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Abstract—The continuous fractional Fourier transform (FRFT)
performs a spectrum rotation of signal in the time–frequency
plane, and it becomes an important tool for time-varying sig-
nal analysis. A discrete fractional Fourier transform has been
recently developed by Santhanam and McClellan, but its results
do not match those of the corresponding continuous fractional
Fourier transforms. In this paper, we propose a newdiscrete
fractional Fourier transform (DFRFT). The new DFRFT has DFT
Hermite eigenvectors and retains the eigenvalue-eigenfunction re-
lation as a continous FRFT. To obtain DFT Hermite eigenvectors,
two orthogonal projection methods are introduced. Thus, the new
DFRFT will provide similar transform and rotational properties
as those of continuous fractional Fourier transforms. Moreover,
the relationship between FRFT and the proposed DFRFT has
been established in the same way as the conventional DFT-to-
continuous-Fourier transform.

Index Terms—Discrete Fourier transform, discrete fractional
Fourier transform, Fourier transform, fractional Fourier trans-
form.

I. INTRODUCTION

T HE FOURIER transform (FT) is one of the most fre-
quently used tools in signal analysis [1]. A generalization

of the Fourier transform—the fractional Fourier transform
(FRFT)—has been proposed in [2] and [3] and has become a
powerful tool for time-varying signal analysis. In time-varying
signal analysis, it is customary to use the time-frequency plane,
with two orthogonal time and frequency axes [4]. Because
the successive two forward Fourier transform operations will
result in the reflected version of the original signal, the FT can
be interpreted as a rotation of signal by the angle in the
time–frequency plane and represented as an orthogonal signal
representation for sinusoidal signal. The FRFT performs a ro-
tation of signal in the continuous time–frequency plane to any
angle and serves as an orthonormal signal representation for
the chirp signal. The fractional Fourier transform is also called
rotational Fourier transformor angular Fourier transformin
some documents. Besides being a generalization of the FT, the
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FRFT has been proved to relate to other time-varying signal
analysis tools, such as Wigner distribution [4], short-time
Fourier transform [4], wavelet transform, and so on. The appli-
cations of the FRFT include solving differential equations [2],
quantum mechanics [3], optical signal processing [5], time-
variant filtering and multiplexing [5]–[8], swept-frequency
filters [9], pattern recognition [10], and time–frequency signal
analysis [11]–[13]. Several properties of the FRFT in signal
analysis have been summarized in [9].

Many methods for realizing the FRFT have been developed,
but most of them are to utilize the optical implementation
[14], [15] or numerical integration. Because the FRFT is
a potentially useful tool for signal processing, the direct
computation of the fractional Fourier transform in digital
computers has become an important issue. The ideal discrete
fractional Fourier transform (DFRFT) will be a generalization
of the discrete Fourier transform (DFT) that obeys the rotation
rules as the continuous FRFT and provides similar results as
the FRFT. In [16], a method for a numerical integration FRFT
has been proposed, but the method does not obey the rotation
rules, and the signal cannot be recovered from its inverse
transform. In [17], Santhanam and McClellan have developed
a discrete FRFT, but their method does not provide the same
transforms to match those of the continuous case. In this
paper, we present a newdiscrete fractional Fourier transform
(DFRFT). This DFRFT is a generalization of the DFT and will
provide similar transforms as those of the continuous case.
The relationship between the DFRFT and the FRFT can also
be established and discussed in detail. Moreover, the proposed
DFRFT has important unitary and rotation properties.

This paper is organized as follows. In Section II, the previ-
ous development of continuous and discrete fractional Fourier
transforms are reviewed. The concept for developing the
DFRFT to have similar results as the continuous corresponding
case are described in Section III. Two acceptable solutions for
the DFRFT are considered and proposed in Section III. Then,
the relationships between the FRFT and the DFRFT can be
established in Section IV. Finally, conclusions and discussions
are made in Section V.

II. PRELIMINARY

A. Continuous FRFT

The Fourier transform of a signal can be interpreted as a
angle rotation of the signal in the time–frequency plane.

