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Abstract. We consider stationary versions of two discrete variants of Hammers-
ley’s process in a finite box. This allows us to recover in a unified and simple way
the laws of large numbers proved by T. Seppäläinen for two generalized Ulam’s
problems. As a by-product we obtain an elementary solution for the original Ulam
problem.

We also prove that for the first process defined on Z, Bernoulli product measures
are the only extremal and translation-invariant stationary measures.

1. Introduction

In a celebrated paper, J.M.Hammersley used Poissonization to attack the so-
called Ulam problem of the typical length ℓ(n) of the longest increasing subsequence
of a uniform permutation of size n. Namely, he reduced this problem to finding the
greatest number of points of a Poisson point process inside a square, an increasing
path can go through. He proved (Hammersley (1972), Theorem 4) that ℓ(n)/

√
n

converges in probability to some constant c, sometimes referred to as the Ulam
constant, and conjectured that c = 2.

The proof of c = 2 was achieved independently by Logan and Shepp and by
Vershik and Kerov in 1977, using algebraic methods. Various authors were then
interested in finding a more probabilistic proof of this result. First, Aldous and
Diaconis (1995) gave one, using the properties of what they called Hammersley’s
process, which was implicitly introduced in Hammersley (1972) (p.358 and fol-
lowing). Hammersley’s process is continuous in time and space and Aldous and
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Diaconis studied its properties on the infinite line, in particular its stationary dis-
tributions. A few years later, Groeneboom (2002) and Cator and Groeneboom
(2005) studied Hammersley’s process on a quarter plane. By adding what they
called Poisson sinks and sources on the x and y-axis, they also found a stationary
version of this process on the quarter plane. Using this point of view, they were
able to recover again the value of c.

In this paper, we study two discrete variants of Ulam’s problem. Namely, for all
p in [0, 1], n,m ≥ 1 , we replace the original Poisson point process by the following
random set ξ of integer points: each integer point of the rectangle [1, n] × [1,m]
is chosen independently with probability p. We are interested in the two following
quantities.

• The length of the longest increasing subsequence through points of ξ:

L
(1)
(n,m) = max

{

L; there exists (i1, j1), . . . , (iL, jL) ∈ ξ, i1 < · · · < iL

and j1 < j2 < · · · < jL

}

.

• The length of the longest non-decreasing subsequence through points of ξ:

L
(2)
(n,m) = max

{

L; there exists (i1, j1), . . . , (iL, jL) ∈ ξ, i1 < · · · < iL

and j1 ≤ j2 ≤ · · · ≤ jL

}

.

One aim of the present work is to recover by simple and unified probabilistic

arguments the first order asymptotics of L
(1)
(n,m) and L

(2)
(n,m) already obtained by T.

Seppäläinen in two independent papers, for L
(1)
(n,m) in Seppäläinen (1997) and for

L
(2)
(n,m) in Seppäläinen (1998). In the following result the variables

(

L
(i)
(n,m)

)

(n,m)

are coupled in the obvious way. Moreover, for any a, b > 0, L
(i)
(an,bm) stands for

L
(i)
(⌊an⌋,⌊bn⌋).

Theorem 1.1. For a, b > 0, we have, when n tends to infinity

L
(1)
(an,bn)

n

a.s.→







√
p(2

√
ab− (a+ b)

√
p)

1− p
if p < min{a/b, b/a},

min{a, b} otherwise,

(1.1)

L
(2)
(an,bn)

n

a.s.→
{

2
√

abp(1− p) + (a− b)p if p < a/(a+ b),

a otherwise.
(1.2)

To prove this, Seppäläinen associates to each problem a particle system on the
infinite line Z and checks that Bernoulli product measures are stationary. The
position of particles at a given time is then characterized as the solution of a discrete

optimization problem, and the a.s. limit of L
(i)
(an,bn)/n is identified using convex

analysis arguments. Note also that for the second question, Johansson used later

(Johansson (2001), Th.5.3) another description of L
(2)
(an,bn)/n and proved that the

rescaled fluctuations converge to the Tracy-Widom distribution.
In Rolla et al. (2010), Rolla-Sidoravicius-Surgailis-Vares considered the closely

related model of last-passage percolation with geometric weights. Here is a quick
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description of the model. Let (ξ̃(i, j))1≤i≤n,1≤j≤m be a family of independent geo-
metric random variables with parameter p. Set:

L
(3)
(n,m) = max

{

∑

t

ξ̃(γ(t))

}

where the maximum is taken over all paths γ from (1, 1) to (n,m) with (1, 0) or

(0, 1) steps. With respect to L
(1)
(n,m) or L

(2)
(n,m), we have simply changed the weight

of each point (from Bernoulli to geometric) and the set of paths considered. Rolla-
Sidoravicius-Surgailis-Vares gave a new proof of the following result:

L
(3)
(n,n)

n

a.s.−−−−−→
n→+∞

2
√
p

1−√
p
.

(The original proof was given by Jockusch-Propp-Shor in Jockusch et al. (1995).)
Our proof of Theorem 1 is inspired by the proof of Rolla-Sidoravicius-Surgailis-

Vares of the above result. The strategy is to consider a particle system on a bounded
domain which turns out to coincide with the restriction of Seppäläinen’s particle
system on Z. This simplifies the definition of the process (especially, in the case of
the second problem). Moreover, it turns out that a local balance property around
a single site, see Lemma 3.3 and 3.4 below, is enough to check the stationarity
of the process. Our proofs are essentially the same for both models. This kind
of remarkable local balance property also occurs in last-passage percolation with
geometric weights (see Rolla-Sidoravicius-Surgailis-Vares , Section 3.1 in Rolla et al.
(2010) or Seppäläinen, Lemma 2.3 in Seppäläinen (2009)). The particle systems
studied here provide two other examples where such a property holds. Theorem
1 is then proven by investigating the behaviour of the models under the different
stationary measures which have been exhibited.

A nice by-product of our proof is that we obtain non-asymptotic estimates which
provide an elementary proof of c = 2 for the original Ulam problem (see the dis-
cussion at the end of Section 4).

