TO C CODE
OpenMP [32] is a good choice for parallel code if it is well support-
ed by the target platform’s compiler. OpenMP allows the program-
mer to declare certain loops to be parallel and to specify variables
as shared or private. It enables the programming of sophisticated
parallel software without needing to deal with lower-level thread-
ing details. As example, the formula I4 # DFT2 in Figure 2(a) is
translated into the following OpenMP program snippet:

double x[8], y[8];

#pragma omp parallel for

for (int i=0; i<4; i++)

{ y[2*i] = x[2*i] + x[2*i+1];

 y[2*i+1] = x[2*i] - x[2*i+1];

}

Note that only a C #pragma is inserted to instruct the com-
piler to parallelize the for loop. If OpenMP is turned off, these
pragmas are ignored and the program becomes sequential.
Because of the regular structure of FFTs only a few more
issues have to be addressed for efficient OpenMP paralleliza-
tion. For correctness, the sharing and privatization of variables
with the OpenMP shared and private clauses has to be
done properly to avoid race conditions and other problems.
For performance, scheduling hints can be provided [e.g.,
schedule(static)]. In addition, if only a subset of the
available cores is to be used, affinity can be set to choose the
subset. For example, two threads operating on the same data
should be physically close, i.e., share a high level of the memo-
ry hierarchy.

On some target platforms no OpenMP compiler may be avail-
able, in which case one must use threading libraries like the porta-
ble POSIX threads (pthreads) [33] library or use operating system
threading interfaces to build the required parallel loops and barri-
ers. While this approach can yield a slight performance advantage,
it requires understanding of the target architecture, its memory
consistency model, and cache coherency protocols.

On the Cell processor the programmer needs to manage
and synchronize threads on the PPE and the SPEs and per-
form data movements via DMA transfers. Due to the Cell’s

unconventional architecture, libraries for it must be adapted
to take advantage of its features. While there have been some
programming paradigms ported to the Cell (including some
function off-loading interfaces), for the class of programs dis-
cussed in this article, performance is best obtained by avoiding
the overhead of such interfaces.

SIMD VECTORIZATION
Most multicore CPUs include vector instruction sets. SIMD
vector extensions add vector registers (two-way double or four-
way float on the Core i7 and the Cell), and much longer vec-
tors will be available in the near future (e.g., 16-way single
precision on Intel’s upcoming Larrabee GPU, and four-way
double and eight-way single precision in AVX on the next gen-
eration of Intel multicore CPUs). Vector instructions then
operate on these registers in parallel, providing high potential
speed-up. A four-way vector addition is shown in Figure 4.

MACHINE MODEL
To obtain best performance on vector extensions, data should be
loaded and stored with vector memory operations that transfer
complete, naturally aligned vectors. Unaligned and subvector
accesses are expensive. All operations on the vector registers
should be vector operations (vector addition, subtraction, and
multiplication). Data reorganization within registers (shuffles)
are needed for FFTs but should be minimized.

For this article, we restrict ourselves to what we call complex
vectorization. We denote the machine vector length with n,
meaning n complex numbers are packed into a vector register of
length 2n; e.g., for four-way float SSE, n 5 2.

All formulas built solely from

 A # In, Dn 1complex diagonal 2 , and Ln
n2

can be implemented efficiently with vector instructions; we call
them vector constructs. Moreover, if A and B are vector con-
structs, then AB and In # A are vector constructs.

First, A # In is naturally vectorized [e.g., Figure 2(b)]: vec-
tor code for y5 1A # In 2x can be obtained from scalar code
implementing y5 Ax by simply replacing all scalar operations
by the corresponding vector operations, and all scalar variables
by vector variables. Second, we assume that y5Dnx can be
implemented efficiently for n 0n. This is a reasonable assump-
tion: for instance, the SSE 4.2 instruction set implemented by
the Core i7 contains instructions for the efficient mapping of
complex multiplications. Third, y5 Ln

n2

x can always be imple-
mented with a small number of vector instructions [34].

SHORT VECTOR COOLEY-TUKEY FFT
We show a short vector FFT algorithm that is built from vec-
torizable constructs, derived from (15) using Table 1. It
requires only a small number of in-register shuffles [35]

 DFTmn5 1 1DFTm # In/n 2 # In 2Tn
mn 1Im/n# 1In/n# Ln

n2 2
 1Ln/n

n # In 2 1DFTn # In 2 2 1Lm/n
mn/n# In 2 . (23)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [96] NOVEMBER 2009

This FFT is composable with memory hierarchy optimized FFTs.
Namely, inserting (23) into the vector recursion (29) shown later
yields again a vector construct.

A somewhat more complicated real (using a real representa-
tion of matrices) short vector FFT is derived in [36] and [37].

Traditional vector algorithms like the Four Step algorithm (17)
or the Stockham algorithm (21) were designed for traditional vec-
tor computers with much longer vectors. Due to the expensive
permutations, they are not a good choice for short-vector SIMD
architectures.

MAPPING TO C CODE
The most convenient way to efficiently use SIMD extensions is
through intrinsic function interfaces provided by most high-per-
formance compilers. For instance, the Intel C11 compiler,
Microsoft’s VisualStudio C compiler, IBM’s XL C compiler, and
the GNU C compiler provide such an interface for the supported
SIMD extensions.

