
Research Article
Discrete Generalized Inverted Exponential Distribution: Case
Study Color Image Segmentation

Mohamed Abd Elaziz ,1,2,3 Nahla S. Abdelrahman ,2 N. A. Hassan ,2

and M. O. Mohamed 2

1Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt
2Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
3Artificial Intelligence Research Center (AIRC), Ajman University, Ajman, P.O. Box 346, UAE

Correspondence should be addressed to Mohamed Abd Elaziz; abd_el_aziz_m@yahoo.com

Received 23 December 2021; Revised 26 January 2022; Accepted 2 February 2022; Published 23 March 2022

Academic Editor: Saeid Jafarzadeh Ghoushchi

Copyright © 2022 Mohamed Abd Elaziz et al. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We present in this paper a discrete analogue of the continuous generalized inverted exponential distribution denoted by discrete
generalized inverted exponential (DGIE) distribution. Since, it is cumbersome or difficult to measure a large number of ob-
servations in reality on a continuous scale in the area of reliability analysis. Yet, there are a number of discrete distributions in the
literature; however, these distributions have certain difficulties in properly fitting a large amount of data in a variety of fields. +e
presented DGIE(β, θ) has shown the efficiency in fitting data better than some existing distribution. In this study, some basic
distributional properties, moments, probability function, reliability indices, characteristic function, and the order statistics of the
new DGIE are discussed. Estimation of the parameters is illustrated using the moment’s method as well as the maximum
likelihoodmethod. Simulations are used to show the performance of the estimated parameters.+emodel with two real data sets is
also examined. In addition, the developed DGIE is applied as color image segmentation which aims to cluster the pixels into their
groups. To evaluate the performance of DGIE, a set of six color images is used, as well as it is compared with other image
segmentation methods including Gaussian mixture model, K-means, and Fuzzy subspace clustering. +e DGIE provides higher
performance than other competitive methods.

1. Introduction

In the field of reliability analysis, it is inconvenient or dif-
ficult to measure a lot of observations in nature on a con-
tinuous scale. For example, in many practical satiations
[1–9], reliability data are measured in terms of the number of
cases, runs, or the number of days left for patients with the
deadly disease since therapy. For more examples in reli-
ability and lifetime applications, see Meeker and Escobar
[10]. +ere are ways to build up a discrete distribution that
has been recognized [11].

Indeed, this technique has been widely applied to gen-
erate new discrete distributions for example [12–18] and
references cited therein. Abouammoh and Alshingiti [19]
introduced a shape parameter to the inverted exponential
distribution to get the generalized inverted exponential

(GIE) distribution. +e GIE distribution is derived from the
exponetiated Frechet distribution [20]. +e hazard rate of
the GIE distribution can be decreasing or increasing, based
on its shape parameter. +e GIE has effectiveness in
modeling a lot of data and can be applied in several ap-
plications, such as horse racing, life testing, queues, and
wind speeds [20]. Abouammoh and Alshingiti [19] show
that the GIE distribution provides a better fit than Weibull,
gamma, generalized exponential distribution, and gamma
distribution. +e GIE can be widely used in many fields, see
for example, [21, 22]. However, there exist a number of
discrete distributions in the literature; there are some lim-
itations in these distributions in fitting a lot of data in many
areas effectively, such as geometric, discrete Lindely, and
discrete logistic distributions. +ere is still a need to develop
new discretized distributions that are able to have
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applications such as image segmentation. +is motivated us
to present a new distribution.

+e presented distribution discrete generalized inverted
exponential (DGIE) is constructed from a generalized
inverted exponential distribution. Parameters are estimated
using two methods, namely moments and maximum like-
lihood. +e consistency of the estimated parameters is il-
lustrated using simulation. Based on to two data sets the
proposed distribution is more convenient to analyze the
given data more than competitive distributions. +e pro-
posed distribution is applied in color segmentation which
helps in clustering the pixels into their groups. +e DGIE
provides higher performance than other competitive
methods.

+e main contribution of the current study can be
summarized as follows:

(1) Present a new distribution discrete generalized
inverted exponential (DGIE) to avoid the limitations
of other distributions

(2) Compute the basic distributional properties, mo-
ments, probability function, reliability indices,
characteristic function, and the order statistics of
DGIE

(3) Evaluate the applicability of DGIE by using it to
improve the color segmentation

+e paper is organized as follows: in Section 2, we in-
troduce the DGIE(β, θ) distribution and mention statistical
properties, as failure function, survival function. In addition,
we list some additional properties of the proposed

distribution such as moment generating function, moments,
quantile, entropy, stress-strength, mean residual lifetime,
and order statistics. We analyse the DGIE(β, θ) using two
real data set in Section 3. Finally, the conclusion is men-
tioned in Section 4.