In the last section, which can be read independently, we complete the study of
the original infinite discrete Hammersley process introduced by Seppäläinen (1997)
for the Problem 1. We prove that the only extremal translation-invariant stationary
measures of this process are the Bernoulli product measures.

2. Discrete Hammersley’s processes

Like Hammersley did, we construct two sets of broken lines whose cardinality

is respectively the variable L
(1)
(n,m) and L

(2)
(n,m). For each case, we first introduce a

partial order:

Case 1: Case 2:
(x, y) ≺ (x′, y′) iff (x, y) ≺ (x′, y′) iff
x < x′ and y < y′ x < x′ and y ≤ y′

Now, Hammersley’s lines are paths starting from the top side of the rectangle
[1, n]× [1,m], ending at its right side and making only south or east steps. They are
constructed recursively. The first line is the highest non-increasing path connecting
the minimal points of ξ for ≺. We withdraw these points from ξ and connect the
new minima to get the second line, and so on. In the below picture, n = m = 8
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and L
(1)
(n,m) = 4, L

(2)
(n,m) = 5 (crosses denote points of ξ, Hammersley’s lines are in

blue, one of the longest subsequences is shown in a red dashed line):

Problem 1 Problem 2

We claim that the number H
(i)
(n,m) of Hammersley’s lines is equal to L

(i)
(n,m). In-

deed, note that, in both cases, L
(i)
(n,m) is equal to the length of the longest increasing

subsequence trough points of ξ for the partial order ≺. Each Hammersley’s line con-

necting minimal points of a subset of ξ, the L
(i)
(n,m) points of a maximizing sequence

necessarily lie on distinct Hammersley’s lines and therefore H
(i)
(n,m) ≥ L

(i)
(n,m). To

prove the opposite inequality, we observe that Hammersley’s lines give a construc-
tion of an increasing sequence of points a1, . . . aH(i)

(n,m)

of ξ in the following way. For

a
H

(i)

(n,m)

we take any point of ξ which lies in the top right Hammersley’s line. Then,

for each ℓ, aℓ−1 is taken as one of the points of ξ which lies in the ℓ− 1-th line and
such that aℓ−1 ≺ aℓ. The existence of such aℓ−1 is granted. Indeed, if no such point

existed, aℓ would have belonged to the (ℓ−1)-th line. This proves L
(i)
(n,m) ≥ H

(i)
(n,m).

Let us note that the construction of lines above is consistent in n and m, i.e.
for n′ < n and m′ < m the restriction of Hammersley’s lines to the rectangle
[1, n′]× [1,m′] coincides with Hammersley’s lines constructed from the points of ξ
in this smaller rectangle. In particular, for n ≥ 1, we can define the two discrete time
processes (X1

t )t≥0 := (X1
t (x), x ∈ J1, nK)t≥0 and (X2

t )t≥0 := (X2
t (x), x ∈ J1, nK)t≥0

defined by

Xi
t(x)=

{

1 if there is a Hammersley’s line on the vertical edge {(x, t), (x, t+ 1)}
0 otherwise.

(2.1)
Note that on each vertical edge there is at most one Hammersley’s line. Moreover,
in Model 1, there is also at most one Hammersley’s line on any horizontal edge
and Hammersley’s lines do not intersect each other. We will say that there is a
particle at time t at position x in Model i if Xi

t(x) = 1. Hence, for both models
we start with the initial condition Xi

0 ≡ 0 and one can check that both processes
are Markovian. Besides, since Hammersley’s lines start all from the top side of the
rectangle,

for both models, the number of particles at time t is equal to L
(i)
(n,t).
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In both models, the dynamics of the particle systems are quite simple. As the
description of these dynamics is not needed in the proof of Theorem 1.1, we do not
give such a description here. However, we refer the interested reader to Appendix
A.

3. Sinks and sources

Since, in both models, the number of particles can only increase as time goes
on, both processes converge to their unique stationary measure Xi

∞ :≡ 1. In this
section, we are going to modify a little bit the problems we are looking at, such that
the particle systems associated to the new problems admit less trivial stationary
measures. To do so, we must first introduce some notation.

From now on, for any integer x ≥ 1 and t ≥ 1, we define the random variable
ξt(x) by

ξt(x) =

{

1 if (x, t) ∈ ξ
0 otherwise.

(3.1)

With this notation, we can write the quantities L
(i)
(n,m) as

L
(i)
(n,m) = max

{

∑

s

ξt(s)(x(s))

}

(3.2)

where the maximum is taken over all the discrete paths (x(·), t(·)) in [1, n]× [1,m]
starting from (1, 1) which make only steps in N×N for Model 1 and in N×Z+ for
Model 2. Given two sequences of integers (ξt(0))t∈J1,mK and (ξ0(x))x∈J1,nK, we now
consider the quantities

L(i)
(n,m) = max

{

∑

s

ξt(s)(x(s))

}

(3.3)

where the maximum is taken over all the discrete paths (x(·), t(·)) in [0, n]× [0,m]
starting from (0, 0) such that:

• There exists an integer u ∈ Z+ such that: either they first make u (0, 1)
steps or they first make u (1, 0) steps.

• Then, they only make steps in N×N for Model 1 and in N×Z+ for Model
2.

