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Abstract 

Hadamard transform is an important tool in discrete signal 
processing. In this paper, we define the discrete fractional 
Hadamard transform which is a generalized one. The devel- 
opment of discrete fractional Hadamard is based upon the 
same spirit of discrete fractional Fourier transform. 

1. Introduction 

Fractional Fourier transform(FRFT) is a generalization of 
Fourier transform, and its output can have the mixed time 
and frequency components of signal[l]. Because of thc im- 
portance of FRFT, the discrete fractional Fourier transform 
(DFRFT) has become an important issue in rewnt ycnrs. 
In [2], a DFRFT has been proposed by B. Santhanam and 
J. H. McClellan. Unfortunately, this DFRFT can not have 
similar results as those of continuous case. In 1996, Pei and 
Yeh have found that the DFRFTs with DFT Hermite eigen- 
vectors can provide similar results as continuous case[3][4]. 

On the other hand, many orthogonal transforms have 
been successfully used in signal processing. Some typical 
ones are discrete cosine transform (DCT)[5], discrete Hart- 
ley transform (DHT)[5] and Hadamard transform. Until 
now, the fractional version of DFT[4] and DHT[6] have also 
been investigated and successfully used in signal process- 
ing. But the discrete fractional Hadamard transform was 
still absent. The goal of this paper is give a definition for 
the discrete fractional Hadamard transform. 

2. Preliminary 

For the factor of normalization, The DFT kernel is defined 
as the following way: 

1 1 [: ::: wC-2 w,"-' 1 

[3][4], the N-point DFRFT kernels are computed as follows: 

N - I  

where V = [ v o l v l l . .  . IVN-11. Vk is the the k-th order DFT 
Hermite eigenvector. cy indicates the rotation angle of trans- 
form in the time-frequency plane. The methods for finding 
the k-th order DFT Hermite eigenvectors have been shown 
in [3] and [4]. 

A Hadamard matrix is a symmetric matrix whose ele- 
ments are the real numbers 1 and -1[5]. The rows(and 
columns) of a Hadamard matrix are mutually orthogonal. 
The normalized Hadamard matrices of order 2", denoted 
by H,, can be recursively b,v defining 

(4) 
In [SI, a method for finding the eigenvalues and eigenvec- 

tors of Hadamard transform has been proposed. Here we 
will state it briefly. 
Proposition 1 I f  vn,k is an eigenvector of H, correspond- 
ing to  the eigenvalue A, 

( 5 )  

will be an  eigenvector of Hn+l, and at corresponds to  the 
eigenvalue A. 
Proof : See [8]. 

Proposition 1 gives us a method for finding the eigenvec- 
tors from order 2" to order 2"+'. The initial eigenvector 
that is an eigenvector of H1 is show as follows: 

where WN = In the history of DFRFT, many 
DFRFTs have been proposed. The DFRFT in [2] can- 
not have the similar results[7]. The DFRFT concerned in 
this paper is based on the eigen decomposirwn rnvthod pro- 
posed by Pei and Yeh(31 [4]. The methods in [3][ l)  use the 
DFT Hermite eigenvectors to construct DFRFI' kcr uel ma- 
trix. ,and have similar outputs as the coutinuous results. In 

Using Proposition 1 and Eq.(6), only one eigenvector of 
order 2" can be computed. In [8],  a sequence of matrices 
E, are defined to generate a set of orthogonal and complete 
eigenvectors. 
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Besides E k ,  a matrix Pnk is also defined by the direct sum 
of 2"-' copies of &'s: 

P n k = E k f E ' E k @ . . * f E ' E k  (8) 

Then the orthogonal and complete Hadamard eigenvectors 
Yi can be obtained: 

Yi = Q i - l Y i - 1  2 5 i < 2 n  (9) 

Q 2 ~ ( 2 k + 1 )  = Pn(r+l) O L k  (10) 
where 

The first eigenvector Y1 is computed by Proposition 1 and 
Eq.(6). The completeness and orthogonality in Yi have 
been proved in [8). 