2. Materials and Methods

2.1. Discrete Generalized Inverted Exponential Distribution

Definition 1. A random variable X is said to have a discrete
generalized inverted exponential distribution with param-
eter ß (β> 0) and � e− λ, 0< θ< 1, if its probability mass
function (PMF) has the form:

P(X � x) � 1 − θ1/(x)
􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β
; x ∈ N0. (1)

We denote this distribution as DGIE(β, θ). Figure 1
illustrates several examples of the probability mass func-
tion ofDGIE(β, θ) distribution for various values of β and θ.

2.1.1. Cumulative Distribution Function. +e cumulative
distribution function CDF of DGIE(β, θ) is given by

F(x, α, θ) � 1 − S(x, α, θ) + P � 1 − 1 − θ1/(x+1)
􏼐 􏼑

β
, (2)

where β (β > 0) and � e− λ, 0< θ< 1. Monotonic property
simply, we find out

fX(x + 1; β, θ)

fX(x; β, θ)
�

1 − θ1/(x+1)
􏼐 􏼑

β
− 1 − θ1/(x+2)

􏼐 􏼑
β

1 − θ1/(x)
􏼐 􏼑

β
− 1 − θ1/(x+2)

􏼐 􏼑
β , x ∈ N0β(β> 0) and

θ � e
− λ

, 0< θ< 1.

(3)

Is a decreasing function of which leads to
fX(x; β, θ)􏼈 􏼉

2 >fX(x + 1; β, θ)fX(x − 1; β, θ); x ∈ N0 β
(β > 0) and θ � e− λ, 0< θ < 1.

+e distribution is log-concave. Based on the log con-
cavity (Mark, 1996), the proposed of DGIE(β, θ) distribu-
tion is unimodal with increasing failure rate distribution,
and it all its moments.

Furthermore, the quantile function of DGIE(β, θ) dis-
tribution, say Q(p), from F(xp) � p, is given by

xp �
ln θ

ln 1 − (1 − p)
1/β

􏼐 􏼑
− 1, (4)

where β (β > 0), θ � e− λ, 0< θ< 1 and 0<p< 1. Where n

denotes the greatest integer function.
Hence the median can be obtained by putting p � 1/2 in

equation (4)

Med(X) �
ln θ

ln 1 − (1/2)
1/β

􏼐 􏼑
− 1. (5)

Survival function: +e survival function of DGIE(β, θ)

distribution is defined as

S(x, β, θ) � P(X≥ x) � 1 − θ1/x􏼐 􏼑
β
; x ∈ N0. (6)

Hazard rate, r(x) is put as

h(x, β, θ) �
p(x)

s(x)
�

1 − θ1/x􏼐 􏼑
β

− 1 − θ1/(x+1)
􏼐 􏼑

β

1 − θ1/x􏼐 􏼑
β ; x ∈ N0.

(7)

Figure 2 shows the HRF plots ofDGIE(β, θ) distribution
for various values of β and θ.

+e reversed hazard rate function (RHRF) of the
DGIE(β, θ) distribution is put in the form
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Figure 1: PMF of the DGIE(β, θ).
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Figure 2: HRF of the DGIE(β, θ).
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r(x, β, θ) �
1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

1 − 1 − θ1/x􏼐 􏼑
β ; x ∈ N0. (8)

Figure 3 indicate the RHRF plots of DGIE(β, θ) dis-
tribution for various values of β and θ.

2.2. Statistical Properties. +e rth moment μ’r of a discrete
exponentiated exponential distribution DGIE(β, θ) about
the origin is obtained as follows:

μr
′ � 􏽘

∞

x�0
x

r 1 − θ1/x􏼐 􏼑
β

− 1 − θ1/(x+1)
􏼐 􏼑

β
􏼔 􏼕,

μr
′ � E X

r
􏼂 􏼃 � 􏽘

∞

x�0
x

r
P(X � x).

(9)

+e moment generating function (MGF) MX(t) of
DGIE(β, θ) distribution is computed as follows:

MX(t) � E e
tx

􏽨 􏽩 � 􏽘
∞

x�0
e
tx

P(X � x)

� 􏽘
∞

x�0
e
tx

P(X � x) 1 − θ1/x􏼐 􏼑
β

− 1 − θ1/(x+1)
􏼐 􏼑

β
􏼔 􏼕.

(10)

+e mean (μ) of DGIE(β, θ) distribution is derived as

μ1′ � μ � E[X] � 􏽘
∞

x�0
x 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕. (11)

+e second moment is obtained as

μ2′ � μ � E X
2

􏽨 􏽩 � 􏽘
∞

x�0
x
2 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕.

(12)

Hence, the variance (σ2) could be derived as

var(X) � 􏽘
∞

x�0
x
2 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕 − 􏽘
∞

x�0
x 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕⎛⎝ ⎞⎠

2

. (13)

+e 3rd and 4th moments are, respectively are obtained as

μ3′ � E X
3

􏽨 􏽩 � 􏽘
∞

x�0
x
3 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕,

μ4′ � E X
4

􏽨 􏽩 � 􏽘
∞

x�0
x
4 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕.