Using the same terminology as in Cator and Groeneboom (2005), we say that there
are k sinks (resp. sources) at site (0, t) (resp. (x, 0)) if ξt(0) = k (resp. ξ0(x) = k).
The sources will be drawn on the x-axis and the sinks on the y-axis. Hence, in

other words, L(i)
(n,m) is equal to the maximum number of points an increasing (resp.

non-decreasing) path can go trough when the path can pick either sources or either
sinks before going into N × N. The law of the sources and sinks will be specified
later, let us just say that the sources will take values in {0, 1}n whereas the sinks
will take values in {0, 1}m for Model 1 and in Zm

+ for Model 2.
As before, we can construct a set of broken lines whose cardinality is equal to

L(i)
(n,m). Now, Hammersley’s lines are paths starting from the top side or the left

side of the rectangle [0, n] × [0,m], ending at its bottom side or its right side and
making only south or east steps. They are still constructed recursively. Assume
that the sink of minimal height is located at (0, t1) and the leftmost source at
(x1, 0). Then, the first line is the highest non-increasing path starting from (0, t1),
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si
n
ks

sources

si
n
ks

sources

2

1

3

Model 1, L(1)
(n,n) = 5 Model 2, L(2)

(n,n) = 7

ending at (x1, 0) and connecting minimal points (x, t) of ξ for the partial order ≺
introduced in the previous section such that (x1, 0) ⊀ (x, t) and (0, t1) ⊀ (x, t). If
there is no sink (resp. source) at all, we do the same construction except that the
line starts from the top of the box (resp. ends on the right of the box). Then,
we withdraw these points from ξ, one of the sink located at (0, t1) and the source
located at (x1, 0) and we do the same procedure with this new set of sources, sinks,
and set of points in J1, nK × J1,mK to obtain the second line. The algorithm goes
on until there is no more points, sinks and sources. Using the same argument as in
the previous section, one can easily prove that the number of lines obtained with

this procedure is equal to L(i)
(n,m).

si
n
ks

sources

si
n
ks

sources

2

1

3

Model 1, L(1)
n = 5 Model 2, L(2)

n = 7

With a slight abuse of notation, we still denote (X1
t )t≥0 := (X1

t (x), x ∈ J1, nK)t≥0

and (X2
t )t≥0 := (X2

t (x), x ∈ J1, nK)t≥0 the two discrete time system of particles
defined by

Xi
t(x) =







1
if there is a Hammersley line (with sources and sinks)
on the edge {(x, t), (x, t+ 1)}

0 otherwise.

Hence, the processes now start from the configuration given by the sources i.e
Xi

0(x) = ξ0(x).
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Theorem 3.1 (Stationarity of Hammersley’s processes on a bounded interval, with
sources and sinks). For all n,

• Model 1. For all p, α ∈ (0, 1), the process (X1
t (x), x ∈ J1, nK)t≥0 is sta-

tionary if sources are i.i.d. Ber(α) and sinks are i.i.d. Ber(α⋆) (and sinks
independent from sources) with

α⋆ =
p(1− α)

α+ p(1− α)
. (3.4)

• Model 2. For all p, α ∈ (0, 1) such that α > p, the process (X2
t (x), x ∈

J1, nK)t≥0 is stationary if sources are i.i.d. Ber(α) and sinks are i.i.d.
(Geo(α⋆) − 1) (i.e. P(ξ(0, t) = k) = α⋆(1 − α⋆)k for k = 0, 1, . . . ) (and
sinks independent from sources) with

α⋆ =
α− p

α(1− p)
. (3.5)

(Note that α⋆ ∈ (0, 1) if α > p.)

Remark 3.2. In Seppäläinen (1997) (resp. in Seppäläinen (1998)), Seppäläinen
associates to Model 1 (resp. Model 2) a particle system defined on the whole line
Z. One can check that the restrictions of these systems to J1, nK have respectively
the same transition probabilities that our processes Xi

t , i = 1, 2 when sinks and
sources are distributed as in Theorem 3.1. Hence,

• For Model 1 (resp. Model 2), Theorem 3.1 should be compared to Lemma
2.1 in Seppäläinen (1997) (resp. Proposition 1 in Seppäläinen (1998)) which
states that Bernoulli product measures are stationary for the analogous
model on the infinite line.

• The condition α > p in Model 2 reminds the condition on the density of
the initial configuration needed to define the process on Z in Seppäläinen
(1998).

• The theorem states stationarity in time (i.e. from bottom to top in our
figures). In fact, the proof also shows stationarity from left to right.

Let us collect a few consequences for further use. Let L(i),α,β
(n,m) be the number of

Hammersley’s lines in Model i with parameters α (sources), β (sinks) in the box

[0, n] × [0,m] and let T (i),α,β
(n,m) be the number of Hammersley’s lines that leave the

same box from the top. Then, for i = 1, 2 and every α, β ∈ [0, 1]

L(i),0,0
(n,m) = T (i),0,0

(n,m)

d
= L

(i)
(n,m),

L(i),α,β
(n,m) = T (i),α,β

(n,m) +# {sinks between 1 and m} . (3.6)

This relies on the fact that any lines has to exit by the top or by a sink. Note that
in the right-hand side of (3.6) the two terms are not independent. Moreover, using

the interpretation of L
(i)
(n,m) and L(i),α,β

(n,m) as the length of a longest subsequence (cf.

(3.2) and (3.3)), we have

L
(i)
(n,m) ≤ L(i),α,β

(n,m) . (3.7)

Besides, T (i),α,β
(n,m) being by definition equal to the number of particles at time m,

Theorem 3.1 implies that

T (i),α,α⋆

(n,m)

law
= Binom(n, α). (3.8)



40 Basdevant et al.

Proof : We aim to prove Theorem 3.1. We first prove for both models a local balance
property, in Lemmas 1 and 2. These lemmas are elementary but do not seem to be
written elsewhere, and form the heart of our proof.
Model 1.

We first focus on what happens around a single point (x, t). Recall that ξt(x) is a
Bernoulli(p). Denote by X (resp. Y,X ′, Y ′) be the indicator that a Hammersley’s
line hits (x, t) from the bottom (resp. left,top,right).

Lemma 3.3 (Local balance for Model 1). The random variables (X ′, Y ′) are mea-
surable with respect to (X,Y, ξt(x)) and we have
(

(X,Y, ξt(x))
(d)
= Ber(α)⊗ Ber(α⋆)⊗ Ber(p)

)

⇒
(

(X ′, Y ′)
(d)
= Ber(α)⊗ Ber(α⋆)

)

where α⋆ is as in (3.4).

X ∼Ber(α)

Y ∼Ber(α⋆)

X ′ ∼Ber(α)

Y ′ ∼Ber(α⋆)

ind.

ind.

