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Discrete Fractional Fourier Transform Based on New
Nearly Tridiagonal Commuting Matrices
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Abstract—Based on discrete Hermite–Gaussian-like functions,
a discrete fractional Fourier transform (DFRFT), which provides
sample approximations of the continuous fractional Fourier
transform, was defined and investigated recently. In this paper,
we propose a new nearly tridiagonal matrix, which commutes
with the discrete Fourier transform (DFT) matrix. The eigen-
vectors of the new nearly tridiagonal matrix are shown to be
DFT eigenvectors, which are more similar to the continuous Her-
mite–Gaussian functions than those developed before. Rigorous
discussions on the relations between the eigendecomposition of the
newly proposed nearly tridiagonal matrix and the DFT matrix are
described. Furthermore, by appropriately combining two linearly
independent matrices that both commute with the DFT matrix, we
develop a method to obtain DFT eigenvectors even more similar to
the continuous Hermite–Gaussian functions (HGFs). Then, new
versions of DFRFT produce their transform outputs closer to the
samples of the continuous fractional Fourier transform, and their
applications are described. Related computer experiments are
performed to illustrate the validity of the works in this paper.

Index Terms—Discrete fractional Fourier transform (DFRFT),
discrete Fourier transform, Hermite–Gaussian functions.

I. INTRODUCTION

TRANSFORM operators have been frequently exploited
for signal analysis, compression, and other applications

in signal processing area. One of the most important transform
operators is the Fourier transform. The continuous fractional
Fourier transform (FRT) is a generalization of the continuous
Fourier transform [8]–[10]. Some of the possible applications
of the FRT are optical signal processing, quantum mechanics,
time-frequency representation, optimal filtering [8]–[12], etc.
Because of the importance of the FRT, the discrete fractional
Fourier transform (DFRFT), which can be used for digitally
computing the FRT, was defined and investigated recently
[2]–[7], [21]. The basic requirements of a definition of the
DFRFT are [2]–[4] 1) additive and 2) approximating the con-
tinuous FRT.

Most of the recently proposed DFRFTs in the open literature
[2]–[4] were based on a nearly tridiagonal matrix, which com-
mutes with the DFT matrix and was first introduced by Dick-
inson and Steiglitz [13]. For example, in [2] and [3], Pei et al.
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found that the eigenvectors of the nearly tridiagonal commuting
matrix of the DFT matrix proposed by Dickinson et al. [13] are
discrete Hermite–Gaussian-like functions. Based on these dis-
crete Hermite–Gaussian-like functions, Pei et al. proposed an
eigendecompostion-based definition of the DFRFT, of which its
transform results approximate samples of the continuous frac-
tional Fourier transform. In [4], Candan et al. consolidated and
provided rigorous discussions on the DFRFT proposed by Pei
et al.

In [1], Grünbaum introduced an exactly tridiagonal matrix
that commutes with the centered discrete Fourier transform ma-
trix of even size. Grünbaum also showed that his exactly tridi-
agonal matrix can be viewed as the discrete analogue of the
second-order Hermite differential operator [1]. Inspired by the
work of Grünbaum, we propose in this paper a new nearly tridi-
agonal matrix commuting with the ordinary DFT matrix of any
size, even or odd. Most of the eigenvectors of this new nearly
tridiagonal commuting matrix will be better sample approxima-
tions of the continuous Hermite–Gaussian functions (HGFs), in
the sense of smaller norms of approximation error vectors, than
those of the Dickinson and Steiglitz matrix. Based on the eigen-
decomposition of the new nearly tridiagonal matrix, we will pro-
vide a new definition of DFRFT, which is closer to the contin-
uous FRT. Furthermore, it will be shown that the new nearly
tridiagonal matrix can be linearly combined with the Dickinson
and Steiglitz matrix to generate several matrices which also
commute with the DFT matrix and have Hermite–Gaussian-like
eigenvectors even closer to the continuous HGFs.

II. PRELIMINARIES

A. Continuous Fractional Fourier Transform

The -order continuous FRT of is defined as [8], [9]

(1)

where the transform kernel is given by

if is not a multiple of

if is a multiple of

if is a multiple of
(2)
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in which . It is known that the transform kernel
can also be written as [9], [10]

(3)

where

(4)

is the -order HGF with being the -order Hermite
polynomial.