(14)

+emeasure of skewness α3 of DGIE(β, θ) distribution is
obtained as follows:

α3 �
μ3′ − 2μ2′μ + μ3

σ3

�
1
σ3

􏽘

∞

x�0
x
3 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕⎡⎣ ⎤⎦ − 2μ 􏽘
∞

x�0
x
2 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕
⎧⎨

⎩

⎫⎬

⎭ +
μ3

σ3
.

(15)

+e measure of kurtosis α4 of DGIE(β, θ) distribution is
obtained as follows:

α4 �
μ4′ − 4μ3′μ + 6μ2′μ

2
− 3μ4

σ4

α4 �
1
σ4

􏽘

∞

x�0
x
4 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕 − 4μ 􏽘
∞

x�0
x
3 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕
⎧⎨

⎩

+ 6μ2 􏽘

∞

x�0
x
2 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕 − 3μ4
⎫⎬

⎭.

(16)
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+e probability generating function (PGF), G(t), of
DGIE(β, θ) distribution is obtained as follows:

G(t) � E t
x

􏼂 􏼃 � 􏽘
∞

x�0
t
x
P(X � x)

� 􏽘
∞

x�0
t
x 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕.

(17)

For simplicity, we compute the PGF numerically where
the rth the factorial moment is computed as

μ[r] � G
r
(1) �

α
α − 1

􏽘

∞

x�0
x(x − 1) . . . . . . . . . ..(x − r + 1) 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕. (18)

+e variance, the variance (σ2) of DGIE(β, θ) distribu-
tion is given by the following:

var(X) � σ2 � G″(1) + G
‘
(1) − G″

‘

(1)􏼠 􏼡

2

�
α

α − 1
􏽘

∞

x�0
x
2 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕 −
α

α − 1
􏽘

∞

x�0
x 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕⎛⎝ ⎞⎠

2

.

(19)
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Figure 3: RHRF of the DGIE(β, θ).
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Characteristic function: the characteristic function (CF),
ϕX(w) of DGIE(β, θ) distribution is of the form:

ϕX(w) � E e
iwx

􏽨 􏽩 � 􏽘

∞

x�0
e
iwx

P(X � x) �
α

α − 1
􏽘

∞

x�0
e
iwx 1 − θ1/x􏼐 􏼑

β
− 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕. (20)

Because moments do not have closed forms, the mean
and variance can only be calculated numerically. We esti-
mated mean and variance for various values of β and θ in
Tables 1 and 2, respectively.

2.3. Order Statistics. Order statistics has a deep reflection on
theoretical and practical aspects of statistics. +is

importance is shown in statistical inference and nonpara-
metric statistics. Let X1, X2, . . . .., Xn be a random sample
from A DGIE(β, θ) distribution, and let
X1: n, X2: n, . . . .., Xn: n be the order statistics. +en, the CDF
of the ith order statistics for x can be represented in the for

Fi: n(x, α, θ) � 􏽘
n

k�i

n

k
􏼠 􏼡 Fi(x, β, θ)􏼂 􏼃

k
Fi(x, β, θ)􏼂 􏼃a

� 􏽘
n

k�i

􏽘

βk

m�0
(− 1)

m
n

k
􏼠 􏼡

βk

m
􏼠 􏼡θmβ/(x+1) 1 − θ1/(x+1)

􏼐 􏼑
β

􏼔 􏼕
n+m− k

.

(21)

+erefore, the PMF of the kth Os has the form:

fk: n(x, α, θ, β) � 􏽘
k− 1

m�0
Θ(n,β(k− 1))

m θm/(x+1) 1 − θ(x+1)
􏼐 􏼑

β
􏼔 􏼕

n+m− k

1 − θ1/x􏼐 􏼑
β

− 1 − θ1/(x+1)
􏼐 􏼑

β
􏼔 􏼕, (22)

where Θ(n,k− 1)
m � (− 1)m βk

m
􏼠 􏼡n!/(k − 1)!(n − k)!. So, the qth moments of Xi: n is written in the form:

E X
q

i: n􏼂 􏼃 � 􏽘
∞

x�0
􏽘

k− 1

m�0
Θ(n,β(k− 1))

m θm/(x+1)
x

q 1 − θ(x+1)
􏼐 􏼑

β
􏼔 􏼕

n+m− k

1 − θ1/x􏼐 􏼑
β

− 1 − θ1/(x+1)
􏼐 􏼑

β
􏼔 􏼕, (23)

where Θ(n,k− 1)
m � (− 1)m βk

m
􏼠 􏼡n!/(k − 1)!(n − k)!.