ξt(x)

Proof of Lemma 3.3: Recalling that, in Model 1, Hammersley’s lines are non in-
creasing lines which do not touch each other and noticing that X ′ = Y ′ = 1 iff
X = Y = 0 and ξt(x) = 1, we get that

(X ′, Y ′) =







(X,Y ) if X 6= Y
(1, 1) if X = Y = 0 and ξt(x) = 1.
(0, 0) otherwise.

Hence, we see that (X ′, Y ′) ∈ σ(X,Y, ξt(x)) and one can easily check that if
(X ′, Y ′) ∼ Ber(α) ⊗ Ber(α⋆) with α⋆ is as in (3.4), then (X ′, Y ′) ∼ Ber(α) ⊗
Ber(α⋆). �

We now explain how Lemma 3.3 proves Theorem 3.1 for Model 1. For every (x, 1)
define the corresponding (X ′(x), Y ′(x)) be the output of (x, 1). Independence of
sources and sinks and Lemma 3.3 ensure that the output of (1, 1) is independent of
sources at (2, 0), (3, 0), . . . and sinks at (0, 2), (0, 3), . . . . Then a simple induction
on x proves that the random variables (X ′(x), x ∈ J1, nK) are distributed as Ber(α).
Model 2. The strategy is similar:

Lemma 3.4 (Local balance for Model 2). The random variables (X ′, Y ′) are mea-
surable with respect to (X,Y, ξt(x)) and we have

(

(X,Y, ξt(x))
(d)
= Ber(α)⊗ (Geo(α⋆)− 1)⊗ Ber(p)

)

⇒
(

(X ′, Y ′)
(d)
= Ber(α)⊗ (Geo(α⋆)− 1)

)

where α⋆ is as in (3.5).
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X ∼Ber(α)

Y ∼Geo(α⋆)− 1

X ′ ∼Ber(α)

Y ′ ∼Geo(α⋆)− 1

ind.

ind.

ξt(x)

Proof of Lemma 3.4: Recall that X,X ′ ∈ {0, 1} whereas Y, Y ′ ∈ Z+. Besides,
using that Hammersley’s lines are non-increasing, the balance between incoming
and outcoming lines at a site yields X ′ + Y = X + Y ′. Moreover, X ′ = 1 iff
(ξt(x) = 1 or (X,Y ) = (1, 0)).

We observe that the different cases can be summed up in

(X ′, Y ′) =

{

(1, 0) if (X,Y ) = (1, 0)
(ξt(x), Y −X + ξt(x)) otherwise.

One can easily check that this equality implies Lemma 3.4. For instance, for k ≥ 1,
P(X = 1, Y = k) = αα⋆(1− α⋆)k should be equal to

P(X ′ = 1, Y ′ = k) = P(ξt(x) = 1, X = 0, Y = k − 1) + P(ξt(x) = 1, X = 1, Y = k)

= p(1− α)α⋆(1− α⋆)k−1 + pαα⋆(1− α⋆)k

= p(1− α⋆)k−1α⋆ [(1− α) + α(1− α⋆)] ,

which requires (3.5). �

Theorem 3.1 for Model 2 then follows from Lemma 3.4 in the same way as before
Theorem 3.1 for Model 1 follows from Lemma 3.3. �

4. Law of Large Numbers in Hammersley’s processes

In this section, we explain how Theorem 3.1 on the stationary measure of the
processes with sources and sinks implies Theorem 1.1.

Proof of Theorem 1.1: Trivial case. We first consider Model 1 in the case p ≥
min{a/b, b/a}. The upper bound is straightforward. The lower bound can be
proven as follows. Let us consider for example the case p ≥ ab−1. We have to
prove:

lim inf
n→∞

L
(1)
(an,bn)

n
≥ a. (4.1)

One can build an increasing path as follows. The first point (1, y1) of the path is
the lowest point of ξ having first coordinate equal to 1. The second point (2, y2)
of the path is the lowest point of ξ having first coordinate equal to 2 and second
coordinate strictly larger than y1. The other points are defined in a similar fashion.
As pb ≥ a, a study of this path easily provides (4.1). The case p ≥ ba−1 can be
handled in a similar way.

The same strategy treats the case p ≥ a/(a+ b) in Model 2.

Non trivial case. We only need to compute lim 1
nE[L

(i)
(an,bn)] since almost sure

convergence follows from superadditivity.
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Model 1. Upper bound. We assume that p ≥ min{a/b, b/a}. For any α ∈ (0, 1),
taking α⋆ as in (3.4) and using (3.6), (3.7) and (3.8), we get

1

n
E[L

(1)
(an,bn)] ≤ 1

n
E[L(1),α,α⋆

(an,bn) ]

≤ 1

n
E[T (1),α,α⋆

(an,bn) ] +
1

n
E[# {sinks between 1 and bn}]

= aα+ bα⋆ = aα+ b
p(1− α)

α+ p(1− α)
=: φ(1)(a, b, α). (4.2)

The latter is minimized for

α(a, b) :=

√
p
√

b
a − p

1− p
, α⋆(a, b) :=

√
p
√

a
b − p

1− p
, (4.3)

which both are in (0, 1) if p < min{a/b, b/a}. This yields
1

n
E[L

(1)
(an,bn)] ≤ φ(1)(a, b, α(a, b)) =

√
p(2

√
ab− (a+ b)

√
p)

1− p
.

Model 2. Upper bound. We assume that p ≥ a/(a + b). Using (3.8) with
α⋆ = α−p

α(1−p) and that E[Geo(α⋆)− 1] = 1
α⋆ − 1, we get

1

n
E[L

(2)
(an,bn)] ≤ 1

n
E[T (i),α,α⋆

(an,bn) ] +
1

n
E[# {sinks between 1 and bn}]

= aα+ b(
1

α⋆
− 1) = aα+ b

p(1− α)

α− p
.

We minimize the latter by taking

α = p+

√

b

a
p(1− p).

Note that this choice is allowed since for p ∈ (0, a/(a+ b)) then 0 < p < α < 1.

Model 1 and 2. Lower bound.

