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Discrete Frequency Warped
Wavelets: Theory and Applications

Gianpaolo Evangelistaviember, IEEE and Sergio Cavaliere

Abstract—In this paper, we extend the definition of dyadic The new bases are obtained by combining discrete Laguerre
wavelets to include frequency warped Wavelet_s. The new yvaveletsexpansions with quadrature mirror filterbanks [6], [22]. As
are generated and the transform computed in discrete-time by we will show in Section II, this is equivalent to frequency

alternating the Laguerre transform with perfect reconstruction . d filteri h | A cl f b
filterbanks. This scheme provides the unique implementation of WarPIng and filtering the wavelets. A class of continuous-

orthogonal or biorthogonal warped wavelets by means of ratio- time frequency warped wavelets were introduced in [12]
nal transfer functions. We show that the discrete-time warped and [13]. Our wavelets are the unique frequency warped
‘i’Vﬂ‘iﬁ'etS 'ﬁa? t%V}’gr”r;]d%f]j“tﬁg %zgtigg;’lgsgi“l]:ﬂ"c‘)’ﬁ@ﬁ;bsa;aesé Sc;""twavelets that can be generated and the transform computed
tﬁfgw%vaeletz ipsenot invariant by translation?Rather, the “wavpelet by mean_s of ratlonal transfe_r functions. By extending the
translates” are obtained from one another by allpass filtering. €Onstruction of ordinary dyadic wavelets, we show that our
We show that the phase of the delay element is asymptotically discrete-time wavelets lead to well-defined continuous-time
a fractal. A feature of the warped wavelet transform is that the warped wavelets, provided that their defining infinite product
cut-off frequencies of the wavelets may be arbitrarily assigned ¢onyerges pointwise. By means of warping, nonoctave bands
while preserving a dyadic structure. The new transform provides - . . .
an arbitrary tiling of the time—frequency plane, which can be &€ accommodated in the dyadic structL!re. _Unllk_e ordinary
designed by selecting as little as a single parameter. This feature Wavelets, the new bases are not translation invariant at each
is particularly desirable in cochlear and perceptual models of fixed scale. However, the “translated wavelet” is obtained from
speech and music, where accurate bandwidth selection is anthe “mother wavelet” by allpass filtering. The usual unit delay
issue. As our examples show, by defining pitch-synchronous oo ments are substituted by first-order allpass filters. We show
wavelets based on warped wavelets, the analysis of transients . . .
and denoising of inharmonic pseudo-periodic signals is greatly that the phase of the iterated warping wavelets is a fractal.
enhanced. Laguerre sequences and wavelets may be combined in sev-
eral ways, each leading to a different complete and orthogonal
or biorthogonal set. The simplest frequency warped wavelet
expansions may be obtained by prewarping the signal by
means of Laguerre expansion and by expanding the Laguerre
. INTRODUCTION coefficients onto a wavelet basis. In this case, a single pa-
N THIS paper, we consider extensions of the waveleameter controls the tiling. These expansions may be extended
theory, defining a class of wavelets that provide a flexiblay intertwining Laguerre expansion and QMF analysis. Using
orthogonal or biorthogonal tiling of the time—frequency planghis scheme, one obtains the general case of wavelets with
While in ordinary dyadic wavelets the frequency axis iarbitrary bandwidths.
partitioned in octave bands, in our class of transforms, thisWe also extend frequency warping to pitch-synchronous
partition can be designed by selecting a set of parametaravelets. Interesting applications arise in the analysis of
directly related to the cutoff frequencies of the wavelets. fseudo-periodic signals whose partials are not uniformly
the latter are constrained by a specific law, e.g., exponentiakgaced in the frequency domain. This is the case of
single parameter is required. A considerable effort to enhanggasistationary waves in dispersive media. The analysis
and adapt the frequency resolution of wavelets has been mafletransients in strings, where dispersion is caused by
in recent years by defining wavelets based on rational sampligtiffness—this phenomenon is apparent in piano strings in
rate, wavelet packets, and multivavelets [23]-[26]. In theske low octave region—is greatly enhanced by using the
schemes, the “mother wavelet” is not unique. As a result, thtich-synchronous warped wavelets. Furthermore, by building
design procedures become increasingly more complex as @ pitch-synchronous bases on warped wavelets rather than
increases the number of desired bands. on ordinary wavelets, one can increase at will the frequency
resolution of the sidebands of the partials, enhancing feature
extraction and signal separation.
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Fig. 1. Frequency warped filterbank structure including the Laguerre transform and inverse Laguerre transform blocks.

is explored in Section IV, where we consider two particular 15
choices of the Laguerre parameters. In Section V, we look
at some applications, presenting a specific example where
warping enhances the analysis of inharmonic signals. Finally,
in the Appendix, we present a brief review of the Laguerre 1t
transform and its implementation.