2.3.1. Renyi Entropy. Renyi entropy plays a vital role in
information theory. +e Renyi entropy of a random variable
X is defined as:

IR(c) �
1

1 − c
log􏽘

x

(P(X � x))
c
, (24)

where c >0 and c ≠1 (Renyi, 1961). For the DGIE(β, θ))

distribution for c is an integer number, we compute

􏽘

∞

x�0
(P(X � x))

c
� 􏽘

c

j�0
1 − θ1/j􏼐 􏼑

β
− 1 − θ1/j+1

􏼐 􏼑
β

􏼔 􏼕
c

IR(c) �
1

1 − c
log􏽘

c

j�0
1 − θ1/j􏼐 􏼑

β
− 1 − θ1/(j+1)

􏼐 􏼑
β

􏼔 􏼕
c

. (25)

2.4. Unknown Parameters Estimation. In this section, we
used two methods to estimate DGIE(β, θ) distribution
unknown parameters using

2.4.1. Maximum Likelihood Method. Let X1, X2, . . . .., Xn

represents the lifetimes of n independent test units which
Following DGIE(β, θ). So, its log-likelihood function is

written as: p(x) � (1 − θ1/x)β − (1 − θ1/(x+1))β

6 Mathematical Problems in Engineering



L[P(X � x)] � 􏽙
n

i�1
p xi( 􏼁 � 􏽙

n

i�1
1 − θ1/xi􏼐 􏼑

β
− 1 − θ1/ xi+1( )􏼒 􏼓

β
,

I(x, α, θ) � 􏽘

n

i�1
ln 1 − θ1/xi􏼐 􏼑

β
− 1 − θ1/ xi+1( )􏼒 􏼓

β
􏼠 􏼡.

(26)

Likelihood equations are then obtained as follows:

δl

δθ
� 􏽘

n

i�1

− 1/xi − 1βθ1/xi− 1 1 − θ1/xi( 􏼁
β

+ β1/ xi + 1( 􏼁 1 − θ1/ xi+1( )􏼒 􏼓
β− 1

θ1/ xi+1( )

1 − θ1/xi􏼐 􏼑
β

− 1 − θ1/ xi+1( )􏼒 􏼓
β � 0,

δl

δβ
� 􏽘

n

i�0

1 − θ1/xi􏼐 􏼑
β
ln 1 − θ1/xi􏼐 􏼑

β
− 1 − θ1/ xi+1( )􏼒 􏼓

β
ln 1 − θ1/ xi+1( )􏼒 􏼓

1 − θ1/xi􏼐 􏼑
β

− 1 − θ1/ xi+1( )􏼒 􏼓
β � 0.

(27)

We can obtain the solution of these equations numer-
ically then; we compute the Fisher’s information matrix by
finding the second partial derivatives

Ix(β, θ) �

− E
z
2
l

zβ2
􏼢 􏼣 − E

z
2
l

zβ zθ
􏼢 􏼣

− E
z
2
l

zθ zβ
􏼢 􏼣 − E

z
2
l

zθ2
􏼢 􏼣

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

One can infer that the DGIE(β, θ) distribution satisfies
the regularity conditions [23]. +en, the MLE vector (􏽢β, 􏽢θ)T

is asymptotically normal and consistent. Fisher’s informa-
tion matrix can be approximated as

Ix(α, θ) �

−
z2l

zβ2
|
(􏽢β,􏽢θ)

−
z2l

zβ zθ
|
(􏽢β,􏽢θ)

−
z2l

zθ zβ
|
(􏽢β,􏽢θ)

−
z2l

zθ2
|
(􏽢β,􏽢θ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

where 􏽢β and 􏽢θ are the MLEs of β and θ [24].
+e element of the hessian matrix Ix(α, θ) are obtained

from

Table 1: +e mean of the DGIE(β, θ) distribution.

β/θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
2 2.682 1.711 1.153 0.774 0.502 0.304 0.163 0.069
3 1.471 0.861 0.522 0.307 0.169 0.083 0.034 0.009
4 1.043 0.559 0.303 0.156 0.072 0.029 0.009 0.001
5 0.814 0.398 0.193 0.086 0.033 0.010 0.0025 0.0003

Table 2: +e variance of the DGIE(β, θ) distribution.

β/θ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
3 6.317 2.822 1.449 0.7621 0.385 0.177 0.068 0.018
4 2.371 0.997 0.481 0.232 0.103 0.039 0.012 0.002
5 1.300 0.526 0.239 0.104 0.040 0.012 0.002 0.0003
6 0.845 0.334 0.141 0.054 0.017 0.004 0.001 0.001
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β
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β
ln 1 − θ1/xi􏼐 􏼑􏼐 􏼑

2
− 1 − θ1/ xi+1( )􏼒 􏼓

β
ln 1 − θ1/ xi+1( )􏼒 􏼓􏼒 􏼓

2
􏼢
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β

− 1 − θ1/ xi+1( )􏼒 􏼓
β

􏼠 􏼡

2 a
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β
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β
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β
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β
− 1/xiβθ
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β− 1
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β
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􏼠 􏼡 1 − θ1/xi􏼐 􏼑

β
ln 1 − θ1/xi􏼐 􏼑 − 1 − θ1/ xi+1( )􏼒 􏼓

β
ln 1 − θ1/ xi+1( )􏼒 􏼓􏼠 􏼡

1 − θ1/xi􏼐 􏼑
β

− 1 − θ1/ xi+1( )􏼒 􏼓
β

􏼠 􏼡

2

z
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l
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n
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β
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β
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β
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i β

