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Discrete Fractional Hilbert Transform

Soo-Chang Pei and Min-Hung Yeh

Abstract—The Hilbert transform plays an important role in the theory
and practice of signal processing. A generalization of the Hilbert transform,
the fractional Hilbert transform, was recently proposed, and it presents
physical interpretation in the definition. In this paper, we develop the dis-
crete fractional Hilbert transform, and apply the proposed discrete frac-
tional Hilbert transform to the edge detection of digital images.

Index Terms—Fractional Hilbert transform, fractioinal Fourier trans-
form, Hilbert transform.

I. INTRODUCTION

The Hilbert transform is an important tool for signal processing, and
it has been widely used in many areas, such as modulation theory [1],
edge detection [2], [3], and so on. Besides the continuous Hilbert trans-
form, the discrete Hilbert transform can also be used for digital commu-
nication and edge detection of digital images [1]–[3]. A generalization
of Hilbert transform, the fractional Hilbert transform, was proposed in
[4], and it provides a tool to process signal in the fractional Fourier
plane instead of a conventional Fourier plane.

The method for implementing the fractional Hilbert transform in [4]
is using optical instruments. The goal of this paper is to develop the
discrete fractional Hilbert transform, which can have similar outputs
as those of the continuous fractional Hilbert transform.

II. PRELIMINARY

A. The Continuous Hilbert Transform

The conventional Hilbert transform of a continuous signalx(t) is
computed as [1]

x̂(t) =
1

�1

x(�)

t� �
d�: (1)

The continuous Hilbert transform consists of a�=2 radian phase shift
(for positive frequencies only) in the frequency domain [6]. Thus the
transfer function of Hilbert transform becomes

H1(!) =

j; ! > 0

0; ! = 0

�j; ! < 0:

(2)

B. The Continuous Fractional Hilbert Transform

In [4], two alternative definitions for the continuous fractional
Hilbert transform have been developed. One is based upon the mod-
ification of spatial filter with a fractional parameter, and its transfer
function is defined as

HP (v) = cos �H0(v) + sin �H1(v) (3)
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Fig. 1. Block diagrams for the different implementations of the fractional
Hilbert transform. (a) Spatial filter. (b) FRFT method. (c) Generalized
definition.

where� = P�=2. The above definition of fractional Hilbert transform
is a weighted sum of the original signal and its conventional Hilbert
transform, and it is based upon modifying the spatial filter with frac-
tional parameter.

The other fractional Hilbert transform is based upon the fractional
Fourier transform (FRFT) [5]. The FRFT operation indicates a rotation
of signal in the time-frequency plane. The transform kernel of FRFT
defined in [5] is

K�(t; u) =
1� j cot �

2�
ej((t +u )=2) cot ��jut csc � (4)

where� indicates the rotation angle in the time-frequency plane. While
� = �=2, the FRFT will become conventional Fourier transform.

The transfer functionVQ for the other fractional Hilbert transform
based upon the FRFT method is defined as [4]

VQ = F�QH1F
Q (5)

whereFQ is the fractional Fourier transform with fractional orderQ.
WhileQ = 1, the FRFT becomes the conventional Fourier transform.
The parameterQ defined here is equal toQ�=2.

The above two definitions of the fractional Hilbert transform can be
merged into a general one [4]. Thus, its transfer function is defined as
follows:

HP;Q = F�QHPF
Q: (6)

Fig. 1 shows the block diagrams for implementing the fractional
Hilbert transform. IfP = 1, the second fractional Hilbert transform
which is based upon FRFT is obtained.

C. The Discrete Hilbert Transform

The transfer function of the discrete Hilbert transform is defined as
[6], [7]

H(!) =

j; 0 < ! < �

0; ! = 0 andw = �

�j; �� < ! < 0:

(7)

Many methods for computing the discrete Hilbert transform have
been proposed [6], [7]. Most of them are based upon the transfer func-
tion of the Hilbert transform. The method for computing the discrete
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Hilbert transform used in this paper is also based upon its transfer func-
tion and utilizing the discrete Fourier transform DFT as a tool. Thus
the discrete Hilbert transform can be computed through the following
steps.

