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Discrete Fractional Fourier Transform
Based on Orthogonal Projections
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Abstract—The continuous fractional Fourier transform (FRFT) FRFT has been proved to relate to other time-varying signal
performs a spectrum rotation of signal in the time—frequency analysis tools, such as Wigner distribution [4], short-time
plane, and it becomes an important tool for time-varying sig-  £qyyrier transform [4], wavelet transform, and so on. The appli-

nal analysis. A discrete fractional Fourier transform has been - . . . . .
recently developed by Santhanam and McClellan, but its results cations of the FRFT include solving differential equations [2],

do not match those of the corresponding continuous fractional quantum mechanics [3], optical signal processing [5], time-
Fourier transforms. In this paper, we propose a newdiscrete variant filtering and multiplexing [5]-[8], swept-frequency
fractional Fourier transform (DFRFT). The new DFRFT has DFT filters [9], pattern recognition [10], and time_frequency Signa|

Hermite eigenvectors and retains the eigenvalue-eigenfunction re- analvsis [111-[13]. Several properties of the FRFT in signal
lation as a continous FRFT. To obtain DFT Hermite eigenvectors, Y . [11}-[13]. p P . 9
analysis have been summarized in [9].

two orthogonal projection methods are introduced. Thus, the new o
DFRFT will provide similar transform and rotational properties Many methods for realizing the FRFT have been developed,

as those of continuous fractional Fourier transforms. Moreover, but most of them are to utilize the optical implementation
the relationship between FRFT and the proposed DFRFT has [14], [15] or numerical integration. Because the FRFT is
been established in the same way as the conventional DFT-10-5 hotentially useful tool for signal processing, the direct
continuous-Fourier transform. . . : R
computation of the fractional Fourier transform in digital
Index Terms—Discrete Fourier transform, discrete fractional computers has become an important issue. The ideal discrete
Fourier transform, Fourier transform, fractional Fourier trans- fractional Fourier transform (DFRFT) will be a generalization
form. of the discrete Fourier transform (DFT) that obeys the rotation
rules as the continuous FRFT and provides similar results as
I. INTRODUCTION the FRFT. In [16], a method for a numerical integration FRFT

HE FOURIER transform (FT) is one of the most frehas been propoged, but the method does not obey.thel rotation
T quently used tools in signal analysis [1]. AgeneralizatioWleS’ and the signal cannot be recovered from its inverse
of the Fourier transform—the fractional Fourier transforrfansform. In [17], Santhanam and McClellan have developed
(FRFT)—has been proposed in [2] and [3] and has becomé &liscrete FRFT, but their method does not provide the same
powerful tool for time-varying signal analysis. In time-varying'@nsforms to maich those of the continuous case. In this
signal analysis, it is customary to use the time-frequency plaf@Per. We present a netiscrete fractional Fourier transform
with two orthogonal time and frequency axes [4]. Becaud®FRFT). This DFRFT is a generalization of the DFT and will
the successive two forward Fourier transform operations wi[0Vide similar transforms as those of the continuous case.
result in the reflected version of the original signal, the FT cai'€ relationship between the DFRFT and the FRFT can also
be interpreted as a rotation of signal by the angfe in the be estabhshgd and dlscus_sed in detail. Moreover, t_he proposed
time—frequency plane and represented as an orthogonal sidhgfRF T has important unitary and rotation properties. .
representation for sinusoidal signal. The FRFT performs a ro-1 S Paper is organized as follows. In Section I, the previ-
tation of signal in the continuous time—frequency plane to aff'S development of continuous and discrete fractional Fourier

angle and serves as an orthonormal signal representation fgpsforms are reviewed. The concept for developing the
the chirp signal. The fractional Fourier transform is also callddrRFT o have similar results as the continuous corresponding
rotational Fourier transformor angular Fourier transformin ~ CaS€ are described in Section Ill. Two acceptable solutions for

some documents. Besides being a generalization of the FT, #g DFRFT are considered and proposed in Section Ill. Then,
the relationships between the FRFT and the DFRFT can be
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Fig. 1. Fractional Fourier transform of a rectangular window(t) = 1 when —2 < ¢ < 2, and z(¢) = 0 otherwise. Real part: solid line.

Imaginary part: dashed line.

to any angles in the time—frequency plane [9]. The transformFig. 1 shows the FRFT of the rectangular window function
kernel of continuous FRFT is defined as [2], [3], [6], [9] [z(¢) = 1 for |¢| < 2; and z(¢) = 0, elsewhere] for various
angles. The real parts of the FRFT or DFRFT in this paper are

Ka(t, w) plotted by solid lines, and the imaginary parts of the FRFT or
([ [1—j cot a 42 . DFRFT are indicated by dashed lines.
B — expl J 5 cot o — jut CSCay
if o« is not a multiple ofr B. The Old DFRFT
=4 8(t —u) 1) The kernel matrix of the DFRFT is obtained by computing
if « is a multiple of2x the fractional power for the DFT kernel matrix. The fractional
8(t + ) power of the DFT kernel matrix and the rotation angles in
[ if -+ is a multiple of2r the DFRFT essentially mean the same thing. In order to avoid

o0 ambiguity, the Greek subscripts (for exampteand /5) are
= Z e_j"aHn(t)Hn(u). (2) used to denote the rotation angles in the time—frequency plane,
n=0 and the English superscripts are used to denote the fractional
- . ) ower values of the DFT kernel matrices in this paper. The
wherea |nd|cate_s the rotation angle of_transform_ed 5'9”"?" f onventional methods to compute the DFRFT in [17] and [20]
th_e FR'.:T'H’.L(t) Is thenth-order normal!zed Herm!te funct!on are mainly on numerical computing the fractional power of the
W!th umt_vanancg. Th@th-order narmalized Hermite function DFT kernel matrix. The fractional power of the DFT kernel
with varianceos is defined as matrix [20] is calculated by (6)

H, o(t) = W R, <§>e(t /207) (3) F' = ao()F° + a1 (H)F* + a2 (H)F? +az(H)F®>  (6)
where
whereh,,(-) is thenth-order Hermite polynomial [18]. Because 4
the normalized Hermite function with unitary variandé,(-) a;(t) = 1 Z oI () 2)(t=i)k @)
is the eigenfunction of the FRFT, (2) provides an eigendecom- ‘ 4 P

position representation of the FRFT kernel. The equivalence ) )
of (1) and (2) has been proved in [3]. Using the kernel of tHAPPIYing the above defined kernel to the signefn), the