2θ2 1/xi− 1( ) 1 − θ1/xi􏼐 􏼑
β

1 − θ1/xi􏼐 􏼑
β

− 1 − θ1/ xi+1( )􏼒 􏼓
β

􏼠 􏼡

2

+
β1/ xi + 1( 􏼁

2θ1/xi− 1− 1 1 − θ1/ xi+1( )􏼒 􏼓
β− 1

+ β(β − 1)1/ xi + 1( 􏼁
2θ1/xi− 1− 1 1 − θ1/ xi+1( )􏼒 􏼓

β− 2

1 − θ1/xi􏼐 􏼑
β

− 1 − θ1/ xi+1( )􏼒 􏼓
β

􏼠 􏼡

2

−

− 1/xiβθ
1/xi− 1 1 − θ1/xi􏼐 􏼑

β
+ β1/ xi + 1( 􏼁θ1/xi− 1 1 − θ1/ xi+1( )􏼒 􏼓

β− 1
􏼠 􏼡 − β1/xi 1 − θ1/xi− 1

􏼐 􏼑
β− 1

+ β1/ xi + 1( 􏼁 1 − θ1/ xi+1( )􏼒 􏼓
β− 1

􏼠

1 − θ1/xi􏼐 􏼑
β

− 1 − θ1/ xi+1( )􏼒 􏼓
β

􏼠 􏼡

2 .

(30)

2.4.2. Method of Moments Estimation. We can find mo-
ments’ estimates (MM Es) of (β, θ) by solving the equations

􏽘

∞

i�1
xi 1 − θ1/xi􏼐 􏼑

β
− 1 − θ1/ xi+1( )􏼒 􏼓

β
􏼢 􏼣 � μ[1]

1 ,

􏽘

∞

i�1
x
2
i 1 − θ1/xi􏼐 􏼑

β
− 1 − θ1/ xi+1( )􏼒 􏼓

β
􏼢 􏼣 � μ[2]

2 ,

(31)

where μ[1]
1 and μ[2]

2 represent the first and the second sample
moments.
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3. Results and Discussion

3.1. A Simulation Study. In this section, we assess the per-
formance of the maximum-likelihood estimate with respect
to sample size n. +e assessment is based on a simulation
study:

(1) Generate 10000 samples of size n from equation (1).
+e inversion method is used to generate samples;
that is, varieties of the discrete generalized inverted
exponential distribution are generated using

X �
ln θ

ln 1 − (1 − u)
1/β

􏼐 􏼑
− 1; 0 < u< 1, (32)

where U ∼ U(0, 1) is a uniform variable on the unit
interval.

(2) Compute the Maximum-likelihood Estimates for
10000 Samples, Say 􏽢θi for

i � 1, 2, . . . ., 10000. (33)

(3) Compute the biases and mean-squared errors given
by

bias(n) �
1

10000
􏽘

10000

i�1

􏽢θi − θi􏼐 􏼑,

MSE(n) �
1

10000
􏽘

10000

i�1

􏽢θi − θi􏼐 􏼑
2
.

(34)

+e empirical results are given in Table 3. From Table 3,
the following observations can be noted: the magnitude of
the bias always decreases to zero as n⟶∞. +e MSEs
always decrease to zero as n⟶∞. +is shows the con-
sistency of the estimators.

3.1.1. Data Application. We pointed out here, the notability
of a discrete generalized inverted exponential distribution on
distributions: geometric distribution, discrete logistic dis-
tribution and discrete Lindley distribution. Two real data
sets are applied. +e first data are in Table 4 is for 30 failure
times of the air conditioning system of an airplane. +ese
data are taken from [25].

+e MLE of (β, θ) values in all these cases has been
computed. +e Kolmogorov–Smirnov (K–S) measure in
each case and the associated P value are computed.+e result
is put in Table 5.

+e Akaike information criterion (AIC), correct Akaike
information criterion (CAIC) and Bayesian Akaike infor-
mation criterion (BIC) values for the models have been
computed. +e result is reported in Table 6. +e Akaike’s
measures indicate that the GIED distribution fits the data
better than some existing distributions for this data set.

+e data set given in Table 7 consists of uncensored data
from [23].+e data gives 100 observations on breaking stress

of carbon fibers (in Gba).+eMLE of (β, θ) values in all these
cases have been computed.+e Kolmogorov–Smirnov (K-S)
measure in each case and the associated p-value are com-
puted.+e result is put in Table 8. A comparison between the
observed and the fitted distributions are shown in Figures 4
and 5.

+e Akaike’s measures indicate that the GIED distri-
bution fits the data better than some existing distributions
for this data set, as in Table 9. For the first, second data sets,
the discrete generalized inverted exponential distribution
shows the best convenient p values. +e distribution plots
propose that the discrete generalized inverted exponential
distribution offers the best fit between the competitor dis-
tributions. On the basis of the tabulated results, we infer that
the discrete generalized inverted exponential distribution
provides the best fit compared to its submodels. Some
summary statistics of data sets 1 and 2 are listed in Table 10.