3. A recursive method for Hadamard 
eigenvectors and eigenvalues 

Here we will develop a new recursive method, which can be 
used to compute the Hadamard eigenvectors from order 2n 
to 2"" directly. No auxiliary matrix (such as E, and P n  
in [8]) is required. 

Proposition 2 If v n , k  i s  an eigenvector of H, correspond- 
ing to the eigenvalue A, 

wall be an eigenvector of Hn+l, and it corresponds to the 
eigenvalue -A. 

Proof : The following proof is directly from the definition 
of eigenvector. 

This proposition has been proved. 0 
Proposition 1 and 2 can give us a recursive method for 

generating the Hadamard eigenvectors of order 2"+' from 
the eigenvectors of order 2". The two initial eigenvectors 
for this algorithm are: 

where v1.0 and v1.1 are the eigenvectors of HI. In the 
following proposition, we will verify the orthogonality and 
completeness in the generated Hadamard eigenvectors by 
Propositions 1 and 2. 

Proposition 3 The following orthogonality can be easily 
derived an the Hadamard eigenvectors. 

1 .  cn ,k  and Gn,i are orthogonal. (0 5 k ,  1 5 2" - 1) 
2. If v n , k  and v n , l  are orthogonal, c n . k  and e,,; wall be 

3. If V n , k  and V n , l  are orthogonal, ?n,k and en,l wall be 
also orthogonal. (k # 1 ,  0 5 k , l  5 2"-') 

also orthogonal. (k # I ,  0 5 k,  1 5 2"-') 

Proof : To begin with, the orthogonality in 3 n , k  and en,( 
will be proved. 

= (1 - f i ) v : , k v n , l  + (-1 + f i ) v : , k v n , l  = 0 

Then we will prove the orthogonality in 8n.k and 8n,1. 

= ( 1  - & ) v T , k v n , f  + (-1 + & ) v T , k v n , l  = 0 

The orthogonality in c n , k  and Gn,i can be proved similar to 
that in v,,+ and C,,!!. 0 

Using Propositions 1 and 2, each eigenvector V n , k  for or- 
der 2n can generate two new eigenvectors for order 2"+'. 
So the number of Hadamard eigenvectors will be twice as 
the number of order 2n. Because the initial case (n = 1) is 
with two eigt?nvectors in Eq (12), the number of Hadamard 
eigenvectors generated by the recursive algorithm is exact 
2" for order 3". Moreover, the ort,hogonality in the gener- 
ated eigeiivectors has been proved in Proposition 3. So the 
generated Hadamard eigenvectors are complete and orthog- 
onal. 
Proposition 4 The eigenvalues of discrete Hadamard ma- 
trix are only l and -1. 

Proof : Because Hi has the only two eigenvalues 1 and -1, 
the complete Hadamard eigenvectors computed by Propo- 
sition 1 and 2 will be only with these two eigenvalues. 0 
In the development of DFRFT; the DFRFT uses the DFT 

Hermite eigenvectors as its eigenvectors. An important fea- 
ture in the DFT Hermite eigenvectors is that the k-th or- 
der Hermate function can have k sign-changes [3][4]. In the 
following, we will check the sign-changes in the computed 
Hadamard eigenvectors and use the sign-changes to develop 
the fractional Hadamard transform. 
Proposition 5 If V n , k  is with k sign-changes, the number 
of sign-changes in + n , k  and ?n,k are 2k and 2k + 1.  One as 
with 212, and the other will have 2k + 1. 

Proof : Because the two halves of G n . k  and cn,k are directly 
from v m , k ,  the sign-changes of i * , k  and c n , k  are at least 2k 
and no more than 2k+l.  The sign-change in the conjunction 
of the first and second halves of c n , k  and c n , k  will determine 
their sign-changes. 