FRFT, the FRFT of the signal(t) by anglea is computed as DFRFT of the signak(n) is computed as
o F'[x(n)] = ao(t)x(n) + az(t)x(—n) + a1 (t)X(n)
Xol) = [ ettt @ PR @

émﬂn(u) <e_j"a /

n — o0

oo

whereX(n) is the conventional DFT of sign&i(n). Equation
() Hn (?) dt)' ) (8) indicates that the DFRFT of the signaln) is the linear

combination of the four major angular parts: the original signal
Equation (5) indicates that the FRFT can be interpreted a&), its DFT X(n), a circular reflected version of the signal
a weighting summation of Hermite functions. The weighting(n) (x(—=)), and a circular reflected version of its DFT
coefficients are obtained from multiplying the phase ter®(—n).
e~/ and the inner product of the input signal and the Fig. 2 shows the results of this DFRFT produced by a
corresponding Hermite function. In [19], a rotation operatiodiscrete rectangular window. The rectangular window used
using Hermite functions has also been proposed, and tmere is defined as\ = 73, f(k) = 1, —6 < k < 6; otherwise
rotation output of the signal is also the weighting summatiof{t) = 0]. The discrete results shown in Fig. 2 are quite
of Hermite functions. However, the Hermite functions in [19¢lifferent from the results of Fig. 1. Furthermore, the middle
with a different scaling to those of the FRFT. Thus, it wilktransform result fore = 0.4 is not the intermediate state of
have a different phase term in the weighting coefficients. the two resultse = 0.2 and o = 7 /4.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:30 from IEEE Xplore. Restrictions apply.



PEl et al: DISCRETE FRACTIONAL FOURIER TRANSFORM BASED ON ORTHOGONAL PROJECTIONS 1337

a=0.05 a=04

R R - R - = ¢ x P Y=t

Fig. 2. Old DFRFT of a rectangular window functior(n) = 1 when —6 < n < 6, and (n) = 0 otherwise. The output is quite different
from the continuous FRFT in Fig. 1.

TABLE | wherew = 27 /N. Matrix S commutes with the DFT kernel
MuLTIPLICITIES OF THE EIGENVALUES OF DFT KERNEL MATRIX matrix F, and then, it satisfies the commutative property
B(N,0) NV, 1) 1N, 2) (&, 3) SF = FS. (10)
N Multiplicity | Multiplicity | Multiplicity | Multiplicity ) . . .
of 1 of  —j | of -1 of g The eigenvectors of matri$ will also be the eigenvectors
of the DFT kernel matrixE', but they correspond to different
4m m+1 m m m—1 .
p—— ; eigenvalues.
mt m m m m Proof: See [20].
am + 2 m+1 m m+1 m
dm+3] m+1 m+1 m+1 m B. DFT Hermite Eigenvectors
The continuous FRFT has a Hermite function with unitary
lIl. DEVELOPMENT OF DFRFT variance as its eigenfunction. The corresponding eigenfunction
property for the DFT would be like
A. Eigendecomposition of DFRFT FQQ/W[ﬁn] = eIy, (12)

The development of our DFRFT is based on the eigendgnere 1, is the eigenvector of DFT corresponding to the
composition of the DFT kernel, and many properties of thein_order discrete Hermite function.

_DFT matrix eigenvalues and eigenvectorg have been discusse, the discussion in the previous subsection, we have known
in [20] and [21]. Here, we only summarize some results fqpa; the eigendecomposition of the DFT kernel matrix is not

our further development of DFRFT. . . unique. Can the DFT have the eigenvectors with the similar
Proposition 1: The eigenvalues oF are {1, —j, —1, j},  shapes as the Hermite functions? These DFT eigenvectors are
and its multiplicities are shown in Table I. known asDFT Hermite eigenvectorsin this paper.
Proof: See [21]. Proposition 3: DFT Hermite eigenvectors should have the

In Table I, a multiplicity functionf(V, k) is defined. This 455ociated continuous spread variaWTS, whereT,

function is used to denote the DFT eigenvalue multiplicits the sampling intervals of signal. If the Hermite function are
for N. The parametet is the index for the DFT elgenvaluesamp|ed in this way, we get

e~i(7/2k_The eigenvectors of the DFT matrix constitute four
major eigensubspacesky, E1, E», and Es—and each is (k) = 1 k o= (/) (12)
corresponding to one of the four eigenvalues—}%, —1, and " 20\ /N2 " \/W
j—respectively. The eigenvalue multiplicities of DFT matrix )
indicate the ranks of the DFT eigensubspaces [21], [22]. whereh,,(:) is the nth-order Hermite polynomial.

In [22], a method for computing the DFT eigenvectors  Proof: It is assumed that, is the spread variance of the
has been introduced, but it cannot obtain the real-valugfT eigenvectors. The continuous approximate form can be
DFT eigenvectors. In [20], a novel matri is introduced to written as

compute the real and complete set of DFT eigenvectors very 1 n 2 1202
elegantly. — <0_>6—( /203) (13)
Proposition 2: A matrix S can be used to compute the real iV ¢

eigenvectors of the DFT matrik, and matrixS is defined as Samplingt by k77, (13) will become
2 1 0 0 .- 1 1 jo (Lo -0 12 /202 (14)
1 2cosw 1 o - 0 2pl/moy o4

S=10 ! 2 cos 2w _1 0 The Fourier transform of (13) can be computed as

1 0 0 0 - 2cos(N—1w VO g (fog)e= T/, (15)

9) V2l /T
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The sampling theorem [23] tells us the continuous scope Diiis approximation is also valid becauée = /2x/N is
frequency spectrum that DFT can coveris/T,. Therefore, very small whenXN is very large. Combining (19) and (20)
the continuous spectrum spacing (or resolution) of the DFT asd lettingZ = /2x /N, we obtain

equal to2x/NT,. The variablef in (15) can be replaced by

N/2)—1
k(27 /NT,) to have its discrete form. (=) () ~ 1 /zi b (KT)e kT T
Vam TN

\/O'—d . 27 (k297252 Nszz
Vel (b g o )2t ) _ e |
~e \/i Z b (KT)e 9T
The variance value, adjusts the scaling of Hermite func-
tion, and our goal is to adjust the varianggto make the DFT ) o ) )
of H,, have the same eigenvector shape as itself. The conditifiS expression is valid for any. Thus, takingw = k1" at
for the two shapes of (14) and (16) being the same becomB8th sides, we have

k=—(N/2)

