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Abstract: Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division
multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.)
is used in channel conditions where time-varying features are required. The existing channel estima-
tion techniques are highly complicated. A channel estimation algorithm is needed to estimate the
received signal’s correctness. In order to resolve this complexity in C.E. methodologies, this paper
developed an Improved Channel Estimation Algorithm integrated with DFT-LS-WIENER (ICEA-DA).
The Least Square (L.S.) and Minimum Mean Square Error (MMSE) algorithms also use the Discrete
Fourier Transform (DFT)-based channel estimation method. The DFT-LS-WIENER channel estima-
tion approach is recommended for better BER performance. The input signal is modulated in the
transmitter module using the Quadrature Phase Shift Keying (QPSK) technique, pulse modeling, and
least squares concepts. The L.S. Estimation technique needs the channel consistent throughout the
estimation period. DFT joined with L.S. gives higher estimation precision and limits M.S.E. and BER.
Experimental analysis of the proposed state-of-the-art method shows that DFT-LS-WIENER provides
superior performance in terms of symbol error rate (S.E.R.), bit error rate (BER), channel capacity (CC),
and peak signal-to-noise (PSNR). At 15 dB SNR, the proposed DFT-LS-WIENER techniques reduce
the BER of 48.19%, 38.19%, 14.8%, and 14.03% compared to L.S., LS-DFT, MMSE, and MMSE-DFT.
Compared to the conventional algorithm, the proposed DFT-LS-WIENER outperform them.

Keywords: MIMO; OFDM; least square estimator; channel estimation; minimum mean square error;
discrete Fourier transform

1. Introduction

Enabling 5G technology is recognized by MIMO in mobile communications [1]. Per-
formance gain in extensive MIMO can be attained, and reliable exposure to channel state
information (C.S.I.) is essential [2]. A large number of downlinks to C.S.I. are needed to
acquire C.S.I. conventionally, since they can use the large-scale array antenna at the base
station, even for a massive downlink MIMO [3–7]; then, since the array size of the base
station is proportional, the channel matrices are not able to compute and this requires
extreme maximized training for downlink overheads since it is a direct estimation [8].

MIMO transmission will be a significant part of wireless communication in the com-
ing days in wireless technology. This type of system has minimum difficulty executing
OFDM and is simple. In contrast, in the case of non-orthogonal multi-carriers, the MIMO
structure of the receiver has become more complicated since it has to handle various in-
terference measurements, i.e., inter-symbol interference (I.S.I.), inter-carrier interference
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(I.C.I.), and inter-antenna interference (I.A.I.) [9–11]. Those reference signals that are re-
ceived have been influenced by various measurements of interference (known as pilots);
this estimates the channel (C.E.) and the complicated and consecutive equalization (E.Q.)
of the received signal (Rx). Mostly, the channel is dispersed in multiple types of broadband
communication [12–15].

In ref. [4], it was found that the improved channel estimation of C.P. information
could be designed to be utilized through Kalman filters. However, this technique can be
employed only for orthogonal waveforms. In order to improve the performance of Channel
Estimation by reusing pilots’ knowledge from C.P., this paper utilized the localization of
symbol-time in orthogonal waveforms [16,17].

It can also be referred to by correctly localizing the pilot energy up to the terminated
point of the block. It needs to possess maximum energy while it is copied to the C.P.
Identification of symbols in the data of non-orthogonal multi-carriers and acquires the
various Channel Estimation and C.Q. modules independent of the usual practice. The
earlier works on Channel Estimation [18] were calculated with L.S. then LMMSE estimators
that assumed that I.S.I. and I.C.I. manage additional correlation noise with the white noise of
non-orthogonal waveforms. Even though the non-iterative techniques have been discussed
in [19], they can acquire the implementation of Channel Estimation with increased errors
and poor SNR. It is directly applicable to MIMO interference with little interference and
non-orthogonal waveforms and has no solution for channel estimation.

Channel Estimation (C.E.) utilizes C.S.I. to transmit and receive the wireless signal.
In a wireless communication medium, C.S.I. causes power degradation, fading, and wave
scattering as a function of transmission distance. The channel state information (C.S.I.)
is determined by comparing the pilot signals used during the transmitter to the received
pilot signals. In contrast, the SNR reflects the resilience of the bit stream about the channel
noise. The concept of C.E. is evolving based on the objective of the correlation of signal
at the center point integrated with suppression of the M.A.I. This signal quality impacts
receiver BER performance [20]. In C.E., two schemes are employed for estimating signals,
namely, (i) pilot-assisted scheme, which trains the allocation of symbols to bandwidth; and
(ii) blinding using statistical features. At the receiving end, channel estimation inserts pilot
signals into the transmitted signal, resulting in signal overhead, which a minimum number
of pilot symbols can reduce.