In Seppäläinen (1997, 1998) the lower bound was obtained with a convexity
argument on the scaling limit. Instead, we adapt a more probabilist argument due
to Rolla-Sidoravicius-Surgailis-Vares (proof of Theorem 4.1 in Rolla et al. (2010))
for the closely related model of last passage percolation with geometric weights.
Here, we only give the details for Model 1 but the same argument applies for Model
2 (there are only minor modifications due mainly to the fact that sinks have no
more a Bernoulli distribution but a geometric distribution).

Let us consider Model 1 on the rectangle [0, an]× [0, bn] with sinks and sources
with optimal source intensity α = α(a, b) and α⋆ = α⋆(a, b) (see (4.3)). For ε ∈
[0, 1], denote by L

(1)
(an,bn)(ε) the length of the largest non-decreasing subsequence

defined by

L
(1)
(an,bn)(ε) = max {L; (i1, 0), . . . , (ik, 0), (ik+1, jk+1), . . . , (iL, jL) ∈ ξ,

0 < i1 < · · · < ik ≤ anε < ik+1 < . . . < iL ≤ an and 0 < jk+1 < · · · < jL ≤ bn} .

Here is an example where L
(1)
(an,bn)(ε) = 4. Note that because of the constraint

L
(1)
(an,bn)(ε) is smaller than the number of Hammersley’s lines L(1),α,α⋆

(an,bn) .
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ik ik+1anε

Recall that φ(1) has been defined in (4.2).

Lemma 4.1 (Largest subsequence using some sources). There exist positive and
non-decreasing functions f , g on (0, 1], which depend on a, b, such that

P
(

L
(1)
(an,bn)(ε) ≥ n

(

φ(1)(a, b, α(a, b))− f(ε)
))

≤ exp(−ng(ε)).

Proof of Lemma 4.1: We write L
(1)
(an,bn)(ε) = I1 + I2 with

I1 := max {k; (i1, 0), . . . , (ik, 0) ∈ ξ, i1 < · · · < ik ≤ anε}

I2 := max

{

k; (i1, j1), . . . , (ik, jk) ∈ ξ, anε < i1 < · · · < ik ≤ an and

0 < j1 < · · · < jk ≤ bn

}

.

The random variables I1 and I2 are independent, I1 is binomially distributed with

parameters (⌊anε⌋, α(a, b)). The random variable I2 has the law of L
(1)
(an(1−ε),bn),

thus is dominated by a random variable I3 with law L(1),α(a(1−ε),b),α⋆(a(1−ε),b)
(an(1−ε),bn) .

Using (4.2), we get:

1

n
E
[

L
(1)
(an,bn)(ε)

]

≤ 1

n
E [I1 + I3]

≤ aεα(a, b) + φ(1)
(

a(1− ε), b, α(a(1− ε), b)
)

,

where, by convention, α(a′, b′) = 1 when p ≥ a′/b′ and α(a′, b′) = 0 when p ≥ b′/a′.
One can check that for p < min{a/b, b/a} and a′, b′ > 0 such that a/b 6= a′/b′ we
have

φ(1)(a′, b′, α(a, b)) > φ(1)(a′, b′, α(a′, b′)).
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This is due to the fact that α(a, b) 6= α(a′, b′) and that there is a unique α ∈ [0, 1]
which minimizes φ(a′, b′, α). Thus,

aεα(a, b) + φ(1)
(

a(1− ε), b, α(a(1− ε), b)
)

< aεα(a, b)

+φ(1)
(

a(1− ε), b, α(a, b)
)

= aεα(a, b) + a(1− ε)α(a, b)

+bα⋆(a, b)

= aα(a, b) + bα⋆(a, b)

= φ(1)(a, b, α(a, b)).

Denote by d(ε) the difference between the right and left hand side of the inequality.
The function d is positive on (0, 1] and continuous. We set f(ε) = 1

2 min{d(δ), δ ∈
[ε, 1]} which is non-decreasing and positive. Then, we have

P
(

L
(1)
(an,bn)(ε) ≥ n

(

φ(1)(a, b, α(a, b))− f(ε)
))

≤ P
(

I1 + I3 ≥ E(I1 + I3) + n
(

d(ε)− f(ε)
))

≤ P (I1 + I3 ≥ E(I1 + I3) + nf(ε)) .

Recalling that I1 is binomially distributed and I3 is the sum of two binomial random
variables, function g is obtained by applying Hoeffding’s inequality to I1 and I3. �

We still consider Model 1 on the rectangle [0, an]× [0, bn] with sinks and sources
with optimal source intensity α = α(a, b) and α⋆ = α⋆(a, b). Let πn be an optimal

path for L(1),α,α⋆

(an,bn) . If there are several optimal paths, we choose one of them in an

arbitrary way. Define Dn as the number of sources (i, j) ∈ πn with j = 0.

Lemma 4.2 (Optimal paths do not take many sources). There exists a positive
function h on (0, 1] such that for and any δ ∈ (0, 1] and for any n large enough

P (Dn > anδ) ≤ exp(−nh(δ)).

In particular Dn/n converges to 0 in L1.

Proof of Lemma 4.2: By definition, if Dn > anδ then for some ε ≥ δ such that
εan ∈ N and ǫ ≤ 1

• there are more than anδ sources in {1, . . . , εan};
• L

(1)
(an,bn)(ε) = L(1),α,α⋆

(an,bn) = T (1),α,α⋆

(an,bn) +# {sinks between 1 and bn}.
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Therefore

P {Dn > anδ} ≤ P

(

T (1),α,α⋆

(an,bn) ≤ n(aα− 1

2
f(δ))

)

+P

(

# {sinks} ≤ n(bα⋆ − 1

2
f(δ))

)

+P
(

L
(1)
(an,bn)(ε) > n (aα+ bα⋆ − f(δ)) for some ε as above

)

≤ exp(−ng̃(δ))

+
∑

1≥ε≥δ; εan∈N

P
(

L
(1)
(an,bn)(ε) > n

(

φ(1)(a, b, α(a, b))− f(δ)
))

≤ exp(−ng̃(δ))

+
∑

1≥ε≥δ; εan∈N

P
(

L
(1)
(an,bn)(ε) > n

(

φ(1)(a, b, α(a, b))− f(ε)
))

≤ exp(−ng̃(δ)) +
∑

1≥ε≥δ; εan∈N

exp(−ng(ε))

≤ exp(−ng̃(δ)) + an exp(−ng(δ))

for large n, where we used Lemma 4.1 and where g̃ is some positive function. This
implies the first part of the lemma. The convergence of Dn/n to 0 in probability
and in L1 follows, since the sequence is bounded. �

We now conclude the proof of the lower bound noticing that we have

L(1),α,α⋆

(an,nb) −Dn −D′
n ≤ L

(1)
(an,bn)

where D′
n is the number of sinks (i, j) ∈ πn with i = 0. By the previous lemma we

know that Dn/n tends to 0 in L1. By symmetry, the same result holds for D′
n/n.