(N/2)—1
ca=1/ T, (=) fu () = @ Do Gn(m)em ETN. (21
2 m=—(N/2)
Equation (14) becomes The proof is completed. O
1 i From the above proof, it is clear that there are two approx-
(k) = hn< )e“‘zﬂ/m. O imation errors in (17). One is the truncation error in (19), and
2rpl\/N/2 VN/2m the other is the numerical error in (20). When the value of

N approaches infinity, both errors approach zero. Thus, the

From Proposition 3, we can find that the DFT Hermitgarger N is, the better approximation (17) is. Next, because
eigenvectors should have associate continuous spread variaAgedegree of Hermite polynomial,(t) is », the decay rate

(N/2r)T;. The sequence obtained from (12) is also equal i the Hermite functionH,,(t) is proportional tot"c=t" for
the Sampling of the Hermite function with the unit variance bguf‘nC'ently |arge‘;_ ThUS, the |arger Orde—risy the slower decay
the sampling interval” = /2x/N. In Propositions 4 and 5, rate the Hermite function will have. This implies that the trun-
we will prove that even such samplings of Hermite functiongation error in (19) is larger for high-order Thus, when order
can only have approximate Hermite eigenvectors of the DF.hecomes large, the approximation in (17) becomes worse.

Proposition 4: If the sequencep,,(k) is obtained by sam-  The nth-order continuous Hermite function should have
pling the unit variance Hermite function with the sampling, zeros [18]. However, these functions are not bandlimited,

interval I = /2r /N, then it can be shown that and the samplings in Proposition 3 cannot guarantee that the
. numbers of the sign changes in this samplédorder Hermite
If N is even X L . N
(N/2)—1 function are alsa:. The small aliasing will occur while: is

(=) (k) = 1 Z b (m)e I @km/N) - (17) closer toV, but this will not inf!uence t.he deyelopment of
e (N/2) the DFRFT. The sampled Hermite functions still can be _us_ed
If N is odd to construct the DFRFT kgrne! because they have the S|m|I§1r
: (N—1)/2 fshap_es and good approximations to the continuous Hermite
_iyn ~a = —j(27km/N) unctions.
(Z3)"énlh) » \/; m__((zj\;_l)m Pnlm)e Proposition 5: If the sequence),, (k) defined in the range
(18) [0, N — 1] is obtained by shifting Hermite Gauss samples

(k) in the following way:
for sufficiently large V. #n(k) g way

Proof: Here, we only prove the case that is even. If Vis even

For N odd, the proof can be easily derived in the same way. Pnlk), foro<k < N 1
By truncating the integral interval of Fourier transform from ¢ (k) = N 2 (22)
(=00, 00) to (—(NT/2), NT/2), we have the approximation $n(k—N), for o <k<N-1
expression and if NV is od,
1 NT/2 ' N -1
— ) (W) % —— / pu(te 7 dt.  (19) _ Pn(k), for0<k <
() nt) VIr J-(N1/2) © Pn(k) = N1 2 (23)
. . . . . . . (/)n(k_N)v for SkSN_]-

This approximation is valid becaus€l = v2#N is wide 2

for large NV, and the decay rate of Gauss functien® /2 is  then it can be shown that the DET of the, (k) can be
very fast. Next, by replacing the continuous integral with thgpproximated by(—j)"@. (k), i.e.,

numerical integral, we have

N-1
- /1 = s i (mkm/N
NT/2 , (N/2)—1 ’ (=0)"bul(m) =y % D" b (k)e I ErRm/N) (24)
/ Pu(t)e T dt x> Gu(RT)e M. (20) }=0
~(NT/%) k=—(N/2) for sufficiently largeV.
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Proof. Here, we also prove the case that is even. TABLE I
While N is odd, the pI‘OOf can also be eas”y derived. The EIGENVALUES ASSIGNMENT RULE oF DFRFT KERNEL MATRIX
DFT of the sequence, (k) is given by N | the eigenvalues
N-1 am | ek £ =0,1,2,---,(dm — 2),4m
DFT(¢$ \/7 Ye~I(2mkm/N) Am+1| e k=0,1,2,---, (4m— 1),4m
am+2 | ek £ =0,1,2,---,4m, (4m + 2)
(1\’/2) L 4m+3 | e £=0,1,2,---,(4m+1),(dm + 2)
\/7 —j(?wkm/N)
1 Nt ' . Because matrixS can have complete real orthogonal DFT
\/7 Z Pk — N)eIEmkm/N), eigenvectors, the eigenvectors can be used as bases for in-
k=N/2 dividual DFT eigensubspaces. In addition, we can compute

(25) the projections ofu,, in its DFT eigensubspace to obtain a

: ) , . ) Hermite-like DFT eigenvectof,,
Using the equalitye=77*km/N) = =i(@r(k=N)m)/N) ' the

second term on the right side of (25) becomes i, = Z < Up, Vi > Vi (32)
I Ne1 (n—k) mod 4=0
—j(2rmk/N
Vv Z (k= N)e ¢ m where k. = (nmod4), andv;, is the eigenvector of matrix
k=N/2 S. 1, will be a DFT Hermite eigenvector. In (32), the DFT
_j(%ml/N) Hermite eigenvectoti,, is computed from the eigenvectors of
(26) matrix S in the same DFT eigensubspace.

l*—(N/Q)

Substituting (26) into (25) and using Proposition 4, we obtain
C. Newly Developed DFRFT
DET( \/> e Yemiekm/N) (97) The fractional power of matrix can be calculated from its
eigendecomposition and the powers of eigenvalues. Unfor-
tunately, there exist two types of ambiguity in deciding the
)" pn(m) (28)  fractional power of the DFT kernel matrix.