The FRFT is then developed and treated as a rotation of signal
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Fig. 1. Fractional Fourier transform of a rectangular window.x(t) = 1 when �2 � t � 2, and x(t) = 0 otherwise. Real part: solid line.
Imaginary part: dashed line.

to any angles in the time–frequency plane [9]. The transform
kernel of continuous FRFT is defined as [2], [3], [6], [9]

csc

if is not a multiple of

if is a multiple of

if is a multiple of

(1)

(2)

where indicates the rotation angle of transformed signal for
the FRFT. is the th-order normalized Hermite function
with unit variance. The th-order normalized Hermite function
with variance is defined as

(3)

where is the th-order Hermite polynomial [18]. Because
the normalized Hermite function with unitary variance,
is the eigenfunction of the FRFT, (2) provides an eigendecom-
position representation of the FRFT kernel. The equivalence
of (1) and (2) has been proved in [3]. Using the kernel of the
FRFT, the FRFT of the signal by angle is computed as

(4)

(5)

Equation (5) indicates that the FRFT can be interpreted as
a weighting summation of Hermite functions. The weighting
coefficients are obtained from multiplying the phase term

and the inner product of the input signal and the
corresponding Hermite function. In [19], a rotation operation
using Hermite functions has also been proposed, and the
rotation output of the signal is also the weighting summation
of Hermite functions. However, the Hermite functions in [19]
with a different scaling to those of the FRFT. Thus, it will
have a different phase term in the weighting coefficients.

Fig. 1 shows the FRFT of the rectangular window function
[ for ; and , elsewhere] for various
angles. The real parts of the FRFT or DFRFT in this paper are
plotted by solid lines, and the imaginary parts of the FRFT or
DFRFT are indicated by dashed lines.

B. The Old DFRFT

The kernel matrix of the DFRFT is obtained by computing
the fractional power for the DFT kernel matrix. The fractional
power of the DFT kernel matrix and the rotation angles in
the DFRFT essentially mean the same thing. In order to avoid
ambiguity, the Greek subscripts (for example,and ) are
used to denote the rotation angles in the time–frequency plane,
and the English superscripts are used to denote the fractional
power values of the DFT kernel matrices in this paper. The
conventional methods to compute the DFRFT in [17] and [20]
are mainly on numerical computing the fractional power of the
DFT kernel matrix. The fractional power of the DFT kernel
matrix [20] is calculated by (6)

(6)

where

(7)

Applying the above defined kernel to the signal , the
DFRFT of the signal is computed as

(8)

where is the conventional DFT of signal . Equation
(8) indicates that the DFRFT of the signal is the linear
combination of the four major angular parts: the original signal

, its DFT , a circular reflected version of the signal
( ), and a circular reflected version of its DFT
.

Fig. 2 shows the results of this DFRFT produced by a
discrete rectangular window. The rectangular window used
here is defined as [ , , ; otherwise

]. The discrete results shown in Fig. 2 are quite
different from the results of Fig. 1. Furthermore, the middle
transform result for is not the intermediate state of
the two results and .
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Fig. 2. Old DFRFT of a rectangular window function.x(n) = 1 when �6 � n � 6, and x(n) = 0 otherwise. The output is quite different
from the continuous FRFT in Fig. 1.

TABLE I
MULTIPLICITIES OF THE EIGENVALUES OF DFT KERNEL MATRIX

III. D EVELOPMENT OF DFRFT

A. Eigendecomposition of DFRFT

The development of our DFRFT is based on the eigende-
composition of the DFT kernel, and many properties of the
DFT matrix eigenvalues and eigenvectors have been discussed
in [20] and [21]. Here, we only summarize some results for
our further development of DFRFT.

Proposition 1: The eigenvalues of are ,
and its multiplicities are shown in Table I.

Proof: See [21].
In Table I, a multiplicity function is defined. This

function is used to denote the DFT eigenvalue multiplicity
for . The parameter is the index for the DFT eigenvalue

. The eigenvectors of the DFT matrix constitute four
major eigensubspaces—, , , and —and each is
corresponding to one of the four eigenvalues—1,, 1, and
—respectively. The eigenvalue multiplicities of DFT matrix

indicate the ranks of the DFT eigensubspaces [21], [22].
In [22], a method for computing the DFT eigenvectors

has been introduced, but it cannot obtain the real-valued
DFT eigenvectors. In [20], a novel matrix is introduced to
compute the real and complete set of DFT eigenvectors very
elegantly.

Proposition 2: A matrix can be used to compute the real
eigenvectors of the DFT matrix, and matrix is defined as

...
...

...
. . .

...

(9)

where . Matrix commutes with the DFT kernel
matrix , and then, it satisfies the commutative property

(10)

The eigenvectors of matrix will also be the eigenvectors
of the DFT kernel matrix , but they correspond to different
eigenvalues.

Proof: See [20].