B. DFRFT Based on Commuting Matrix

In this subsection, the definition of the DFRFT discussed in
[2]–[4] is briefly summarized. The -point DFT matrix is
defined by

(5)

It is known that the DFT matrix has only four distinct eigen-
values 1, -1, , and [14]. In [13], Dickinson and Steiglitz
introduced a nearly tridiagonal matrix as shown in (6), which
commutes with the DFT matrix . See (6) shown at the bottom
of the page, where . That is, with defined above,

. Therefore, the DFT matrix and the above matrix
share a common eigenvector set, and we can find the eigen-

vectors of from those of the matrix [4]. Furthermore, the
matrix has the following properties [2]:

1) the eigenvectors of approximate samples of the contin-
uous HGFs, and thus eigenvectors of can be seen as the
discrete Hermite–Gaussian-like functions;

2) the eigenvector of with zero-crossings can approximate
the -order continuous HGF.

In [2] and [3], Pei et al. defined the -order DFRFT matrix
by

for odd

for even

(7)

where for odd and
for even , is a diagonal matrix with

its diagonal entries corresponding to the eigenvalues for each
column eigenvectors in , and is the -order discrete Her-
mite–Gaussian-like function with zero-crossings and is ob-
tained from the corresponding normalized eigenvector of . The

-based DFRFT of input data is obtained by .

III. NEW NEARLY TRIDIAGONAL COMMUTING MATRIX

In this section, we propose a novel nearly tridiagonal matrix
which commutes with the ordinary DFT matrix of any size.
Moreover, we will demonstrate that using the eigenvectors of
the new matrix to approximate the samples of continuous HGFs
is always better than using the eigenvectors of matrix, in the
sense of smaller norms of approximation error vectors.

A. Definition and Some Basic Properties

Let us define an nearly tridiagonal matrix as (8),
shown at the bottom of the page. That is, the nonzero entries of

are

(9)

...
...

...
. . .

...
...

(6)

...
...

...
. . .

...
...

(8)
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Note that except for the two 0.5 entries at the upper-right and
lower-left corners, is tridiagonal, which is similar to the
matrix of (6). Thus, we call them nearly tridiagonal. Since is
real and symmetric, has real and orthogonal eigenvectors.

The rationale that we define in the form of (8) is described
as follows. In [1], Grünbaum introduced an exactly tridiagonal
matrix which commutes with the centered discrete Fourier
transform matrix of even size. For example, we first consider
the case that the sizes of these two matrices are both .
The centered discrete Fourier transform matrix and
its exactly tridiagonal commuting matrix defined in [1] are
then, respectively

(10)

(11)
Let us define a permutation matrix as

(12)

It can be shown that, after performing row and column permu-
tations on , the resultant matrix is the in-
verse DFT matrix . From and

, we have that commutes with .
Therefore, commutes with and thus also com-
mutes with . We conclude that the following matrix is a new
commuting matrix of the four-point DFT matrix

(13)

The above discussion is about the four-point case. We then gen-
eralize (13) to the -point case and define the nearly tridiagonal
matrix in (8). We find that, whenever is even or odd, has
the following important property.

Property 1: The matrix in (8) commutes with the
DFT matrix defined in (5), i.e., .

Proof: See Appendix I.
To explore the relation of eigenspaces between and , we

need the following property.

Fig. 1. Continuous HGFs (solid line), the discrete Hermite–Gaussian-like func-
tions based on S (‘*’), and the discrete Hermite–Gaussian-like functions based
on T (“o”), with N = 25. (a) Eighth order: The error norms of S and T are
0.2637 and 0.0959, respectively. (b) Tenth order: The error norms of S and T
are 0.4965 and 0.1472. (c) Eighteenth order: The error norms of S and T are
0.9312 and 0.5795.

Property 2: Let be the eigenspace of corresponding to
eigenvalue , i.e., . If , then

.
Proof: Since , . From Property 1,

.
From Property 2, we can find the eigenvector set of from

that of . Note the following.
1) From Property 2, it can be seen that if is the eigenvector

of corresponding to an eigenvalue with multiplicity 1,
then is also an eigenvector of .

2) If is an eigenvector of corresponding to an eigenvalue
with multiple multiplicities, may not be an eigenvector
of .

In Appendix II, we show that the entries of the eigenvectors
of are solutions of a discrete version of the second-order dif-
ferential equation of the continuous HGFs [4]. Therefore, the
eigenvectors of approximate the continuous HGFs. To moti-
vate our further discussions, we perform some computer exper-
iments to show that the differences between the DFT eigenvec-
tors derived from and the samples of continuous HGFs are
usually smaller than those between the DFT eigenvectors ob-
tained from and the samples of continuous HGFs. Its reason
is also illustrated in Appendix II.