where m is limited in the rangel0, (N/2) — 1]. Using the « Ambiguity in Deciding the Fractional Powers of Eigenval-
equality ¢=/@mm/N) — =i(@x(k=N)m)/N) (27} can be ues:We know that the square root of unity are 1 ani

from elementary mathematics. This indicates that there
exists root ambiguity in deciding the fractional power of

k——N/Q

rewritten as

(N/2)—1 ' eigenvalues.
DFT(¢ \/7 Je I (@rh=Nm)/N) « Ambiguity in Deciding the Eigenvectors of the DFT Kernel
k——N/2 Matrix: The DFT eigenvectors constitute four major
Y ¢n(m — N) (29) eigensubspaces; therefore, the choices for the DFT eigen-
vectors to construct the DFRFT kernel are multiple and
where m is limited in the ranggN/2, N — 1]. Combining not unique.
(28) and (29), we obtain Because of the above ambiguity, we know that there are
_ several DFRFT kernel matrices that can obey the rotation
DFT(¢,, (k \/7 Z &, (k fj(27rkm/N) properties. The idea for developing our DFRFT is to find
—o the discrete form for (2). In order to retain the eigenfunction
N property in (11), the unit variance Hermite functions are
(=) Pn(m) for0=m<- -1 sampled with a period of, = /2x/N in the following

2

discussions. In the case of continuous FRFT, the terms of the

o N
(=5)" ¢n(m — N for S sms N =1 Hermite functions are summed up from order zero to infinity.

~(—§)",, (m). (30) However, for the discrete case, only eigenvectors for the
) DFT Hermite eigenvectors can be added. Table Il shows the
The proof is completed. O eigenvalues assignment rules for the DFRFT. This assignment

In Propositions 4 and 5, it has been proved that the sare matches the multiplicities of the eigenvalues of the DFT
plings of Hermite functions can have approximate DFT eigekernel matrix in Table I. The selections of the DFT Hermite
vectors. The normalized vectors for the samplings of Hermieggenvectors are from low to high orders. It is because the
functions are defined as approximation error of the low DFT Hermite eigenvectors are

— _ T small. In addition, we should not expect that a finite vector
u, = [_n(o)v fn(l)’ o ¢V —1)] ) (31) can express the oscillation behavior of the very high-order
1[#r(0), ¢, (1), -+, @ (N = D)]T| Hermite function very well.

¢
7
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The transform kernel of the DFRFT can be defined as

F2/™ = gp2/~u” (33)
( N—1
D ekl for N =4m +1
k=0 4m + 3 (odd)
=< N2 (34)
> ekl for N = 4m
\ k=0 N T 4m + 2 (even)

where U = [ii|tiy] - - - [tiy_1], whereasN is odd, andU =

[Go|Q1] - - |Gy_2|Gn] for N is even.i is the normalized
eigenvector corresponding to t¢h-order Hermite function,

where D is defined as follows:

For N odd
[e=70 0]
eI
D2a/7r _
e—da(N=2)
) o—Jja(N-1)
and for N even
re=70 0]
eI
D2a/7‘r —
o—ja(N=2)
L O e—daN

Example 1- = 16: The rotation anglex is equal tor /4,
and the eigenvalues of the DFRFT arg= ¢ 7(*/Y* for k =

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

Mathieu functions can converge to a Hermite function [28],
the convergence for the eigenvectors obtained from mé&trix
are not so fast for the high-order Hermite functions by the
LMS error criterion.

Equation (32) provides a method for finding DFT Hermite
eigenvectors. The role of matri& in (32) is just as a tool to
find a complete set of real and orthogonal DFT eigenvectors.
However, the DFT Hermite eigenvectors obtained from (32)
cannot constitute an orthogonal basis for DFT eigenspace. It
is easy to verify that the angle rotation property of the DFRFT
can be preserved only while the DFT eigenvectors are orthog-
onal. Therefore, vector orthogonalization is required for the
DFT Hermite eigenvectors obtained from (32). Two methods
for vector orthogonalization are proposed in the following
of this paper. The DFT eigenvectors are orthogonalized for
each eigensubspace. This is because the eigenvectors located
in different eigensubspaces will be always orthogonal.

It is easy to show that the eigenvectors located in differ-
ent eigensubspaces will be orthogonal. So the DFT Hermite
eigenvectors can be orthogonalized for every eigensubspace
individually to obtain orthogonal eigenvectors in the whole
eigenspace of DFT. The symbol notation in developing the
two algorithms are as follows:

u, continuous Hermite samples vector;

u,, nonorthogonalized Hermite eigenvector;

u, orthogonalized Hermite eigenvector.

The Gram—-Schmidt Algorithm (GSAThe Gram—-Schmidt
method [29] is a well-known orthogonalization approach for
vectors. The DFT Hermite eigenvectors in each DFT eigen-
subspace can be orthogonalized by the Gram—Schmidt method.

0,1, ---,14. It must be mentioned that the last eigenvalue
is not assigned te—7(*/9>15 and should be assigned to theAlgorithm

valuel;; = e 7 (7/9x16 to match the eigenvalue multiplicities
of the DFT matrix in Table I. Therefore, the transform kernel
for the rotation anglex can be computed as in (34a), shown at

the bottom of the page, whelé = [tio|iyy | - - - |{iy4|l16]. G iS

the eigenvector corresponding to thtéh continuous Hermite

function.

An eigenbased method for computing the DFRFT to
have similar continuous results has been proposed by us
in [24]-[27]. In [25], the eigenvectors obtained from matfix
are directly considered to be the discrete Hermite functions. N
In addition, the eigenvalue—eigenfunction relation is retained

in defining the DFRFT. This means thatis replaced by,

Calculate the continuous samples of Hermite
functions:u,,
Compute the eigenvectors of mati# v,,
Using equation (32) to compute Hermite eigenvectors
by projections:,,
fork=0to3
form=1to$(N, k)—1
p=4m+k
m—1
u, = flp — Z < flp, fl41+k > fl41+k
l

L,
in (34). Such a method is called tifemethod in this paper. Up = M
Unfortunately, the eigenvectors obtained from the matrix end
S are just discrete Mathieu functions [21]. Although the end
§R7'r/4 :F1/2
M1 0 0 0 0 T
0 e i=/2)x(1/2) 0 0 0
o 0 —3(27/2)x(1/2) 0 0 .
—U|" ) cT o7 (34a)
0 0 0 o—i(1dn/2)x(1/2) 0
L0 0 0 0 =i (167/2)x(1/2) |
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Fig. 3. Norms of error vectors between DFT Hermite eigenvectors and samples of Hermite functions.