Currently, for uplink MU-MIMO communication, countless MIMO detectors are used.
In addition, an optimal maximum likelihood detector and a low-complexity environment
are also developed.

The channel estimate is crucial in OFDM systems. Enhancing the system’s bit error
rate performance is utilized to boost the channel capacity of an OFDM system. Based on
a comb-shaped pilot array, channel estimation is performed on the pilots, and a Rayleigh
fading channel is considered.

A performance measure of the M.S.E. of the channel estimator fusing DFT-based pro-
cedure obtains the best results as contrasted with the consolidation of LS-based strategies.
The comparative analysis is carried out by varying parameters, such as the number of
subcarriers, channel taps, cyclic prefix length, and pilot frequency.

This article recommends a channel estimation method incorporating differential evo-
lution and L.S. with DFT. The proposed ICHE-DA is included in the central part of the
OFDM-MIMO block. We consider a two-user interference channel for MIMO-OFDM
systems. We demonstrate the basic idea of a user-based transmitter and receiver using
DFT-LS-WIENER. Further, we focus on interference from frequency-selective channels. By
doing so, the main struggle is to evaluate the accuracy of covariance matrices, which may
need accurate information on interference parameters. Moreover, one of the contributions
is to analyze the firmness of the spectrum by coinciding with the DFT series. The findings
showed that the suggested system outperforms the current technique in terms of BER,
PSNR, CC, and MMSE.



Entropy 2022, 24, 1601 3 of 20

Problem Statement

In an ideal radio channel, there would only be one direct path signal, a flawless
recreation of the transmitted signal. On a natural channel, the signal is altered during
transmission. Copies of the transmitted signal that have been attenuated, reflected, re-
fracted, and diffracted make up the received signal. Additionally, the channel puts noise
into the signal and causes the carrier frequency to shift as the transmitter or receiver moves
(Doppler effect). A radio system’s performance depends on the radio channel’s characteris-
tics. Therefore, understanding these effects on the signal is crucial. As a result, in our work,
we consider a MIMO-OFDM system before employing pilot permutation to estimate the
channel. This article compares the L.S., MMSE without DFT, and the L.S., MMSE with DFT.
A new DFT-LS-WIENER hybrid channel estimation technique is also proposed to improve
bit error rate performance.

The rest of the paper is organized as follows: Section 2 describes the literature sur-
vey. Section 3 presents the proposed DFT-LS-WIENER method. Section 4 discusses the
comparison of the proposed work. Finally, Section 5 presents the conclusion

2. Literature Survey

In their introduction of the MIMO-OFDM for hybrid channel estimator, Nie et al. [3]
underlined the sparse nature of angular channels and the use of compressed sensing
(C.S.) tools based on wave systems. The continuous annular channel has resolved the
issue of restricted angular resolution. The discretization has also been resolved by the
angular support of sparse channel designs utilized in C.S. based on channel estimation.
The proposed channel estimator’s minimum construction error and optimal performance
are calculated by performance analysis [20]. Lee et al. [7] discussed a novel scheme for
channel estimation in downlink channels using the CSMBCS technique in the downlink
channel estimation. The usual sparsity and cluster design have been employed where the
user is unknown to evaluate the scenario of various subcarriers of downlink channels. The
initial local clusters have been constructed using the Bayesian architecture described by
sparsity and local beta process (LBP) property. However, accuracy may be low [21].

Qiao et al. [8] determined the parallel-interference-cancellation (P.I.C.) technique based
on MIMO LMMSE for shared channel estimation and leveling non-symmetrical waveforms.
In contrast to the essential practice, appropriately restricting the pilots in time, and area,
likewise utilizing pilots’ data from C.P. Using execution findings showed that using C.P.
data from pilots resulted in edge error rate execution increases of up to 2.4 dB above
the OFDM signal. It performs poorly in BER tests [22]. Berraki et al. [10] proposed a
semi-daze, time–space estimation of channel procedure for frequency-selective enormous
MIMO frameworks. The arrangement relies upon subspace spread by signing eigenvectors
obtained from a signing covariance matrix. Critically, the receiver examines the reception
rate based on time–space estimation accessed for an exact matrix estimation. The estimation
technique does not need symmetry between preparation images of clients in all cells [23].

Alkhateeb et al. [11] anticipated the NAMP calculation as an assessment model that
depends on the LTE-Advanced remote channel model. At first, NAMP need not bother
with the sparsity level prior information. At that point, the fixed advance size that improves
the sign reproduction effectiveness is decided. Lastly, a Singular Entropy request assurance
component endeavors to avoid the less pertinent iotas that can be presented. It accomplishes
increasingly stable execution, particularly in low SNR channel conditions, and after that,
the multifaceted computational nature is decreased, such as the versatile SAMP calculation.
The main drawback of this work is that it has higher computational complexity [24].

