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Discrete Frequency Warped
Wavelets: Theory and Applications

Gianpaolo Evangelista,Member, IEEE, and Sergio Cavaliere

Abstract—In this paper, we extend the definition of dyadic
wavelets to include frequency warped wavelets. The new wavelets
are generated and the transform computed in discrete-time by
alternating the Laguerre transform with perfect reconstruction
filterbanks. This scheme provides the unique implementation of
orthogonal or biorthogonal warped wavelets by means of ratio-
nal transfer functions. We show that the discrete-time warped
wavelets lead to well-defined continuous-time wavelet bases, sat-
isfying a warped form of the two-scale equation. The shape of
the wavelets is not invariant by translation. Rather, the “wavelet
translates” are obtained from one another by allpass filtering.
We show that the phase of the delay element is asymptotically
a fractal. A feature of the warped wavelet transform is that the
cut-off frequencies of the wavelets may be arbitrarily assigned
while preserving a dyadic structure. The new transform provides
an arbitrary tiling of the time–frequency plane, which can be
designed by selecting as little as a single parameter. This feature
is particularly desirable in cochlear and perceptual models of
speech and music, where accurate bandwidth selection is an
issue. As our examples show, by defining pitch-synchronous
wavelets based on warped wavelets, the analysis of transients
and denoising of inharmonic pseudo-periodic signals is greatly
enhanced.

Index Terms—Quadrature mirror filters, time–frequency anal-
ysis, wavelet transforms.

I. INTRODUCTION

I N THIS paper, we consider extensions of the wavelet
theory, defining a class of wavelets that provide a flexible

orthogonal or biorthogonal tiling of the time–frequency plane.
While in ordinary dyadic wavelets the frequency axis is
partitioned in octave bands, in our class of transforms, this
partition can be designed by selecting a set of parameters
directly related to the cutoff frequencies of the wavelets. If
the latter are constrained by a specific law, e.g., exponential, a
single parameter is required. A considerable effort to enhance
and adapt the frequency resolution of wavelets has been made
in recent years by defining wavelets based on rational sampling
rate, wavelet packets, and multiwavelets [23]–[26]. In these
schemes, the “mother wavelet” is not unique. As a result, the
design procedures become increasingly more complex as one
increases the number of desired bands.
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The new bases are obtained by combining discrete Laguerre
expansions with quadrature mirror filterbanks [6], [22]. As
we will show in Section II, this is equivalent to frequency
warping and filtering the wavelets. A class of continuous-
time frequency warped wavelets were introduced in [12]
and [13]. Our wavelets are the unique frequency warped
wavelets that can be generated and the transform computed
by means of rational transfer functions. By extending the
construction of ordinary dyadic wavelets, we show that our
discrete-time wavelets lead to well-defined continuous-time
warped wavelets, provided that their defining infinite product
converges pointwise. By means of warping, nonoctave bands
are accommodated in the dyadic structure. Unlike ordinary
wavelets, the new bases are not translation invariant at each
fixed scale. However, the “translated wavelet” is obtained from
the “mother wavelet” by allpass filtering. The usual unit delay
elements are substituted by first-order allpass filters. We show
that the phase of the iterated warping wavelets is a fractal.

Laguerre sequences and wavelets may be combined in sev-
eral ways, each leading to a different complete and orthogonal
or biorthogonal set. The simplest frequency warped wavelet
expansions may be obtained by prewarping the signal by
means of Laguerre expansion and by expanding the Laguerre
coefficients onto a wavelet basis. In this case, a single pa-
rameter controls the tiling. These expansions may be extended
by intertwining Laguerre expansion and QMF analysis. Using
this scheme, one obtains the general case of wavelets with
arbitrary bandwidths.

We also extend frequency warping to pitch-synchronous
wavelets. Interesting applications arise in the analysis of
pseudo-periodic signals whose partials are not uniformly
spaced in the frequency domain. This is the case of
quasistationary waves in dispersive media. The analysis
of transients in strings, where dispersion is caused by
stiffness—this phenomenon is apparent in piano strings in
the low octave region—is greatly enhanced by using the
pitch-synchronous warped wavelets. Furthermore, by building
the pitch-synchronous bases on warped wavelets rather than
on ordinary wavelets, one can increase at will the frequency
resolution of the sidebands of the partials, enhancing feature
extraction and signal separation.