Orthogonal Procrustes Algorithm (OPA)A traditional samples of Hermite functions are plotted fif = 37. The
mathematical problem known as tlethogonal Procrustes error vectors between samples of Hermite functions and DFT
Algorithmcan be used to find the least Frobenius norm [30, plermite eigenvectors are defined as
582] for the two given spaces. We can formulate our problem e, =1, —0,. (37)
as the OPA to find the least Frobenius norm between the

samples of Hermite functions and orthogonal DFT Hermite.EanlIOIe 2:In this e>_<amp|e, we use the DFRF.T 10 deal
with the rectangular window function shown in Fig. 1. The

eigenvectors. sampling intervall’; is equal to 4/13, and the number of points
fork=0,1,2,3 N is equal to 73. The sampled discrete data then becomes
minimize || Uy, — Ux||r (35) [Nh :h 73,ha:(n) =1, —h6 <n IS 6; gtherwise,x(n) = 0], A
R B . T which is the same as the signal used in Fig. 2. Figs. 4—-6 show
= minimize [Ux — Qi Villr  subject0Qi Qe =T\ "hepeT of the rectangular window function for various
(36) angles forS method, GSA, and OPA, respectively.

where || ||z is the Frobenius norm of the Example 3: The DFRFT by the GSA for a chirp signal is
matrix,  Vj = Vil Vigal - Vi v, 1= 1yea)s computed in this example. The chirp signal used here is equal
U, = [uk|uk+4| cee |uk+(:(N k)—l)*4]7, and to ijo'114lk2, wherek = —32, ---, 32. In Flg 7, it can be

Ur = [t [0y oy 10 = Vv, will found that the transform results change from a chirp signal
: (Bl - [t 06,1y Qi Vi (a« = 0) to an impulse-like function« = 3w/7). Therefore,

be our solution. The minimizingQ; can be found by _ ’ -
calculating the singular value decomposition (SVD) of'¢ DFRFT can be used for the chirp signal and chirp rate

VIU,. Because thev7'V;, = 1, the solutionT,, will also io:]et[e;]:tion. A more detailed theory and algorithm can be found
satisfy Ui Uy, = L :
Algorithm D. Properties of DFRFT

;ilgtlijcl)?]t:_ltlhe continuous samples of Hermite The properties of thg DFRFT_are shown in Table IIl.

Compute' thne eigenvectors 8t v Traqsform results of the impulse signdy (= 37) are plot_ted

Using equation (32) to computenHermite eigenvectom Figs. 8-10 for the5 method, GSA, and OPA, respectively.
TPhe corresponding samples of the continuous FRFT for the

by projections:ui, impulse signal are plotted in Fig. 11. The norm of the error

for lék—i) t\?z?Uk vectors.betwee_n the DFRFT and samples of the FRFT are also
Compute the SVD ofC;,, Cy, — A D, BT shown in the titles of Flg_s. 8-10. _
Qi = A,BY __The cont|r!uous_ FRFT is an orthonormal S|gnal decompo-
U, = Q Vk sition for chirp signals [9]. Based on the unitary property
end A (A in the DFRFT and the transform results shown in Figs. 9
and 10, we can find that the proposed DFRFT provides a

The GSA minimizes the errors between the samples gfnilar orthonormal signal decomposition for discrete chirp-
Hermite functions and orthogonal DFT Hermite eigenvectofike signals.
from low to high orders, and the OPA minimizes the total
errors between the samples of Hermite functions and orthdg- !mplementation of the New DFRFT
onal DFT Hermite eigenvectors. In Fig. 3, the norms of error As in the case of DFT frequency domain, the last half of
vectors between the computed DFT Hermite eigenvectors ahe indices in the DFRFT must also be treated as the negative
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o=mn/d
2

Fig. 4. DFRFT byS method of a rectangular window functiom(n) = 1 when —6 < n < 6, andxz(n) = 0 otherwise. The output is close to
the continuous FRFT in Fig. 1.
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0z
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Fig. 5. DFRFT by GSA method of a rectangular window functiain) = 1 when —6 < n < 6, andx(n) = 0 otherwise. This figure has a
closer output to the continuous FRFT than Fig. 4.

o=0.05

a=02 a=04

Fig. 6. DFRFT by OPA method of a rectangular window functie(r) = 1 when—6 < n < 6, andz(n) = 0 otherwise. This figure has a closer
output to the continuous FRFT than Fig. 4.

Original Chirp Signal
T ™ AT

B |, S R | R

Fig. 7. DFRFT by GSA of a chirp signat/x%-1141%% & — _32 ... 32. Whena = 37 /7, an impulse-like output is obtained.

frequency. This concept is also applied in the time domagomputing the DFRFT i€)(N?), and it is the same as in the
(o« = 0, identity transform) and any angle transform domainfFT case. If the rotational angles are adjusting, the following

When the number of point® and the rotation angle are method for implementing the DFRFT can be applied:
determined, the DFT Hermite eigenvectors can be computed

_ T
a priori, and the eigenvalues of DFRFT are also determined. 2@;? _IAJ );a/w o (38)
Then, the computation of the DFRFT can be implemented only F =UD U'x

by a transform kernel matrix multiplication. The complexity of =U-D*/7. A (39)
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. o= /4, Er=0.836 0 a=n/3, Er=0.738 . a = 920, Er=0.437 ol o =2, Er=0.000
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Fig. 8. DFRFT byS method of an impulse function:(0) = 1, andz(n) = 0 otherwise. It can be seen that chirp-like outputs are obtained while the
anglea # w/2. Wheno = «/2, the DFRFT reduces to DFT, and the output becomes a constant.

. o= w4, En=0.592 oz a =3, Em=0.284 0 o =920, Er=0.046 o=n/2, Er=0.000

0.1

0.1
0.14
0.12

02

T N [ VR ¢ 10 %

Fig. 9. DFRFT by GSA of an impulse function(0) = 1, andx(n) = 0 otherwise. It can be seen that chirp-like outputs are obtained while the angle
o # w/2. Whena = =/2, the DFRFT reduces to DFT, and the output becomes a constant.

. o= w4, Emr=0.514 02 a=n3, Em=0.327 o = 920, Er=0.123 01 a =2, Er=0.000
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Fig. 10. DFRFT by OPA of an impulse function(0) = 1, andx(n)

= 0 otherwise. It can be seen that chirp-like outputs are obtained while the angle
o # w/2. Whena = =/2, the DFRFT reduces to DFT, and the

output becomes a constant.