In this proof, the m-th entry of v n &  is denoted by 
v , , k ( m ) ,  where m = O , l ,  . . . ,2" - 1. Because the first and 
last entries of V n , k  will become the central two entries in 

and c, , ,k,  their signs should be considered to determine 
the sign-changes of +.n,k and ?n,k. All the combinations of 
signs for the f i s t  and last entries are shown in the fust two 
columns of Table 1 .  The sign of V n , k ( o )  will be equal to 
those of c n , k ( N )  and c n , k ( N  - 1). The sign of v , , k ( N  - 1) 
will be equal to those of e n , k ( N  - 1 )  and ? n , k ( N ) .  

The different signs in i , , k ( N  - 1 )  and + . n , k ( N )  will cause 
an additional sign-change for Like in the c n , k  case, 
the overall sign-changes in en,k can also be determined. In 
Table 1, it has been shown that the sign-c:hanges in 3 n . k  
and *n,k are 2k and 2k + 1. One is with 2k sign-changes, 
and the other will have 2k + 1 sign-changes. 13 
Proposition 8 N = 2". The numbers of sign-changes in 
V n , k  ( k  = O...,N - 1) are from 0 to N - 1. 
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Proof : The proof of this proposition is by induction 
method. To begin with, the case n = 1 is checked. \.lie 
can find that the initial two vectors in Eq.(12) are with 
none and one sign-changes, respectively. Moreover, it is as- 
sumed that the case for n = m is satisfied. For n = m + 1, 
we can find that the numbers of sign-change are from 0 to 
2N - 1 by Proposition 5. 17 

Proposition 7 The absolute values in the entries of vn,k 
are only the power of (a - l ) m ,  where: in = 0 , 1 , .  . . ,n. 
Proof : The proof of this proposition is trivial and directly 
obtained by Propositions 1 and 2. 0 
Example 1: 
Here we have an example for the Hadamard eigenvectors 
and eigenvalues. N = 8 = 2% The initial two vectors for thc 
Hadamard eigenvectors are v1.0 and ~ 1 . 1 ,  which are shown 
in Eq(12). The Hadamard eigenvectors V2.k (k = 0. 1.2,3) 
are computed from v1,o and V ~ J ,  and they are shown in 
Table 2. Moreover, the Hadamard eigenvectors V3,h can 
also be computed from Vn,k. Table 3 shows the eigenvectors 

Because any linear combination of the eigenvectors cor- 
responding to the same eigenvalues is still an eigenvector, 
the Hadamard eigenvectors obtained by propositions 1 and 
2 are not the unique solution. The solution computed by 
our recursive algorithm is the same as that of [SI. 0 1 1 1  re- 
cursive algorithm has the advantage that the numbers of 
sign-changes in the generated Hadamard eigenvectors can 
be evaluated and proved. 

“3,k 3 

4. Discrete fractional Hadamard transform 
Similar to development of DFRFT. The eigen decomposi- 
tion of Hadamard transform will be used for the definition 
of discrete fractional Hadamard transform. 

It must be noted that the eigenvectors obtained by Propo- 
sitions 1 and 2 are not normalized. These eigenvectors 
should be normalized in kernel construction for the energy 
preserving. 

Thus the eigen decomposition of Hadamard transform using 
the Hadamard eigenvectors generated by Propositions 1 and 
2 can be written as follows: 

2“-1 

(14) 
k=O 

In the development of DFRFT, the k-th order DFT 
Hermite eigenvectors are assigned to have the eigenvalues 
e - j k a  [3][4]. Similar to the development of DFRFT, the nor- 
malized Hadamard eigenvectors obtained by propositions 1 
and 2 with k sign-changes are assigned to the eigenvalue 
e-3ka.  Thus the definition of discrete fractional Hadamard 
transform is written as: 

2“-1 

Hn,a = C e-ika Z k  Zf (15) 
k=O 

It is easy to check that the fractional Hadamard transform 
will become an identity operation for Q = 0, and a tradi- 
tional discrete Hadamard transform for a = A. 
Example 2: 
In this example, we will compute the discrete fractional 

Hadamard transforms for an impulse signal with width 64 
(z(n) = 1, when n = 0; z(n) = 0, 1 5 n 5 63). Fig.1 
shows the discrete fractional Hadamard transform outputs 
of this impulse signal. While 0 < a < ;, the peaks become 
wider as a grows larger. If o = 5 ,  the output, is two peaks. 
When $ < a < ?T, the ripples are denser as (P is closer to A. 