The paper is organized in the following way. In Section II,
we define the frequency warped filterbank, which is the build-
ing block of our warped wavelets. In Section III, we consider
the iteration of the warped filterbank leading to discrete-time
warped wavelets. The extension to continuous-time wavelets
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Fig. 1. Frequency warped filterbank structure including the Laguerre transform and inverse Laguerre transform blocks.

is explored in Section IV, where we consider two particular
choices of the Laguerre parameters. In Section V, we look
at some applications, presenting a specific example where
warping enhances the analysis of inharmonic signals. Finally,
in the Appendix, we present a brief review of the Laguerre
transform and its implementation.

II. FREQUENCY WARPED FILTERBANK

The basic building block for computing the discrete fre-
quency warped wavelet transform is given by the frequency
warped filterbank, which is shown in Fig. 1. The analysis sec-
tion is formed by cascading a Laguerre transform (LT) block,
which is detailed in the Appendix, with a perfect reconstruction
(PR) orthogonal filterbank [16], [17]. Accordingly, the syn-
thesis section consists of the PR synthesis filterbank cascaded
by the corresponding inverse Laguerre transform (ILT) block.
The analysis structure performs the task of projecting the
signal onto the discrete Laguerre basis and
then projecting the Laguerre expansion coefficients over the
orthogonal sets associated with the filterbank. The latter sets
are obtained by translating the two QMF impulse responses
(lowpass) and (highpass) over the even integers:

, and ; integers. Denoting
the Laguerre expansion coefficients by and the outputs of
the filterbank by and , respectively, for the lowpass
and highpass branch, we obtain

and

where

and we defined

and

Fig. 2. Frequency warped QMF transfer functions.

The sequences and constitute the sets
associated with the frequency warping filterbank and play
the same role as that of and in ordinary PR
filterbanks. Due to the orthogonality and PR property of
the filterbank and the orthogonality and completeness of the
discrete Laguerre set, the set obtained by adjoining
to is orthogonal and complete in .

The sequences in the new basis are frequency warped and
filtered versions of the sequences and . In fact,
exploiting (41) of the Laguerre sequences (see the Appendix),
it is easy to show that their-transforms are related as

(1)

and

(2)

where is the transfer function of a real allpass filter with
single pole in being the Laguerre parameter. The
phase of induces a warping of the frequency axis given,
for real values of , by the map

(3)

This map is the unique one-to-one frequency warping map
that can be realized by means of rational transfer functions
[11]. It shifts the cut-off frequency of the ordinary filter-
bank to the frequency . The bandwidths of
the warped filters are complementary with respect toand can
be arbitrarily designed by choosing the Laguerre parameter, as
shown in Fig. 2. This important property allows us to break
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the half-bandwidth barrier of the ordinary QMF filterbanks
while preserving the orthogonality and completeness of the
associated set.

The transfer function , which is needed for orthogo-
nality, corresponds to the zero-order Laguerre sequence and
is lowpass or highpass according to whetheris positive
or negative. This filter envelopes the magnitude responses of
the QMF pair. Furthermore, since , it
is apparent from (1) and (2) that and are
obtained by allpass filtering rather than shifting, respectively,

and , i.e.,

(4)

and

(5)

Thus, the shape of the warped sequences changes with the
index while their magnitude Fourier transform is preserved.

To conclude this section, we note that in the special case
of Haar QMF’s and

, the set associated with the warped filterbank co-
incides with a particular realization of Kautz sequences [14]
with real parameter equal to. The general class of sets asso-
ciated with the warped filterbanks extends the class of single-
parameter Kautz sequences, allowing for arbitrary QMF’s. On
the other hand, there is a large class of multiparameter Kautz
sequences that cannot be implemented in the warped filterbank,
not even if we based our construction on multiparameter
Laguerre sequences.

The results illustrated in this section are easily extended to
-band filterbanks and to the biorthogonal case in which the

analysis and synthesis impulse responses are distinct.