Nl ke Proposition 6: The method in (6) assigns all the eigenvec-
= Z e = Uk (40)  tors of the DFRFT matrix to only four different eigenvalues.
k=0 This is the major reason for the mismatches in [17].

Proof: Let v be any DFT eigenvector located in the
The definitions of matriX7 and matrixD are the same as those€igensubspace;,. Fv = ¢=(*/2*v. Applying the transform

in (33). A = [ag, a, -+, ax_1]¥. The coefficientsy,’s are kernel defined in (6) to the eigenvecter we can obtain

the inner products of signal and eigenvectors, and they can be  Ftv = o(t)v + a1 (£)Fv + ax (1) F2v + asF3(t)v
computed in advance. If the rotation angle is changed, only

_ —i( )2k —jmk
the diagonal matriXD?*/~ should be recomputed. =ao(t)v + a?(t)e vtax(t)e ™y
+ ag(t)e I G/ Dhy

F. Discussion = [ao(t) + eI DRy (1) 4+ eI ay(t)

The method in [17] obeys the rotation properties, but it + e—j(3w/2)ka3(t)}v_
cannot have similar results as in the continuous case. A

rigorous discussion for the mismatches of [17] has bedinerefore,v is also a DFRFT eigenvector, and the value
presented in [16]. Here, we stress the major reason for this(t) + ¢~ (™/2kq, () + eI R ay(t) + eI G3/Dhg,(¢) is the

mismatch. eigenvalue for this eigenvector. Since any eigenvector in
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Samples of FRFT, ¢ = /3 . Samples of FRFT, a = 21/5 Samples of FRFT, o = 9n/20 s Samples of FRFT, o = /2

1 "
v

015 e

114

Ak,

0.1

Fig. 11. Samples of continuous FRFT of an impulse functiofl) = 1, andx(t) = 0 otherwise.

TABLE Il
ProPERTIES OFDFRFT

Unitary (FZT“)* _ (FZTQ)_1 -

Angle additivity

24 2(at )
=

F5*F~ =F
Time Inversion 28 N )
Fr a(—n)=Xa(—n)

Periodicity Fﬂtri —_F=
Symmetry F5 (a, b) = F5 (b, a)
2a . . .
whereF = (a, b) is the @,b)-element in DFRFT kernel matrix
Eigenfunction F27° [va] = e—dany,

wherev,, is Hermite-like function

Impulse Transform| _ 2« TN T oot i %2 cot o
p F= [é(k‘)] ~ % 1 ‘{)(:rottyej 5 cot o

Parity If x is even, X, is even.
If x is odd, X, is odd.

one of the four eigensubspagk has the same eigenvalue, the&ounterpart of this transform has with the normalized unit
method assigns the DFRFT eigenvalues to only four valuesiariance Hermite functions. Therefore, our DFRFT can be
[0 used for any rotation angle and can provide very similar results
In the DFRFT of [17], there will be four different eigenval-as continuous cases.
ues for all the eigenvectors. On the other hand, the proposed
DFRFT has assigned a different eigenvalue for each eigenvec-
tor. The development of the new DFRFT is based on the same IV. RELATIONSHIP BETWEEN FRFT AND DFRFT

idea as (2), which satisfies the eigenvalue and e|genfunct|or]n this section, we will establish the relationship between the

relationship as a continuous FRFT kemel. FRFT and the DFRFT. Then, the DFRFT can be used to give
FQQ/W[ﬁn] = ¢iney, (41) the similar continuous transform results within the accuracy

. . ) of the discrete finite vector approximation.
where i, is the eigenvector corresponding to theh-order

Hermite function. It should be noted that the number of eigen- ,
functions for the continuous FRFT in (2) is infinite. However™ Transform Range and Resolution of DFRFT
the number of DFT Hermite eigenvectors is only finite, and In this subsection, we will discuss the transform range and
there are some approximation errors in the DFT Hermitesolution for the DFRFT (see Table IV). In the conventional
eigenvectors. WhileV approaches infinity, the approximationDFT analysis, the transform range and resolution of the DFT
errors of the DFT Hermite eigenvectors will be reduced, arfthve been well discussed [23]. To begin with, we will review
more DFT Hermite eigenvectors are used to compute thad understand the transform range and resolution for the
DFRFT. conventional DFT. In the following discussiof, is the

In [31], an alternative DFRFT has recently been proposeshmpling interval for the original continuous signal; it is also
It is based on retaining the property of the DFT that the time resolution/V is the number of points of the discrete
sampled periodic function transforms into a periodic functiosignal, andNT is the total recorded signal duration and is
Thus, the signal and transform results in [31] are discretiee « = 0 transform range in the time domain as well. The
and periodic, and the rotation anglein [31] is valid for a overall frequency range that the DFT can represent is equal to
certain discrete set of rotation angles. Moreover, the periodsiip/2=, and the frequency resolution 23 /N T, [23].
the transform results change for different rotation angles. Theln Proposition 3, it has been proved that the spread variance
DFRFT developed in this paper is based on the mimicking of the DFT Hermite eigenvector ig/ (N/2x)T,. Here, we will
the eigenvalue—eigenfunction relationship that the continuocsmpute the FRFT for a Hermite function with any variance
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TABLE IV
TRANSFORM RANGE AND REsoLUTION oF DFRFT
Time domain Fractional Fourier domain Frequency domain
(a=0) <a<?®) (@=13%)
Transform Range | N At = NT, | NA, = \/N2T_‘,2 cos? v + ‘*TL: sin® o NAf= 2T—’:
Resolution At =T, N, = \/Tf cos?a + Ié;’;? sin? o Af =&

Proposition 7: The continuous FRFT of a Hermite functionMoreover, we can substitute the variance in (43) by
with variancec is equal to V(N/2m)T, to get the spread variance of the DFRFT in
the fractional Fourier domain (angte)

1—jcota
JT_-Qa/W Ho’ » = / - [ A
[Ho,n] 7N\ 1= jo? cot N T2 cos? o + sin? (48)
<b , <1 os? /3)) o5 TS « T52 n- «.
-expl 7 — cot « —
| cos? « Both (47) and (48) indicate the corresponding variance of
e H, () (42) DFT Hermite eigenvectors in the fractional Fourier domain;

where 3 — tan~(san a/o2). The new variance., is com- therefore, the resolution of the FRFT can be obtained as

puted as - A2 )