1G4 (@)

Il. FREQUENCY WARPED FILTERBANK osh IH(4 (@)

The basic building block for computing the discrete fre-
guency warped wavelet transform is given by the frequency
warped filterbank, which is shown in Fig. 1. The analysis sec-
tion is formed by cascading a Laguerre transform (LT) block, 0
which is detailed in the Appendix, with a perfect reconstruction
(PR) orthogonal filterbank [16], [17]. Accordingly, the syn-
thesis section consists of the PR synthesis filterbank cascaded Fig. 2. Frequency warped QMF transfer functions.
by the corresponding inverse Laguerre transform (ILT) block.

The analysis structure performs the task of projecting theThe sequences; ,.(k) and ¢ (k) constitute the sets
signal z(k) onto the discrete Laguerre basfs,},.cx and associated with the frequency warping filterbank and play
then projecting the Laguerre expansion coefficients over tH& same role as that df,.(k) and g,,(k) in ordinary PR
orthogonal sets associated with the filterbank. The latter sétterbanks. Due to the orthogonality and PR property of
are obtained by translating the two QMF impulse responseghe filterbank and the orthogonality and completeness of the
(lowpass) andy (highpass) over the even integets; (k) = discrete Laguerre set, the set obtained by adjoining, (k)
h(k —2m), andg,, (k) = g(k — 2m); k, m integers. Denoting t0 1 .. (k) is orthogonal and complete ¥ (V).
the Laguerre expansion coefficients by and the outputs of ~The sequences in the new basis are frequency warped and
the filterbank byv; ,,, andw; ., respectively, for the lowpassfiltered versions of the sequencks,(k) and g,,,(k). In fact,
and highpass branch, we obtain exploiting (41) of the Laguerre sequences (see the Appendix),
it is easy to show that thei-transforms are related as

0.5 1 1.5 2 2.5 3

Zh o amee =2 sl @1,(2) = Ao () HIAZ) ] = Bo(2) HalAR) ] (1)
and B and
- Zg r— 2m)a i@" o U1 m(2) = Ao (2)GA(2) T = Ko(2)Gm[A(2) 7] (2)
k=0 where A(z) is the transfer function of a real allpass filter with
where single pole inz = b, b being the Laguerre parameter. The

phase ofA(z) induces a warping of the frequency axis given,
for real values ofs, by the map

=> " z(k)A(k) -
k=0 o Jey _1 sin w

f(w) = —arg A(e’*) =w+2 tan <71 i — w). (3)

and we defined

This map is the unique one-to-one frequency warping map

oL m(k) = i)\ ) that can be realized by means of rational transfer functions
— [11]. It shifts thew/2 cut-off frequency of the ordinary filter-
and B bank to the frequency /2 — 2 tan~!(b). The bandwidths of
the warped filters are complementary with respeet samd can
Y1, m(k Z Ar(K)gm (7). be arbitrarily designed by choosing the Laguerre parameter, as

shown in Fig. 2. This important property allows us to break
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the half-bandwidth barrier of the ordinary QMF filterbankef the lowpass and highpass branch, respectively. We have the
while preserving the orthogonality and completeness of tliteration
associated set.

The transfer functiom\y(z), which is needed for orthogo- =
nality, corresponds to the zero-order Laguerre sequence and Un,m = Zh":m(mvn—l:" (8)
is lowpass or highpass according to whetldeis positive =0
or negative. This filter envelopes the magnitude responses ofj 00
the QMF pair. Furthermore, sincg,,(z) = Ao(z)A(z)™, it Woom = D G m(T)Vn1, - (9)
is apparent from (1) and (2) that; (k) and ., (k) are —0

obtained by allpass filtering rather than shifting, respectively,
1, m—1(k) and ¢y m—_1(k), i.e., On the other hand, for any arbitrary signelk), the coeffi-
cientsv,, ,, are obtained through projection over the set of

1 m(2) = A(2)2@1 11 (2) (4) frequency warped scaling sequences, i.e.,
and -
\Ijlynl(z) :A(Z)Q\Ijlynl—l(z)' (5) Un,rn = Zx(k)Qan,rn(k) (10)
k=0

Thus, the shape of the warped sequences changes with the

indexm while their magnitude Fourier transform is preservedubstituting (10) in both sides of (8) and (9) and interchanging
To conclude this section, we note that in the special cathe order of summation, in view of the arbitrariness of the

of Haar QMF's H(z) = (1 + 2z 1)/v2 and G(z) = (1 — signal, we obtain the following recurrence.