B. DFT Hermite Eigenvectors

The continuous FRFT has a Hermite function with unitary
variance as its eigenfunction. The corresponding eigenfunction
property for the DFT would be like

(11)

where is the eigenvector of DFT corresponding to the
th-order discrete Hermite function.
In the discussion in the previous subsection, we have known

that the eigendecomposition of the DFT kernel matrix is not
unique. Can the DFT have the eigenvectors with the similar
shapes as the Hermite functions? These DFT eigenvectors are
known asDFT Hermite eigenvectors in this paper.

Proposition 3: DFT Hermite eigenvectors should have the
associated continuous spread variance , where
is the sampling intervals of signal. If the Hermite function are
sampled in this way, we get

(12)

where is the th-order Hermite polynomial.
Proof: It is assumed that is the spread variance of the

DFT eigenvectors. The continuous approximate form can be
written as

(13)

Sampling by , (13) will become

(14)

The Fourier transform of (13) can be computed as

(15)
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The sampling theorem [23] tells us the continuous scope of
frequency spectrum that DFT can cover is . Therefore,
the continuous spectrum spacing (or resolution) of the DFT is
equal to . The variable in (15) can be replaced by

to have its discrete form.

(16)

The variance value adjusts the scaling of Hermite func-
tion, and our goal is to adjust the varianceto make the DFT
of have the same eigenvector shape as itself. The condition
for the two shapes of (14) and (16) being the same becomes

Equation (14) becomes

From Proposition 3, we can find that the DFT Hermite
eigenvectors should have associate continuous spread variance

. The sequence obtained from (12) is also equal to
the sampling of the Hermite function with the unit variance by
the sampling interval . In Propositions 4 and 5,
we will prove that even such samplings of Hermite functions
can only have approximate Hermite eigenvectors of the DFT.

Proposition 4: If the sequence is obtained by sam-
pling the unit variance Hermite function with the sampling
interval , then it can be shown that

If is even

(17)

If is odd

(18)

for sufficiently large .
Proof: Here, we only prove the case that is even.

For odd, the proof can be easily derived in the same way.
By truncating the integral interval of Fourier transform from

to , , we have the approximation
expression

(19)

This approximation is valid because is wide
for large , and the decay rate of Gauss function is
very fast. Next, by replacing the continuous integral with the
numerical integral, we have

(20)

This approximation is also valid because is
very small when is very large. Combining (19) and (20)
and letting , we obtain

This expression is valid for any . Thus, taking at
both sides, we have

(21)

The proof is completed.
From the above proof, it is clear that there are two approx-

imation errors in (17). One is the truncation error in (19), and
the other is the numerical error in (20). When the value of

approaches infinity, both errors approach zero. Thus, the
larger is, the better approximation (17) is. Next, because
the degree of Hermite polynomial is , the decay rate
of the Hermite function is proportional to for
sufficiently large . Thus, the larger order is, the slower decay
rate the Hermite function will have. This implies that the trun-
cation error in (19) is larger for high-order. Thus, when order

becomes large, the approximation in (17) becomes worse.
The th-order continuous Hermite function should have
zeros [18]. However, these functions are not bandlimited,

and the samplings in Proposition 3 cannot guarantee that the
numbers of the sign changes in this sampledth-order Hermite
function are also . The small aliasing will occur while is
closer to , but this will not influence the development of
the DFRFT. The sampled Hermite functions still can be used
to construct the DFRFT kernel because they have the similar
shapes and good approximations to the continuous Hermite
functions.

Proposition 5: If the sequence defined in the range
is obtained by shifting Hermite Gauss samples

in the following way:

If is even

for

for
(22)

and if is od,

for

for
(23)

then it can be shown that the DFT of the can be
approximated by , i.e.,

(24)

for sufficiently large .
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Proof: Here, we also prove the case that is even.
While is odd, the proof can also be easily derived. The
DFT of the sequence is given by

DFT

(25)

Using the equality , the
second term on the right side of (25) becomes

(26)

Substituting (26) into (25) and using Proposition 4, we obtain

DFT (27)

(28)

where is limited in the range . Using the
equality , (27) can be
rewritten as

DFT

(29)

where is limited in the range . Combining
(28) and (29), we obtain

DFT

for

for

(30)

The proof is completed.
In Propositions 4 and 5, it has been proved that the sam-

plings of Hermite functions can have approximate DFT eigen-
vectors. The normalized vectors for the samplings of Hermite
functions are defined as

(31)

TABLE II
EIGENVALUES ASSIGNMENT RULE OF DFRFT KERNEL MATRIX

Because matrix can have complete real orthogonal DFT
eigenvectors, the eigenvectors can be used as bases for in-
dividual DFT eigensubspaces. In addition, we can compute
the projections of in its DFT eigensubspace to obtain a
Hermite-like DFT eigenvector

(32)

where mod , and is the eigenvector of matrix
. will be a DFT Hermite eigenvector. In (32), the DFT

Hermite eigenvector is computed from the eigenvectors of
matrix in the same DFT eigensubspace.