Computer Experiment 1: Fig. 1(a)–(c) shows the eighth-,
tenth-, and eighteenth-order continuous HGFs, the discrete Her-
mite–Gaussian-like functions based on , and the discrete Her-
mite–Gaussian-like functions based on , with . From
Fig. 1, we observe that the discrete Hermite–Gaussian-like func-
tions based on are closer to the continuous HGFs than those
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Fig. 2. Error norms of the discrete Hermite–Gaussian-like functions based on
S ( ), T ( ), and S + 15T ( � � ) of various orders, where
(a) N = 25, (b) N = 50, and (c) N = 100.

based on . The error norms, which are the Euclidean norms of
the error vectors between the discrete Hermite–Gaussian-like
functions based on (or ) and samples of the continuous
HGFs, are plotted in Fig. 2. The error norms of the discrete
Hermite–Gaussian-like functions based on both and tend
to increase for higher order ones because of the aliasing effects.
We also show in Fig. 2 the error norms for the discrete Her-
mite–Gaussian-like functions based on , which will be
explained in detail in Section IV.

Fig. 2 shows that the discrete Hermite–Gaussian-like func-
tions based on approximate the continuous HGFs with
smaller error norms than those based on except for the case
where the order is very high. We did Matlab experiments for
each of (from to ) and found that when the
order is smaller than , where

when

when (14)

the error norm of the discrete Hermite–Gaussian-like function
based on is smaller than that based on . When the order is
larger than , sometimes the discrete Hermite–Gaussian-like
function based on has larger error norm but sometimes its
error norm is still less. In fact, for orders larger than , the dis-
crete Hermite–Gaussian-like functions based on both and
fail to approximate the continuous HGFs well. Since the relation
between the discrete Hermite–Gaussian-like function (denoted

Fig. 3. Error norms of discrete Hermite–Gaussian-like functions based on S
and T for different N .

by ) based on (or ) and the continuous HGF (denoted by
) is (proven in Appendix II)

(15)

and the effect that using to approximate may
get worse when is large (this fact can also be seen from
Appendix II), thus if the time support of is large, it is dif-
ficult to use to approximate well. Here, we define the
time support of the continuous HGF as the threshold such that

for . The time support of the continuous
HGF grows with its order. This is a possible interpretation as to
why we cannot use the discrete Hermite–Gaussian-like function
based on or to approximate it well when the order is high.
From our experiments, we find that when the time supports of
the continuous HGFs exceed , where

for

for (16)

the error norms of the discrete Hermite–Gaussian-like functions
will be larger than 0.8.

From these experiments, we expect that, if we define a new
DFRFT based on , the transform outputs will be closer to the
samples of the continuous FRT than those of the DFRFT based
on , especially for input signals with their spectra concentrated
mostly at low frequencies. Therefore, the performances of the
DFRFT based on will be similar to the continuous FRT. Many
useful properties of the continuous FRT (such as the rotation
in the WDF and the property that the shifting operation in the
time domain corresponds to the mixture of the shifting and the
modulation operations in the DFRFT domain) also apply for the
DFRFT based on .

In Fig. 3, we vary and compare the error norms of the
eigenvectors obtained from and . We find that the error
norms of with points correspond to the error norms of
with points for lower order discrete HGFs. We have known
that, when increases, the DFT eigenvectors obtained from
and will converge to continuous HGFs. From the experiment
in Fig. 3, we can conclude that the convergence rate of the eigen-
vectors derived from will be twice of that of the eigenvectors
derived from . This interesting phenomenon will be helpful for
the further exploration of the DFT eigenvectors.
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B. Computing DFT Eigenvectors Using Commuting Matrix

In [4], with defined in (6) being commutative with ,
Candan et al. introduced a method to find the common eigen-
vector set of and . In this subsection, we develop a method
to compute eigenvectors of completely from those of .

Property 3: For the matrix defined in (8), the trans-
formed matrix

(17)

is a block diagonal matrix, where and are two square
matrices of sizes and , respectively.
denotes the largest integer less than or equal to , and is the

unitary symmetric matrix defined by [4]

if is odd

if is even

(18)

where

. .
. i.e., the exchange matrix

(19)

Proof: (a) If is odd

(20)

where is of size , is an
submatrix of , and is an

submatrix of . Entries of are zeros except for
the entry at the lower-left corner.

(b) If is even

(21)

where is the vector of size and
is an submatrix of . The sizes of
and are and ,
respectively. Combining (a) and (b), we complete the proof.