3.2. Image Segmentation. In this section, we assess the ability
of DGIED to improve the performance of segmentation the
image. +is can be performed by considering it as a clus-
tering method.

3.2.1. Clustering Problem Formulation for Image
Segmentation. In this part, we introduce the mathematical
formulation of the automatic clustering-based image seg-
mentation problem. In general, the main aim of AC is to split
the given image I into a set of Kmax groups. To perform this
task, the between-cluster variation must be maximized at the
same time with minizing within-cluster variation.

+erefore, the mathematical representation of AC can be
given by dividing the image into Kmax cluster (i.e.,
C1,C2, . . . ,CKmax

) with satisfied the following criteria:

∪ Kmax
l�1 Cl � I,Cl ≠ϕ, l � 1, . . . ,Kmax

Cl ∩Cl1 � ϕ, l, l1 � 1, 2, . . . ,Kmax, l≠ l1.
(35)

Gaussian mixture models (GMM): it is one of the most
popular clustering techniques, and it has been used as an
image segmentation method in different applications, for
example, image retrieval [26], chemical and physical
properties of Italian wines, and the chemical [27, 28] and
others [29].

+e mathematical formulation of the Gaussian mixture
model (GMM) can be represented by considering the given
image I consisting of a set of pixels X that are represented as
a random variable. So, the GMM can be defined as

f(x) � 􏽘
K

i�1
wiN x|μi, σ

2
i􏼐 􏼑. (36)

In equation (36), K represents the number of objects and
wi > 0 refer to the weights where 􏽐

K
i�1 wi � 1. In addition, the

N(x|μi, σ2i ) is defined as

N x|μi, σ
2
i􏼐 􏼑 �

1
σ

���
2π

√ e
− x− μi( )

2/2σ2
i , (37)
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Table 4: Data set 1.

23 62 42 3 16
261 47 20 14 90
87 225 5 71 1
7 71 12 11 16
120 246 120 14 52
14 21 11 11 95

Table 5: +e results of data set 1.

Distribution p(x) Estimates of parameters p value K-S
statistics

Discrete generalized inverted
exponential distribution (2.2) θ � 8.763 × 10− 6

β� 0.779 0.237755∗ 10− 2 0.326379

Geometric p(1 − p)x p � 0.017 0.5382∗ 10− 5 0.45039
Discrete logistic (1 − p)px− µ/(1 + px− µ)(1 + px− µ+1) p � 0.083, µ � − 30.999 6.968 × 10− 28 1
Discrete lindley λx/1 − log λ[λ log λ + (1 − λ)(1 − log λx+1)] λ � 0.401 1.198124 × 10− 10 0.610163

Table 6: AIC, CAIC and BIC measures for data set 1.

Distribution AIC CAIC BIC

N� 30

DGIE 312.880 313.324 315.683
Geometric 314.397 314.539 315.798

Discrete lindely 478.532 478.673 479.9314
Discrete logistic 13628.219 13628.659 13631.017

Table 7: Data set 2.

3.7 2.74 2.73 2.5 3.6
3.11 3.27 2.87 1.47 3.11
4.42 2.41 3.19 3.22 1.69
3.28 3.09 1.87 3.15 4.9
3.75 2.43 2.95 2.97 3.39
2.96 2.53 2.67 2.93 3.22
3.39 2.81 4.2 3.33 2.55
3.31 3.31 2.85 2.56 3.56
3.15 2.35 2.55 2.59 2.38
2.81 2.77 2.17 2.83 1.92
1.41 3.68 2.97 1.36 0.98
2.76 4.91 3.68 1.84 1.59
3.19 1.57 0.81 5.56 1.73
1.59 2 1.22 1.12 1.71
2.17 1.17 5.08 2.48 1.18
3.51 2.17 1.69 1.25 4.38
1.84 0.39 3.68 2.48 0.85
1.61 2.79 4.7 2.03 1.8
1.57 1.08 2.03 1.61 2.12
1.89 2.88 2.82 2.05 3.65

Table 8: +e results of data set 2.

Distribution p(x) Estimates of parameters p value K-S
statistics

Discrete generalized inverted
exponential distribution (2.2) θ � 1.671 × 10− 5β� 26.715 2.19∗ 10− 7 0.279787

Geometric p(1 − p)x p � 0.381 1.653∗ 10− 31 0.591263
Discrete logistic (1 − p)px− µ/(1 + px− µ)(1 + px− µ+1) p � 0.132, µ � − 38.28 2.45 × 10− 89 1
Discrete lindley λx/1 − log λ[λlog λ + (1 − λ)(1 − log λx+1)] λ � 0.599 8.6704 × 10− 13 0.372892
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where μi and σi are mean and the standard deviation of class
i. For image X, the parameters are θ � (w1, . . . ,wk,

μ1, . . . , μk, σ21, . . . , σ2k) are required to determine and to
achieve this estimation, the Expectation-Maximization (EM)
method is used. +e steps of EM can be summarized as in
Algorithm 1:

However, the traditional GMM has some limitations
that influence its performance, such as inefficiency in

modeling all the data types, including discrete data in the
application such as machine learning [30]. To avoid these
limitations, we use the new distribution named Discrete
Generalized Inverted Exponential Distribution. In gen-
eral, DGIED has the ability to tackle the non-inaccur-
ateness of using general distributions such as mixture
Gaussian distribution.