C. Newly Developed DFRFT

The fractional power of matrix can be calculated from its
eigendecomposition and the powers of eigenvalues. Unfor-
tunately, there exist two types of ambiguity in deciding the
fractional power of the DFT kernel matrix.

• Ambiguity in Deciding the Fractional Powers of Eigenval-
ues:We know that the square root of unity are 1 and1
from elementary mathematics. This indicates that there
exists root ambiguity in deciding the fractional power of
eigenvalues.

• Ambiguity in Deciding the Eigenvectors of the DFT Kernel
Matrix: The DFT eigenvectors constitute four major
eigensubspaces; therefore, the choices for the DFT eigen-
vectors to construct the DFRFT kernel are multiple and
not unique.

Because of the above ambiguity, we know that there are
several DFRFT kernel matrices that can obey the rotation
properties. The idea for developing our DFRFT is to find
the discrete form for (2). In order to retain the eigenfunction
property in (11), the unit variance Hermite functions are
sampled with a period of in the following
discussions. In the case of continuous FRFT, the terms of the
Hermite functions are summed up from order zero to infinity.
However, for the discrete case, only eigenvectors for the
DFT Hermite eigenvectors can be added. Table II shows the
eigenvalues assignment rules for the DFRFT. This assignment
rule matches the multiplicities of the eigenvalues of the DFT
kernel matrix in Table I. The selections of the DFT Hermite
eigenvectors are from low to high orders. It is because the
approximation error of the low DFT Hermite eigenvectors are
small. In addition, we should not expect that a finite vector
can express the oscillation behavior of the very high-order
Hermite function very well.
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The transform kernel of the DFRFT can be defined as

(33)

for

(odd)

for

(even)

(34)

where , whereas is odd, and
for is even. is the normalized

eigenvector corresponding to theth-order Hermite function,
where is defined as follows:

For odd

...

and for even

...

Example 1— : The rotation angle is equal to ,
and the eigenvalues of the DFRFT are for

. It must be mentioned that the last eigenvalue
is not assigned to and should be assigned to the
value to match the eigenvalue multiplicities
of the DFT matrix in Table I. Therefore, the transform kernel
for the rotation angle can be computed as in (34a), shown at
the bottom of the page, where . is
the eigenvector corresponding to theth continuous Hermite
function.

An eigenbased method for computing the DFRFT to
have similar continuous results has been proposed by us
in [24]–[27]. In [25], the eigenvectors obtained from matrix
are directly considered to be the discrete Hermite functions.
In addition, the eigenvalue–eigenfunction relation is retained
in defining the DFRFT. This means thatis replaced by
in (34). Such a method is called themethod in this paper.

Unfortunately, the eigenvectors obtained from the matrix
are just discrete Mathieu functions [21]. Although the

Mathieu functions can converge to a Hermite function [28],
the convergence for the eigenvectors obtained from matrix
are not so fast for the high-order Hermite functions by the
LMS error criterion.

Equation (32) provides a method for finding DFT Hermite
eigenvectors. The role of matrix in (32) is just as a tool to
find a complete set of real and orthogonal DFT eigenvectors.
However, the DFT Hermite eigenvectors obtained from (32)
cannot constitute an orthogonal basis for DFT eigenspace. It
is easy to verify that the angle rotation property of the DFRFT
can be preserved only while the DFT eigenvectors are orthog-
onal. Therefore, vector orthogonalization is required for the
DFT Hermite eigenvectors obtained from (32). Two methods
for vector orthogonalization are proposed in the following
of this paper. The DFT eigenvectors are orthogonalized for
each eigensubspace. This is because the eigenvectors located
in different eigensubspaces will be always orthogonal.

It is easy to show that the eigenvectors located in differ-
ent eigensubspaces will be orthogonal. So the DFT Hermite
eigenvectors can be orthogonalized for every eigensubspace
individually to obtain orthogonal eigenvectors in the whole
eigenspace of DFT. The symbol notation in developing the
two algorithms are as follows:

continuous Hermite samples vector;
nonorthogonalized Hermite eigenvector;
orthogonalized Hermite eigenvector.