From the proof of Property 3, we have that the submatrices
and of the transformed matrix are

if is odd

if is even (22)

if is odd

if is even (23)

where is the zero vector, and is the
exchange matrix of size . We have the following two com-
ments on eigenvalue multiplicities of and .

1) If is odd: From the definition of in (8), we see that
in (22) is symmetric and exactly tridiagonal with nonzero
subdiagonal entries, and is a matrix whose entries are
all zero except a nonzero entry at the lower-right corner.
From (22), we conclude that is symmetric and exactly
tridiagonal with nonzero subdiagonal entries. Similarly, we
have that in (23) is also symmetric and exactly tridi-
agonal with nonzero subdiagonal entries. From [15], we
know that any symmetric and exactly tridiagonal matrix
with nonzero subdiagonal entries has distinct eigenvalues.
Therefore, if is odd, the diagonal block matrices and

of in (17) have distinct eigenvalues.
2) If is even: From the definition of in (8), we can see

that in (22) is symmetric and tridiagonal with nonzero
subdiagonal entries, thus in (22) is symmetric and ex-
actly tridiagonal. Besides, except that the entries at the last
row and last column are all zero, subdiagonal entries of
are nonzero. We can see directly from (22) that has two

independent eigenvectors corresponding to
the zero eigenvalue: and

(24)

Therefore, with the exception that the zero eigenvalue of
is of multiplicity two, has distinct eigenvalues. As

to the matrix in (23), we can easily see that it is sym-
metric and tridiagonal with nonzero subdiagonal entries.
Thus, has distinct eigenvalues.
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From (17), the relations of eigenvalues and eigenvectors be-
tween and the diagonal block matrices of , and ,
can be stated as the following two facts:

1) if is an eigenvector of corresponding to eigenvalue
, then , which is the even extension

of , is an eigenvector of corresponding to eigenvalue
;

2) if is an eigenvector of corresponding to eigenvalue
, then , which is the odd extension

of , is an eigenvector of corresponding to eigenvalue
.

Therefore, we can compute eigenvalues of from the union
of eigenvalues of and , and compute even and odd
eigenvectors of from even extensions and odd extensions of
eigenvectors of and , respectively. From previous dis-
cussions, and have distinct eigenvalues with the ex-
ception that, when is even, the zero eigenvalue of is of
multiplicity two.

Property 4: a) If is an eigenvector, corresponding to any
eigenvalue if is odd or to a nonzero eigenvalue if is even,
of in (17), then its even extension, , is an
eigenvector of . (b) If is an eigenvector of in (17), then
its odd extension, , is an eigenvector of .

Proof: a) Assume that is an eigenvector of corre-
sponding to eigenvalue , which is any value if is odd or is
nonzero if is even. From (17), is also an eigenvalue of .
Since we do not know whether can be also an eigenvalue of

, we divide the discussion into two cases:
a.1) If the multiplicity of of is 1, is not an eigenvalue

of and thus the eigenspace of corresponding to
, , is of dimension 1. From Property 2, the even

extension of is an eigenvector of .
a.2) When is an eigenvalue of multiplicity one of both

and , if the corresponding eigenvectors of of
and are and , respectively, then the eigenspace
of corresponding to is of dimension two and is

with and
. From Property 2, with

, we have . That is

(25)

with being even and being odd. Since is even,
in (25) is even [5]. Using the fact that any even

vector is orthogonal to the odd vector, we have .
Therefore, is an eigenvector of

(26)

b) The proof is similar to a). The proof of Property 4 is
completed.

From Property 4, we can compute most of the eigenvectors
of from even extensions and odd extensions of eigenvectors
of submatrices and of , respectively. But
if is even, zero is an eigenvalue of of multiplicity two
and Property 4 does not apply for this case. Thus, if is even,
the even extensions of eigenvectors corresponding to the zero
eigenvalue of are not necessarily eigenvectors of . For

even, we then need to develop a method to compute the eigen-
vectors of in the even subspace spanned by eigenvectors of
of the zero eigenvalue.

Property 5: If is even, the two orthogonal eigenvectors of
in the subspace spanned by even eigenvectors of of eigen-

value zero are , where
is the -length column vector with zero entries except

a 1 at the entry.
Proof: It is not difficult to verify from definition of in (8)

that, if is even, and are
two independent even eigenvectors of corresponding to the
zero eigenvalue. The eigenspace of corresponding to the zero
eigenvalue is then

, where and are any constants. From Property 2, it
is reasonable to assume that

is an eigenvector of in , with being a constant.
Since even eigenvectors corresponds to eigenvalue 1 for [4],
we assume , which results in if

. Therefore, the eigenvector of in corresponding
to eigenvalue is

(27)

and the eigenvector of in corresponding to eigenvalue
is

(28)

It can be easily seen that and are orthogonal, and thus the
proof is completed.