Step 1:Compute the DFT of signalfx[k]g

X[n] = DFT[x[k]] (8)

Step 2:X[n] is multiplied by the maskM1. The maskM1 is
defined as

if N is even

M1 = [0; j; j; . . . ; j

(N=2)�1

; 0; �j; �j; . . . ; �j

(N=2)�1

] (9)

if N is odd

M1 = [0; j; j; . . . ; j

(N�1)=2

; �j; �j; . . . ; �j

(N�1)=2

] (10)

Step 3:Compute the inverse DFT to obtain̂x[k].

x̂[k] = IDFT[X[n]M1[n]]: (11)

Thenx̂[k] will be the discrete Hilbert transform ofx[k]. Block diagram
for implementing the discrete Hilbert transform is shown in Fig. 2.

III. D EVELOPMENT OF THEDISCRETEFRACTIONAL HILBERT

TRANSFORM

Similar to the continuous fractional Hilbert transform, a discrete
fractional Fourier transform (DFRFT) will be required in the gener-
alized discrete Hilbert transform. But in the history of DFRFT devel-
opment, the DFRFT has been considered a linear combination of the
signal and its spectrum in many documents [8]. Such a definition cannot
have similar outputs as those of continuous fractional Fourier transform
[9]. We have found that the DFRFT, with discrete Hermite eigenvectors
and appropriate eigenvalue assignment rule, can have similar results as
those of continuous FRFT [10]. Here we will use our DFRFT compu-
tation method to develop the discrete fractional Hilbert transform. The
kernel of DFRFT is defined as follows:

F
Q =

n

e�jnQ(�=2)
vnv

�

n (12)

wherevn is thenth order DFT Hermite eigenvector which is a DFT
eigenvector with similar shape as thenth order Hermite function. The
method for finding thenth order DFT Hermite eigenvector can be
found in [10] and [11]. The method in [10] is not good enough. Two
more accurate methods can be found in [11]. The discrete fractional
Hilbert transform can be computed through the following steps.

Step 1:Compute the DFRFT of signalfx[k]g with parameterQ.

XQ[n] = DFRFTQ[x[k]] (13)

Step 2:XQ is multiplied by the maskMP . The maskMP is
defined as

if N is even

MP = [cos �; ej�; ej�; . . . ; ej�

(N=2)�1

; cos �; e�j�; e�j�; . . . ; e�j�

(N=2)�1

]:

(14)

if N is odd

MP = [cos �; ej�; ej�; . . . ; ej�

(N�1)=2

; e�j�; e�j�; . . . ; e�j�

(N�1)=2

]

(15)

Fig. 2. Block diagram for the implementation of the discrete Hilbert transform.

where� = P�=2.
Step 3:Compute the DFRFT with parameter�Q.

x̂[k] = DFRFT�Q[XQ[n]MP [n]]: (16)

Thenx̂[k] is the discrete fractional Hilbert transform ofx[k].
The responses in the fractional Fourier domain are definedej� and
e�j� for positive and negative transform domains, respectively. The
first and central entries in the maskMP are both equal tocos �, which
are defined as the middle responses for positive and negative transform
domains

cos � =
ej� + e�j�

2
(17)

Then it can be easily verified that (9) and (10) are just special cases
of (14) and (15). So the proposed discrete fractional Hilbert transform
is a generalized version of the conventional discrete Hilbert transform.
While P = 0, the mask becomes

M0 = [1; 1; 1; . . . ; 1] (18)

Thus the output of discrete fractional Hilbert transform will be the same
as the input signal. In this case, the discrete fractional Hilbert transform
will become an identity transform. WhileP = 2, the mask becomes

M2 = [�1; �1; �1; . . . ; �1]: (19)

The output of discrete fractional Hilbert transform becomes the nega-
tive value of the input signal.

The block diagram shown in Fig. 2 can also be modified for the
implementation of the discrete fractional Hilbert transform. The DFT
and IDFT must be changed into DFRFT with parameterQ and�Q,
respectively. And the maskMP in (14) and (15) must be used for the
mask block in Fig. 2.

Example 1: The amplitudes of discrete fractional Hilbert transform
for a rectangular window are shown in Figs. 3 and 4. It can be observed
that the discrete fractional Hilbert transform of a rectangular function
consists of two peaks which mark the edges in the signal. The empha-
sizes of positive or negative edges are based upon the parameters for
discrete fractional Hilbert transform. While0 < P < 1, the posi-
tive edges are emphasized. And the negative edges will be emphasized
when1 < P < 2. But in the case ofQ = 0:5, it can be observed in
Fig. 4 that there is no preference either for the negative or for the posi-
tive derivative.