The Gram–Schmidt Algorithm (GSA):The Gram–Schmidt
method [29] is a well-known orthogonalization approach for
vectors. The DFT Hermite eigenvectors in each DFT eigen-
subspace can be orthogonalized by the Gram–Schmidt method.

Calculate the continuous samples of Hermite
functions:
Compute the eigenvectors of matrix:
Using equation (32) to compute Hermite eigenvectors
by projections:
for to

for to

end
end

...
...

...
(34a)
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Fig. 3. Norms of error vectors between DFT Hermite eigenvectors and samples of Hermite functions.

Orthogonal Procrustes Algorithm (OPA):A traditional
mathematical problem known as theorthogonal Procrustes
Algorithmcan be used to find the least Frobenius norm [30, p.
582] for the two given spaces. We can formulate our problem
as the OPA to find the least Frobenius norm between the
samples of Hermite functions and orthogonal DFT Hermite
eigenvectors.

for

minimize (35)

minimize subject to

(36)

where is the Frobenius norm of the
matrix, ,

, and
will

be our solution. The minimizing can be found by
calculating the singular value decomposition (SVD) of

. Because the , the solution will also
satisfy .
Algorithm

Calculate the continuous samples of Hermite
functions:
Compute the eigenvectors of:
Using equation (32) to compute Hermite eigenvectors
by projections:
for to

Compute the SVD of ,

end

The GSA minimizes the errors between the samples of
Hermite functions and orthogonal DFT Hermite eigenvectors
from low to high orders, and the OPA minimizes the total
errors between the samples of Hermite functions and orthog-
onal DFT Hermite eigenvectors. In Fig. 3, the norms of error
vectors between the computed DFT Hermite eigenvectors and

samples of Hermite functions are plotted for . The
error vectors between samples of Hermite functions and DFT
Hermite eigenvectors are defined as

(37)

Example 2: In this example, we use the DFRFT to deal
with the rectangular window function shown in Fig. 1. The
sampling interval is equal to 4/13, and the number of points

is equal to 73. The sampled discrete data then becomes
[ , , ; otherwise, ],
which is the same as the signal used in Fig. 2. Figs. 4–6 show
the DFRFT of the rectangular window function for various
angles for method, GSA, and OPA, respectively.

Example 3: The DFRFT by the GSA for a chirp signal is
computed in this example. The chirp signal used here is equal
to , where . In Fig. 7, it can be
found that the transform results change from a chirp signal
( ) to an impulse-like function ( ). Therefore,
the DFRFT can be used for the chirp signal and chirp rate
detection. A more detailed theory and algorithm can be found
in [7].

D. Properties of DFRFT

The properties of the DFRFT are shown in Table III.
Transform results of the impulse signal ( ) are plotted
in Figs. 8–10 for the method, GSA, and OPA, respectively.
The corresponding samples of the continuous FRFT for the
impulse signal are plotted in Fig. 11. The norm of the error
vectors between the DFRFT and samples of the FRFT are also
shown in the titles of Figs. 8–10.

The continuous FRFT is an orthonormal signal decompo-
sition for chirp signals [9]. Based on the unitary property
in the DFRFT and the transform results shown in Figs. 9
and 10, we can find that the proposed DFRFT provides a
similar orthonormal signal decomposition for discrete chirp-
like signals.

E. Implementation of the New DFRFT

As in the case of DFT frequency domain, the last half of
the indices in the DFRFT must also be treated as the negative
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Fig. 4. DFRFT byS method of a rectangular window function.x(n) = 1 when �6 � n � 6, and x(n) = 0 otherwise. The output is close to
the continuous FRFT in Fig. 1.

Fig. 5. DFRFT by GSA method of a rectangular window function.x(n) = 1 when �6 � n � 6, and x(n) = 0 otherwise. This figure has a
closer output to the continuous FRFT than Fig. 4.

Fig. 6. DFRFT by OPA method of a rectangular window function.x(n) = 1 when�6 � n � 6, and x(n) = 0 otherwise. This figure has a closer
output to the continuous FRFT than Fig. 4.

Fig. 7. DFRFT by GSA of a chirp signal.ej�0:1141k ; k = �32 � � � 32. When� = 3�=7, an impulse-like output is obtained.

frequency. This concept is also applied in the time domain
( , identity transform) and any angle transform domains.