The programmer uses a data type and function abstraction of
the SIMD extensions to implement C code. The compiler under-
stands the data types and special functions and maps the C pro-
gram to the respective instructions. In this scenario, the
programmer must select the appropriate instructions and make
sure machine restrictions like data alignment are met. However,
the programmer does not have to directly use assembly and thus
is spared from register allocation and instruction scheduling. For
example, the formula DFT2 # I4 in Figure 2(b) is implemented by
the following C program snippet using intrinsics for the Intel
C11 compiler. — m128 is a built-in data type to abstract XMM
vector registers, and _mm_add_ps() abstracts the SSE instruc-
tion addps through a function call

— m128 x[2], y[2];
y[0] = _mm_add_ps(x[0], x[1]);

y[1] = _mm_sub_ps(x[0], x[1]);.

MEMORY HIERARCHY
Our target multicore CPUs have a memory hierarchy with
multiple cores sharing the off-chip bandwidth. Machines with
memory hierarchies present algorithm designers with the fol-
lowing two challenges:

Temporal locality: ■ Faster memory levels are smaller, and
the working set must be blocked to fit into that level to
minimize data transfers.

Spatial locality: ■ Data transfer between memory hierar-
chy levels happens in packets. This implies that transferred
packets should be fully used to avoid wasting memory
bandwidth.

MACHINE MODEL
 A memory hierarchy can have multiple levels. For a given level,
we call the capacity N if it can hold the working set for the com-
putation of y5 Ax for an N 3 N matrix A. This implies that the
input vector x, the output vector y, and all necessary temporary
arrays and constants fit into that cache level. For instance, if we

consider double-precision, one (complex) value is 16 B. If A is a
DFT, N is the cache size divided by 64 (assuming a factor of four
space overhead). As before, we assume that data is transferred
between the current level and the next lower level in the memo-
ry hierarchy in packets of m complex numbers. Moreover, if it is
a set-associative cache, it can hold a lines of m elements in the
same set, and hence there are s5N/ 1am 2 sets.

We call formula A a memory construct if, during the com-
putation of y5 Ax, elements of x are loaded once and never
stored, and elements of y are never loaded and stored once.
Obvious memory constructs are

 An 1n # N 2 , P # Im 1P a permutation 2 , Dn. (24)

The first has a sufficiently small working set. The second
loads or stores complete packets. The last, diagonal scaling,
poses no problems.

One problematic construct in (15) has the form Am # In. As
Table 2 shows, the loop body accesses data at stride n yielding
poor spatial locality unless m # a, which is very restrictive.
However, at the expense of some overhead, this condition can be
relaxed to m # N/m5sa through buffering. It is done by first
tiling the loop by m and then copying the working set for the
innermost loop into contiguous memory. The tiled loop corre-
sponds to the formula

 Am # In5 1In/m # 1Am # Im 2 2 1Ln/m
mn/m#Im2. (25)

Buffering means that in the above formula the conjugation is
implemented using actual copy operations (in contrast to trans-
lating them into reindexing) based on the third-last entry in
Table 2. The resulting pseudocode snippet is shown next. On
the Cell the copy operations are translated into DMA instruc-
tions instead

double x[m*n], y[m*n];

for (j=0;j<n/mu;j++)

{ // allocate buffers

 double u[m*mu], v[m*mu];

 // copy into buffer

 for (k=0;k<m;k++)

 u[k*mu:1:k*(mu+1)-1] =

 x[j*mu+k*n:1:j*(mu+1)-1+k*n];

 // compute A on buffered contiguous data

 for (i=0;i<mu;i++)

 v[i:mu:i+m*mu-mu] =

 A(u[i:mu: i+m*mu-mu]);

 // copy data back

 for (k=0;k<m;k++)

 y[j*mu+k*n:1:j*(mu+1)-1+k*n] =

 v[k*mu:1:k*(mu+1)-1];

}

The other problematic construct in (15) has the form
1Im # An 2Lm

mn and can be handled similarly: the loop is again

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [97] NOVEMBER 2009

tiled but only the load side has a strided access and needs to be
buffered. Formally,

 1Im # An 2Lm
mn5 1Im/m # Lm

nm 1An # Im 2 2 1Lm/m
mn/m # Im 2 (26)

expresses the tiling and again the permutation Lm/m
mn/m # Im is

implemented using explicit copy operations.

MEMORY HIERARCHY OPTIMIZATIONS
To obtain FFT algorithms suitable for the memory hierarchy
(i.e., the algorithm is a memory construct), we start with (15)

 DFTmn5 1DFTm # In 2Tn
mn 1Im # DFTn 2Lm

mn. (27)

DFTm # In is a memory construct for m # a or m # sa if
buffering is applied. This explains why relatively small values of
m (the radix) work well in practice. Im # DFTn is a memory
construct for n # N. If n . N, recursive application of (27) will
eventually yield n # N, producing another memory construct
DFTm # In at each recursion step along the way. This suggests
that the largest possible radix m is a good choice in each step.
We show a two-level recursion for further discussion

 DFTkmn5 1DFTk # Imn 2Tmn
kmn

 1Ik # 1DFTm # In 2T n
mn 1Im # DFTn 2Lm

mn 2Lk
kmn.

 (28)

In (27), the only nonmemory construct is one Lm
mn at every recur-

sion level with mn . N. Using buffering at each step incurs too
much overhead. Buffering the right-most Ls in (28) jointly is not
possible. One solution is to give up on spatial locality: all right-
most Ls are fused and merged into the first loop as explained
before. A better solution is to translate it into a memory construct,
which is indeed possible and done, e.g., in FFTW [6]. Namely, the
entire second line in (28) is translated into the vector recursion

 1Ik # 1DFTm # In 2Tn
mn 2

 1Lk
km # In 2 1Im # 1Ik # DFTn 2Lk

kn 2 1Lm
mn # Ik 2 (29)

with m 0 n, k. This is repeated until the problematic
1Ik # DFTn 2Lk

kn is small enough to be a memory construct. The
formula manipulation leading to (29) manifests itself as loop split-
ting and loop exchange in the equivalent code [6]. Historically,
the iterative triple loop algorithm (20) was used to compute FFTs
on a single CPU. However, once the data set does not fit in cache,
cache thrashing occurs and the performance drops drastically.