In this subsection, we develop a method to find the orthog-
onal common eigenvector set of and from the eigen-de-
composition of . To define DFRFT based on , we also need
to determine the orders of the discrete Hermite–Gaussian-like
functions based on .

C. Determining the Hermite–Gaussian Orders of Matrix
Eigenvectors

In [4], Candan et al. proposed a rule to assign orders for the
Hermite–Gaussian eigenvectors of in (6). Similar to the pro-
cedures in [4], we determine the orders of the eigenvectors of
as follows.

We have shown that the diagonal block matrices and
in (17) are both tridiagonal. Therefore, the eigenvector

of or of the largest eigenvalue has no zero-crossing,
the eigenvector of or of the second largest eigenvalue
has one zero-crossing, etc. [4]. Thus, the eigenvectors of
obtained from even extensions of the eigenvectors of has

zero-crossings. The eigenvectors of
obtained from odd extensions of the eigenvectors of

has zero-crossings. We can
then assign the eigenvector of with zero-crossings as the

-order discrete Hermite–Gaussian-like function. It should
be noticed that, if is even, has two even eigenvectors
corresponding to the zero eigenvalue. They have the largest and
the second largest zero-crossings and should be determined
separately from the following.

1) From Property 5, when , since is
odd, the eigenvector with the second most zero-cross-
ings is ,
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and the eigenvector with the most zero-crossings is
.

2) When , since is even,
the eigenvector with the second most zero-cross-
ings is ,
and the eigenvector with the most zero-crossings is

.

IV. LINEAR COMBINATIONS OF MATRICES AND

From previous discussions, the DFT matrix has two lin-
early independent commuting matrices, and , which is de-
fined in (6) and (8), respectively. Since the eigenvectors of both

and are HGF-like, we can expect that eigenvectors of
are also discrete Hermite–Gaussian-like functions. More-

over, from our experiments, we observed that the following phe-
nomena always occur:

if then

if then (29)

where and are the DFT eigenvectors derived from and
and is the continuous HGF. Thus, we can conjecture

that if we combine and properly, we can obtain the DFT
eigenvectors that are very close to . From (29), we
can conclude that both and should be positive. Moreover,
since, compared with , the eigenvectors of are more similar
to the samples of HGFs, should be much larger than . In
this section, we show that, with proper choices of and , the
DFT eigenvector set derived from can very well ap-
proximate the samples of continuous HGFs. The approximation
errors are even less than those of the case where we use the DFT
eigenvectors derived from or to approximate the samples
of continuous HGFs.

A. New Versions of Discrete Hermite–Gaussian-Like
Functions

Property 6: If and are any two constants, then
commutes with the DFT matrix , where and are

defined in (6) and (8), respectively.
Proof: Using the fact that both and commute with ,

we have

(30)

From Property 6, we can compute the eigenvectors of DFT
matrix using . Since and
have the same eigenvectors if is nonzero, we discuss in the
following linear combinations of and of the form

and assume . We can easily observe that if ap-
proaches zero, eigenvectors of approaches those of

. On the other hand, if , eigenvectors of ap-
proaches those of . We next show through computer experi-
ments that eigenvectors of are new versions of discrete
Hermite–Gaussian-like functions and, with appropriate choice
of , these new discrete Hermite–Gaussian-like functions ap-
proximate samples of the continuous HGFs better than those

Fig. 4. Total error norms of discrete Hermite–Gaussian-like functions based on
S + kT. (a) N = 25. (b) N = 145.

obtained from both and , in the sense that most of these new
discrete Hermite–Gaussian-like functions have smaller norms
of approximation error vectors.

Computer Experiment 2: To determine the optimal choice of
, in the sense of the minimal total error norm, we first com-

pute the eigenvectors of , which are new versions of
discrete Hermite–Gaussian-like functions. All of the resulting

eigenvectors are compared with samples of the continuous
HGFs of the corresponding orders and the total error norms are
calculated. For and , the total error norms
are plotted versus various values of (from to
with spacing 1) in Fig. 4(a) and (b). From these results and other
experiments for different values of (up to 145), we find that
the optimal in the sense of the minimal total error norm is ap-
proximately 15. For 25, 50, and 100, in Fig. 2, we plot
the error norms of discrete Hermite–Gaussian-like functions of
various orders based on , , and with . It is
obvious that discrete Hermite–Gaussian-like functions based on

outperform those based on both and .