When the number of points and the rotation angle are
determined, the DFT Hermite eigenvectors can be computed
a priori, and the eigenvalues of DFRFT are also determined.
Then, the computation of the DFRFT can be implemented only
by a transform kernel matrix multiplication. The complexity of

computing the DFRFT is , and it is the same as in the
DFT case. If the rotational angles are adjusting, the following
method for implementing the DFRFT can be applied:

(38)

(39)
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Fig. 8. DFRFT byS method of an impulse function.x(0) = 1, andx(n) = 0 otherwise. It can be seen that chirp-like outputs are obtained while the
angle� 6= �=2. When� = �=2, the DFRFT reduces to DFT, and the output becomes a constant.

Fig. 9. DFRFT by GSA of an impulse function.x(0) = 1, andx(n) = 0 otherwise. It can be seen that chirp-like outputs are obtained while the angle
� 6= �=2. When � = �=2, the DFRFT reduces to DFT, and the output becomes a constant.

Fig. 10. DFRFT by OPA of an impulse function.x(0) = 1, andx(n) = 0 otherwise. It can be seen that chirp-like outputs are obtained while the angle
� 6= �=2. When � = �=2, the DFRFT reduces to DFT, and the output becomes a constant.

(40)

The definitions of matrix and matrix are the same as those
in (33). . The coefficients ’s are
the inner products of signal and eigenvectors, and they can be
computed in advance. If the rotation angle is changed, only
the diagonal matrix should be recomputed.

F. Discussion

The method in [17] obeys the rotation properties, but it
cannot have similar results as in the continuous case. A
rigorous discussion for the mismatches of [17] has been
presented in [16]. Here, we stress the major reason for this
mismatch.

Proposition 6: The method in (6) assigns all the eigenvec-
tors of the DFRFT matrix to only four different eigenvalues.
This is the major reason for the mismatches in [17].

Proof: Let be any DFT eigenvector located in the
eigensubspace . . Applying the transform
kernel defined in (6) to the eigenvector, we can obtain

Therefore, is also a DFRFT eigenvector, and the value
is the

eigenvalue for this eigenvector. Since any eigenvector in
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Fig. 11. Samples of continuous FRFT of an impulse function.x(0) = 1, andx(t) = 0 otherwise.

TABLE III
PROPERTIES OFDFRFT

Unitary (F )� = (F )�1 = F
�

Angle additivity
F F = F

Time Inversion
F x(�n) = X�(�n)

Periodicity
F = F

Symmetry
F (a; b) = F (b; a)

whereF (a; b) is the (a,b)-element in DFRFT kernel matrix
Eigenfunction

F [vn] = e�j�nvn
wherevn is Hermite-like function

Impulse Transform
F [�(k)] � N

2�

1�j cot�

2�
ej cot�

Parity If x is even,X� is even.
If x is odd,X� is odd.

one of the four eigensubspace has the same eigenvalue, the
method assigns the DFRFT eigenvalues to only four values.

In the DFRFT of [17], there will be four different eigenval-
ues for all the eigenvectors. On the other hand, the proposed
DFRFT has assigned a different eigenvalue for each eigenvec-
tor. The development of the new DFRFT is based on the same
idea as (2), which satisfies the eigenvalue and eigenfunction
relationship as a continuous FRFT kernel.

(41)

where is the eigenvector corresponding to theth-order
Hermite function. It should be noted that the number of eigen-
functions for the continuous FRFT in (2) is infinite. However,
the number of DFT Hermite eigenvectors is only finite, and
there are some approximation errors in the DFT Hermite
eigenvectors. While approaches infinity, the approximation
errors of the DFT Hermite eigenvectors will be reduced, and
more DFT Hermite eigenvectors are used to compute the
DFRFT.

In [31], an alternative DFRFT has recently been proposed.
It is based on retaining the property of the DFT that a
sampled periodic function transforms into a periodic function.
Thus, the signal and transform results in [31] are discrete
and periodic, and the rotation anglein [31] is valid for a
certain discrete set of rotation angles. Moreover, the periods in
the transform results change for different rotation angles. The
DFRFT developed in this paper is based on the mimicking of
the eigenvalue–eigenfunction relationship that the continuous

counterpart of this transform has with the normalized unit
variance Hermite functions. Therefore, our DFRFT can be
used for any rotation angle and can provide very similar results
as continuous cases.

IV. RELATIONSHIP BETWEEN FRFT AND DFRFT

In this section, we will establish the relationship between the
FRFT and the DFRFT. Then, the DFRFT can be used to give
the similar continuous transform results within the accuracy
of the discrete finite vector approximation.