Finally, the output becomes a DC when a = 7r. 

5. Properties of discrete fractional 
Hadamard transform 

0 Angle additivity 

Hn,aHn,p = Hn,a+B (16) 
0 Unitary 

Hn,-a = H i , a  = (&,a)-’ (17) 
0 Periodicity 

The discrete fractional Hadamard transform will re- 
duce to the classical Hadamad transform for Q = m. 

Hn,a+2n = Hn,a (18) 

0 Symmetric 

Hn,a(a ,b)  = Hn,p.(b,a) (19) 

6 .  Conclusions 
In this paper, the discrete fractional Hadamard transform 
based upon the same idea of DFRFT is proposed. Most 
of the properties of DFRFT can be preserved in the dis- 
crete fractional Hadamard transform. The proposed dis- 
crete fractional Hadamard transform can provide interme- 
diate outputs for the signals to its Hadamard transform, 
and it will be useful in signal analysis. 
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Table 1. The number of sign-changes in the con- 
structed Hadamard eigenvector 

+2,0 

+2,0 

G2.l 

G2.1 

c2 ,2  

+2,2 

e2.3 

+2,3 

Eigenvalue 
1, -1 + 4, -1 + Ji, 3 - 2& 

1 -a. 7 t 2 v 5 .  1. - 1 + 4  

1 - a, 1, - 3  + 2 > 6 ,  - 1 +  4 
G1.1 [ 3 - 2 \ / 2 ,  1 - 4 ,  I-&, 1 1 

Eigenvalue Eigenvector 
1 1, -1+Jz, -I+&, 3 - 2 4 ,  - 1 + 4 , 3 - 2 2 J Z ,  3 - 2 4 ,  - 7 + 5 4  

-1 
-1 
1 
1 
-1 
-1 
1 

' 1 - 4 ,  -3+2&, -3+2&,  7 - 5 4 ,  1, -1+& - 1 + &  3 - 2 4  

'1-4, -3+2&,  1, - I + & ,  - 3 + 2 f i ,  7 - 5 4 ,  - I + & ,  3 - 2 4  
' 3 - 2 f i ,  - 7 + 5 f i ,  1 - 4 ,  -3+2\ /2 ,  1 - 6 ,  - 3 + 2 & ,  1, -1+fi 

' 3 - 2 4 ,  I-&, 1 - 4 ,  1, - 7 + 5 4 ,  - 3 + 2 4 ,  - 3 + 2 4 ,  -14-4  

- [ 7 - 5 & , 3 - 2 & , 3 - 2 4 ,  1 - 4 ,  3 - 2 4 , 1 - J z ,  1 - 4 ,  1 3  - 
- 1 - 4 ,  1 ,  - 3 + 2 4 ,  - 1 + 4 ,  - 3 + 2 4 ,  - 1 + f i ,  7 - 5 4 ?  3 - 2 4  
' 3 - 2 & ,  1 - a ,  -?'+Sa, - 3 + 2 f i ,  1 - 4 , 1 ,  - 3 - f - 2 4 ,  - 1 4 - f i  

Order 2" 

v2.3 
v2.2 

Table 2. An example for the Hadamard eigenvec- 
tors, N=4 

Table 3. An example for the Hadamard eigenvec- 
tors, N=8 

a-d4 , o q  a = d16 Ci=d , 071 0 1  

i 

Order 2" 

v3.7  

a - a  
0 5, 

Figure 1. The discrete fractional Hadamard trans- 
form of an impulse signal 
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