III. I TERATED WARPED FILTERBANKS AND

DISCRETE-TIME WARPED WAVELETS

Following the same construction of ordinary discrete-time
wavelets, one can build frequency warped wavelets by iterating
the frequency warped filterbank described in the previous
section. At each step, the lowpass branch is cut, and a
new frequency warped filterbank is inserted. This amounts to
projecting the analysis coefficients of the lowpass branch over
the set associated with the filterbank. To add flexibility, one
may choose a different Laguerre parameter at each stage. It is
therefore convenient to introduce the following notation. Let

(6)

and

(7)

denote the th-stage projection set, where is the
order Laguerre sequence with parameter. In particular,
we have and . Let

and denote the th-stage projection coefficients

of the lowpass and highpass branch, respectively. We have the
iteration

(8)

and

(9)

On the other hand, for any arbitrary signal , the coeffi-
cients are obtained through projection over the set of
frequency warped scaling sequences, i.e.,

(10)

Substituting (10) in both sides of (8) and (9) and interchanging
the order of summation, in view of the arbitrariness of the
signal, we obtain the following recurrence.

(11)

and

(12)

We will show that the transforms of the warped scaling
sequences and wavelets, respectively, have the form

(13)

and

(14)

where

(15)

with , and is the th-stage first-order
allpass with parameter .

Furthermore

(16)

and

(17)

In order to show (13) and (16), notice that from (4), it follows
that . Thus, has the
same form as (13) with . In addition, from (1),
we observe that has the same form as (16). Suppose
now that both (13) and (16) are verified up to .
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From (11), it follows that

On the other hand, from (6), we have

and therefore

Thus, using (15)

and hence, both (13) and (16) are valid for . By
induction, they are valid for any . In a similar fashion, we
can prove (14) and (17).

The allpass determines the total amount of warping
imparted to the th-stage QMF’s. The corresponding fre-
quency map obtained from the phase of the is given
by the composite function

(18)

where each has the form (3), with parameter . The
factor of 2 in (18) derives from the downsampling-by–2
operation performed in the Laguerre transform domain (see
Fig. 1). Of course, at each iteration, one should consider the
phase as congruent modulo . However, the result is
not changed if we consider the unwarped phase and then apply
the congruence at the last step if needed. Defining ,
one can write

By selecting the parameters, the cut-off frequencies
of the warped filters may be chosen at will, provided that the
condition is fulfilled. Since the cut-
off frequency of the ordinary QMF’s occurs at , the
cut-off frequencies of the warped filters will occur, for any,
at the smallest positive root of the equation .
The task of determining these roots is highly simplified if we
observe that the inverse map is obtained from (3) by
reversing the sign of the parameter. Thus,

, which yields .
Once we know , we can determine from the equality

from which
. More generally, since

we have

(19)

The choice of the Laguerre parameters depends on the
application. The frequency warped wavelets can be adapted

(a)

(b)

Fig. 3. Warped wavelets with exponential cutoffa = 2

3
. (a) Time domain.

(b) Frequency domain.

to signal features, e.g., in order to separate them by projection
on distinct basis sequences. A particular choice of cut-off
frequency may be derived from the structure of classical
wavelet transforms, i.e., we may select , where

. In this way, one can fit rational or transcendental
bandwidths into the dyadic scheme. In Fig. 3, a set of discrete-
time frequency warped wavelets with is shown.
The warped wavelets provide an unconventional tiling of the
time–frequency plane by means of curvilinear cells whose
area is constant, which is shown in Fig. 4. This is due to the
frequency-dependent phase delay that makes the localization
of the wavelets depend on frequency as well.

It must be pointed out that the described warped wavelets
can be implemented by means of rational transfer functions.
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(a)

(b)

Fig. 4. Tiling the time–frequency plane with warped wavelets. (a) With
parametera = 2

3
. (b) With parametera = 1

3
.

Since each individual warping map is the unique one-to-one
frequency warping map that can be realized by means of
rational transfer functions, our scheme provides the unique
way of implementing warped wavelet expansion in digital
structures.

IV. CONTINUOUS-TIME WARPED WAVELETS

The question whether infinite iterations of the frequency
warped filterbank lead to well-defined continuous-time orthog-
onal and complete wavelets is a rather challenging mathemat-
ical problem. In this section, we will explore this field in the
attempt to provide a positive answer. Our results are supported
by extensive numerical simulations.