A. Transform Range and Resolution of DFRFT

In this subsection, we will discuss the transform range and
resolution for the DFRFT (see Table IV). In the conventional
DFT analysis, the transform range and resolution of the DFT
have been well discussed [23]. To begin with, we will review
and understand the transform range and resolution for the
conventional DFT. In the following discussion, is the
sampling interval for the original continuous signal; it is also
the time resolution, is the number of points of the discrete
signal, and is the total recorded signal duration and is
the transform range in the time domain as well. The
overall frequency range that the DFT can represent is equal to

, and the frequency resolution is [23].
In Proposition 3, it has been proved that the spread variance

of the DFT Hermite eigenvector is . Here, we will
compute the FRFT for a Hermite function with any variance.
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TABLE IV
TRANSFORM RANGE AND RESOLUTION OF DFRFT

Proposition 7: The continuous FRFT of a Hermite function
with variance is equal to

(42)

where . The new variance is com-
puted as

(43)

Proof: This proposition can be easily proved by comput-
ing the FRFT of the normalized Hermite functions.

It is easy to check some special cases for (43): and
. If , will be equal to 1 for any value of

. In (42), only the last term can affect the envelope
of the FRFT of .

From Propositions 4 and 5, it has been shown that there are
approximation errors in the DFT Hermite eigenvectors. For
simplification of analysis, the approximation errors of the DFT
Hermite eigenvectors are ignored in the following discussion.
The symbol is used to denote the resolution of the FRFT.

and are the two special cases.
Proposition 8: The resolution of the DFRFT with angular

parameter is equal to

(44)

where is the sampling interval of the signal, and is the
number of points for the discrete signal. The overall transform
range of the DFRFT can cover is equal to

(45)

Proof: From Proposition 3, it has been known that the
spread variance of the DFRFT is . The sampled
vector in (12) can also be an approximate eigenvector in the
fractional Fourier domain (angle).

(46)

Thus, the spread variance of the DFRFT for angleis equal to

(47)

Moreover, we can substitute the variance in (43) by
to get the spread variance of the DFRFT in

the fractional Fourier domain (angle)

(48)

Both (47) and (48) indicate the corresponding variance of
DFT Hermite eigenvectors in the fractional Fourier domain;
therefore, the resolution of the FRFT can be obtained as

(49)

The overall transform range the DFRFT can cover is equal to

(50)

In (34), the DFRFT performs independent circular rotation
in the discrete notation. From (45) and Fig. 12, it can be found
that the signal rotation of the DFRFT is an elliptical rotation in
the continuous time–frequency plane, whereas .
This means that the DFRFT is implemented in a circular
rotation for the discrete case, but it actually performs elliptical
rotation in the continuous time–frequency plane. Three cases
can be realized for the signal rotation of the DFRFT in the
continuous time–frequency plane.

• The lengths of time and frequency ranges are equal
( ).

• The length of the time range is longer than that of the
frequency ( ).

• The length of the time range is shorter than that of the
frequency ( ).

The rotation concept of the DFRFT in the continuous
time–frequency plane is plotted in Fig. 12. Angle is the
actual angle for the elliptical rotation, as drawn in Fig. 12.

B. Elliptical Rotation versus Circular Rotation

The FRFT performs circular rotation in the continuous
time–frequency plane, but the DFRFT performs elliptical
rotation in the continuous time–frequency plane while

. In this subsection, we will define circular and ellip-
tical rotations clearly and establish the relationship between
circular and elliptical rotations.

• Circular Rotation:

(51)

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 02:30 from IEEE Xplore.  Restrictions apply.



1346 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 47, NO. 5, MAY 1999

Fig. 12. Three different cases of rotation concept for DFRFT in continuous time-frequency plane.

(a) (b) (c)

Fig. 13. Results of Example 4 showing that the error norms between DFRFT and continuous FRFT samples are greatly reduced by angle modification
and post-phase compensation.

(52)

(53)

where is the transform kernel of circular rotation.
is the circular rotation of signal .

• Elliptical Rotation:

(54)

(55)

(56)

where is the transform kernel of elliptical rotation, and
is defined as in (43). is the elliptical rotation

of signal . While , the elliptical rotation will
become the circular rotation.

The transform kernels of the circular and elliptical rotations
defined above are infinite numbers of sums for Hermite
eigenvectors. The critical point for which we care is the

spread variance changes in these two schemes. If the Hermite
eigenvectors in the circular rotation are from order 0 to infinity,
the circular rotation is just the FRFT of the signal.