Taking expectations of both sides in the previous inequality we get

lim inf
n→+∞

1

n
E[L

(1)
(an,bn)] ≥ aα+ bα⋆ = φ(1)(a, b, α(a, b)).

�

Back to Ulam’s constant. We observe that if we take p = 1/n, Theorem 1 for Model

1 suggests L
(1)
n ≈ 2

√
n, which is consistent with the asymptotics of Ulam’s problem,

since ξ is then close, after renormalization, to a Poisson point process with intensity
n.

In fact, one can rigorously recover that c = 2 using our proof of Theorem 1.
To do so, consider a Poisson point process Ξ with intensity n in the unit square
and denote by ℓ(n) the greatest number of points of Ξ an increasing path can go
through. To get a lower bound and an upper bound of ℓ(n), we divide the square
[0, 1]2 in two different ways.

First, we fix some k ≥ 1 and we divide it into small squares of length side
1/(k

√
n). Say that ξj(i) = 1 if at least one point of Ξ is in the square with top-

right corner (i/(k
√

n), j/(k
√
n)) and consider the quantity L

(1)

k
√
n

:= L
(1)

(k
√
n,k

√
n)

associated to the family (ξj(i))i,j≤k
√
n. It is clear that

ℓ(n) ≥ L
(1)

k
√
n
. (4.4)
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Denoting

pk = P(ξj(i) = 1) = P
(

Poiss(1/k2) ≥ 1
)

= 1− e−1/k2

,

Theorem 1.1 implies

L
(1)

k
√
n√

n

a.s.−−−−−→
n→+∞

2k
√
pk√

pk + 1
.

Using (4.4) and letting k tend to infinity, we get c := lim ℓ(n)/
√
n ≥ 2.

To prove the upper bound, we divide now the square into small squares of length
side 1/n4. Say that ξj(i) = 1 if at least one point of Ξ is in the square with top-

right corner (i/n4, j/n4) and consider the quantity L
(1)
n4 := L

(1)
(n4,n4) associated to

the family (ξj(i))i,j≤n4 . The parameter of these Bernoulli random variables is now

p̃n = P
(

Poiss(1/n7) ≥ 1
)

= 1− e−1/n7

.

With probability higher than 1 − n−2, all the columns and lines of width 1/n4

contain at most one point of Ξ. On this event that we denote Fn, L
(1)
n4 coincides

with ℓ(n). We now use some intermediate results of the proof of the upper bound
for a = b = 1. Inequality (3.7) still holds despite the dependence of p̃n on n i.e.

L
(1)
n4 ≤ L(1),αn,α

⋆
n

(n4,n4) ,

with αn = α⋆
n =

√
pn−pn

1−pn
∼ n−7/2. Using (4.2),we get

E[ℓ(n)] ≤ E[|Ξ|1F̄n
] + E[L(1),αn,α

⋆
n

(n4,n4) ]

≤
√

E[Poiss(n)2]/n2 + n4(αn + α⋆
n),

where we used the Cauchy-Schwarz inequality. Dividing by n and letting n go to
infinity, we obtain c ≤ 2.

5. Stationary measures of Hammersley’s process on Z

In this section, which can be read independently from the rest of the article, we
study the analogous on the infinite line Z of the process (X1

t )t≥0 defined in (2.1).
This infinite Hammersley process was introduced by T.Seppäläinen to prove the
Law of Large Numbers for Problem 1.

In order to generalize (Xt)t≥0 to a process taking its values in {0, 1}Z we need
a construction that does not rely on Hammersley lines. As before, (ξt(i))i∈Z,t∈N

denote i.i.d. Bernoulli(p) random variables we say that there is a cross at time t
located at x if ξt(x) = 1. Informally, the infinite Hammersley process is defined as
follows:

At time t, if there is a particle at x and if the particle immediately on its left is at
y, then the particle at x jumps at time t+ 1 at the leftmost cross of ξt+1 in

interval (y, x) (if any, otherwise it stays still).

For our purpose, we need a construction of (Xt) in which we let the crosses act
one by one on configurations. We first draw X0 ∈ {0, 1}Z at random according to
some distribution µ such that µ−almost surely, for all i there is j < i such that
X0(j) = 1.

We now explain how to construct (Xt+1) from (Xt). A cross will act on a given
configuration of particles in the following way: if a cross is located at x, then the
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leftmost particle of (Xt) in the interval Jx,+∞J (if any) moves to x; if there is no
such particle then a particle is created at x.

With this definition, we can now construct the value of (Xt+1) as a function of
(Xt) and the crosses at time t + 1: We define Xt+1 as the result of the successive
actions on Xt of all crosses at time t + 1 from the right to the left. Note that by
definition, there only a finite number of crosses in ξt+1 that can modify Xt(i): those
between Xt(i) and the first particle on its left.

An example is drawn in this figure where the circles represent the par-
ticles and the crosses the locations where ξt+1 equals 1. Here, we have
X1

t+1 = (1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, ...) (as in the previous sections, time goes from
bottom to top in our pictures):

Xt+1

Xt

?

Theorem 5.1. The only extremal translation-invariant stationary measures of
Hammersley’s process on Z are measures Ber(α)⊗Z for all α ∈ (0, 1].