271)//2, the set associated with the warped filterbank co-

incides with a particular realization of Kautz sequences [14] =
with real parameter equal to The general class of sets asso- Pnm(k) = Z ho, (1) @1, (F) (11)
ciated with the warped filterbanks extends the class of single- =0
parameter Kautz sequences, allowing for arbitrary QMF’s. On oo
the other hand, there is a large class of multiparameter Kautz P m(k) = ngm(T)(pn_lﬂ,(k), (12)
sequences that cannot be implemented in the warped filterbank, r=0

not even if we based our construction on multiparameter

Laguerre sequences. We will show that thez transforms of the warped scaling
The results illustrated in this section are easily extended $8quences and wavelets, respectively, have the form

M-band filterbanks and to the biorthogonal case in which the

analysis and synthesis impulse responses are distinct. D m(2) = Bn(2)*™@,, o(2) (13)
and
lIl. 1 TERATED WARPED FILTERBANKS AND W m(2) = Ba(2)"Wn, o(2) (14)
DISCRETETIME WARPED WAVELETS
Following the same construction of ordinary discrete-tim‘é’here
wavelets, one can build frequency warped wavelets by iterating Ly P
the frequency warped filterbank described in the previou®n(z) = An[Bn-1(2)""] = An{dn_1[--- A1(2)™"- |7}
section. At each step, the lowpass branch is cut, and a (15)

new frequency warped filterbank is inserted. This amounts to

projecting the analysis coefficients of the lowpass branch ovgith Bo(z) = 2~1/2 and An(z) is the nth-stage first-order
the set associated with the filterbank. To add flexibility, onglipass with paramete,.

may choose a different Laguerre parameter at each stage. It isyrthermore

therefore convenient to introduce the following notation. Let

(16)

ZA,” (6)

nrn

and

ZAW

denote thenth-stage projection set, wherg, ,.(k) is the
order » Laguerre sequence with parametgr In particular,
we haveh; (k) = o1, m(k) and g1 (k) = ¥1 (k). Let

gm (7)

Gn, m

ﬁ{AkOBk 1(2) 2| H[Br(2) 7'}

and

Uy, 0(2) = Ay, 0[Br-1(2) 2G|

Bn(2)"H®n_1.0(2). (17)

In order to show (13) and (16), notice that from (4), it follows
that (I)l,rn(z) = Al(z)QmQDLO( ) Thus, (1)1 rn( ) has the
same form as (13) witlf; (z) = A; (2)2. In addition, from (1),
we observe tha®, (z) has the same form as (16). Suppose

vn, m andw, . denote thenth-stage projection coefficientsnow that both (13) and (16) are verified up #0= s — 1.
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From (11), it follows that

(I)s,rn(z) = Z hs, rn(T)Bs—l(z)Qr(I)S—l, O(Z)
=0

=H, [Bs—1(2)"2®s-1,0(2).
On the other hand, from (6), we have
H, m(z) = A5(2)*™ s, 0(2) H[As(2) 1]
and therefore

., m(z) = A, [BS—I(Z)_Q]QmAS, O[BS—I(Z)_Q]
- H{A[Bso1(2) 77 st 0(2).

Thus, using (15)

(I)Sml(z) =DB; (Z)QmAs, 0[Bs—l(Z)_Q]H[BS(Z)_I](I)S—L o(2)
=B, (z)2m<1>57 o(z)

and hence, both (13) and (16) are valid for = s. By

induction, they are valid for any. In a similar fashion, we

can prove (14) and (17). O

877
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The allpassB,,(z) determines the total amount of warping
imparted to thenth-stage QMF’s. The corresponding fre-
quency map obtained from the phase of #g(z) is given
by the composite function

Qn(w) = 00 (205 -11{- - - 262261 (w)] ---})

where eachd,(w) has the form (3), with parametéy.. The
factor of 2 in (18) derives from the downsampling-by—2
operation performed in the Laguerre transform domain (see

(18)

25

151 ¢

20

Fig. 1). Of course, at each iteration, one should consider thelo_
phase;.(w) as congruent modulds. However, the result is
not changed if we consider the unwarped phase and then apply

the congruence at the last step if needed. Defifilag= w/2,
one can write

Qp(w) = 0,291 (w)].

By selecting the parametets, the cut-off frequenciesy,

5

0

0 0.5 1 1.5 2

25 3

35

of the warped filters may be chosen at will, provided that the

conditionwy, > wy > --

at the smallest positive root of the equatith (w) = w/2.

- > wp is fulfilled. Since the cut-
off frequency of the ordinary QMF’s occurs at= 7 /2, the
cut-off frequencies of the warped filters will occur, for amy iy 3 warped wavelets with exponential cutofi=

(b)

2. (a) Time domain.
(b) Frequency domain.