The results in Example 1 are very similar to those of the continuous
fractional Hilbert transform for the results in [4]. This can help us to
verify that the proposed discrete fractional Hilbert transform is our de-
sired transform.

IV. PROPERTIES OF THEDISCRETEFRACTIONAL HILBERT TRANSFORM

1) Periodicity: The period of continuous fractional Hilbert trans-
form has the periods 4 for both parameters (P andQ). In the
discrete fractional Hilbert transform, this property can also be
preserved.

2) Angle Addition:The continuous fractional Hilbert transform has
angle addition property for parameterP . Now we will discuss
the angle addition property in the discrete case. For a discrete
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Fig. 3. The discrete fractional Hilbert transform of a rectangular windowQ = 1.

Fig. 4. The discrete fractional Hilbert transform of a rectangular windowQ = 0:6.

signalx = [x0; x1; . . . ; xl�1], the dc and ac components of
discrete signalx are defined as follows:

xDC =

l�1

i=0

xi (20)

xAC =

l�1

i=0

(�1)ixi: (21)

The angle addition property of discrete fractional Hilbert trans-
form can be preserved while the dc and ac components of signal
are removed

~x = x� xDC � xAC: (22)

Then the following equation will be satisfied:

HP +P ; 1(~x) = HP ; 1HP ; 1(~x) (23)

whereHP;Q indicates the discrete fractional Hilbert transform
with parameterP andQ. The proof of (23) will be straightfor-
ward

HP ; 1HP ; 1 =(F�1MP F)(F
�1
MP F)

=F�1MP MP F:

If the dc and ac components are removed, thenMP MP =
MP +P . Equation (23) can be preserved for any values ofQ if
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Fig. 5. Results of Example 2: edge detection of a square by the discrete fractional Hilbert transform.Q andQ are equal to 1.P andP are different in each
plot.

the outputs of DFRFT are with zero values in the first and central
entries.

V. APPLICATIONS OF THEDISCRETEFRACTIONAL HILBERT

TRANSFORM

The conventional discrete Hilbert transform has been applied to find
the edges of digital images [2], [3]. According to the results shown in
Example 1, the discrete fractional Hilbert transform can emphasis pos-
itive or negative edges for digital signals. In the following example, we
will apply the discrete fractional Hilbert transform to detect the edges
for digital images. The principle used for edge detection through the
discrete fractional Hilbert transform is based upon the idea in [2]. The
edges occur in the(m; n) point if the following equation is satisfied:

jhP ;Q (m; n)j2 + jhP ;Q (m; n)j2 > threshold (24)

wherehP ;Q (m; n) is the output of the discrete fractional Hilbert
transform with parametersPx andQx in thex-direction for the point
(m; n). hP ;Q (m; n) is the output of the discrete fractional Hilbert
transform with parametersPy andQy in they-direction for the point
(m; n). The choices of threshold values are to control the amounts
of edges in detection. The selections of parameters (Px, Px, Qx, Qy)
are depended upon the desired directional edges in images.Px = 0
indicates no detection in thex-direction;0 < Px < 1 emphasizes the
positive edges in thex-direction.Px = 1 indicates the edge detection
in thex-direction no matter of positive or negative edges.1 < Px < 2
emphases the negative edge in thex-direction. These cases are also the
same for thePy parameter in they-direction. It must be noted that (24)

use the square of amplitude as measures. It is because transform results
of the discrete fractional Hilbert transform are complex numbers.

Example 2: In this example, we will apply the discrete fractional
Hilbert transform for edge detection. The original image is drawn in the
upper left corner of Fig. 5, and it is a simple square. The other fifteen
images are the detection results. It can be observed that the edges in
digital images can be detected through the choices of parameterPx and
Py . The parametersQx andQy used in this example are both equal to
1. WhilePx = 0:5 andPy = 0, only the horizontal positive edges
are emphasized. WhenPx = 1:5 andPy = 0, only the horizontal
negative edges are emphasized. These results can be viewed clearly in
Fig. 5. The case,Px = 1 andPy = 1, is the conventional discrete
Hilbert transform for edge detection, and all directions of edges can be
viewed in this case.

From the results shown in Example 2, we know that the positive or
negative edges can be obtained through the choices of fractional Hilbert
transform parameters. These results cannot be obtained by common
edge detectors, but the fractional Hilbert tranform method can achieve
them.