B. Computing DFT Eigenvectors from Those of

Property 7: For the matrix defined in (6)

(31)

is a block diagonal matrix [4], where is the unitary
matrix defined in (18).

Proof: a) If is odd, similar to the proof a) of Property 3,
we have

(32)

where is of size , is an
submatrix of , and is an

submatrix of . The entries of are zeros except a
1 at the lower-left corner.
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b) If is even, similar to the proof b) of Property 3, we have

(33)

with being the vector of size and
being the submatrix of . Combining

(a) and (b), we complete the proof.
From the proof of Property 7, we conclude that

if is odd

if is even (34)

if is odd

if is even (35)

It is easy to see that is nearly tridiagonal, in the sense
that is tridiagonal except the two nonzero entries at the
upper-right and lower-left corners. From (17) and (31), we have

(36)

Therefore, we have the following comments.
1) can be transformed to a matrix of block diagonal

form from (36).
2) From (22), (23), (34), and (35), , , , and

are all symmetric tridiagonal and have positive subdiag-
onal entries, except that the last subdiagonal entry of
is zero if is even. Therefore, if is nonnegative, the di-
agonal submatrices and are both
symmetric and tridiagonal with nonzero subdiagonal en-
tries. Thus, both and have distinct
eigenvalues.

3) Similar to the proof of Property 4 and from the fact that
commutes with , we have that the even extensions

of eigenvectors of and the odd extensions of
the eigenvectors of are eigenvectors of . We
can therefore compute all of the eigenvectors of from the
eigenvectors of and . The orders
of the discrete Hermite–Gaussian-like functions based on

can be determined similarly using the procedure
similar to that proposed in [4].

V. DISCRETE FRACTIONAL FOURIER TRANSFORM BASED ON

OR AND ITS APPLICATIONS

From the results in previous sections, we know that we can
use the matrix or to derive the eigenvectors of
and the resultant eigenvectors can approximate the continuous
HGFs better than those obtained from , in the sense of smaller

Fig. 5. Comparing the transform results of the continuous FRT and the
DFRFTs based on S, T, and S + 15T for a rectangular function (real
parts: solid lines, imaginary parts: dashes, order a = 0:25). (a) Continuous
FRT (a = 0:25); (b) DFRFT based onS (RMSE = 0:0913); (c) DFRFT based
onT (RMSE = 0:0647); (d) DFRFT based on S+15T (RMSE = 0:0526).

norms of approximation error vectors. Since the obtained DFT
eigenvectors is very close to the eigenfunctions of the con-
tinuous Fourier transform, it is possible to define the DFRFT
whose performance is very similar to the continuous FRT. The
DFRFT based on (or ) is

for odd

for even

(37)

where for odd ,
for even , and is the -order

normalized DFT eigenvectors computed from (or ).
Computer Experiment 3: To compare the performance, we

first compute the continuous FRT and the DFRFTs based on ,
and of the following rectangular function

when elsewhere (38)

The continuous FRT is computed by numerical integration of
the definition of FRT in (1). The DFRFTs based on , , and

for the samples of in (38) are computed with
and sampling interval is 1/8. The transform results are

plotted in Fig. 5 with order . We find that the transform
results of the DFRFTs based on and are more similar
to those of the continuous FRT. Their root-mean-square errors
(RMSEs) are less than that of the DFRFT based on .

In Fig. 6, we change the transform order from 0.1 to 1 and
compare the RMSE. We find that, for any order , the DFRFTs
based on and can well approximate the continuous
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Fig. 6. RMSE of DFRFTs based on S, T and S + 15T of the samples of the
rectangular function in (38).

Fig. 7. RMSE of DFRFTs based on S, T and S + 15T of the samples of the
triangular function in (39).

FRT and the RMSEs are less than those of the cases where we
apply the DFRFT based on . The experiment in Fig. 7 is similar
to that in Fig. 6, except that the input is a triangular function

when elsewhere (39)

Since the performances of the DFRFTs based on and
are very close to those of the continuous FRT, the applica-

tions of the continuous FRT can also be treated as the applica-
tions of the DFRFTs based on and . For example, it
is known that, after doing the continuous FRT of order , the
WDF is rotated clockwise by the angle of [9], [16]–[18]:

where (40)

means the WDF of

(41)

and means the WDF of FRT . In
addition

if
(42)

Fig. 8. DWDF of F [n] where F [n] is the DFRFT based on S + 15T for
a rectangular function. (a) a = 0; (b) a = 0:2; (c) a = 0:4; (d) a = 0:6;
(e) a = 0:8; and (f) a = 1.