The task of determining these roots is highly simplified if we _ o
observe that the inverse mép!(w) is obtained from (3) by to signal features, e.qg., in order to separate them by projection

reversing the sign of the parameteiThus,w; = 67 (7/2) =
7/2 — 2 tan~!(by), which yieldsb; = tan[(7m — 2w;)/4].

on distinct basis sequences. A particular choice of cut-off
frequency may be derived from the structure of classical

Once we knowb;, we can determiné, from the equality wavelet transforms, i.e., we may seleg{ = wa", where

201 (w2) = 6;(n/2) = 7/2 — 2 tan~'(by) from which
by = tan[r/4 — 61(w2)]. More generally, since

201 (wy) = 071 (1 /2) = g — 2 tan"1(b,)
we have

by = tan [% - Qn_l(wn)] (19)

a < 1. In this way, one can fit rational or transcendental
bandwidths into the dyadic scheme. In Fig. 3, a set of discrete-
time frequency warped wavelets withh = 2/3 is shown.

The warped wavelets provide an unconventional tiling of the
time—frequency plane by means of curvilinear cells whose
area is constant, which is shown in Fig. 4. This is due to the
frequency-dependent phase delay that makes the localization
of the wavelets depend on frequency as well.

The choice of the Laguerre parameters depends on thdt must be pointed out that the described warped wavelets
application. The frequency warped wavelets can be adaptsth be implemented by means of rational transfer functions.
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3.5 . : . T . . . vice versa ift, < 0, and theng(w) is concave fob < w < 7
and convex fo~7 < w < 0. The pointsw,. = r7, r € Z are
the fixed points of each of the maps. However, since at each
iteration we doubld;(w) before applyingd.+1(w), the only

2.5t surviving fixed point iswy = 0.
% The iterated map,(w) given in (18) is an increasing
/ //////////// function mapping the intervgl—n, w) one-to-one and onto

[-27~17, 27~1lx). It embeds both warping and upsampling.
In considering conversions from digital to analog frequency, it
is convenient to extend the definition of the iterated map over
the entire real axis while keeping the same functional form
and symbol. The extended map is monotone and equal to a
linear trend2”~'w plus a periodic function. Its inverse is

QN w) =07 50 - 30, (W) - 1) (20)

1} A

0sf e

0 5 1o 1s 20025 30 35 with Q5! (w) = 2w, wheref; ! (w) is obtained fromd, (w) by
t changing the sign to the parametgr The mapQ;;*(w) maps
@ [-27~17, 2"~Llr) one-to-one and ontp-r, 7) and embeds
warping and down scaling.
The DFT of the scaling sequence may be written in terms

i ) of the frequency map as
\ X | |
2. Dy o) = H {Ag, o[ FH1 @ H[Z Y, (22)
k=1
o 2 | We are interested in extending the construction of ordinary
sl ] continuous-time wavelets to the iterated warping case. When
' we let n go to infinity, the characteristics of the iterated
L \ \ | warping map depend on the choice of the parameter sequence

35

)

wn
T

by related to the choice of the wavelet cut-off frequencies via
(19). Convergence modul@r of the iterated map may be
checked by studying the behavior of the poles of the oftter

0 allpass filterB,,(z) of which €2,,(w) represents the phase. A

0 5 10 15 20 25 30 necessary and sufficient condition [1] for the infinite Blaschke
product B..(z), with poles inz = ¢, & € IV, to converge
uniformly on compact subsets is that, (1 — ||) < co. We

will consider two special cases where thg's are either
Ronstant or are determined by the exponential cut-off choice
wn = wa™.

The constant;, = b case is the easiest to handle since the
Since each individual warping map is the unique one-to-oggdering of the elementary maps is irrelevant, and we may
frequency warping map that can be realized by means @bp their indexes. The resulting cut-off frequencies satisfy
rational transfer functions, our scheme provides the uniquge following iterationiw, 11 = 0~ (w,/2), with w; = 7/2 —

way of implementing warped wavelet expansion in digital tan=(b). If b < —%, this iteration converges to a stable

!
(b)

Fig. 4. Tiling the time—frequency plane with warped wavelets. (a) Wit
parametern = 2. (b) With parameten: = 1.

structures. fixed point located inv = 2 tan~* \/(=3b— 1)/(1 — b). This
range of values must be avoided since the cut-off frequencies
V. CONTINUOUS-TIME WARPED WAVELETS cluster around the fixed point rather than around the origin. For