MAPPING TO C CODE
The structural optimization ensures that the algorithm has good
cache locality. When mapping to code, the following additional
issues have to be addressed: 1) how to create efficient basic blocks,
2) how to exploit degrees of freedom, and 3) how to handle con-
stants (twiddle factors).

On modern, deeply pipelined superscalar processors, the recur-
sive FFT has to be terminated with a basic block that is sufficiently

large but does not cause instruction cache misses. Experiments
show that a DFT of a size between 4n and 32n (n is the SIMD vec-
tor length) is a good choice. The basic block is obtained by unroll-
ing an FFT with minimal operations count and performing scalar
replacement to enable efficient register allocation and scheduling.
Additional small gains may be achievable by C code scheduling,
reduction of the needed constants, and a few other techniques.
This process was automated in [7] and [23]. The downside is con-
siderably increased code size. For example, FFTW [6] requires sev-
eral megabytes of C code to implement 1-D FFTs based on (15).

The FFTs (22), (23), (25), (26), (29) contain degrees of freedom
(mainly the respective radix, if and where to buffer, and when to
terminate with a basic block) that can be searched over for further
platform adaptation. Dynamic programming has been proven effi-
cient in most cases [3], [6] .

Finally, the twiddle constants are usually precomputed except
for possibly very large sizes for which the FFT becomes memory
bound. In this case, computation on the fly can yield considerable
improvements. The decision is again handled by search in FFTW
and Spiral-generated libraries [4].

MAPPING FFTs TO GPUs AND FPGAs
On early machines, large programs with complex loop structures
were expensive, and memory access was relatively cheap. Multiple
passes through the entire data set were acceptable while recursive
functions were hard to implement and expensive. Thus, iterative
FFT algorithms like (20) and (21) were the best choice and were
developed first. Current machines with streaming memory (GPUs)
or small memories (DSP processors or embedded processors)
operate in a similar tradeoff spot. On FPGAs, the simple loop
structure of iterative algorithms makes them the preferred choice.
For example, the regular Pease FFT and variants of the iterative
FFT are good choices for latency and throughput optimized FPGA
implementations, respectively [11], [20], [38]. Next, we very briefly
discuss GPUs and provide references for more details.

Since the advent of programmable pixel shaders, general-pur-
pose programming on GPUs became an increasingly viable option.
Earlier GPUs like Nvidia’s G79 series were a first step towards that
goal. However, with the Nvidia G80 series GPUs have become truly
programmable. While they are still optimized for graphics-like
workloads, mapping nongraphics applications with similar struc-
ture can result in astonishing performance including for the DFT.
The caveat is that the performance is often only achievable for data
resident in GPU memory; data transfer between GPU and host CPU
is still very expensive and may nullify any speedup obtained
through the GPU’s high raw performance (we discuss this issue to
greater detail in the section “GPU”). Intel’s upcoming Larrabee
platform may improve this situation.

MACHINE MODEL
State-of-the-art GPUs like the Nvidia G80 series applies ideas from
symmetrically multithreaded (e.g., Tera MTA) and vector computers
(e.g., Cray T90) to achieve high streaming performance [39]. In
addition, minimal control flow, small computational kernels, and
spatial locality are a requirement to achieve high performance.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [98] NOVEMBER 2009

GPU FFT ALGORITHMS
The above analysis suggests the Stockham FFT algorithm
(21), originally developed for vector computers. Indeed, most
FFT implementations developed for GPUs [10], [40]–[42] are
based on (21), and the radix is chosen to match the GPU’s
hardware parameters.

MAPPING TO CODE
In early GPU computing, the computation had to be mapped to
pixel shaders using graphics languages like OpenGL and DirectX.
The language Cg was a first step towards more general-purpose
shaders that could be programmed in a C-like language.

With the G80 series, Nvidia introduced Compute Unified
Device Architecture (CUDA) [43], which makes it possible to run
more general compute-intensive algorithms on GPUs. The pro-
gram has to be broken into host code (implemented in C with
CUDA library calls) and CUDA kernels; these kernels are pro-
grammed in a special C dialect. The kernels are run in a data-par-
allel SPMD fashion on a grid; a sufficiently large grid and
homogeneous kernel code allows for high throughput perfor-
mance. It is paramount to structure the data access pattern such
that kernels that are grid neighbors operate on contiguous data
(spatial locality), to enable coalesced memory access. CUDA ker-
nels are compiled to a platform-independent byte code that the
CUDA driver translates into actual GPU code on its first invoca-
tion, introducing a significant overhead.

OpenCL [44] is an emerging open standard for parallel pro-
gramming of heterogeneous systems; one of its targets is GPU
computing and partitioning of computation across CPUs and GPUs.

COMPUTER GENERATION OF LIBRARIES
The framework presented in this article concisely describes FFTs
and enables structural optimization to efficiently match algo-
rithms to multicore platforms based on a few crucial parameters.
The formal nature of the approach has another major advantage:
it serves as a blueprint for the computer generation of transform
libraries. We have demonstrated this with Spiral, a system that
generates high-performance libraries for linear transforms includ-
ing the DFT. Given only textbook algorithms (as in the section
“Framework”), Spiral generates multithreaded, vectorized source
code. In Spiral, the matrix formalism is used as domain-specific
declarative language called SPL, on which structural optimiza-
tions are performed by rewriting systems. In addition, to perform
all necessary optimizations, Spiral uses an extension called S-SPL
[25], [28] not described here due to space restrictions. The source
code-level optimizations are performed by Spiral’s backend com-
piler (an extension of [23]). Spiral can generate code for trans-
forms of fixed input size [3], [5], [37], [45] or general input size
transform libraries [4], [28] that are similar to FFTW.