Ay =412 cos? a+ —— sin” a. (49)

sin? o N2TE

oo = (/0% cos? a+ —5—. (43) )
o The overall transform range the DFRFT can cover is equal to
Proof: This proposition can be easily proved by comput- A2

ing the FRFT of the normalized Hermite functions. | NA, = \/N2TS2 cos? o+ lQ sin® a. (50)

It is easy to check some special cases for (43)= o and 15
ogs2=1/0.If 0 =1, o, will be equal to 1 for any value of 0

a. In (42), only the last terH,, ,, can affect the envelope |, (34) the DFRFT performs independent circular rotation
of the FRFT Of_Ha:"' ) in the discrete notation. From (45) and Fig. 12, it can be found
From Propositions 4 and 5, it has been shown that there & e signal rotation of the DFRFT is an elliptical rotation in

approximation errors in the DFT Hermite eigenvectors. F@he continuous time—frequency plane, whergast \/W
simplification of analysis, the approximation errors of the DF{1is means that the DERET is implemented in a circular

Hermite eigenvectors are ignored in the following discussiopytation for the discrete case, but it actually performs elliptical

The symbolA,, is used to denote the resolution of the FRFTqation in the continuous time—frequency plane. Three cases
Ao =T and Ay, = 27 /T, are the two special cases.

- X ! can be realized for the signal rotation of the DFRFT in the
Proposition 8: The resolution of the DFRFT with angular.,iinuous time—frequency plane.
parameter« is equal to e The lengths of time and frequency ranges are equal
47{'2 . 2 (TS = \/27T/N)
Aa = \/T52 cos? « + ez S @ (44) » The length of the time range is longer than that of the
_ o T _ frequency ¢, > /27/N).
whereT’, is the sampling interval of the signal, addis the . The |ength of the time range is shorter than that of the
number of points for the discrete signal. The overall transform  frequency ¢, < /27 /N).

range of the DFRFT can cover is equal to ’

The rotation concept of the DFRFT in the continuous

2, time—frequency plane is plotted in Fig. 12. Angleis the

4 .
NAy = \/NQTS2 cos® a + Tz Sin” o (45) actual angle for the elliptical rotation, as drawn in Fig. 12.

5

Proof: From Proposition 3, it has been known that thg_ Elliptical Rotation versus Circular Rotation

spread variance of the DFRFT (g (N/2r)T;. The sampled The FRFT performs circular rotation in the continuous

vectpr in (12) can also _be an approximate eigenvector in tErene—frequency plane, but the DFRFT performs elliptical
fractional Fourier domain (angle).

rotation in the continuous time—frequency plane while #
1 < kA, )6_(,@&3#/1\,). (46) V2w /N. In this subsection, we will define circular and ellip-
N/2

o /N/2x tical rotations clearly and establish the relationship between
2 circular and elliptical rotations.

Thus, the spread variance of the DFRFT for angls equal to » Circular Rotation

N AL (a7) Ra(t, u) =Y " Hy(t)H, () (51)
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Fig. 12. Three different cases of rotation concept for DFRFT in continuous time-frequency plane.

DFRFT, a = n/4, Err=1.7964 . DFRFT with modification, Err=0.1850 \ Samples of FRFT

15

Fig. 13. Results of Example 4 showing that the error norms between DFRFT and continuous FRFT samples are greatly reduced by angle modification
and post-phase compensation.

Xa(u) = /RX(t W (t) dt (52) spread variance changes in these two schemes. If the Hermite

t ’ eigenvectors in the circular rotation are from order 0 to infinity,

_j the circular rotation is just the FRFT of the signal.
— jna
zn: © H"(u)/H"(t)x(t) dt (53) Proposition 9: The circular rotation of signak(¢) can be

implemented by an angle modification of the elliptical rotation

where R, is the transform kernel of circular rotation.and post-multiplying & phase compensation factor.
X.(u) is the circular rotation of signat(¢).

+ Elliptical Rotation X, (u) = PoXy <u ﬂ) (57)
j on
§f%a t,u) = eI H, (OH, .(u 54
(t ) zn: (o, n(u) ®4) where3 = tan—!(tan a/o?), and the post-phase compensa-
R . tion factor is equal to
Aau) = / R (£, w)ar(t) dt (55)
t
Cine _ 1—jcota
= Z e’ H,,mn(u)/H,,m(t)x(t) dt (56) Pc =./og m
. u? " 1 cos® 3 58
where},, is thetransformAkerneI of elliptical rotation, and TP 2 cov e+ - cos2 a) )’ (58)
o, is defined as in (43)&,(u) is the elliptical rotation
of signal z(¢). While o = 1, the elliptical rotation will Proof: The signalxz(¢) can be written as the weighted
become the circular rotation. sum of the normalized Hermite functions.
The transform kernels of the circular and elliptical rotations
defined above are infinite numbers of sums for Hermite x(t):z D,H,; ,(t) (59)
eigenvectors. The critical point for which we care is the n
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where D,, = [, x(t)H, »(t)dt. Compute the FRFT of(t)

(circular rotation) for the both sides of (59).
Xo(u) =Y DpRa[Ho n(1)]

— 1—j cot
:ZDn o - J COot «v

— jo? cot

u? cos? 3
- exp jE cot a| 1 — o o
-e_j"'ﬁHomn(u)

1—jcot «
oY Uav 1—jo2 cot «

u? cos® 3

- exp j? cot a| 1 — o o

. Z e_j"'ﬁHomn(u) - D,

n

1—jcot «
=VO0ar\| 7T
1—jo2 cot «

u? cos?® 3
-exp|l j— cot a| 1 —
2 cos? «
g —jn 93
Vow > e ’BH%"(uo_a)

: / 2(t)Hy, o (t) dt

1—j cot

=, /o"@

1— 702 cot

the length of time rangeNZ;) will almost equal the length

of the frequency range2{ /7). The rotation will almost be

a circular rotation. While the variance is far from unity, the
following steps must be used to make the results of discrete
cases match those of the continuous case.

Step 1) Compute the modification angle 3 =
tan"1((2r/NT?) tan «).

Step 2) Calculate theN-point DFRFT of the signal with
the angular parametet.