The estimation of the channel covariance matrix of the received sampled signals in
the frequency domain is proposed by Ngo et al. [25]. An asymptotically massive MIMO
system’s channel vector possesses orthogonal property, where the channel vector and
eigenvector are proportional. The covariance matrix estimation by a limited number of
signal samples produces an error and the assumption that channels are perfectly orthogonal
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are the two limitations of the system. The condition assumed in this method is that the
numbers of both the samples and antennas are asymptotically large.

Zarifi et al. [26] proceeded with a CDMA system having unknown WSS noise. The
centro-Hermitian property estimates the generalized correlation decomposition-based
blind channel estimation noise covariance matrix for estimating noise subspace in the data
samples. Lama et al. [27] considered multipath channels for the STBC-CDMA system. STBC
is implemented by exploiting spreading codes with unique structures and developing a
computationally efficient channel estimation algorithm.

The angular resolution is improved by utilizing redundancy samples containing
substantially more uniform DSFT premises than the antenna numbers proposed by Lee
et al. [28]. DSFT number premises are equal to angular spectrum samples at an increased
rate, which increases both lengths of the short channel vector that need to be recuperated,
and the number of nonzero components improved. Along these lines, more channel
estimations (longer preparing groupings) should be acquired for extraordinary recuperation
of the signal.

Li et al. propose the Minimum Mean Square Error (MMSE) scheme with second-order
statistics [29]. The limitations of this method are the channel estimation error. A joint
estimation of channel length and OFDM system impulse response is proposed by Charles
et al. [30], using the balanced achievement between information, specification based on
Kullback–Leibler divergence, and noise rejection with an accurate channel description.
Hence, data specification is unsuitable for practical channel length estimation techniques be-
cause of prohibitive complexity. Estimating the channel is performed recursively, allowing
optimal channel length establishment with considerable cost and increased performance
and robustness. The main limitation of the proposed work is that power consumption is
high. Dhanasekaran et al. [31] presented a game theory-based MIMO-OFDM communica-
tion system for reducing the BER and NMSE value. This work improves the performance of
the MIMO-OFDM system [32–36]. Ramalingam et al. introduced various communication
protocols using optimization techniques and IoT networks [31,37–42].

3. Proposed Methodology

This work presented an improved channel estimation algorithm DFT-LS-WIENER
integrated with a differential approach. Moreover, this paper uses the L.M.DFT approach for
channel estimation in the wireless communication medium. The middle area of the MIMO
framework is where the suggested DFT-LS-WIENER is located. MIMO systems typically
include several transmitters and a receiver antenna for parallel data transmission. The
proposed model is examined for two transmitters and four-receiver antennae. Quadrature
Phase-Shift Keying modulation (QPSK) is utilized for input modulation on the transmitter
side [43–47]. Then, I.S.I. is mitigated through the utilization of P.S.A., where P.S.A. is
involved in transmitting waveform pulses and effectively utilizing available bandwidth.

If signal bandwidth is more effective than channel bandwidth, it leads to signal
distortion. This distortion is observed in the I.S.I. environment. To control I.S.I. in wireless
communication, a pulse shaping filter (P.S.F.) is utilized for analysis. On each transmitter
side, symbol mapping and IFFT operations are performed. Subsequently, this leads to
transmitting information over the Multipath channel and includes AWGN noise on the
receiver side. At the receiver, this operation is performed inversely with the utilization
of DFT-LS-WIENER. With the utilization of LMMSE and DFT, a semi-blind review is
performed. Figure 1 details the overall flow of constructing a MIMO system with ICEA-DA.
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Figure 1. Block diagram of channel estimation in MIMO-OFDM system with Wiener filter model.

3.1. System Description

All of the subcarriers have been modulated using different techniques. The results
have been simulated using the QPSK modulation technique. The next step in aligning the
bit stream over the subcarriers is the mapping of the subcarriers. In the OFDM design,
the Wiener filter is employed because it reduces the mean square error between the actual
transmitted signal and the received signal. Here, L = 7 is the Wiener filter order under
consideration. Initially, the incoming signal information is transmitted through pilot
sequences and modulation schemes such as the QPSK scheme [48,49]. The QPSK scheme
consists of the advantages and noise factor. Another advantage of this scheme is a higher
information transmission rate than another modulation scheme with minimal bandwidth.

The signal shift consists of ‘4’ signal states with the transmission of information
through the QPSK scheme as 2 bits/symbol. Each signal in the system is modified by 1 bit
thanks to the encoding strategy. The transmitted signal is represented by the sine and
cosine of the following Equation (1):

gn(t) =

√
2Se

Ds
cos
(

2π fct + (2n− 1)
π

4

)
, n = 1, 2, 3, 4 (1)

Here, gn(t) signifies the signal based on the time, Se represents the symbol energy,
symbol duration is denoted as Ds, whereas fc is defined as the baseband of the signal.