> —1/3, it can be seen that the cut-off frequencies behave

The question whether infinite iterations of the frequenc vmptoticallv like a decreasing exoonential with decay rate
warped filterbank lead to well-defined continuous-time orthog- }[;er?dent o?i/; 9 exp y

onal and complete wavelets is a rather challenging mathem ?Tn the ordinary wavelet case. the digital frequency is ob-
ical problem. In this section, we will explore this field in the y ' 9 q y

attempt to provide a positive answer. Our results are suppor?ﬁﬁgﬁg \tl)vgezgagggethi: a?vzﬂ?]gt: re?huee?r(]:\)//é éeswtable ca2nd|date
by extensive numerical simulations. P g y nsgp (w/2),

Our starting point is the iterated map (18). Each elemental{ich maps the intervg}-2"r, 2"m) onto [, 7). Accord-

map is a differentiable, increasing functiép(w) mapping the |r¥gly, we define theVth scaling function approximant as
interval [—m, ) onto itself. If b, < 0, thenf,(w) is convex () = CN<I>N70[GJQE1(‘°‘/2)}

for 0 < w < 7 and concave for7 < w < 0. This happens (22)
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wherew € [-2"w, 2"7), andC is a constant to be determined. 2
By substituting the product (21) in (22), we obtain

M) =
N
[Jcn o eI 2105 (/DI LW /2] (23)
k=1

The arguments of; ¢ = Ap and H have the form

WO ()] = 27 v (). (24)

We remark that the previous identity is valid only in the
constantd;, case. Exploiting (24) and changing the index in 0
the product (21) td = N — k, we obtain

N-—1 ) ) . )
eMw) =] {C A [P U /D327 /D)) (25) T 2 4 6 8 10 12
=0 4
Finally, we define the scaling function as the limit of thigh (a)
scaling function approximant

d(w) = lim &N (w) (26)
N 0.8F

if the infinite product (25) converges.
A necessary condition for the product to converge is that 0.6
its factors tend to 1 asincreases. The convergence depends
both on the parameter sequerigeand the transfer function 04f
H and should be checked separately in each case.
As [ grows, Qfl(w) maps points in any neighborhood 02}
of 0 to points in an increasingly narrower neighborhood of
0. Therefore, the constan® can be determined from the of

condition
02t
1 [ 14+0b
o= Ao(1H)H(1) = 2m. 27) »

With this position, the scaling function is completely deter- 0 2 4 6 8 10 12
mined and is given, in the frequency domain, by the infinite t
product (b)

0o ) Fig. 5. Continuous-time warped scaling function. (a) Witk= —0.2. (b)
d(w) = T A 1N /D) e e w2 | With b = 0.2,
(CU) HO { 2(1 ¥ b)AO[G =+ ] [6 ¢ ]

(28) Repeated application of (30) leads to the following relation-

_ _ _ ship between discrete- and continuous-time warped scaling
Examples of warped scaling functions with constardre fynctions.

shown in Fig. 5. We remark that the wavelets generated using . . -
negative parameters are less regular than those generated using 20, (w)] = C" Py, o(w) P (w). (31)

positive parameters. This is due to the fact_that when 0, Equation (31) gives the levei-scaling functiond,, o(w) =
the order zero Laguerre terfy(2) becomes highpass and ha%—"é[mn(w)] in terms of the level 0 scaling functicxfa(w).

a tendency to absorb regularity from the lowpass fil#).  accordingly, the continuous-time wavelets are given by
Indeed, it appears from the figure that the negativezaling

functions have fractal-like behavior. Conversely, the positive \ffn,o(w) = \Ifn,o(w)‘i’(w)- (32)

b scaling functions are smoother than regular wavelets dueAg for the discrete-time warped wavelets, the continuous-time
the lOWPE_iSS Laguerrg term_lo(z). warped wavelets are not translation invariant. Since, from (13),
Exploiting the relationship the delay term corresponding to theh translate of the level

QO (w)] = Q74 (w/2) (29) N discrete wavelet is~92¥ (), substituting, just as in (22),
the digital frequencyw with the mapQ;}(w/2), we show
which is valid in the constank; case, one can obtain fromthat the level O continuous-time warped scaling functions are
(28) the warped form of the two-scale equation obtained by simple translation

20, (w)] = CAY(P)H(/H ) (w). (30) b, m(w) = ™My, o(w).
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However, at higher scales, we have 3.5 . . . T . T

<i>n7 m{w) = e_ﬂmQ”(“’)&)m o(w).

3
The frequency-dependent delay term alters the shape of the
scaling functions and wavelet translates.

Following a reasoning similar to that presented in [18] for?3
the ordinary wavelets, by exploiting the orthogonality and
completeness of the discrete-time wavelets, one is able to showe
that if the product (28) converges pointwise, the continuous-
time wavelet set is orthogonal and completelif( R). Ls

Due to the asymptotically exponential behavior, the expo-
nential cut-off choicev,, = wa™ may be well approximated
by the constanb warping. However, its anomalous behavior 1
for b < —5 prevents the use of the constaltwarping
for obtaining high resolution at high frequencies (small scalg, s
index), say, withu > 4 . Itis possible to show that the sequence
of parameter$;, determlned by the exponential cut-off choice
satisfies the following properties: 00

1) all b, have the same sign, resulting . > 0 if
0<a<jzandh <0if § <a<l.