Step 3) Multiply the result obtained from Step 2 by the
post-phase compensation factor shown in (62).

In Example 2, we directly compute the DFRFT without
angle modification and postphase compensation. The corre-
sponding variancg/(N/2x)T; is equal to 1.0488 in Example
2. The length of the time range is almost equal to the length
of the frequency range; therefore, the DFRFT in Example 2
is almost a circular rotation.

Example 4: In this example, we again deal with the rect-
angular window shown in Example 2. However, the sampling
interval is still T, = 4/13, and the number of paints in the
signal becomes 37. Here, we only compute the results of
rotation anglex, which are equal tar/4 by the GSA. The
continuous counterpart of the varianeein this example is
V(N/2m)T, = 0.7467. Therefore, the modification of the
angle and postphase compensation discussed above are very
critical. Fig. 13(a) shows the DFRFT with angular parameter
7 /4 for the original signal. Fig. 13(b) is the DFRFT with
angular parameter modification and postphase compensation.
Fig. 13(c) shows the sample values of the continuous FRFT
for the indiceskA,, wherek = —18, —17, ---, 18, A, =

u? cos? B\ o o4 V/(T2/2) + (x /NT?). The results shown in Fig. 13(b) match
Fexp <‘7 o o a<1  cos? a>>X'ﬁ <u a> the corresponding continuous FRFT cases shown in Fig. 13(c)
The operation in the DFRFT performs elliptical rotatiorvery well, and Fig. 13(a) is quite different from Fig. 13(c) due

in the continuous time—frequency plane for the cdse# to the elliptical rotation and not in the circular rotation in the
/27 /N. Using Proposition 9, the elliptical rotation can be&ontinuous time—frequency plane.

implemented by circular rotation. If the values of (57) are
evaluated at the pointsA,,, it will become

) The development of this DFRFT is based on the eigende-

V. CONCLUSIONS
~ (o2
Xa(kAa) = PpdAp <kAa 0_8 (60) composition of the DFT kernel matrik. The new transform
P (EA “ 61 retains the eigenvalue—eigenfunction relationship using the
pAs(kAg)- (61) sampled version of the normalized unit-variance Hermite
Equation (61) indicates that the FRFT with anglecan be fynctions that the continuous FRFT has with the unit variance
implemented by a DFRFT with anglg, and the transform Hermite functions. With the help of the commutative matrix
resolution is stillA,. The discrete post-phase compensatio®, the complete real and orthonormal eigenvectors of the DFT
factor for the DFRFT is kernel matrix can be computed. The DFT Hermite eigenvectors

02 — jo? cot « can be calculated by the projection of samples of the unit
Pp = m variance Hermite functions in the DFT eigensubspaces through
B2A2 cos? 3 the help of the eigenvectors of the mat8x However, such
- exp <, 2 Got a<1 - — )) (62) DFT Hermite eigenvectors cannot form an orthogonal basis for
2 cos™ o the DFT eigenspaces. Two vector orthogonalization processes
wheres = /(N/27)T,. It must be noted that the postphaséor the DFT Hermite eigenvectors are accordingly proposed
compensation factors in (58) and (62) are different. Tha this paper: One is GSA, and the other is OPA. The GSA
variable og in (58) is replaced by in (62) for preserving minimizes the errors between the samples of the Hermite
the unitary property in the DFRFT. T, ~ /2x/N, the functions and the orthogonal DFT Hermite eigenvectors from
variance of the continuous-time counterpart of the eigenvectow to high orders, whereas the OPA minimizes the total

will approximate to unity, and the effects of angle modificatiorrrors between the samples of the Hermite functions and the
and postphase compensation will be very small. In this casgthogonal DFT Hermite eigenvectors.
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Furthermore, the relationship between the FRFT and tfe] G. Cincotti, F. Gori, and M. Santarsiero, “Generalized self-Fourier
i — ./ functions,”J. Phys.,vol. 25, pp. 1191-1194, 1992.
DFRFT can be eStab“Shed as fO||QWS. i Y 27r/N, L23] A. V. OppenheimpDiscrete-Time Signal ProcessingEnglewood Cliffs,
the DFRFT performs a circular rotation of the signal in th NJ: Prentice-Hall, 1989.
time—frequency plane. On the other handZif # /2x /N, [24] S. C. Pei and M. H. Yeh, “Discrete fractional Fourier transform,” in
[ ; ; ; Proc. IEEE Int. Symp. Circuits SysMay 1996, pp. 536-539.
the DFRFT becomes an elllptlcal roFa_ltlor? in the continuo , “Improved discrete fractional Fourier transforn@pt. Lett.,vol.
time—frequency plane. An angle modification and a postphase 22, pp. 1047-1049, July 15, 1997. _ _
compensation in the DFRFT for elliptical rotation are require@6l ’ “TWCI’ dimensional discrete fractional Fourier transforjgnal
. - Process.yvol. 67, pp. 99-108, 1998.

to match the results that are s[mllar for the contmuous' FRF[Eﬂ S. C. Pei, C.-C. Tseng, M.-H. Yeh, and J. J. Shyu, “Discrete fractional

The DFRFT proposed in this paper not only supplies the Hartley and Fourier transforms|EEE Trans. Circuits Syst. Iiol. 45,

imi i i pp. 665-675, 1998.
similar transforms to match .Wlth those .Of the Contmuous. Ca%%] P. M. Morse and H. Feschbadiethods of Theoretical PhysicsNew
_but also preserves the rotation properties. The complexity for" vork: McGraw-Hill, 1953, p. 1416. .
implementing the DFRFT i&(N?), which is the same as that[29] S. H. Friedberg, A. J. Insel, and L. E. Spentiear Algebra. Engle-
; ; ; ; wood Cliffs, NJ: Prentice-Hall, 1989.
of the_DFT' This DFRFT pfo‘{'des a_methOd for |mplemept|ng30] G. H. Golub and C. F. Van LoarMatrix Computations. Baltimore,
the discrete FRFT, and it is an important tool for signal = MD: Johns Hopkins Univ. Press, 1989.
processing. [31] O. Arikan, M. A. Kutay, H. M. Ozaktas, and O. K. Aademir, “The dis-
crete fractional Fourier transform,” iAroc. IEEE Int. Symp. Time—Freq.
Time-Scale Anal.June 1996, pp. 205-207.
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