Our starting point is the iterated map (18). Each elementary
map is a differentiable, increasing function mapping the
interval onto itself. If , then is convex
for and concave for . This happens

vice versa if , and then, is concave for
and convex for . The points are
the fixed points of each of the maps. However, since at each
iteration we double before applying , the only
surviving fixed point is .

The iterated map given in (18) is an increasing
function mapping the interval one-to-one and onto

. It embeds both warping and upsampling.
In considering conversions from digital to analog frequency, it
is convenient to extend the definition of the iterated map over
the entire real axis while keeping the same functional form
and symbol. The extended map is monotone and equal to a
linear trend plus a periodic function. Its inverse is

(20)

with , where is obtained from by
changing the sign to the parameter. The map maps

one-to-one and onto and embeds
warping and down scaling.

The DFT of the scaling sequence may be written in terms
of the frequency map as

(21)

We are interested in extending the construction of ordinary
continuous-time wavelets to the iterated warping case. When
we let go to infinity, the characteristics of the iterated
warping map depend on the choice of the parameter sequence

related to the choice of the wavelet cut-off frequencies via
(19). Convergence modulo of the iterated map may be
checked by studying the behavior of the poles of the order
allpass filter of which represents the phase. A
necessary and sufficient condition [1] for the infinite Blaschke
product , with poles in , to converge
uniformly on compact subsets is that . We
will consider two special cases where the’s are either
constant or are determined by the exponential cut-off choice

.
The constant case is the easiest to handle since the

ordering of the elementary maps is irrelevant, and we may
drop their indexes. The resulting cut-off frequencies satisfy
the following iteration: , with

. If , this iteration converges to a stable
fixed point located in . This
range of values must be avoided since the cut-off frequencies
cluster around the fixed point rather than around the origin. For

, it can be seen that the cut-off frequencies behave
asymptotically like a decreasing exponential with decay rate
dependent on .

In the ordinary wavelet case, the digital frequency is ob-
tained by rescaling the analog frequency. A suitable candidate
in the warped case is given by the inverse map ,
which maps the interval onto . Accord-
ingly, we define the th scaling function approximant as

(22)
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where , and is a constant to be determined.
By substituting the product (21) in (22), we obtain

(23)

The arguments of and have the form

(24)

We remark that the previous identity is valid only in the
constant case. Exploiting (24) and changing the index in
the product (21) to , we obtain

(25)

Finally, we define the scaling function as the limit of theth
scaling function approximant

(26)

if the infinite product (25) converges.
A necessary condition for the product to converge is that

its factors tend to 1 as increases. The convergence depends
both on the parameter sequenceand the transfer function

and should be checked separately in each case.
As grows, maps points in any neighborhood

of 0 to points in an increasingly narrower neighborhood of
0. Therefore, the constant can be determined from the
condition

(27)

With this position, the scaling function is completely deter-
mined and is given, in the frequency domain, by the infinite
product

(28)

Examples of warped scaling functions with constantare
shown in Fig. 5. We remark that the wavelets generated using
negative parameters are less regular than those generated using
positive parameters. This is due to the fact that when ,
the order zero Laguerre term becomes highpass and has
a tendency to absorb regularity from the lowpass filter .
Indeed, it appears from the figure that the negativescaling
functions have fractal-like behavior. Conversely, the positive

scaling functions are smoother than regular wavelets due to
the lowpass Laguerre term .

Exploiting the relationship

(29)

which is valid in the constant case, one can obtain from
(28) the warped form of the two-scale equation

(30)

(a)

(b)

Fig. 5. Continuous-time warped scaling function. (a) Withb = �0:2. (b)
With b = 0:2.

Repeated application of (30) leads to the following relation-
ship between discrete- and continuous-time warped scaling
functions.

(31)

Equation (31) gives the level-scaling function
in terms of the level 0 scaling function .