Major advantages of library generation include the efficient han-
dling of the implementation complexity and the ability to quickly
port to new platforms. The complexity is due to the combination of
many nontrivial transformations including those in this article, the
need for further code-level optimizations (such as the unrolling of
small kernels as was briefly discussed), the degrees of freedom in

these optimizations (such as the choice of radix or the use or not
use of buffering), the need for specialization (e.g., for small code
sizes, FFTW provides many variants), the number of transforms
needed (the DFT variants discussed in the section “Framework” and
other transforms), and the set of available algorithms.

Problems with porting include different programming models
(vector instructions, explicit DMA, OpenMP) and the difficulty of
maintaining performance, both exacerbated by the fast evolution
of platforms.

A library generator greatly alleviates these problems, and, as
shown in the next section, often without losses and sometimes
even gains in performance. For example, an increasing number of
transform routines in Intel’s IPP (starting with 6.0) are generated
by Spiral, the main reason being superior performance.

BENCHMARKS ON MULTICORE CPUs
In this section, we show FFT benchmarks of the fastest libraries
on multicores that are state of the art (at the time of this writ-
ing). The focus is on an Intel Core quadcore system and the IBM
Cell BE with nine cores, but we also include results for the
Nvidia GPU GTX280 with 240 cores. For the Core and the Cell,
we consider Spiral-generated libraries, which implement the
exact techniques discussed and the similar FFTW 3.2 library.
FFTW implements the recursive Cooley-Tukey FFT, buffering,
vector recursion, and SIMD vectorization, using algorithms simi-
lar but not equal to (22) and (23). For the Core, we also show
Intel’s IPP 6.0 [22] and for the Cell FFTC [9]. For the GPU, we
extracted the results from [10].

The performance for input size n is computed as 5n log2 1n 2 /t,
where t is the run time in seconds. This is a slight overestimate
since the true flop count is closer to 4n log2 1n 2 and depends on
the exact algorithm and recursion strategy chosen.

INTEL MULTICORE

PLATFORM
We consider a 2.66 GHz Intel Core i7 quadcore processor
(Nehalem microarchitecture, 45 nm process) with SSE 4.2
instruction set. It has three levels of cache and 25.6 GB/s memory
bandwidth (using all three on-chip memory controllers). Each
core supports hyperthreading but for programs with high arith-
metic density (like FFTs), SMT does not provide any benefit, so in
Spiral we use no more than four threads using OpenMP.

The Core i7 implements SSE 4.2, providing two-way double
precision and four-way single precision floating point vector sup-
port. Moreover, it supports complex arithmetic operations packing
one complex double-precision number or two complex single-pre-
cision numbers into vector registers. While unaligned memory
access is supported, the best performance is achieved with 16-B
aligned vector loads and stores.

The Core i7 implements the shared memory paradigm.
Each core has a private 64 kB L1 cache and 256 kB L2. The
8 MB L3 cache is shared among cores. All caches have 64 B
cache lines (four complex double-precision numbers or eight
complex single-precision numbers).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [99] NOVEMBER 2009

The theoretical peak performance is 85.12 Gflop/s
for single and 42.56 Gflop/s for double precision.

RESULTS
Figure 5(a) and (b) shows results for out-of-place dou-
ble-precision and single-precision two-power FFTs.
FFTW and the Spiral- generated library [4] are com-
piled with the Intel C11 compiler 11.0 and flags “-O3
-xS;” IPP is provided as binary. The measurements are
with “warm” cache.

For the Spiral-generated libraries, the working set
for input size n is 6n real numbers or 4 1/16n real
numbers if the twiddle factors are computed on the fly.
Figure 5(a) and (b) indicates maximal cache resident
sizes. For example, in Figure 5(a), an FFT is L3 cache
resident up to n5 217.

Overall, in Figure 5(a) and (b), Spiral is about
equal and often faster than the hand-written librar-
ies. For small sizes, the performance reaches up to
10 Gflop/s (double precision) or 14 Gflop/s (single
precision); in double precision, a slight drop occurs
for the first size (256) that is not completely
unrolled. This is due to the occurring index expres-
sions that can be fully precomputed and inlined
only if the code is unrolled. The first speedup
through threading occurs already for a working set
that fits into the L1 cache of one core. Sub-
sequently, the performance ramps up as four cores
are used on L1, L2, or L3 cache resident data yield-
ing about 3x speedup over one thread. The
 performance peaks at 15 Gflop/s (double precision)
and 35 Gflop/s (single precision) for vectorized code
running on all four cores. The drop for single preci-
sion and input size 16 K may be an artifact of
imperfect search. For sizes outside the shared L3
cache, the performance drops as the computation
becomes memory bound. At this point buffering,
vector recursion, and on-the-fly twiddle computa-
tion become crucial.

Since the FFTs used by the Spiral-generated library
are already adapted as explained in this article, even a
random choice of recursion will yield reasonable per-
formance (say, within 2x). The detailed shape of the
best recursion for a given DFT size on a given multi-
core CPU is difficult to predict. However, we made the
following observations.

The multicore Cooley-Tukey FFT (22) is used as
top-level algorithm sizes that are large enough to ben-
efit from parallelization. Typically, m5m in (22) leads
to a yields good performance. Further, the short vector
Cooley-Tukey FFT (23) provides perfect SIMD vector-
ization. On the Core i7 n5n is a good choice.