2) The sequence of parameters converges exponentially ky. 6. Family of iterated warping may3® (w) with exponential cutoff.
the limit valueb = (1 — 2a)/(1 + 2a).

Since (24) is not valid in this case, the scaling functiono.¢
approximant will keep the general form (23). However, due to
the fast convergence of the sequence of parameters—essentlal
convergence is attained in less than 10 steps—(24) is valid’
asymptotically, and it is always possible to split the product
(23) into two products. The product corresponding to largeo.4
values of the index behaves approximately as in the constant
b case. The constadt may be derived from (27) by replacing .|
b with its asymptotic value, which give§' = /a.

Our numeric experiments over the allowed range of the
scaling factora show that the maf2s(w) = Q,(w)/2""t 02
quickly converges to an approximately selfsimilar function
Q*(w). A family of mapsQ*(w) is plotted in Fig. 6 for the ),
entire range of the parameter In order to better appreciate
the fractal behavior of the asymptotic map, in Fig. 7, we plot
a member of the family with the linear trend subtracted. Oy
Similarly, Q%(w) = Q;1(2""lw) converges to a fractal
function that is the inverse dR*(w). As n grows, the poles o .
of the allpassB,(z) quickly move toward the unit circle, 0 0.5 1 L5 2 2.5 3 3.5
as illustrated in Fig. 8. We argue that the condition for the w
convergence of the Blaschke product is fulfilled in our case.

The function{)*(w) satisfies the selfsimilarity property

3.5

Ei

g. 7. lterated warping mapi (= %) with its linear trend removed.

2¢0®(a*w) =~ Q%(w),  for any integerk, —r < w < . The mapQ*(w) operates a scale conversion from 1/2to

(33) In fact, if F(w) is the DFT of a sequence, then, with good
. _ approximation,F[Q2* (a*w)] = F[Q®(w)/2*]. For this reason,
In other words Q*(w) behaves much like aru-homo- o term2*(w) the scale-conversion function.

gﬁggou.s fgnction in the sense given in [27], 1€%w) = Apother interesting numerical property 6f,(w) is that,
Q*(a*w), with degreeH = log, 5. However, the self- i 104 the chain of relationships
similarity relationship holds only approximately true, although
Y Y

selfsimilarity is much more accurate within the exponential Qni1(a™w) ~ Qn(a"—lw% ——— <Sw< —— (34)
cut-off choice than in the uniformh case. We found that for a a

large n, Q2 (w) satisfies (33) within an error of the orderare verified. This property is illustrated in Fig. 9, where the
of 1072 for k = 1. The error quickly drops below machinefunctions in (34) are plotted, and a set of bifurcation points
precision for20 < k < n/2, after which, the error starts toappear at,, = 7/a"~1. These are exactly the points where
increase again. the lower indexed curve stops behaving like the higher order
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PSFW-Wavelets : Frequency Domain

Wavelet n=1
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05

...................................................

. Scaling n:35
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Fig. 10. Frequency spectrum of the PSFW-wavelets and scaling sequence
with period P = 3, and Laguerre parametér= 0.24.
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useful in those problems where distinct characteristics of the

signal lie in nonuniform bands or multibands with prescribed
bandwidth. This is particularly desirable in cochlear models
and in perceptual representations of speech and hearing.

The drawbacks of frequency warping methods via Laguerre
sequences are essentially their computational complexity and
the need to truncate the expansion to a finite number of terms.
In addition, the number of coefficients required for accurate
computation is generally larger than the length of the input
signal.

In this section, we describe an application of the frequency
warped wavelets to the analysis of inharmonic sounds.

350
300
250
200
150
100

50
A. Pitch-Synchronous Frequency Warped Wavelets

An interesting application of warped wavelets is in the
analysis and synthesis of pseudo-periodic signals, such as
piano tones, rods, and membrane vibrations. Due to stiffness
Fig. 9. Plot of thea-scaled warping map®,, (a™~'w)n, showing bifurca- and wave propagation in dispersive media, the peaks in the
tion points. frequency spectra of these signals are not uniformly spaced. In
recent papers, one of the authors defined and applied the pitch-

maps. By exploiting the selfsimilarity of the warping map, it i$ynchronous vyav_elet transform (PSWT) to the_representa_tion
possible to show that the exponential cut-off wavelets at larg Pseudo-periodic sounds [19]-{21]. The main assumption
scales are approximately obtained by scaling the waveletstre was that the spacing of the frequency peaks had to be
a smaller scale by a power af uniform, which is approximately true in voiced speech sounds
In concluding this section, we remark that the quality of thand in the tones produced by several musical instruments

exponential cut-off wavelets is similar to that of their constaguch as the violin, the guitar, and the flute. The analysis of

b counterpart, i.e., the wavelets generated using . are these signals by means of the PSWT presented several ad-

less regular and more fractal-like than those generated uskjitages in feature extraction, transient detection, and coding.
a < L In order to extend the PSWT to the dispersive case, one can