Due to (40) and (42), we can use the continuous FRT together
with space-translation and modulation for generalized signal
multiplexing and space–frequency slot adaptation [17], [19].

Similarly, we can also use the DFRFT based on or
for fractional multiplexing and space–frequency slot adaptation,
since the properties in (40) and (42) also apply for the DFRFT
based on or . The discrete form of the Wigner distri-
bution function (DWDF) is

(43)

If is the DWDF of where is the DFRFT
of , then it can be shown that

where (44)

In Fig. 8, we show an example. The input is a rectangular
function:

when otherwise (45)

Then we do the 256-point DFRFTs based on of orders
0, 0.2, 0.4, 0.6, 0.8, and 1 for and compute the DWDF.
The results are plotted in Fig. 8(a)–(f). We use the gray-level
to show the magnitude of the DWDF. From the results, it can
be seen that, after doing the DFRFT of order , the DWDF is
rotated clockwise by the angle of , as the continuous case.

In Fig. 9, we give an example that uses the DFRFT based
on to do space-frequency slot adaptation (i.e., making
the space–frequency distribution of a signal suit for some spe-
cific region). Here, the input function is a chirp-modulated
Gaussian function. Its DWDF is plotted in Fig. 9(a):

(46)
We want to multiplex such that its energy is concentrated
on the region of

(47)
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Fig. 9. Doing time-frequency slot adaptation for f [n] such that the energy is
concentrated on the rectangular region of n 2 [10; 30] and m 2 [20;60].

First, we do the DFRFT for to rotate and make
it align with -axis. We first compute the principal direction

, which can be determined from the eigenvector cor-
responding to the larger eigenvalue of the moment covariance
matrix :

(48)

(49)

After some calculation, we find that the principal axis is

(50)

Since

(51)

thus, from (44), to make the DWDF align with axis, we
should do the DFRFT of order where

(52)

After doing the DFRFT of order 0.6428, the DWDF, is aligned
with axis, as in Fig. 9(b). Then, to shift the DWDF into the
desired time-frequency slot, we do space-translation and fre-
quency modulation for the result of the DFRFT (denoted by

)

(53)

After doing it, the energy of the DWDF is concentrated on the
slot of and , as in Fig. 9(c). Using the
DFRFT based on or together with space translation
and modulation, we can do time-frequency slot adaptation and
hence do fractional multiplexing.

Moreover, since the partially space-invariant property is also
preserved for the DFRFTs based and , therefore, as the
case of the continuous FRT [9], [20], we can also use them for
space-variant pattern recognition. This application is described
in detail in our recent paper [24].

In addition to the above applications, other applications of
the continuous FRT, such as filter design [11], [12], asymmetric
edge detection [22], and matching pursuit [23] are also potential
applications of the DFRFTs based on and .

VI. CONCLUSION

In this paper, we proposed a new nearly tridiagonal com-
muting matrix of the DFT. Its eigenvectors were found to be new
discrete Hermite–Gaussian-like functions. We showed that most
of the eigenvectors of the proposed nearly tridiagonal matrix
well approximates the continuous HGFs. The approximation
error is smaller than that of the case where we use the eigenvec-
tors derived from S matrix to approximate continuous HGFs. We
also provided rigorous discussions on the properties of eigen-
vectors and eigenvalues of the new nearly tridiagonal matrix,
and gave a method to compute the DFT eigenvectors completely
from those of the new nearly tridiagonal matrix. Furthermore,
by properly combining two nearly tridiagonal matrices, a new
set of commuting matrices, whose DFT eigenvectors are even
more similar to the continuous HGFs, were also obtained. Fi-
nally, based on these new nearly tridiagonal matrices, new ver-
sions of the DFRFT were defined, and their applications were
illustrated.

APPENDIX I
MATRIX COMMUTES WITH THE DFT MATRIX (i.e.,

)

1) The entry of [1] is

(A1)

(A2)

where

(A3)
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Substituting (A3) into (A2), we obtain

(A4)

2) Similarly, we can see that the entry of
is

(A5)

3) Comparing (A5) with (A1), we find that (A5) can be
obtained by interchanging and in (A1). Since inter-
changing and in (A4) does not change its value, we
prove that .