For cache-resident sizes, the standard Cooley-
Tukey FFT (15) is a good choice with k small enough
such that DFTk can be implemented fully unrolled,

0

2

4

6

8

10

12

14

16

18

Spiral Generated

Intel IPP 6.0

(a)

(b)

(c)

Spiral Generated (One Thread)

FFTW 3.2

L1
One
Core

L1
Four

Cores

L3
Shared

0

5

10

15

20

25

30

35

40

Spiral Generated

Intel IPP 6.0

Spiral Generated (One Thread)

FFTW 3.2

L3
Shared

0

10

20

30

40

50

60

Spiral Generated

FFTC

FFTW

[47]

[46]

Complex DFT (Intel Core i7, 2.66 GHz, Four Cores, Double Precision)

Performance [Gflop/s] Versus Input Size

Complex DFT (Intel Core i7, 2.66 GHz, Four Cores, Single Precision)

Performance [Gflop/s] Versus Input Size

Complex DFT (STI Cell BE, 3.2 GHz, Eight Cores, Single Precision)

Performance [Gflop/s] Versus Input Size

164 64 256 1k 4k 16k 64k 256k 1M

16 64 256 1k 4k 16k 64k 256k 1M

64 256 1k 4k 16k 64k 256k 1M 4M 16M

L1
One
Core

L1
Four

Cores

[FIG5] DFT performance on the (a), (b) 2.66 GHz Intel Core i7, and the
(c) 3.2 GHz Cell BE. Higher is better.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [100] NOVEMBER 2009

and the machine has enough registers to support the computa-
tion. In practice, 8n # k # 32n (CPU-dependent) is a good
choice. Once the working set no longer fits into the last cache
level (or into the local store on the Cell) the involved tradeoffs
become tricky. In addition to (15), the vector recursion (29) and
buffering (25), (26) become fastest. On the Core i7 for large
enough DFTkmn, a typical out-of-cache decomposition applies the
vector recursion (29) with 8 # k, m # 32 until the working set
fits into the last cache level. In addition, DFTk # Imn and
DFTm # In are buffered and the twiddle factors computed on the
fly. This coincides with our abstract analysis in the section
“Memory Hierarchy.”

CELL BE

PLATFORM
We consider a 3.2 GHz Cell BE with nine cores, including one
traditional PowerPC core and eight SIMD vector cores [called
synergistic processing elements (SPEs)]. Each SPE includes
its own fast on-chip 256 KB local memory (local store) that is
designed to be explicitly managed by the programmer. This
means intercore and main memory-local store transfers must
be performed via DMA; the achieved DMA bandwidth increases
with DMA packet size. The Cell includes a set of four-way sin-
gle precision SIMD instructions for the SPEs, accessible via C
intrinsics. The vectorization, however, is very similar to Intel’s
SSE. The peak performance of the Cell is 204.8 Gflop/s single
precision (SPEs only) and 14.4 Gflop/s double precision.

RESULTS
Figure 5(c) shows the (latency) performance of Spiral-generated
code (separate functions for every size [45] in this case), FFTC [9],

and FFTW 3.2, each using the interleaved-complex data format.
Spiral-generated code is compiled with spu-gcc (flags: “-O2”), the
other data is extracted from the respective papers. In addition we
include the 224-sized DFT from [46] and the 216-sized DFT from
[47] (both use split-complex data format). The latter has been esti-
mated to achieve a throughput of 116 Gflop/s.

Spiral-generated code to date is limited to sizes for which the
working set fits into the union of all local stores; the same seems
to hold for FFTC. Both perform better than FFTW for these sizes.
The excellent performance of both [47] and [46] is due to a highly
optimized 28-sized kernel.

All loads and stores from main memory, and all intercore com-
munication (permutations in (22)) are performed explicitly using
DMA instructions. We use the Cell’s intercore messaging mecha-
nisms for synchronization barriers.

The Cell allows initiated DMA instructions to proceed in the
background along with active computation. Although not current-
ly used in our code in Figure 5(c), large out-of-chip DFT sizes can
use a multibuffering technique based on (25) to (partially) hide
memory costs. Data can be stored and loaded for the previous and
next iterations in separate buffers while computation progresses
for the current iteration. The explicit move operations in (25)
would become DMA instructions.

For parallel code, in contrast to the Core i7, the best m, n in
(22) found are both close to "mn, since this maximizes the pack-
et size m. The remaining choices found are similar to the Core i7;
inside (22) and (23), a (15) with m < 128 is chosen.

Other results include [48], who achieve about 22 Gflop/s on a
single SPE for DFTs of input sizes 210 and 213 resident in the SPE’s
local store. [49] implement 2-D and 3-D parallel SPE-resident FFT
kernels achieving up to 30 Gflop/s.

GPU

PLATFORM
We consider the Nvidia 280GTX with 240
cores grouped into 30 multiprocessors, 1 GB
of on-GPU main memory and a GPU memory
bandwidth of 140 GB/s. The shader clock is 1.3
GHz, and each core can perform 1 fused multi-
ply-add and a multiply operation per cycle,
leading to 936 Gflop/s peak performance. The
connection between CPU memory and GPU
uses PCIe 2.0, which for 16 lanes has a band-
width of 16 GB/s (8 in each direction). The the-
oretical (single precision) peak performance is
936 Gflop/s.