In the modulator of the MIMO scheme, 4 phases of the signal are generated, which consists
of 2D signal space with unit function ϕ1(t) and ϕ2(t) denoted as follows Equations (2) and (3)

ϕ1(t) =
√

2
Ds

cos 2π fct, 0 ≤ t ≤ T (2)

ϕ2(t) =
√

2
Ds

sin 2π fct, 0 ≤ t ≤ T (3)
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From the above, Equations (2) and (3) ϕ1(t) and ϕ2(t) are used to measure the quadra-
ture and in-phase components. According to Equation (4), an OFDM signal is conceptually
composed of four signal constellations based on four points in the signal space.(

±
√

Se

2
,±
√

Se

2

)
(4)

Here, the system’s full power, distributed equally between the two carriers involved,
is represented by the signal factor 1/2. At the receiving end, the symbols are demodulated
by removing the carrier phase factor, and the continuously received robot in phase 2 is
determined from the input data.

Let pt(t) indicates the transmit-side P.S.F. for each symbol and pr(t) signifies the
receive antenna side matched the filter. The composite channel is symbolized as H(t). The
(IR, IT) time-domain signal received at the iR antenna is as follows:

hiR,iT(n) =
NT

∑
iT=1

hiR,iT(n)⊗ xiT + N (5)

Here, Equation (5) represents/denotes noise placed in the uncorrelated spatial and
temporal region and/or represents the presence of noise in transmitting the time-domain
signal at their antenna. After the removal of I.S.I., with the utilization of IFFT, ISI is
eliminated. Moreover, it uses the symbol mapping technique at each transmitter side.
Fourier analysis is performed in frequency domain components for signal transmutes in
time or spatial domain factors. IFFT is implemented at the receiver end to improve flexibility,
execution speed, and precision. Different complexes and data points are transformed for
the same number of time-domain points when the IFFT procedure is used. The IFFT
involved in the execution of N-point receiver operation in Equation (6) IFFT is presented
mathematically as follows:

u(n) =
1
N

N−1

∑
n=1

U(k)e
−jπkn

N , n = 0, 1, . . . . ., N − 1 (6)

The represented data frame transforms where/the size or the number of signal points.
k = 0, 1, . . . , N − 1, and U(k) indicates the FFT frequency output at the kth end. Then, FFT
analysis transforms the signal in the receiver block in the time domain. The following is
the mathematical formulation for the FFT in Equation (7).

U(k) =
N−1

∑
n=1

u(n)e
−j2πkn

N , k = 0, 1, . . . . ., N − 1 (7)

Moreover, the information is passed in a multipath channel environment with added
AWGN noise characteristics. Instead of the message signal, AWGN is used in this document
due to its higher bandwidth. The example that follows shows how system n’s noise
generates a vector that has the same components as the message defined in Equation (8)
and a random stationary point with mean 0 of a complex Gaussian distribution:

m = np × (M(0, 1)) + i×M(0, 1) (8)

where np signifies the noise power and M(0, 1) represents a message signal of the same
length. It includes random variables that are normal or Gaussian.

3.2. Firmness of Spectrum

When a signal is delivered, the fundamental frequency is f0 = 1/T0, where T0 is the
signal’s period. This translates to a frequency of 1/N for discrete-time transmissions. Since
all other frequencies are multiples of this fundamental frequency, the resolution of the
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spectrum is determined by the number of samples N. At k = N/2, it is possible to determine
the highest signal frequency that X[k] may represent. According to Shannon’s sampling
theorem, the highest frequency of the original signal, which is assumed to be an audio
stream sampled at 44.1 kHz, is 44.1/2, or 22.05 kHz. In the case of N = 1024 samples,
the coefficient at k = N/2 corresponds to a frequency of 22.05 kHz, and the coefficient at
k = 1 to a frequency of 22.05/512 43.1 Hz. The DFT coefficients would represent various
frequencies (for instance, k = 1 corresponds to 22.05/500 = 44.1 Hz) if we sampled another
area of an audio signal with just 1000 samples (at the same sample rate). According to the
conclusion, the spectra can only be compared if the DFT spectra are computed using the
same number of samples. The second numerical sample demonstrated another impact
on the resolution. The DFT spectrum cannot fail to reflect the genuine contribution of the
individual frequencies of an arbitrary signal x[n], even if the signal is periodic because it is
sampled, i.e., it only has information about particular discrete frequencies.