This theorem is precisely the discrete counterpart of (Aldous and Diaconis (1995),
Lemma 7). The fact that Bernoulli product measures are stationary was proved
by T.Seppäläinen (Seppäläinen (1997) Lemma 2.1). The reason for which we only
focus on Model 1 on the infinite line is that the analogous of Model 2 is much more
complicated to analyze. Indeed, the evolution of a particle in Model 2 depends
on the whole configuration on its left. We don’t know if a similar statement to
Theorem 5.1 holds for Model 2.

In order to prove that there are no other extremal measures we adapt the proof of
Jockush-Propp-Shor (Jockusch et al. (1995) p.17-20) for the discrete-time TASEP
(see also Liggett (1985) Ch.VIII). The main difference here with Jockush-Propp-
Shor is our Lemma 5.2 below that replaces their block argument.

Proof of extremality: Let α ∈ (0, 1] and µ be an extremal translation-invariant sta-

tionary measure on {0, 1}Z with marginals µ(X(i) = 1) = α, we want to prove that
µ = Ber(α)⊗Z.

The proof is made of the following steps:

(1) we introduce a measure π on {0, 1}Z ×{0, 1}Z which is a minimal coupling
between Ber(α)⊗Z and µ;

(2) we prove (Lemma 5.3) that some patterns that would decrease
card {i;xi 6= yi}, have π-probability zero;

(3) we conclude: µ = Ber(α)⊗Z.

Let M⋆ be the set of translation-invariant measures on {0, 1}Z×{0, 1}Z that are
a coupling of Ber(α)⊗Z and µ. The set M⋆ is non-empty (it contains Ber(α)⊗Z⊗µ)
and compact for the weak topology.

We will prove that in M⋆ there is a coupling ((X(i))i∈Z, (Y (i))i∈Z) such that
X = Y a.s. Set

D : M⋆ → [0, 1]
π 7→ π (X(0) 6= Y (0)) .
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The function D is continuous on the compact set M⋆ and thus attains its minimum
δ ≥ 0 at some coupling π. If δ = 0, then the theorem is proved: by translation-
invariance X = Y π-a.s.

Let (X0, Y0) ∼ π, we use the same random variables (ξt(i))i∈Z,t∈N
to define

the dynamics of X and Y . We denote by (Xt, Yt) the pair of configurations at
time t, its joint distribution is denoted by πt. By construction, for every t, πt is
translation-invariant. For every k ≥ 1 we denote by

∆k(Xt, Yt)

the number of i ∈ {1, . . . , k} such that Xt(i) 6= Yt(i).
Let n ≥ 2 and t ≥ 0. We say that there is an n−forbidden pattern at location

x ∈ Z at time t if the configuration (Xt, Yt) between locations x and x + n − 1 is
either





x x+ n− 1
Xt = ( 1 0 . . . 0 0 )
Yt = ( 0 0 . . . 0 1 )





or




x x+ n− 1
Xt = ( 0 0 . . . 0 1 )
Yt = ( 1 0 . . . 0 0 )



 .

Lemma 5.2. For n ≥ 2, let Ex,n be the event ξ1(x) = 1, ξ1(x + 1) = ξ1(x + 2) =
· · · = ξ1(x + n − 1) = 0. Let j ≥ 1, denote by F (n, j) the subset of locations of
{0, n, 2n, . . . , (j − 1)n} at which is located a forbidden pattern at time 0. Let

A(n, j) = card{x ∈ F (n, j), Ex,n occurs}.
Then:

∆jn(X1, Y1) ≤ ∆jn(X0, Y0) + 1− 2A(n, j).

Proof of Lemma 5.2: We let the crosses at time 1 act one by one from the right
to the left. We consider the impact of each cross action on the discrepancy ∆jn

between the two configurations. Let us note that, when a cross located at i acts
on some configuration of particles, it changes the value of at most two sites of the
configuration: i and the leftmost 1 of the configuration in the interval Ji,∞). Thus,
we deduce the following facts:

• The crosses strictly to the right of jn have no impact on the discrepancy.
• A cross located at a point x in {1, . . . , jn} cannot increase the discrepancy.
To check this fact, one can study all the cases. They are all shown below,
up to symmetries between X and Y .





x
( 1 )
( 1 )



 ,





x
( 1 ? · · · ? 1 )
( 0 0 · · · 0 1 )



 ,





x
( 1 ? · · · ? 0 )
( 0 0 · · · 0 1 )



 ,





x
( 0 · · · 0 1 )
( 0 · · · 0 1 )



 ,





x
( 0 · · · 0 0 0 0 0 1 )
( 0 · · · 0 1 ? · · · ? 1 )



 ,





x
( 0 · · · 0 0 0 0 0 1 )
( 0 · · · 0 1 ? · · · ? 0 )



 .
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• For a forbidden pattern at some in, if Ein,n occurs, the cross at in decreases
the discrepancy by 2.

• In the worst case, the right-most cross which is strictly to the left of 1
increases the discrepancy by 1.

• The crosses to the left of the previous one have no impact on the discrep-
ancy.

The result follows. �

Lemma 5.3 (Forbidden patterns). Let n ≥ 2. The π0 probability of an n-forbidden
pattern at any location is 0.

Proof of Lemma 5.3: Let j ≥ 1. By Lemma 5.2 we have:

∆jn(X1, Y1) ≤ ∆jn(X0, Y0) + 1− 2A(n, j).

Note that the probability that, at some location in, there is a n-forbidden pattern
and that Ein,n occurs is ζp(1 − p)n−1 where ζ is the probability of a n-forbidden
pattern at a given location. We aim to prove ζ = 0. Taking expectation in the
previous display we get

jnD(π1) ≤ jnD(π0) + 1− 2jζp(1− p)n−1.

Dividing by nj and letting j → ∞ we get:

D(π1) ≤ D(π0)−
2ζp(1− p)n−1

n
.