RESULTS
The run time results in Figure 6 are taken
from [10] and appear to be the fastest at the
time of this writing. The memory configura-
tion limits the achievable floating-point perfor-
mance for FFTs to 43.75 log2 n Gflop/s out of
GPU memory (obtained from 140 GB/s GPU

0

50

100

150

200

250

300

350

400

Complex DFT

(Nvidia GTX280, 1.3 GHz, 240 Cores, Single Precision)

Performance [Gflop/s] Versus Input Size

GPU Memory

Bandwidth Bound

Host Memory

Bandwidth Bound

Latency Performance

(From GPU Memory)

Throughput Performance

(From GPU Memory)

2 8 32 12
8

51
2 2k 8k 32

k
12

8k
51

2k 2M 8M

[FIG6] DFT performance on a Nvidia GTX 280 GPU. Higher is better.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [101] NOVEMBER 2009

memory bandwidth), and to 5 log2 n Gflop/s out of host memory
(obtained from 16 GB/s PCIe bandwidth). These bounds are
included as gray lines in Figure 6. The plot shows latency (one
DFT is performed) and throughput (223/n DFTs of size n are per-
formed in batch mode), both with GPU memory resident data.

Throughput performance plays well to the strength of the
GPU and ramps up almost parallel to the memory bandwidth
bound until n5 512; then cache limitations cause the perfor-
mance to drop to about 100 Gflop/s. We note that it is possible
(not specified in [10]) that the batch mode computes DFTn # I
(interleaved DFTs) rather than I # DFTn. Not surprisingly,
latency performance in contrast can amortize memory latency
only for large sizes.

It seems attractive to transparently utilize the GPU as accelera-
tor for batched single precision DFTs in CPU computations. The
problem is the PCIe bandwidth between host memory and GPU
memory, which yields the lower gray line as performance bound,
and realistically probably half of that. Consequently, only very large
sizes would benefit. However, if the entire application can be
implemented on the GPU, the full performance can be harnessed,
and can yield for the DFT up to an eightfold performance improve-
ment compared to a CPU and up to fivefold compared to the Cell.

FPGA
While not directly in the scope of this article, we mention (for
comparison) that the FFT in [13] and [38] achieves up to
40 Gflop/s throughput performance on a Virtex-4 (V4-FX140) for a
DFT256 in single-precision floating point using all logic available
(more data is not readily available). On Virtex-6, twice the perfor-
mance is possible using twice the resources. This performance
requires the data to be on chip; the off-chip bandwidth is typically
about 10 GB/s in each direction. Note that usually fixed point is
used on FPGAs and that most applications leave only a small
part of the available logic for FFTs. In summary, the main
appeal of FPGAs for DFTs is in power savings rather than in use
as mere accelerators.

For commercial state-of-the-art FFTs on FPGAs see, e.g.,
[50] and [51].

CONCLUSIONS
The end of CPU frequency scaling and the advent of multicore
systems has two major consequences for compute-intensive sig-
nal processing applications. First, it marks the end of free
speedup for legacy software. Second, the software development
skill required to achieve optimal performance is dramatically
increased. As we have shown for the DFT, minimizing opera-
tions count alone does not yield optimal or even close-to-opti-
mal performance. Instead, the structure of algorithms becomes
crucial and has to be matched to the target architecture.
Specifically, the checklist for high performance is efficient paral-
lelization, vectorization, and memory hierarchy optimization.
The necessary transformations are likely to stay out of reach for
compilers since they require domain knowledge and the ability
to assess the many available choices. To handle the implementa-
tion complexity, we believe it is important to develop rigorous

approaches that formalize algorithmic optimizations by con-
necting the algorithm structure with architecture parameters.
We have presented such a framework for the DFT and used it to
give an overview on FFTs and optimizations for current multi-
cores. Further, as we demonstrated with Spiral, the rigorous
nature of the framework enables automation: the computer
generation of DFT libraries that often achieve excellent perfor-
mance compared to their handwritten counterparts.

ACKNOWLEDGMENT
This work was supported by NSF through awards 0325687,
0702386, by DARPA (DOI grant NBCH1050009), the ARO grant
W911NF0710416, and by Intel Corp. and Mercury Computer
Systems, Inc.

AUTHORS
Franz Franchetti (franzf@ece.cmu.edu) is an assistant research
professor with the Electrical and Computer Engineering (ECE)
Department at Carnegie Mellon University. He received the
M.Sc. degree in technical mathematics and the Ph.D. degree in
computational mathematics from the Vienna University of
Technology in 2000 and 2003, respectively. He was a postdoc-
toral research associate with the Institute for Analysis and
Scientific Computing in 2003. From 2004 to 2005, he was a
postdoctoral research associate with the ECE Department at
Carnegie Mellon University and a recipient of the Austrian
Science Fund Schrödinger Fellowship. In 2006, he was member
of the team winning the Gordon Bell Prize (Peak Performance
Award). From 2005 to 2008, he was systems scientist (special
faculty) with Carnegie Mellon’s ECE Department.

Markus Püschel (pueschel@ece.cmu.edu) is a professor in
the Electrical and Computer Engineering Department at
Carnegie Mellon University. He received his M.Sc. degree in
mathematics and his Ph.D. degree in computer science in 1995
and 1998, respectively, both from the University of Karlsruhe,
Germany. He was an associate editor for IEEE Transactions on
Signal Processing, and IEEE Signal Processing Letters and was a
guest editor of the Proceedings of the IEEE and the Journal of
Symbolic Computation. He received the College of Engineering
at Carnegie Mellon’s Outstanding Research Award and the Eta
Kappa Nu Award for Outstanding Teaching. He also holds the
title of Privatdozent at the University of Technology, Vienna,
Austria. He is a Senior Member of the IEEE.

Yevgen Voronenko (yvoronen@ece.cmu.edu) is a project sci-
entist in the Electrical and Computer Engineering Department
at Carnegie Mellon University (CMU). He received a B.S. degree
in computer science from Drexel University in 2003 and his
Ph.D. degree from CMU in 2008, where he was awarded the A.G.
Milnes Outstanding Ph.D. Dissertation Award. His research
interests include scientific computing, software engineering,
programming languages, and compiler design.