3.3. Receiver Structure

A receiver with channel estimation and MIMO detection is proposed using LS-DFT
with overlapping pilots. Without sacrificing generality, each subcarrier in each frame-block
is assumed to have a pilot, i.e., NF = NT = 1, yielding N(T.S.) = N.N.T., and pilot existence
of multiple or redundancy N.R. = N (T.S.)/N.G. The phase difference of the received signal
causes multipath fading. This is because the signal strength moves over varying distances
and paths. Use a Rayleigh distribution to reach the receiver via multiple paths. For fast-
fading situations, the Rayleigh distribution is most commonly used. The pilots are assigned
by reusing the pilot sequence from the multiple request pilot requests themselves. The
multi-objective optimization algorithm can easily optimize the time-varying channel metric.
The proposed pilot allocation method has the potential to provide a powerful method for
counting the sends with a request to users within their cells. The fitness function (F.F.)
is a crucial component of evolutionary algorithms. The pilot pattern of multiple pilot
requests is reused in this document for the pilot assignment. The optimization algorithm
can optimize the channel measure that changes over time.

The proposed pilot allocation method has the potential to provide a powerful method
for counting the requesting users in their cells. The fitness function (F.F.) is critical to the
receiver-side optimization concept.

In order to develop a solution for parallel search optimization and the continuous
process, the DFT-LS-WIENER technique is proposed. Because control parameters are
included, the suggested DFT-LS-WIENER offers improved convergence benefits. With
efficient continuous variable handling and integer variable optimization, the suggested
DFT-LS-WIENER is provided in canonical form.

3.4. Least Square Error (L.S.) Estimation

If ‘Z’ is sent through a channel ‘j’ such that it can be written in matrix form as,

y = Zj (9)

Then, the error ‘e’ can be defined as

e = x” − x (10)

where x is the anticipated result.
The definition of the squared error (S) is

S = |e|2 S = (x” − x)2 S = (x” − x) ∗ (x” − x)t (11)

where “t” in superscript denotes complex matrix transposition.

S = (x” − Zj) ∗ (x′ ′ − Zj)t (12)
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By taking the derivative with respect to ‘j’ and setting it equal to zero, we may minimize
this equation. The result of the final equation is:

j” = (Zt Z) − 1Ztx (13)

j” = Z − 1 x j ls = Z − 1x (14)

Both SISO and MIMO systems can use Equation (14).

3.5. DFT-LS-Wiener Channel Estimation

At the pilot frequencies, channel estimation is performed using the Least Squares (L.S.)
approach. In this case, DFT-based channel estimation is used. As a result, the channel
answers are shortened to the number of channel taps before being approximated using the
least square method.

i. After completing the DFT-based LS estimation, the estimates are fed to the Wiener
filter model.

ii. The goal of applying the Wiener filter model in channel estimation is to decrease the
quantity of noise in a noise-affected signal and to decrease the mean square error
between the actual broadcast signal and the received signal.

iii. Wiener coefficients are produced based on the order of the Wiener filter; for example,
if the order is six, then the Wiener filter model produces six Wiener coefficients.

iv. DFT-LS estimates are filtered using these Wiener coefficients.
v. The desired output is a noiseless channel estimate.

By applying linear time-invariant (L.T.I.) approaches to filter a noisy experimental
process, a Wiener filter is a signal processing filter that generates an estimate of a desired
or target stochastic process. The Wiener filter decreases the mean squared error between
the estimated and predicted random processes. By using the pertinent signal as input and
filtering the known signal to obtain an estimate as output, a Wiener filter aims to compute
a statistical estimate of an unknown signal. For instance, an interesting unknown signal
tampered with by additive noise can be present alongside a known signal. It is possible to
estimate potentially important signals using Wiener filters to remove noise from distorted
signals. A typical deterministic filter’s frequency response is designed for the selected
carrier frequency. The Wiener filter, however, is created differently. To develop a linear
time-invariant filter whose output is as close as possible to the original signal, one must be
aware of the spectral properties of both the original signal and noise.

3.6. Finite Impulse Response Wiener Filter Model for Discrete Series Ls Estimates

The output of the Wiener filter g[n] is compared with the reference signal s[n] after
being convolved with the input signal Hls[n]. The DFT-LS estimates (Hls[n]) are supplied to
a Wiener filter with coefficients a0, a1 . . . aN of order (number of touches passed) N in order
to produce the Wiener filter coefficients. The expression’s result, x[n], is used to signify
the filter’s output. The difference between the estimated and original signals is reduced
to a minimum via the Wiener filter model. It significantly reduces root mean square error
and improves bit error rate performance. The block diagram of the F.I.R. Wiener filter with
DFT_LS estimates as input is shown in Figure 2.
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4. Results and Discussions

This research was conducted to determine and compare the proposed algorithm’s
performance to that of other systems. To evaluate the proposed approach system perfor-
mance, the measures that will be evaluated are BER, M.S.E., and MMSE. The proposed
algorithm measures network performance by varying the system’s SNR concerning the
number of receiver and transmitter antennas. The suggested algorithm is run using machine
configuration on the MATLAB platform.

4.1. Performance Analysis

Table 1 shows the system configuration used in the developed model and its values.

Table 1. Simulation parameters.