Accordingly, the continuous-time wavelets are given by

(32)

As for the discrete-time warped wavelets, the continuous-time
warped wavelets are not translation invariant. Since, from (13),
the delay term corresponding to theth translate of the level

discrete wavelet is , substituting, just as in (22),
the digital frequency with the map , we show
that the level 0 continuous-time warped scaling functions are
obtained by simple translation
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However, at higher scales, we have

The frequency-dependent delay term alters the shape of the
scaling functions and wavelet translates.

Following a reasoning similar to that presented in [18] for
the ordinary wavelets, by exploiting the orthogonality and
completeness of the discrete-time wavelets, one is able to show
that if the product (28) converges pointwise, the continuous-
time wavelet set is orthogonal and complete in .

Due to the asymptotically exponential behavior, the expo-
nential cut-off choice may be well approximated
by the constant warping. However, its anomalous behavior
for prevents the use of the constantwarping
for obtaining high resolution at high frequencies (small scale
index), say, with . It is possible to show that the sequence
of parameters determined by the exponential cut-off choice
satisfies the following properties:

1) all have the same sign, resulting in if
and if .

2) The sequence of parameters converges exponentially to
the limit value .

Since (24) is not valid in this case, the scaling function
approximant will keep the general form (23). However, due to
the fast convergence of the sequence of parameters—essential
convergence is attained in less than 10 steps—(24) is valid
asymptotically, and it is always possible to split the product
(23) into two products. The product corresponding to large
values of the index behaves approximately as in the constant

case. The constant may be derived from (27) by replacing
with its asymptotic value, which gives .
Our numeric experiments over the allowed range of the

scaling factor show that the map
quickly converges to an approximately selfsimilar function

. A family of maps is plotted in Fig. 6 for the
entire range of the parameter. In order to better appreciate
the fractal behavior of the asymptotic map, in Fig. 7, we plot
a member of the family with the linear trend subtracted.
Similarly, converges to a fractal
function that is the inverse of . As grows, the poles
of the allpass quickly move toward the unit circle,
as illustrated in Fig. 8. We argue that the condition for the
convergence of the Blaschke product is fulfilled in our case.

The function satisfies the selfsimilarity property

for any integer

(33)

In other words behaves much like an -homo-
geneous function in the sense given in [27], i.e.,

, with degree . However, the self-
similarity relationship holds only approximately true, although
selfsimilarity is much more accurate within the exponential
cut-off choice than in the uniform case. We found that for
large , satisfies (33) within an error of the order
of for . The error quickly drops below machine
precision for , after which, the error starts to
increase again.

Fig. 6. Family of iterated warping maps
�(!) with exponential cutoff.

Fig. 7. Iterated warping map (a = 1

3
) with its linear trend removed.

The map operates a scale conversion from 1/2 to.
In fact, if is the DFT of a sequence, then, with good
approximation, . For this reason,
we term the scale-conversion function.

Another interesting numerical property of is that,
within 1%, the chain of relationships

(34)

are verified. This property is illustrated in Fig. 9, where the
functions in (34) are plotted, and a set of bifurcation points
appear at . These are exactly the points where
the lower indexed curve stops behaving like the higher order
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Fig. 8. Progression of poles of the iterated warping allpass filter.

Fig. 9. Plot of thea-scaled warping maps
n(an�1!)n, showing bifurca-
tion points.

maps. By exploiting the selfsimilarity of the warping map, it is
possible to show that the exponential cut-off wavelets at larger
scales are approximately obtained by scaling the wavelets at
a smaller scale by a power of.

In concluding this section, we remark that the quality of the
exponential cut-off wavelets is similar to that of their constant

counterpart, i.e., the wavelets generated using are
less regular and more fractal-like than those generated using

.

V. APPLICATIONS

The concept of frequency warping wavelets may be applied
in several forms to the analysis and synthesis of signals.
Their flexible frequency resolution makes them especially

Fig. 10. Frequency spectrum of the PSFW-wavelets and scaling sequence
with periodP = 3, and Laguerre parameterb = 0:24.

useful in those problems where distinct characteristics of the
signal lie in nonuniform bands or multibands with prescribed
bandwidth. This is particularly desirable in cochlear models
and in perceptual representations of speech and hearing.

The drawbacks of frequency warping methods via Laguerre
sequences are essentially their computational complexity and
the need to truncate the expansion to a finite number of terms.
In addition, the number of coefficients required for accurate
computation is generally larger than the length of the input
signal.