2 prewarp the signal and then apply the PSWT. The scheme is
successful if the warping curve compensates inharmonicity.
In this section, we define the frequency warped wavelets
The concept of frequency warping wavelets may be appli¢idat implement inharmonicity equalization in orthogonal or
in several forms to the analysis and synthesis of signalsorthogonal expansions and then look at some examples. We
Their flexible frequency resolution makes them especialghall confine ourselves to the case of multiplexed wavelets

V. APPLICATIONS
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Inharmonicity Characteristics

386 T T T T T
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Fig. 11. Inharmonicity characteristics of a piano tone (27.3 Hz): difference in Hz of the frequencies of the first 60 partials and difference ab¢he inve
optimum warping curve i = 0.4396).

obtained from the PS wavelets in the particular case whehe bandwidths. This property is useful for representing inhar-
the pitch P of the signal is constant. The extension of thenonic signals since the more the partials lay apart, the larger
transform to the time-varying pitch case is straightforward. the local bandwidths of the scaling sequence and wavelets will
In the pitch-synchronous frequency warped wavelet transe, thus increasing the time resolution.
form (PSFWWT), we project the signal over a discrete La- We experimented the PSFWWT with several piano tones
guerre set, with suitable parametir and then project the in the lower portion of the keyboard. The purpose of the
sequence of Laguerre coefficients over a set of PS waveleffalysis is to separate transients, such as the hammer and
Let spring noise, from the sound produced by the strings. This
2 is an important problem in sound analysis and synthesis since,
&n,m, g (k) = Z%, m(Do(k —q—1P) (35) e.g., the different characteristics of these components call for
! distinct synthesis techniques and processing.
denote the multiplexed wavelets, whefg ,,(I) are ordinary ~ The piano strings become quite thick and stiff in the low-
discrete-time wavelets. We define the PSFW wavelets as pitch region so that dispersion [3] prevents direct application
of the PSWT. In order to choose the proper Laguerre warping
&n,m,q(K) = Zz/’":m(l))‘ﬁlp(k)' (36) parameter, we developed an estimation procedure based on
! a peak-picking algorithm for detecting the center frequencies
Orthogonality and completeness of the PSFW wavelets akthe partials of the sound in the frequency domain [2]. This
inherited from the same properties of both the Laguerre aaffjorithm consists of finding the local maxima of the frequency
PS wavelet sets. The expansion coefficients of a sigffal spectrum using a sliding window. Once the fundamental

over the PSFW wavelets are given by frequency is detected, we predict the frequency of the next
B i i partial. We then suitably scale and translate the window on
Sn,m,q = Z s(k)&n,m, (k) this basis and detect the frequency of the next local maximum,

b and so on. This algorithm behaves correctly for frequencies
_ Z Zs(k))\r(k) fn,m,q(7‘). 37) up_to about 5 I_<Hz_5|nce, in this range,_the s_|gnal-to-n0|se
~ 15 ratio of the partials is acceptable. An optimization procedure
addresses the problem of fitting the Laguerre warping curve
From thez transform of the PSFW wavelets to the inharmonicity data. The frequencies of the partials are
Zmq(2) = Ao(z)A(z)q\Ifn,m[A(z)_P] (38) matched against the family of Laguerre warping curves, in
order to select the parametércorresponding to the curve
it is easy to see that their frequency spectra are comribat transforms the inharmonic frequencies into the closest-to-
like, consisting of sidebands of nonuniformly spaced pseudoarmonic series.
harmonics, as shown in Fig. 10. The individual bandwidth of In Fig. 11, an optimum fit of inharmonicity data with
each of the sidebands depends both on the scale index and.aguerre warping characteristics is shown. The inharmonicity
frequency. This is due to the warping of the frequency axidata are the differences between subsequent partial frequen-
which modifies both the harmonic frequencies and, locallgies. In the figure, the solid curve represents the difference
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Fig. 12. PSFWWT analysis of a 27.3-Hz piano tone. (a) Regular component. (b) Hammer noise.