Srinivas Chellappa (schellap@ece.cmu.edu) is a Ph.D. can-
didate in the Electrical and Computer Engineering Department
at Carnegie Mellon University. He is currently working on auto-
matic program generation of DSP kernels for distributed

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [102] NOVEMBER 2009

 memory platforms. His research interests include parallel and
distributed systems, automatic code generation, operating sys-
tems, virtualization, and computer architecture.

José M.F. Moura (moura@ece.cmu.edu) is a professor at
Carnegie Mellon University (CMU), where he manages a large
program between CMU and Portugal (www.icti.cmu.edu). He is
also codirector of CMU’s Center for Sensed Critical
Infrastructures Research. His interests include statistical and
algebraic signal and image processing. He was editor-in-chief
of IEEE Transactions in Signal Processing and interim editor-
in-chief of IEEE Signal Processing Letters. He is the president
of the IEEE Signal Processing Society. He is a Fellow of the
IEEE, a Fellow of AAAS, and corresponding member of the
Academy of Sciences of Portugal.

REFERENCES
[1] G. Blake, R. G. Dreslinski, and T. Mudge, “A survey of multicore architectures,”
IEEE Signal Processing Mag., vol. 26, no. 6, pp. 26–37, 2009.

[2] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes in C: The Art of Scientific Computing, 2nd ed. Cambridge, U.K.:
Cambridge Univ. Press, 1992.

[3] M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. W. Singer,
J. Xiong, F. Franchetti, A. Gac̆ić, Y. Voronenko, K. Chen, R. W. Johnson, and N.
Rizzolo, “SPIRAL: Code generation for DSP transforms,” Proc. IEEE (Special Is-
sue on Program Generation, Optimization, and Adaptation), vol. 93, no. 2, pp.
232–275, 2005.

[4] Y. Voronenko, F. de Mesmay, and M. Püschel, “Computer generation of gen-
eral size linear transform libraries,” in Proc. Code Generation and Optimization
(CGO), 2009, pp. 102–113.

[5] F. Franchetti, Y. Voronenko, and M. Püschel, “FFT program generation for
shared memory: SMP and multicore,” in Proc. Supercomputing (SC), 2006,
p. 51.

[6] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc.
IEEE (Special Issue on Program Generation, Optimization, and Adaptation), vol.
93, no. 2, pp. 216–231, 2005.

[7] M. Frigo, “A fast Fourier transform compiler,” in Proc. Programming Lan-
guage Design and Implementation (PLDI), 1999, pp. 169–180.

[8] M. Frigo and S. G. Johnson, FFTW 3.2 [Online]. Available: www.fftw.org

[9] D. A. Bader and V. Agarwal, “FFTC: Fastest Fourier transform for the IBM cell
broadband engine,” in Proc. Int. Conf. High Performance Computing (HiPC),
2007, pp. 172–184.

[10] N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli,
“High performance discrete Fourier transforms on graphics processors,” in Proc.
Supercomputing (SC), 2008, pp. 1–12.

[11] C. Van Loan, Computational Framework of the Fast Fourier Transform.
Philadelphia, PA: SIAM, 1992.

[12] R. Tolimieri, M. An, and C. Lu, Algorithms for Discrete Fourier Transforms
and Convolution, 2nd ed. New York: Springer-Verlag, 1997.

[13] M. Püschel, Spiral Web site [Online]. Available: www.spiral.net

[14] J. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A methodology for
designing, modifying, and implementing Fourier transform algorithms on various
architectures,” IEEE Trans. Circuits Syst., vol. 9, no. 4, pp. 449–500, 1990.

[15] A. Norton and A. J. Silberger, “Parallelization and performance analysis of
the Cooley-Tukey FFT algorithm for shared-memory architectures,” IEEE Trans.
Comput., vol. 36, no. 5, pp. 581–591, 1987.

[16] M. Hegland, “Block algorithms for FFTs on vector and parallel computer,” in
Parallel Computing: Trends and Applications. Amsterdam, The Netherlands:
Elsevier, 1994, pp. 129–136.

[17] D. H. Bailey, “FFTs in external or hierarchical memory,” J. Supercomput., vol.
4, no. 1, pp. 23–35, Mar. 1990.

[18] D. B. Harris, J. H. Mc Clellan, D. S. K. Chan, and H. W. Schuessler, “Vector
radix fast Fourier transform,” in Proc. Int. Conf. Acoustics, Speech, and Signal
Processing (ICASSP), 1977, pp. 548–551.

[19] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of
complex Fourier series,” Math. Comput., vol. 19, pp. 297–301, Apr. 1965.

[20] M. C. Pease, “An adaptation of the fast Fourier transform for parallel process-
ing,” J. ACM, vol. 15, no. 2, pp. 252–264, Apr. 1968.

[21] P. N. Schwarztrauber, “Multiprocessor FFTs,” Parallel Comput., vol. 5, pp.
197–210, July 1987.

[22] Intel Corp., Intel integrated performance primitives (ipp) 6.0 [Online].
Available: http://software.intel.com/en-us/intel-ipp

[23] J. Xiong, J. Johnson, R. Johnson, and D. Padua, “SPL: A language and com-
piler for DSP algorithms,” in Proc. Programming Language Design and Imple-
mentation (PLDI), 2001, pp. 298–308.

[24] I. W. Selesnick and C. S. Burrus, “Automatic generation of prime length FFT
programs,” IEEE Trans. Signal Processing, vol. 44, no. 1, pp. 14–24, 1996.