In this section, we describe an application of the frequency
warped wavelets to the analysis of inharmonic sounds.

A. Pitch-Synchronous Frequency Warped Wavelets

An interesting application of warped wavelets is in the
analysis and synthesis of pseudo-periodic signals, such as
piano tones, rods, and membrane vibrations. Due to stiffness
and wave propagation in dispersive media, the peaks in the
frequency spectra of these signals are not uniformly spaced. In
recent papers, one of the authors defined and applied the pitch-
synchronous wavelet transform (PSWT) to the representation
of pseudo-periodic sounds [19]–[21]. The main assumption
there was that the spacing of the frequency peaks had to be
uniform, which is approximately true in voiced speech sounds
and in the tones produced by several musical instruments
such as the violin, the guitar, and the flute. The analysis of
these signals by means of the PSWT presented several ad-
vantages in feature extraction, transient detection, and coding.
In order to extend the PSWT to the dispersive case, one can
prewarp the signal and then apply the PSWT. The scheme is
successful if the warping curve compensates inharmonicity.
In this section, we define the frequency warped wavelets
that implement inharmonicity equalization in orthogonal or
biorthogonal expansions and then look at some examples. We
shall confine ourselves to the case of multiplexed wavelets
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Fig. 11. Inharmonicity characteristics of a piano tone (27.3 Hz): difference in Hz of the frequencies of the first 60 partials and difference of the inverse
optimum warping curve (b = 0:4396).

obtained from the PS wavelets in the particular case where
the pitch of the signal is constant. The extension of the
transform to the time-varying pitch case is straightforward.

In the pitch-synchronous frequency warped wavelet trans-
form (PSFWWT), we project the signal over a discrete La-
guerre set, with suitable parameter, and then project the
sequence of Laguerre coefficients over a set of PS wavelets.
Let

(35)

denote the multiplexed wavelets, where are ordinary
discrete-time wavelets. We define the PSFW wavelets as

(36)

Orthogonality and completeness of the PSFW wavelets are
inherited from the same properties of both the Laguerre and
PS wavelet sets. The expansion coefficients of a signal
over the PSFW wavelets are given by

(37)

From the transform of the PSFW wavelets

(38)

it is easy to see that their frequency spectra are comb-
like, consisting of sidebands of nonuniformly spaced pseudo-
harmonics, as shown in Fig. 10. The individual bandwidth of
each of the sidebands depends both on the scale index and on
frequency. This is due to the warping of the frequency axis,
which modifies both the harmonic frequencies and, locally,

the bandwidths. This property is useful for representing inhar-
monic signals since the more the partials lay apart, the larger
the local bandwidths of the scaling sequence and wavelets will
be, thus increasing the time resolution.

We experimented the PSFWWT with several piano tones
in the lower portion of the keyboard. The purpose of the
analysis is to separate transients, such as the hammer and
spring noise, from the sound produced by the strings. This
is an important problem in sound analysis and synthesis since,
e.g., the different characteristics of these components call for
distinct synthesis techniques and processing.

The piano strings become quite thick and stiff in the low-
pitch region so that dispersion [3] prevents direct application
of the PSWT. In order to choose the proper Laguerre warping
parameter, we developed an estimation procedure based on
a peak-picking algorithm for detecting the center frequencies
of the partials of the sound in the frequency domain [2]. This
algorithm consists of finding the local maxima of the frequency
spectrum using a sliding window. Once the fundamental
frequency is detected, we predict the frequency of the next
partial. We then suitably scale and translate the window on
this basis and detect the frequency of the next local maximum,
and so on. This algorithm behaves correctly for frequencies
up to about 5 kHz since, in this range, the signal-to-noise
ratio of the partials is acceptable. An optimization procedure
addresses the problem of fitting the Laguerre warping curve
to the inharmonicity data. The frequencies of the partials are
matched against the family of Laguerre warping curves, in
order to select the parametercorresponding to the curve
that transforms the inharmonic frequencies into the closest-to-
harmonic series.