But the minimality of π yields D(π1) ≥ D(π0) and we get ζ = 0. �

Lemma 5.4 (There is a forbidden pattern somewhere). Assume that δ > 0, there
exists n such that

π





1 n
X = ( 1 ? . . . ? 0 )
Y = ( 0 ? . . . ? 1 )



 > 0 or

π





1 n
X = ( 0 ? . . . ? 1 )
Y = ( 1 ? . . . ? 0 )



 > 0

Proof : Let (X,Y ) ∼ π,

δ = π(X(0) 6= Y (0)) = π(X(0) = 1, Y (0) = 0) + π(X(0) = 0, Y (0) = 1).

The two terms on the right side are equal:

π(X(0) = 1, Y (0) = 0)

=π(X(0) = 1)− π(X(0) = 1, Y (0) = 1)

=π(Y (0) = 1)− π(X(0) = 1, Y (0) = 1) (X,Y have same marginals)

=π(X(0) = 0, Y (0) = 1).

Then 0 < δ/2 = π(X(0) = 1, Y (0) = 0). Assume that the lemma is false (for every
n), we have π(A ∪B) = 1, where

A = {(x, y), xi ≤ yi for all i ∈ Z} ,
B = {(x, y), xi ≥ yi for all i ∈ Z} .
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As seen above, δ > 0 implies then that π(A), π(B\A) > 0. Besides, it is easy
to check that A and B\A are preserved by the dynamics. Hence, considering the
restriction of π on these two subsets, πA := (νA, µA) and πB\A := (νB\A, µB\A),
we see that νA (resp. µA) and νB\A (resp. µB\A ) define two translation-invariant
stationary measures such that

Ber(α)⊗Z = π(A)νA + π(B\A)νB\A.

µ = π(A)µA + π(B\A)µB\A.

The extremality of Ber(α)⊗Z and µ implies that Ber(α)⊗Z = νA = νB\A and
µ = µA = µB\A. But, by definition of A and B, νA 4 µA and µB\A 4 νB\A. Thus,
necessarily, µ = Ber(α)⊗Z. �

Now we can obtain our contradiction. Indeed, there exists an integer n such that

π





1 n
X = ( 1 ? . . . ? 0 )
Y = ( 0 ? . . . ? 1 )



 > 0 or

π





1 n
X = ( 0 ? . . . ? 1 )
Y = ( 1 ? . . . ? 0 )



 > 0.

Without loss of generality we do the first case. We can assume that X,Y coincide
between 2 and n− 1, otherwise we can decrease n. Let 1 < k < n be the leftmost

position at which
(

X(k)
Y (k)

)

=
(

1
1

)

.

With positive probability we can turn this
(

1
1

)

into
(

1
0

)

:








× − − − − − −
1 k n

Xt = ( 1 0 . . . 0 1 ? 0 )
Yt = ( 0 0 . . . 0 1 ? 1 )









t+1→









1 k n
Xt+1 = ( ? 0 . . . 0 1 ? 0 )
Yt+1 = ( ? 0 . . . 0 0 ? 1 )









We repeat this process between positions k and n and finally for some t, i, j we have

π





i j
Xt = ( 1 0 . . . 0 0 )
Yt = ( 0 0 . . . 0 1 )



 > 0,

which contradicts Lemma 5.3. �

Appendix A. Dynamic of the underlying interacting particle system

In this appendix we explicit the dynamic of the underlying interacting particle
system in Models 1 and 2. Consider the processes (Xi

t)t≥0 defined by (2.1) (without
sources and sinks). One can explicitely construct the dynamic of these processes
in term of the family of i.i.d. random variables {ξt(x), x ∈ J1, nK, t ∈ N} with law
Bernoulli(p) (see (3.1)). To do so, let say that there is a cross at time t located at
x if ξt(x) = 1. A cross will act on a given configuration of particles in the following
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way : if a cross is located at x, then the left-most particle in the interval Jx, nK (if
any) moves to x ; if there is no such particle then a particle is created at x.

With this definition, we can now construct the value of Xi
t+1 as a function of Xi

t

and the crosses at time t+ 1:

Model 1. We define X1
t+1 as the result of the successive actions on X1

t of all crosses
at time t+ 1 from the right to the left.

An example is drawn in this figure where the circles represent the par-
ticles and the crosses the locations where ξt+1 equals 1. Here, we have
X1

t+1 = (1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0) (as it is usual in the literature on Hammersley’s
processes, time goes from bottom to top in our pictures):

1 n

X1
t+1

X1
t

Let us note that there is an alternative way to construct the model 1: At time
t, if there is a particle at x and if the particle immediately on its left is at y, then
the particle at x jumps at time t+ 1 at the leftmost cross of ξt+1 in interval (y, x)
(if any, otherwise it stays still). If there are some points of ξt+1 at the right of the
rightmost particle of X1

t then a new particle appears at the leftmost point among
them.

Model 2. We define X2
t+1 as the result of the successive actions on X2

t of all crosses
at time t+ 1 from the left to the right.

1 n

X2
t+1

X2
t

We let the reader convince themselves that this construction coincides with the
definition given in (2.1).

Although the definition of both models seems, at first glance, very close, the
nature of the two processes is in fact quite different. Indeed, in the first model, to
find the location at time t + 1 of a particle located at time t at x, one just need
to know the location y of the particle immediately on his left at time t and the
position of the crosses of ξt+1 in the interval (y, x). In particular, with no difficulty,
one can define a process with similar transitions on the whole line Z as it is done in
Seppäläinen (1997). For Model 2, the dependances are more intricate. Indeed, to
determine the location at time t+1 of a particle located at time t at x, one need to
know the whole configuration of X2

t and ξt+1 on the interval J1, xK. In particular,
the definition on the whole line Z of a similar process is more delicate and requires
a condition between the density of crosses and particles (see Seppäläinen (1998)).

Finally, let us note that the construction can be extended to the models with
sources and sinks. The set of sources simply give the initial configuration of the
particle system. The sinks acts as the crosses. In Model 1 sinks act after the other
crosses while in Model 2 sinks act before the other crosses.
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T. Seppäläinen. Exact limiting shape for a simplified model of first-passage perco-
lation on the plane. Ann. Probab. 26 (3), 1232–1250 (1998). MR1640344.
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