No FFT Points 1085

Length of Cyclic Prefix 648

Total no of Subcarriers 5385

Total no of Symbol 289

Pilot Arrangement Recursive type

Pilot Constellation QPSK

Data Constellation QPSK

Bandwidth 9 MHZ

SNR Range 0–30 dB

Data subcarrier 64, 128, 256, 512

Pilot spacing 16, 32

Number of Iterations 300

Denoising model Wiener filter

Here, the proposed ICEA-DA with LS FFT is utilized to analyze the system’s perfor-
mance. The metrics considered for analysis are expressed as follows:

4.1.1. Bit Error Rate (BER)

In characterizing data channel performance, it is used as an essential parameter. At
the remote end, errors in critical parameters appear while transmitting data from one to
another point in wireless link/radio or wired telecommunication link.

BER =
Nb(e)
TN(tb)

(15)

where Nb(e) is the number of bits in error, and TN(tb) is the total number of transmitted bits.

4.1.2. Mean Square Error

It is calculated as the average squared deviations between estimated and actual values.
Its risk function is equivalent to the predicted values of error function loss.

A comparison of the simulation and analytical results, which yield the M.S.E. and
BER of equalization generated by DFT-based then Wiener channel estimators, is shown
in Tables 2 and 3 and Figure 3. The output of the simulation’s MSE-related equalizer is
derived using analytical and semi-analytical methods. A minor disagreement was found
with high SNR (>15 dB) intended for a DFT-based channel estimator.
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Table 2. Analysis of optimal power allocation methods.

S. No Authors Name Methods Merits Demerits

1. Lee, J et al. [7]
Hybrid mmWave

MIMO-OFDM
Channel Estimation

It yields substantial
system throughput gains

with reduced
computational overhead

Necessary to reduce SNRs
when huge numbers of the

antenna are used

2. Qiao, G et al. [8] Bit and power
allocation algorithm Reduced Bit Error Rate

Still, it faces problems with
low complexity bit and a

power allotment

3. Berraki, D.E et al. [10] New Adaptive greedy
algorithm strategy Reduced M.S.E.

Superior techniques are
necessary to boost power

allocation with
reduced complexity

4. Khan, et al. [41]
Spatial partitioning with
coalitional game theory

(SPCGT)

Improved
power allocation

The convergence rate has to
be improved

5. Dhanasekaran et al. [31]
Energy-efficient equal

power allocation method
using G.A.

Optimal performance with
minimal complexity M.S.E. is a concern

6. Kumar, P.S. et al. [42]

Channel Prediction based
Temporal Multiple Sparse

Bayesian Learning for
Channel Estimation

Considerably increased
the throughput

It faces problems with
local optimum

7. Fereydouni, A.R et al. [49] Singular value
decomposition Improved diversity gains

Advanced techniques are
necessary to yield optimal

power allocation

Table 3. MSE and BER of hybrid DFT-LS-WIENER.

SNR (dB) BER MSE

0 0.088385 0.015678
3 0.034779 0.007881
6 0.010104 0.003916
9 0.002036 0.001961
12 0.000367 0.000987
15 5.47 × 10−5 0.000494
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Tables 4–8 and Figures 4 and 5 illustrate the L.S. and MMSE channel estimation
methods performance of M.S.E. and BER. The experimental results represent the estimator
gains of MMSE, which are more than 4 dB larger than the L.S. estimator through all values
of SNR, because of the MMSE ability to remove the noise outside. Additionally, if the
value of SNR is too high, then the MMSE estimator of M.S.E. becomes low compared to the
L.S. estimation.

Table 4. M.S.E. of LS AND MMSE.

SNR (dB) M.S.E. of MMSE MSE of L.S.

0 0.028968 0.115917
3 0.020203 0.065559
6 0.011584 0.031985
9 0.006628 0.015689
12 0.003304 0.007218
15 0.001777 0.004017

Table 5. BER of LS AND MMSE.

SNR (dB) BER of MMSE BER of LS

0 0.075906 0.089109
3 0.054953 0.073078
6 0.043031 0.066734
9 0.037188 0.064219
12 0.032375 0.065094
15 0.030234 0.069031

Table 6. M.S.E. and BER values of DFT, Harmonic retrieval, and LS-DFT method.

Parameters Harmonic Retrieval
Method LS-DFT DFT-LS-WEINER

MSE 0.1689 0.004017 0.4310
BER 0.08654 0.069031 0.4198

Table 7. Conventional complexity of DFT, Harmonic retrieval, and LS-DFT method.