In Fig. 11, an optimum fit of inharmonicity data with
Laguerre warping characteristics is shown. The inharmonicity
data are the differences between subsequent partial frequen-
cies. In the figure, the solid curve represents the difference
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(a)

(b)

Fig. 12. PSFWWT analysis of a 27.3-Hz piano tone. (a) Regular component. (b) Hammer noise.

of the inverse of the optimum map, showing a strikingly
good agreement with data. We also compared the Laguerre
warping curve with the set of eigenfrequencies derived from
the physical model of stiff strings, based on fourth-order
PDE [4], [5]. We concluded that for a wide range of the
physical parameters, there is always a member of the family
of Laguerre warping curves that closely approximates the
dispersion characteristics of the stiff string.

The pitch parameter in the PSFWWT must be assigned
a value equal to the rounded average period, in number of
samples, of the warped signal. Equivalently, one can detect
the pitch of the input signal and prewarp this value in order to
obtain . The results of the PSFWWT analysis of a piano tone
is reported in Fig. 12. There, the regular (scaling) and noisy
(wavelet) components are separately inverse transformed, ob-
taining two distinct signals whose sum is exactly equal to the
original sound. In the noisy components, the sound produced
by the hammer on the string is highly enhanced. This is
vice versa when the regular component contains a “cleaned-
up” version of the string sound. Clearly, it is possible to
separate sounds in multiple wavelet and scaling components,
representing different features of the instrument or perceptual
characteristics.

By using frequency warped wavelets in place of ordinary
wavelets in (35), it is possible to completely control the
width of the analysis sidebands of the partials, thus enhancing

resolution in the separation of components. Furthermore, it
is easy to extend this concept from multiplexed wavelets
to multiwavelets [26] in order to obtain separation of the
sidebands of each of the partials at the expense of reduced
time resolution.

VI. CONCLUSIONS

In this paper, we presented extensions of the wavelet
transform obtained by merging the filterbank structure with
the Laguerre transform block. The discrete Laguerre transform
provides the unique type of orthogonal warping operator
that can be computed using rational transfer functions. We
introduced the discrete-time warped wavelets and then showed
that continuous-time warped wavelet bases can be generated
starting form their discrete-time counterpart. Furthermore, we
extended the theory to include pitch-synchronous warped
wavelets. Frequency warped wavelet bases have an arbitrary
band structure that can be adapted to signals or perceptual
characteristics. The flexible time–frequency tiling property of
the representation becomes useful in a large class of problems
in signal processing, such as signal identification, denoising,
and feature detection.

APPENDIX

In this Appendix, we briefly review the principal properties
of the Laguerre sequences [7]–[9], [14], [15] given in the time
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Fig. 13. Structure implementing the Laguerre transformur of a signaly(k).

Fig. 14. Structure implementing the inverse Laguerre transform.

domain by the sum

(39)

Laguerre sequences form a complete orthonormal set in
—extendible to —for any value of the parameter

. From the transform of the order- sequence
given by

(40)

one can see that the Laguerre sequences satisfy the recurrence

(41)

where

(42)

is a stable and causal allpass filter. The order 0 Laguerre
sequence is lowpass for and highpass for .
Since the Laguerre sequences are infinite-length, the Laguerre
coefficients can be computed in finite time only if the input is
time limited. Furthermore, the transform must be necessarily
truncated since only a finite number of Laguerre coefficients
can be computed in finite time. It is possible to show [22] that
in order to obtain a good accuracy of the representation of a
length- signal, the following lower bound on the number
of Laguerre coefficients must be satisfied.

(43)

where the first terms in the Laguerre expansion are retained.
In this case, the maximum error is bounded as

where is the absolute maximum of the signal. The maximum
error may be evaluated numerically. Whenstrictly satisfies

(43), we found . By slightly increasing , the
error significantly decreases; for example, if is 3% larger,
one obtains .

The Laguerre transform may be computed by means of
the cascaded allpass structure [10], [11], [14], [15] shown
in Fig. 13. Given a finite duration signal, the expansion
coefficients are obtained at the output of each section at the
time lag . The inverse Laguerre transform may be computed
by means of the Laguerre filter structure shown in Fig. 14.
Alternately, one may show that the same structure adopted for
computing the Laguerre transform may be used for computing
its inverse, provided the sign of the parameter is reversed.
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