3.2.2. Dataset Description. In this study, the performance of
the developed clustering-based color image segmentation
using DGIED mixture model (DGIEMM) is evaluated using
a set of six color images (as in Figures 6(a)–6(f)) [31]. In
addition, we compared the results of DGIEMM with GMM,
K-means, and Fuzzy subspace clustering (FSC).

3.2.3. Performance Measures. To evaluate the efficacy of the
developed image segmentation, a set of performance mea-
sures is used. For example, Accuracy, Adjust Rand Index,
Hubert, and Normalized mutual information. +e details of
these measures are given as follows:

Accuracy: It is a measure used to assess the ability of the
method to determine the optimal cluster for each pixel. It is
formulated as

accuracy �
TP + TN

TP + FP + TN + FN
, (38)

where TP, FP,TN, and FN are the True positive, False
positive, True negative, and False negative.

Adjust Rand Index: It is a measure used to assess the
similarity between two groups, and it is defined as:

ARI �

􏽐ij

nij

2
⎛⎝ ⎞⎠ − 􏽐i

ai

2
⎛⎝ ⎞⎠􏽐j

bj

2
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦/

n

2
⎛⎝ ⎞⎠

0.5 􏽐i

ai

2
⎛⎝ ⎞⎠ + 􏽐 􏽐j

bj

2
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ − 􏽐i

ai

2
⎛⎝ ⎞⎠􏽐j

bj

2
⎛⎝ ⎞⎠⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦/

n

2
⎛⎝ ⎞⎠

, (39)
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Figure 4: Distribution plots for data set 1.
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Figure 5: Distribution plots for data set 2.

Table 9: AIC, CAIC and BIC measures for data set 2.

Distribution AIC CAIC BIC

N� 100

DGIE 314.445 314.569 319.655
Geometric 400.411 400.541 403.016

Discrete lindely 422.027 422.067 424.632
Discrete logistic 16832.972 16833.095 16838.182
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Table 10: Some statistical measures for data sets.

Data set Mean Median Std. deviation Variance Skewness Kurtosis Minimum Maximum
I 28.73429 22 70.67654 5167.421 1.784077 2.568813 1 261
II 2.404559 2.7 1.008803 1.027964 0.373784 0.172868 0.39 5.56

(1) Input: image Xj, j � 1, . . . ,n and i ∈ 1, 2, . . . , k{ } are the label set Y � y1, y2, . . . , yN􏼈 􏼉, yn ∈ 1, . . . ,K{ }

(2) Initialize θ0 � (p01, . . . , p0k, μ01, . . . , μ0k, σ2(0)
1 , . . . , σ2(0)

k ):
(3) While (condition not met)
(4) E-Step:

pr+1ij � pr+1ij (i|xj) � wr
iN(xj|μ

(r)
i , σ2(r)

i )/f(xj)
(5) M-Step

􏽢wr+1
ij � 1/n􏽐

n
j�1 w

r
ij

􏽢μr+1ij � 􏽐
n
j�1 w

r+1
ij xj/n􏽢wr+1

ij

􏽢σ2(r+1)
i � 􏽐

n
j�1 w

r+1
ij (xj − 􏽢μr+1i )/n)

End While
(6) For each data vector xn, set.

yn � arg
i

max(wiN(x|μi, σ2i ))

ALGORITHM 1: Steps of EM method.

I1

(a)

I2

(b)

I3

(c)

I4

(d)

Figure 6: Continued.
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I5

(e)

I6

(f)

Figure 6: +e original tested images used in this study. (a) I1, (b) I2, (c) I3, (d) I4, (e) I5, (f ) I6.

Table 11: Comparison between developed method and other segmentation methods.