Number of
Blocks

Complex
Computation

Harmonic
Retrieval
Method

LS-DFT DFT-LS-
WEINER

4
Rotation factors 427,930 (23.3%) 855,900 (46.6%) 19.3%
Multiplication 126,362 (52.9%) 138,650 (48.2%) 39.6%

Addition 1,104,500 (28.1%) 1,850,400 (47.1%) 21.4%

8
Rotation factors 102,040 (20.4%) 267,893 (40.1%) 16.5%
Multiplication 299,008 (46.1%) 303,104 (51.4%) 40%

Addition 237,568 (20.2%) 245,760 (45.5%) 17.1%

Table 8. SNR vs. BER performance with the Number of subcarriers varied.

Bit Error Rate (BER)

SNR (dB) No. of
Subcarrier LS LS-DFT MMSE MMSE-

DFT
DFT-LS-

WEINER

15 64 0.533 0.5 0.4167 0.35 0.02285
15 128 0.4083 0.25 0.244 0.2333 0.01871
15 256 0.3417 0.2375 0.2313 0.1908 0.01678
15 512 0.3001 0.20 0.221 0.1591 0.01601
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4.2. Simulation Results with Number of Subcarriers Varied

Figure 6 shows that when the number of subcarriers is 64, the bit error rate for the
DFT-LS-WIENER technique at 15 dB SNR is 0.02285, which is significantly less than the
L.S., LS-DFT, MMSE, MMSE-DFT techniques.

4.3. Simulation Results with Length of Cyclic Prefix Varied

Tables 9 and 10 discuss the BER and SNR performance analysis compared with conven-
tional algorithms at different subcarriers K. The proposed approach provided the minimum
BER value at different subcarriers compared to the conventional algorithm. The comparison
of the proposed DFT_LS_WIENER approach and the conventional algorithm is shown in
Figures 7–13.

Table 9. SNR vs. BER performance with the Number of channel taps varied.

Bit Error Rate (BER)

SNR (dB) No. of
Subcarrier LS LS-DFT MMSE MMSE-

DFT
DFT-LS-

WEINER

15 2 0.4083 0.25 0.333 0.2333 0.01871

15 6 0.591 0.399 0.201 0.190 0.083

15 10 0.7167 0.675 0.4417 0.4 0.1192
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Table 10. SNR vs. BER performance with the length of cyclic prefix varied.

Bit Error Rate (BER)

SNR (dB) No. of
Subcarrier LS LS-DFT MMSE MMSE-

DFT
DFT-LS-

WEINER

15 1/8th of K 0.5667 0.4417 0.2333 0.21 0.02583

15 1/4th of K 0.525 0.175 0.175 0.1583 0.02669

15 1/2th of K 0.35 0.05833 0.05833 0.03 0.02683
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Figure 10 shows that when the cyclic prefix length is increased to 1/4th of the number
of subcarriers, the bit error rate is reduced compared to the previous cyclic prefix length
(1/8th of the number of subcarriers).
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4.4. Simulation Results with Pilot Frequency Varied

Table 11 shows the BER of SNR with pilot frequency varied.

Table 11. SNR vs. BER performance with pilot frequency varied.

Bit Error Rate (BER)

SNR (dB) No. of
Subcarrier LS LS-DFT MMSE MMSE-

DFT
DFT-LS-

WEINER

15 16 0.5083 0.4083 0.175 0.1667 0.02641

15 32 0.5240 0.5240 0.291 0.199 0.099

4.5. Analysis

The performance of the proposed method is checked against state-of-the-art (e.g.,
QAM, BPSK) and modulation-free schemes. The parameters considered in the analysis are
L.S., MMSE, BER, and PSNR. The details of the comparison are presented in the following
sections. Figures 14 and 15 and Tables 12–15 shows the applicability of channel estimators in
OFDM. Looking at OFDM, the BER behavior of LSDFT is quite different, and its value tends
to zero as SNR increases. There are two reasons for this. (i) The LS-DFT is used as a Wiener
filter when the residual disturbance remains unchanged. (ii) With selectivity, the number
of holes in the frequency response increases. The equalizer coefficient Z.F. Fm = 1/Hˆm is
used to estimate the error since the high-frequency equalization stage causes more symbol
detection errors.

Entropy 2022, 24, x FOR PEER REVIEW 18 of 21 
 

 

 
Figure 14. Comparison of PSNR for proposed with other techniques. 

 
Figure 15. Comparison of S.E.R. for proposed with existing technique. 

In Figure 14, the performance of the proposed method is presented taking various 
modulation schemes into consideration with the inclusion of the PSNR measurement. Un-
der this condition, the PSNR value is observed as the proposed ICEA-DA approach with 
LS DFT, and provides a PSNR of 42, while other schemes, such as QAM and BPSK, pro-
vide modulation values of 9 and 23, respectively. In the case without modulation, the 
PSNR value is measured as 28. 

Figure 15 compares the performance of the DWT-LS-WIENER algorithm with other 
traditional techniques such as the QAM and BPSK schemes. For these methods, the BER 
ranges from 103 to 104 with SNR gains of 1 to 11 dB. In the proposed method, BER exists 
between 101 and 102 with SNR of 10 and 11 dB with significant performance. Hence, the 
introduced DFT-LS-WIENER approach outperforms compared to conventional ap-
proaches. 