APPENDIX II
EIGENVECTORS OF ARE DISCRETE HERMITE–GAUSSIAN-LIKE

FUNCTIONS AND THE APPROXIMATION ERROR IS SMALLER

THAN THAT OF THE EIGENVECTORS OF MATRIX

The second-order differential equation for the continuous
Hermite–Gaussian function (HGF) is

is the order of (A6)

The central concept of our proof is that, instead of using
, we use ) ( is any positive integer) to

approximate the second-order differentiation in (A6) more ac-
curately, as follows:

where
(A7)

It is known that the relation between the HGF and the Hermite-
Gaussian-like discrete Fourier transform (DFT) eigenvector is
(the case of matrix has been proved in [13] and the case of
matrix will be shown in (A22)–(A26))

i.e. and (A8)

Although for the relation between and , the interval is
, however, to approximate the second-order differenti-

ation in (A7) more accurately, it is proper to choose an even
smaller instead of (i.e., ). The value of should
be as large as possible to make very small. Then we apply
(A6), (A7) and obtain a recursive relation for , , and

, where

(A9)

We then do linear combination to convert it into a recursive re-
lation for , , and (the detail of conversion can be
seen from (A10)–(A20) that is an example of ). Then, we
compare the result with the difference equations corresponding
to and . We can use whose difference equations is closer to
the relation among , , and to conclude whether the
eigenvectors of or of can approximate the continuous HGF
with smaller approximation error.

We show an example that uses , i.e., .
From (A6) and (A7)

where (A10)

We can replace by , , , and
and obtain

(A11)

(A12)

In (A10) and (A11), there are seven terms, , ,
, , , , and . To compare with

and , we should do linear combinations for (A10) and (A11)
to eliminate the terms of , , , and
(i.e., preserve only the terms of and .) It can be done by

(A13)

After some calculation, we obtain

(A14)

Then we try to simplify the right side of (A14). From
(A11), since and
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, we can eliminate the terms of
and . Moreover, if the order of the HGF is not large,

will be small. Thus, the
right side of (A14) becomes

(A15)

where
. From (A11),

. Thus, (from (A14) and (A15))

from A14 and A15 (A16)

Then, we apply (A12) to express the coefficients of , ,
and in terms of and . It requires very complicated com-
putations. Here we show only the case of in
detail.

(A17)

(A18)

Similarly

(A19)

Therefore, (A16) and hence (A6) can be approximated by

(A20)

Now, we have approximated (A6) by a recursive relation among
, , and . We compare it with matrix and ma-

trix. From [13], it is known that, if is an eigenvector of with
eigenvalue , then and it can be approxi-
mated as (using the fact that

(A21)

For matrix, let be an eigenvector of with eigenvalue .
From (8), is

(A22)

Assume that is large and . We can apply the Taylor
series for cosine and secant functions, and

. Then, in (A22), the coefficient function of
becomes

(A23)

Therefore, (A22) becomes

(A24)
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(A25)

In (A23) we apply the fact that
when . It is not difficult to see

that, when , (A25) approximates (A20), where

(A26)
Thus, the eigenvector of is close to the samples of the contin-
uous HGF and their eigenvalues also have a close relation. Then,
we compare (A25) and (A21) with (A20) to conclude whether
the eigenvectors of or those of will be more similar to the
continuous HGF. We find the following:

(I) coefficient differences between (see (A21)) and the
recursive formula for HGFs (see (A20)):

2nd term 3rd term

right-sided term (A27)

(II) coefficient differences between (see (A25)) and the
recursive formula for HGFs (see (A20)):

2nd term 3rd term

right-sided term (A28)

From (A27) and (A28), it can be seen that the coefficient
differences ratios for all the three terms are

for for i.e.

when is large (A29)

That is, the rows of are 16/11 times closer to the
discrete form of the differential equation of the contin-
uous HGF in (A6) than the rows of when choosing

.
If in (A12) we choose

(A30)

using the similar process from (A10)–(A29), we find that the
coefficient difference ratio becomes

for for i.e. (A31)

When , it becomes 16 (for ):9 (for ) (i.e., 1.778:1).
When , it becomes 35 (for ):19 (for ) (i.e., 1.842:1). In
general, when choosing , the coefficient differ-
ence ratio is

for for (A32)

When , it becomes

for for (A33)

That is, the matrix is two times closer to the differential equa-
tion in (A6) than matrix if in (A7) we use a very small
to approximate the second-order differentiation. Therefore, the
eigenvectors of can approximate the continuous HGF with
less error norm.
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