DGIEMM FSC GMM K-means DGIEMM FSC GMM K-means

I1

Accuracy 0.9951 0.9494 0.6259 0.6259

I4

0.9886 0.9086 0.9013 0.9515
AR 0.9803 0.8068 0.9572 0.9134 0.9548 0.6679 0.6441 0.7422

Hubert 0.9805 0.8078 0.8634 0.8886 0.9548 0.6679 0.6442 0.7141
NMI 0.9574 0.7474 0.8373 0.8726 0.9208 0.6419 0.5919 0.6986

I2

Accuracy 0.9995 0.9880 0.8956 0.8956

I5

0.9998 0.9964 0.9899 0.5614
AR 0.9978 0.9510 0.6224 0.6224 0.9993 0.9858 0.9600 0.0785

Hubert 0.9979 0.9526 0.6260 0.6260 0.9993 0.9858 0.9601 0.0543
NMI 0.9931 0.9076 0.5820 0.5820 0.9978 0.9691 0.9276 0.1884

I3

Accuracy 0.9913 0.9867 0.9280 0.9274

I6

0.9982 0.9928 0.8972 0.9198
AR 0.9647 0.9468 0.7227 0.7206 0.9915 0.9666 0.6047 0.6251

Hubert 0.9653 0.9476 0.7326 0.7306 0.9928 0.9716 0.6311 0.7240
NMI 0.9306 0.8926 0.6554 0.6537 0.9762 0.9160 0.5463 0.6547
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Figure 7: Average of each method in terms of (a) accuracy, (b) AR, (c) Hubert, and (d) NMI.
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where nij denotes the number of objects in common be-
tween classes. ai and bi are the sum of rows and columns of
contingency table, respectively.

Hubert: it is a measure used to compute the correlation
coefficient between classes and it is defined as:

Hubert �
åi<j Xij− μX􏼐 􏼑 Yij− μY􏼐 􏼑

N σXσY
, (40)

where σX and σY are the standard deviation of cluster X and
cluster Y, respectively.

Normalized mutual information (NMI): is defined as
a normalization of the Mutual Information that defined
as:

NMI �
2I CT; C( 􏼁

H CT( 􏼁 + H(C)
, (41)

where CT and C are the class label and its cluster label,
respectively. H is the Entropy and Mutual Information
between CT and C, respectively.

3.2.4. Results and Discussion. +e comparison between the
developed color image segmentation method (i.e.,
DGIEMM) and the other methods is given in Table 11. It can
be noticed from these results the high ability of the devel-
oped method to cluster the images into their objects overall
the other methods. For example, according to the results in

Table 12: Mean-rank obtained by each algorithm.

DGIEMM FSC GMM K-means
Accuracy 4 2.8333 1.5000 1.6667
AR 4 2.5000 1.7500 1.7500
Hubert 4 2.5000 1.5833 1.9167
NMI 4 2.5000 1.5833 1.9167
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Figure 8: Segmented images (I1, I5, I6) using competitive algorithms.
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terms of accuracy, it can be seen from these values that the
DGIEMM has a high ability to assign each pixel into its true
label (i.e., the object that contains it). +e FSC and GMM
provide results better than K-means, and this observation
can be noticed from Figure 7(a) that shows the average
overall of the tested six images.

In terms of AR, it can be seen that the DGIEMM still
provides results better than other methods. +e same ob-
servations are noticed in the other three measures (i.e., RI,
NMI, and Hubert); also, Figures 7(b)–7(d) shows the su-
periority of DGIEMM.

To justify the superiority of DGIEMM, the nonpara-
metric Friedman test is used. In general, this test is applied to
make a decision about the difference between the DGIEMM
and other methods is significant or not. +ere are two
hypotheses; the first one is named null, and it is assumed that
there is no difference between the tested methods. In
contrast, the second hypothesis, called alternative, is con-
sidered there is a difference between the method. We accept
the alternative hypothesis, when the obtained value is less
than significant level 0.05.

Table 12 shows the mean-rank obtained using the
Friedman test in terms of the performance measures (i.e.,
accuracy, AR, RI, Hubert, NMI). From these values, it can be
seen that the developed color image segmentation method
has the highest mean rank in terms of performance mea-
sures. In addition, FSC allocates the second mean rank,
followed by K-means that provides results better than tra-
ditional GMM. Finally, Figure 8 shows an example of
Segmented image using competitive algorithms.

4. Concluding Remarks

In this study, a new two-parameters distribution for
modeling a lot of observations in nature has been pre-
sented. It is constructed from continuous generalized
inverted exponential distribution, so called discrete
generalized inverted exponential distribution DGIE
distribution. Some important probabilistic properties of
this distribution have been studied. Using two methods
namely the moment’s method and the maximum likeli-
hood technique, the parameters of the DGIE(β, θ) dis-
tribution have been estimated. To evaluate the quality of
DGIE(β, θ), a set of experimental series has been con-
ducted using synthetic and real data. +e results have
been shown the efficiency of DGIE(β, θ) in fitting data
better than some existing distribution in case of synthetic
data. In addition, the developed DGIE has been applied
as image segmentation based on clustering technique,
which aims to avoid the limitations of the traditional
Gaussian mixture model (GMM). +is is achieved by
using DGIE instead of Gaussian distribution. +e de-
veloped image segmentation has been established its
performance using a set of color images which provides
results better than GMM, K-means, and Fuzzy subspace
clustering (FSC).

According to these properties and results, DGIE can be
applied to a wide range of applications, including reliability,
physics, and machine learning techniques.

Data Availability

+e data used to support the findings of this study are
available from the authors upon request.
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