Proposed ICEA - DA QAM BPSK Without Modulation
Modulation Technique

0

5

10

15

20

25

30

35

40

45

PS
N

R

1 2 3 4 5 6 7 8 9 10 11

Eb No dB

0

10 1

10 2

10 3

10 4

Sy
m

bo
l E

rro
r R

at
e

ICEA - DA with LS DFT

Without Modulation

QAM

BPSK

Figure 14. Comparison of PSNR for proposed with other techniques.

Table 12. Efficiency of DFT-LS WIENER over L.S., LS-DFT, MMSE, MMSE-DFT when the Number of
subcarriers varied.

Efficiency of DFT-LS WIENER

No. of Subcarrier L.S. (%) LS-DFT (%) MMSE (%) MMSE-DFT (%)

64 95.7 95.4 94.5 93.4

128 95.4 92.4 92.33 91.9

256 96.6 92.99 92.78 91.2

512 94.6 92.92 92.70 89.9
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Table 13. Efficiency of DFT-LS WIENER over L.S., LS-DFT, MMSE, MMSE-DFT when Number of
channel taps varied.

Efficiency of DFT-LS WIENER

Channel Taps LS (%) LS-DFT (%) MMSE (%) MMSE-DFT (%)

2 95.41 95.5 92.3 91.9

6 85.9 79.1 58.7 56.3

10 83.36 82.3 73.01 70.2

Table 14. Efficiency of DFT-LS WIENER over L.S., LS-DFT, MMSE, MMSE-DFT when length of cyclic
prefix varied.

Efficiency of DFT-LS WIENER

Cyclic Prefix Length L.S. (%) LS-DFT (%) MMSE (%) MMSE-DFT (%)

1/8th of K 95.4 94.1 88.9 87.7

1/4th of K 94.91 93.7 84.7 83.1

1/2th of K 92.3 90.2 54 40

Table 15. Efficiency of DFT-LS WIENER over L.S., LS-DFT, MMSE, MMSE-DFT when pilot
frequency varied.

Efficiency of DFT-LS WIENER

Pilot Frequency L.S. (%) LS-DFT (%) MMSE (%) MMSE-DFT (%)

16 85 79.5 84.9 84.1

32 85.6 81.1 65.9 50.2

In Figure 14, the performance of the proposed method is presented taking various
modulation schemes into consideration with the inclusion of the PSNR measurement.
Under this condition, the PSNR value is observed as the proposed ICEA-DA approach with
LS DFT, and provides a PSNR of 42, while other schemes, such as QAM and BPSK, provide
modulation values of 9 and 23, respectively. In the case without modulation, the PSNR
value is measured as 28.
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Figure 15 compares the performance of the DWT-LS-WIENER algorithm with other
traditional techniques such as the QAM and BPSK schemes. For these methods, the BER
ranges from 103 to 104 with SNR gains of 1 to 11 dB. In the proposed method, BER exists
between 101 and 102 with SNR of 10 and 11 dB with significant performance. Hence, the
introduced DFT-LS-WIENER approach outperforms compared to conventional approaches.

5. Conclusions

The proposed DFT-LS-WIENER estimate performs better than L.S., LS-DFT, MMSE,
and MMSE-DFT channel estimation algorithms in terms of BER performance for the channel
estimation of MIMO-OFDM. When the number of subcarriers increases, the bit error rate
is reduced. As the number of channel taps increases, the bit error rate also increases.
As the cyclic prefix length increases, the bit error rate is reduced considerably. When
the pilot frequency is increased, the bit error rate is also increased. Including the DFT
technique in L.S. and MMSE improves the bit error rate performance. The computational
complexing and time complexity of the DFT-LS-WIENER algorithm depends on the number
of transmitting and receiving antennas in the system. If the number of transmitting
antennae is N and the number of receiving antennae is M, then its time and computational
is N*M. The accuracy of the proposed technique is high compared to the L.S., MMSE,
LS-DFT, and MMSE-DFT channel estimation algorithms. Compared to the proposed
approach, the efficiency of the introduced method attained 85%, 79.5%, 84.9%, and 84.1%
compared with L.S., MMSE, LS-DFT, and MMSE-DFT. The proposed DFT-LS-WIENER
algorithm is less complex and very easy to implement. The demerits include introducing
the Wiener model in channel estimation, increasing the cost of implementation, and extra
circuitry required for implementing the Wiener filter model. Our future works include
implementing other adaptive filters such as the Kalman and Kernal filters in the channel
estimation algorithms. Further, there will be minimal hardware implementation using the
proposed methodology, and it will be simultaneously carried out without compromising
the proposed methodology’s performance.
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