[25] F. Franchetti, Y. Voronenko, and M. Püschel, “Loop merging for signal
transforms,” in Proc. Programming Language Design and Implementation
(PLDI), 2005, pp. 315–326.

[26] D. Mirković and S. L. Johnsson, “Automatic performance tuning in the
UHFFT library,” in Proc. Int. Conf. Computational Science (ICCS) (Lecture Notes
in Computer Science, vol. 2073). New York: Springer-Verlag, 2001, pp. 71–80.

[27] D. Takahashi, “An implementation of parallel 1-D FFT using SSE3 instruc-
tions on dual-core processors,” in Proc. Int. Workshop State-of-the-Art in Scien-
tific and Parallel Computing (PARA), 2006, pp. 1178–1187.

[28] Y. Voronenko, “Library generation for linear transforms,” Ph.D. disserta-
tion, Elect. Comput. Eng., Carnegie Mellon Univ., Pittsburgh, PA, 2008.

[29] S. Chellappa, F. Franchetti, and M. Püschel, “How to write fast numerical
code: A small introduction,” in Proc. Summer School on Generative and Trans-
formational Techniques in Software Engineering (GTTSE) (Lecture Notes in
Computer Science, vol. 5235). Berlin: Springer-Verlag, 2008, pp. 196–259.

[30] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri, “A methodol-
ogy for designing, modifying, and implementing Fourier transform algorithms on
various architectures,” IEEE Trans. Circuits, Syst., Signal Processing, vol. 9, no.
4, pp. 449–500, 1990.

[31] A. Ali, L. Johnsson, and J. Subhlok, “Scheduling FFT computation on SMP
and multicore systems,” in Proc. Int. Conf. Supercomputing (ICS), 2007, pp.
293–301.

[32] OpenMP. (1998). OpenMP C and C++ application program interface, ver-
sion 1.0 [Online]. Available: www.openmp.org

[33] B. Gallmeister, POSIX.4. Sebastopol, CA: O’Reilly, 1994.

[34] F. Franchetti and M. Püschel, “Generating SIMD vectorized permutations,”
in Proc. Int. Conf. Compiler Construction (CC) (Lecture Notes in Computer
Science, vol. 4959). Berlin: Springer-Verlag, 2008, pp. 116–131.

[35] F. Franchetti and M. Püschel, “Short vector code generation for the dis-
crete Fourier transform,” in Proc. IEEE Int. Parallel and Distributed Processing
Symp. (IPDPS), 2003, pp. 58–67.

[36] F. Franchetti and M. Püschel, “A SIMD vectorizing compiler for digital sig-
nal processing algorithms,” in Proc. IEEE Int. Parallel and Distributed Process-
ing Symp. (IPDPS), 2002, pp. 20–26.

[37] F. Franchetti, Y. Voronenko, and M. Püschel, “A rewriting system for the
vectorization of signal transforms,” in Proc. High Performance Computing for
Computational Science (VECPAR), 2006, pp. 363-377.

[38] P. A. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Formal datapath
representation and manipulation for implementing DSP transforms,” in Proc.
Design Automation Conf. (DAC), 2008, pp. 385–390.

[39] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin, N. Mitchell, J.
Feo, and B. Koblenz, “Multi-processor performance on the Tera MTA,” in Proc.
Supercomputing (SC), 1998, pp. 1–8.

[40] K. Moreland and E. Angel, “The FFT on a GPU,” in Proc. ACM SIGGRAPH/
EUROGRAPHICS Conf. Graphics Hardware, 2003, pp. 112–119.

[41] N. K. Govindaraju and D. Manocha, “Cache-efficient numerical algorithms us-
ing graphics hardware,” Parallel Comput., vol. 33, no. 10–11, pp. 663–684, 2007.

[42] A. Nukada, Y. Ogata, T. Endo, and S. Matsuoka, “Bandwidth intensive 3-d FFT
kernel for GPUs using CUDA,” in Proc. Supercomputing (SC), 2008, pp. 1–11.

[43] Nvidia Corp., Nvidia CUDA [Online]. Available: www.nvidia.com/cuda

[44] Khronos Group, OpenCL [Online]. Available: www.khronos.org/opencl/

[45] S. Chellappa, F. Franchetti, and M. Püschel, “Computer generation of fast
Fourier transforms for the cell broadband engine,” in Proc. Int. Conf. Supercom-
puting (ICS), 2009, pp. 26–35.

[46] A. C. Chow, G. C. Fossum, and D. A. Brokenshire, “A programming example:
Large FFT on the cell broadband engine,” IBM, Tech. Rep., May 2005 [Online].
Available: https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/0AA23
94A505EF0FB872570AB005BF0F1/$file/GSPx_FFT_paper_legal_0115.pdf

[47] J. Greene and R. Cooper, “A parallel 64K complex FFT algorithm for the IBM/
Sony/Toshiba cell broadband engine processor,” in Proc. Global Signal Process-
ing Expo (GSPx), 2005.

[48] L. Cico, R. Cooper, and J. Greene, “Performance and programmability of the
IBM/Sony/Toshiba cell broadband engine processor,” in Proc. (EDGE) Workshop,
2006.

[49] P. Bientinesi, N. Pitsianis, and X. Sun, “Multi-dimensional array operations for
signal processing algorithms,” in Proc. Int. Workshop State-of-the-Art in Scientific
and Parallel Computing (PARA), 2008.

[50] 4DSP Inc., 4DSP [Online]. Available: www.4dsp.com/fft.htm

[51] Dillon Engineering, Dillon FFT [Online]. Available: www.dilloneng.com/
fft_ip [SP]

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 5, 2010 at 05:37 from IEEE Xplore. Restrictions apply.