of the inverse of the optimum map, showing a strikinglyesolution in the separation of components. Furthermore, it
good agreement with data. We also compared the Lagueigeeasy to extend this concept from multiplexed wavelets
warping curve with the set of eigenfrequencies derived froth multiwavelets [26] in order to obtain separation of the
the physical model of stiff strings, based on fourth-ordetidebands of each of the partials at the expense of reduced
PDE [4], [5]. We concluded that for a wide range of thdéime resolution.

physical parameters, there is always a member of the family

of Laguerre warping curves that closely approximates the VI. CONCLUSIONS

dispersion characteristics of the stiff string. In this paper, we presented extensions of the wavelet

The pitch parametef” in the PSFWWT must be assignedransform obtained by merging the filterbank structure with
a value equal to the rounded average period, in number taé Laguerre transform block. The discrete Laguerre transform
samples, of the warped signal. Equivalently, one can detggbvides the unique type of orthogonal warping operator
the pitch of the input signal and prewarp this value in order that can be computed using rational transfer functions. We
obtain P. The results of the PSFWWT analysis of a piano toriatroduced the discrete-time warped wavelets and then showed
is reported in Fig. 12. There, the regular (scaling) and noiglyat continuous-time warped wavelet bases can be generated
(wavelet) components are separately inverse transformed, starting form their discrete-time counterpart. Furthermore, we
taining two distinct signals whose sum is exactly equal to tiextended the theory to include pitch-synchronous warped
original sound. In the noisy components, the sound produce@velets. Frequency warped wavelet bases have an arbitrary
by the hammer on the string is highly enhanced. This Band structure that can be adapted to signals or perceptual
vice versa when the regular component contains a “cleanéftaracteristics. The flexible time—frequency tiling property of
up” version of the string sound. Clearly, it is possible téhe representation becomes useful in a large class of problems
separate sounds in multiple wavelet and scaling componeril'?s,Sig”a| processing, such as signal identification, denoising,
representing different features of the instrument or percept@ld feature detection.
characteristics.

By using frequency warped wavelets in place of ordinary
wavelets in (35), it is possible to completely control the In this Appendix, we briefly review the principal properties
width of the analysis sidebands of the partials, thus enhancioigthe Laguerre sequences [7]-[9], [14], [15] given in the time

APPENDIX
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Fig. 13. Structure implementing the Laguerre transfermof a signaly (k).
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(43), we founde,,,x < 0.05- B. By slightly increasingV/, the
error significantly decreases; for exampleMf is 3% larger,
one obtainsey,x < 5- 1074 B.

The Laguerre transform may be computed by means of
the cascaded allpass structure [10], [11], [14], [15] shown
in Fig. 13. Given a finite duratiorD signal, the expansion
coefficients are obtained at the output of each section at the
time lag D. The inverse Laguerre transform may be computed
by means of the Laguerre filter structure shown in Fig. 14.
Alternately, one may show that the same structure adopted for
computing the Laguerre transform may be used for computing
its inverse, provided the sign of the parameter is reversed.

Laguerrc cocfficients

Fig. 14. Structure implementing the inverse Laguerre transform.

(1]
domain by the sum

[2
min(r, k)
B — b (k+7r—m)!
ME=VIZB D~y B
. br-l—k—Qm7 7 k= O7 ]_7 e, (39) l

[5]
Laguerre sequences form a complete orthonormal set in

I2(N)—extendible tol?(Z)—for any value of the parameter [6]
—1 < b < 1. From thez transform of the order-sequence [
given by

(z7t=b)" (8]
(1= bz t)rtt [9]

one can see that the Laguerre sequences satisfy the recurrenc

A(z) = V1— 12 (40)

Ars1(2) = A@DA(2) = A() ™ Ao(z),  r=0,1,... 1O

(41) 11

where [12]
21—

A=) =13 = (42) 13

is a stable and causal allpass filter. The order O Laguerre
sequence is lowpass fdr > 0 and highpass fob < 0. [14]
Since the Laguerre sequences are infinite-length, the Laguerre
coefficients can be computed in finite time only if the input i =
time limited. Furthermore, the transform must be necessarily
truncated since only a finite number of Laguerre coefficient&!
can be computed in finite time. It is possible to show [22] that

in order to obtain a good accuracy of the representation ofi1a]
length-D signal, the following lower bound on the numhieft

18
of Laguerre coefficients must be satisfied. (el
[19]
M > D + b)) (43)
1— ol
[20]

where the first\/ terms in the Laguerre expansion are retained.
In this case, the maximum error is bounded as

[21]
D—1 M-1

Cmax S B- OIHELX Z 61‘,n — Z )\k (7))% (71) [22]
n=0, -, D— ~ —

whereDB is the absolute maximum of the signal. The maximu%zg]
error may be evaluated numerically. Wh&h strictly satisfies
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