VI. CONCLUSION

A method for computing the generalized discrete fractional Hilbert
is developed in this brief: forward DFRFT, masking DFRFT, and in-
verse DFRFT. Appropriate masks in computing the discrete fractional
Hilbert transform are proposed. The proposed discrete fractional
Hilbert transform can have similar results as those of continuous
fractional Hilbert transform. Moreover, the properties of continuous
Hilbert transform can also be preserved. And, the proposed discrete
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fractional Hilbert transform can be successfully used in edge and
corner detections for digital images.
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Design of Nonuniform Multirate Filter Banks by
Semidefinite Programming

Aryan Saadat Mehr and Tongwen Chen

Abstract—In this brief, the design of finite-impulse response (FIR) filter
banks by semidefinite programming is discussed. The initial analysis filters
are designed according to the characteristics of the input. By the design
procedure, for the given set of analysis filters, synthesis filters are found
so that the norm of the error system is minimized over all synthesis
filters that have a prespecified order. Then, the synthesis filters obtained in
the previous step are fixed and the analysis filters are found similarly. By
iteration, the norm of the error system decreases until it converges to
its final value.

Index Terms—Filter banks, multirate systems, optimization.

I. INTRODUCTION

As mentioned in [5] and [6], it is usually possible to relate a nonuni-
form filter bank to a uniform filter bank with possibly interrelated fil-
ters. Thus, the design of a nonuniform filter bank can be converted
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to the design of a uniform filter bank subject to some structural con-
straints. The design process should be capable of handling these con-
straints. For example, methods presented in [3] and [6] are suitable
for the cases where no structural constraints are present. In [4], it was
shown that filter banks may be designed by model matching, i.e., by
minimizing theH1 norm of an error system, formed by subtracting
the output of a pure delay transfer function from the output of the filter
bank. By such a design method, the analysis filters are designed in ad-
vance and infinite-impulse response (IIR) synthesis filters are found so
that theH1 norm of the error system is minimized, then the IIR filters
are approximated by finite-impulse response (FIR) filters. The filters
are found by solving two Riccati equations. Because of the approxima-
tion, the final filters are suboptimal, furthermore this method can not
accommodate the structural constraints.

In this brief, we follow an iterative approach. At each iteration, we
use semidefinite programming and obtain the FIR synthesis filters for a
given set of FIR analysis filters or vise versa. The problem is a convex
optimization problem, and since no approximation is involved, at each
iteration the solution is optimal, i.e., the FIR synthesis (analysis) filters
are optimal for the given analysis (synthesis) filters. Here, we consider
theH1 norm as the optimality criteria. Thus the designed filter bank is
closest to the desired ideal system in the worst case scenario. As we will
see, the constraints will not pose any difficulty in the design process.

The semidefinite programming (SDP) problem is the optimization
problem of a linear function subject to the constraint that a matrix be
positive definite. In other words, the following problem is a semidefi-
nite programming problem:

minimize c
0
x; subject to G(x) > 0

where2 Rm is the variable, and

G(x) = G0 +

m

i=1

xiGi

and the given matricesG0; � � � ; Gm 2 R
n�n are symmetric. Here,

for real symmetric matricesA andB, A > B wheneverA � B is
positive definite. The inequalityG(x) > 0 is called a linear matrix in-
equality (LMI). The SDP problems are convex optimization problems
and can be solved using interior point methods. Thus SDP problems
are polynomial time solvable, if an a priori bound on their solution is
known [1], [2].

This brief is organized as follows. In Section II, we discuss the
model-matching formulation for filter banks. In the third section, this
problem is then converted to an SDP problem. In Section IV, we give
an example for the design of a three channel nonuniform filter bank.
The example involves periodic blocks in the synthesis filter bank and
frequency selective filters as the analysis filters. Finally, in Section V,
we make some concluding remarks.

II. FORMULATION

A nonuniform filter bank as shown in Fig. 1 is considered. In this
section, we will discuss how a model matching problem for the design
of multirate filter banks can be obtained.

A nonuniform filter bank is a periodic system with period
q = lcm(q0; q1; � � � ; qm�1), whereqi are the downsampling factors.
Therefore, if we block the input and output signals, a multi-input
multi-outputq by q LTI system results. In [8], the building blocks of
this filter bank are studied and in [3], the transfer matrix of a blocked
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