Proposition 9: The circular rotation of signal can be
implemented by an angle modification of the elliptical rotation
and post-multiplying a phase compensation factor.

(57)

where , and the post-phase compensa-
tion factor is equal to

(58)

Proof: The signal can be written as the weighted
sum of the normalized Hermite functions.

(59)
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where . Compute the FRFT of
(circular rotation) for the both sides of (59).

The operation in the DFRFT performs elliptical rotation
in the continuous time–frequency plane for the case

. Using Proposition 9, the elliptical rotation can be
implemented by circular rotation. If the values of (57) are
evaluated at the points , it will become

(60)

(61)

Equation (61) indicates that the FRFT with anglecan be
implemented by a DFRFT with angle, and the transform
resolution is still . The discrete post-phase compensation
factor for the DFRFT is

(62)

where . It must be noted that the postphase
compensation factors in (58) and (62) are different. The
variable in (58) is replaced by in (62) for preserving
the unitary property in the DFRFT. If , the
variance of the continuous-time counterpart of the eigenvector
will approximate to unity, and the effects of angle modification
and postphase compensation will be very small. In this case,

the length of time range ( ) will almost equal the length
of the frequency range ( ). The rotation will almost be
a circular rotation. While the variance is far from unity, the
following steps must be used to make the results of discrete
cases match those of the continuous case.

Step 1) Compute the modification angle
.

Step 2) Calculate the -point DFRFT of the signal with
the angular parameter.

Step 3) Multiply the result obtained from Step 2 by the
post-phase compensation factor shown in (62).

In Example 2, we directly compute the DFRFT without
angle modification and postphase compensation. The corre-
sponding variance is equal to 1.0488 in Example
2. The length of the time range is almost equal to the length
of the frequency range; therefore, the DFRFT in Example 2
is almost a circular rotation.

Example 4: In this example, we again deal with the rect-
angular window shown in Example 2. However, the sampling
interval is still , and the number of points in the
signal becomes 37. Here, we only compute the results of
rotation angle , which are equal to by the GSA. The
continuous counterpart of the variancein this example is

. Therefore, the modification of the
angle and postphase compensation discussed above are very
critical. Fig. 13(a) shows the DFRFT with angular parameter

for the original signal. Fig. 13(b) is the DFRFT with
angular parameter modification and postphase compensation.
Fig. 13(c) shows the sample values of the continuous FRFT
for the indices , where ,

. The results shown in Fig. 13(b) match
the corresponding continuous FRFT cases shown in Fig. 13(c)
very well, and Fig. 13(a) is quite different from Fig. 13(c) due
to the elliptical rotation and not in the circular rotation in the
continuous time–frequency plane.

V. CONCLUSIONS

The development of this DFRFT is based on the eigende-
composition of the DFT kernel matrix . The new transform
retains the eigenvalue–eigenfunction relationship using the
sampled version of the normalized unit-variance Hermite
functions that the continuous FRFT has with the unit variance
Hermite functions. With the help of the commutative matrix

, the complete real and orthonormal eigenvectors of the DFT
kernel matrix can be computed. The DFT Hermite eigenvectors
can be calculated by the projection of samples of the unit
variance Hermite functions in the DFT eigensubspaces through
the help of the eigenvectors of the matrix. However, such
DFT Hermite eigenvectors cannot form an orthogonal basis for
the DFT eigenspaces. Two vector orthogonalization processes
for the DFT Hermite eigenvectors are accordingly proposed
in this paper: One is GSA, and the other is OPA. The GSA
minimizes the errors between the samples of the Hermite
functions and the orthogonal DFT Hermite eigenvectors from
low to high orders, whereas the OPA minimizes the total
errors between the samples of the Hermite functions and the
orthogonal DFT Hermite eigenvectors.
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Furthermore, the relationship between the FRFT and the
DFRFT can be established as follows. If ,
the DFRFT performs a circular rotation of the signal in the
time–frequency plane. On the other hand, if ,
the DFRFT becomes an elliptical rotation in the continuous
time–frequency plane. An angle modification and a postphase
compensation in the DFRFT for elliptical rotation are required
to match the results that are similar for the continuous FRFT.

The DFRFT proposed in this paper not only supplies the
similar transforms to match with those of the continuous case
but also preserves the rotation properties. The complexity for
implementing the DFRFT is , which is the same as that
of the DFT. This DFRFT provides a method for implementing
the discrete FRFT, and it is an important tool for signal
processing.
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